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Abstract The 30 May 2015 Mw 7.9 Bonin Islands earthquake, Japan, is one of the largest deep-focus
earthquakes ever recorded. Its occurrence, close to 700-km depth, in an area without any known historical
seismicity, along with its magnitude, was a surprise to scientists. Deep earthquakes are generally believed
to have few aftershocks and no foreshocks. Here, we explore the earthquake productivity in the
hypocentral surroundings and detect 49 not previously identified earthquakes, 28 of which occurred
during an accelerating preseismic phase that started 3 months prior to the main shock. This is the first time
that such foreshock activity has been observed for a deep earthquake. The preseismic and postseismic
activity suggests transformational faulting within a metastable olivine wedge (MOW) inside the slab at
depth as the triggering principal mechanism for this deep earthquake sequence, the seismicity starting
where the backward bending of the subducting Pacific plate is maximum.

Plain Language Summary Deep earthquakes have been puzzling seismologists for almost a
century, since their discovery in the 1920s. Earthquakes deeper than 50 km represent about 25% of the
global seismicity, and deep-focus earthquakes are defined as those located at 300-km depth or more. They
can be exceedingly large and occur at temperatures and pressures where sliding and fracture are inhibited,
thus the brittle fracture/friction mechanism, valid in Earth's crust, cannot hold. Despite their abundance,
the physical mechanism behind deep-focus earthquakes is still a subject of ongoing debate. The Bonin
Islands earthquake (30 May 2015, Mw7.9) occurred at 680-km depth in a previously quiet area. In order
to better understand why and how it occurred there, we searched for previously unknown earthquakes in
the surroundings. For the first time, we identify a preseismic phase preceding such a very deep-focus
earthquake. The location of the newly detected earthquakes reveals the geometry of the slab at depth, and
their spatiotemporal distribution supports transformation of metastable olivine as the rupture initiation
process.

1. Introduction
The Mw 7.9 (M𝑗ma 8.1) Bonin Islands, Japan, earthquake occurred on 30 May 2015 at a depth of 680 km
(Figure 1) in a previously seismically quiet area (symbols for magnitudes used in the paper are explained
in the Supporting Information Text S1). Analysis of broadband seismograms revealed a hypocenter located
below 660-km depth; the 660-km discontinuity may be deflected towards greater depths in this region
(Kuge, 2017). The earthquake is located in the cold portion of a subducting oceanic lithosphere of complex
geometry (Obayashi et al., 2017; Zhao et al., 2017). Its Global Centroid Moment Tensor (GCMT) focal mech-
anism indicates that one of the planes has a dip of 25◦ (Figures 1 and 6), which is common for deep-focus
earthquakes (Frohlich, 2006). According to the Japanese Meteorological Agency (JMA), the earthquake trig-
gered only four aftershocks, an expected result since the aftershock productivity of deep-focus earthquakes
is systematically lower than that of shallow ones for comparable magnitude (Frohlich, 2006; Frohlich &
Willemann, 1987; Kagan & Knopoff, 1980; Persh & Houston, 2004; Vallée, 2013). This is one of the many
unusual properties of deep-focus earthquakes relative to crustal ones, with implications for the mechanics
of the earthquake process.

Due to the extreme pressure and temperature conditions at these depths, the mechanics at play during
deep-focus earthquake nucleation and propagation have been vigorously debated (Frohlich, 2006) since
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Figure 1. The Japanese subduction zone and location of the 2015 deep Bonin Islands earthquake. Red and white
triangles are stations from the Hi-net network and islands or OBS stations, respectively (note that there are three
stations on the Ogasawara island, marked Oga. Is.). The dots show the JMA location of the seismicity, color coded with
depth. The plate and trench velocities are shown in green and black, respectively (from Schellart et al., 2007). Lines
AA′ and BB′ indicate the location of the cross sections of Figure 6. The focal mechanism is the Global Centroid
Moment Tensor (GCMT) point-source solution of the 30 May 2015 Mw 7.9 (M𝑗ma 8.1) main shock.

their discovery about a century ago (Turner, 1922; Wadati, 1927). Two plausible mechanisms have been
invoked: (i) transformational faulting (Green II & Burnley, 1989; Kirby, 1987), that is, faulting instabil-
ities associated with the transformation of cold metastable olivine into its denser spinel-type crystalline
structures, and (ii) grain size reduction and enhanced plastic flow of olivine crystal grains leading to a
self-sustained shear-heating thermal runaway (Kelemen & Hirth, 2007). Both mechanisms (i) and (ii) could
eventually lead to frictional melting (Kanamori et al., 1998). Experimental studies supporting transforma-
tional faulting (Green II & Burnley, 1989; Schubnel et al., 2013) suggest that laboratory analogs of deep-focus
earthquakes might be preceded by an increasing number of earthquakes of increasingly larger magnitudes
(Wang et al., 2017), just as large shallow earthquakes can be preceded by foreshocks both in the field
(Bouchon et al., 2011; Bouchon et al., 2013; Ellsworth & Beroza, 1995; Kato et al., 2012; Kato & Nakagawa,
2014; Radiguet et al., 2016) and in the laboratory (McLaskey & Lockner, 2014; Passelègue et al., 2014). On
the contrary, the precursor to a shear-heating thermal runaway type of instability should be a ductile aseis-
mic type of phenomenon (Kelemen & Hirth, 2007). Investigating whether the absence of foreshocks is a
real characteristic of large deep-focus earthquakes thus has crucial implications for the understanding of
the mechanics at work during such events. In this study, we used a Waveform Matched-Filter Technique:
an effective method to detect missing earthquakes hidden in the signal of larger ones or in the noise
(Gibbons & Ringdal, 2006; Peng & Zhao, 2009; Shelly et al., 2007) to better constrain the spatial and tem-
poral evolution of the seismicity in the immediate surroundings of the main shock hypocenter before and
after the earthquake.
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2. Materials and Methods
2.1. Computing Coherency
The Waveform Matched-Filter Technique is based on the computation of the similarity between a window
that contains the template, A, and the continuous signals, B. To do so, we compute the coherency value (C)
in the frequency domain (equation (1), Gardonio et al., 2018). The template window starts 2 s before the P
wave arrival and lasts 10 s. Coherency is calculated by sliding the 10-s template over the continuous signal
in 2-s increments. The windows are tapered by a Hanning window.

CAB(𝜔) =
A(𝜔)B∗(𝜔)√

A(𝜔)A∗(𝜔)
√

B(𝜔)B∗(𝜔)
. (1)

The overbar denotes averaging over four consecutive (discrete) frequency values centered on frequency
f=𝜔∕(2 ∗ 𝜋) and A∗ defines the complex conjugate of A.

The main shock was followed by four aftershocks according to the JMA catalog (Figure S1). We used these
five earthquakes as templates on the vertical component of 46 stations of the Hi-net network, 8 stations
located on islands, and 3 ocean bottom seismometers (OBS; Figure 1, Data Set S1). We applied the Waveform
Matched-Filter Technique over 6 months of continuous data (from February to July 2015).

We chose stations on the southwest and northeast of Japan in order to have the best possible azimuthal
coverage. Because high-frequency seismic energy can be trapped in the slab in the case of deep-focus earth-
quakes (Furumura & Kennett, 2005; 2017), the seismic signals were strong enough for the stations in the
northeast of Japan to record them.

We calculate CAB, the mean coherency for three frequency bands: 1–4, 2–5, and 2–8 Hz. We keep the high-
est coherency value among them and remove multiple detections of the same earthquake by taking the
maximum coherency in a 30-s sliding window.

2.2. Selection of Possible Detections
One computing task consists of the coherency computation between a template and 1 day of continuous
signal. For each task, we apply a selection criterion of CAB ≥ mean(CAB) + 5 ∗ 𝜎(CAB), with 𝜎 being the
standard deviation (Lengliné et al., 2012). An example of the distribution of the coherency for one task
(i.e., one template over 1 day of continuous recordings) and the corresponding threshold is given in Figure S2.

The detected earthquakes are somewhat hidden in the noise level (Figure 2). For example, the detection on
10 February 2015 at 16h12 (the date and time are given in Japanese time) is hidden in the noise, whereas
detection on 6 February 2015 at 13h05 is more visible in the continuous signal. We aligned the waveforms to
stack them (Figure 2, bottom). The result of the stack allows us to retrieve the P wave arrival of the template.
Furthermore, we computed the coherency between the continuous signal on the horizontal component and
the S wave of the template and stacked the waveforms (Figure S3). We also retrieve the S waves and manage
to visually isolate their arrivals even though the signal is more noisy than for P waves. It is to be noted that
several earthquakes were detected by more than one template and that the main shock also detected earth-
quakes (Figure S4). An example of a detection by the main shock is given in Figure S5. Only earthquakes
detected by at least four stations, including one on the Ogasawara Island, are listed in the output catalog.

2.3. Location of the Detected Earthquakes
As a first step of the location process we compare the arrival times of the detected earthquake (d) with
the arrival times of the template (x) that detected it, taking the first arrival time as the reference. If the
difference between the arrival times matrices is small, then the two earthquakes should be located close
together (Figure S6).

To do so, we need the exact time of detection of the earthquakes and thus computed the coherency on a
1-s sample sliding window (instead of 2 s). We then searched for the maximum coherency value and the
minimum delay between the template and the detected earthquake to obtain the precise time of detection for
every station that detected it. This allowed us to compare the arrival time matrices (in seconds) as follows:

Dt =

√√√√Nsta∑
i=1

((txi − txre𝑓 ) − (tdi − tdre𝑓 ))2

Nsta
. (2)
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Figure 2. Example of detected earthquakes. The red trace shows the P wave of the M𝑗ma 5.6 template that occurred on
the 3rd of June 2015 at 6H04 (Japanese time), recorded at JP.JCJ, on of the station located on the Ogasawara Island.
The blue traces are the P waves of the detected earthquakes. The times of detection and coherencies are given on the
left and right, respectively. The panel at the bottom gives the stack of all the detected earthquakes (in blue) that
compares well with the arrival of the P wave template (in red). Note that the earthquake detected on 31 May 2015 at
11h38 is not taken into account in the stack since its good signal to noise ratio could bias the result. Note that the
energy rapidly decays after 10 s for the newly detected earthquakes, which might be due to attenuation, although it was
not the case for the template that is a M𝑗ma5.6 earthquake.

With txi and tdi being the arrival time of the template and the detected earthquake, respectively, re𝑓 is the
arrival time at the reference station (the first arrival), and Nsta the total number of detecting stations. Then
knowing the velocity model, we can use Dt as a proxy to estimate the distance between the template and
its detected earthquakes. Since the value of Dt increases with distance to the templates, we can have a rea-
sonable confidence in our location method (Figure S7). However, we took a step further in locating the
earthquakes even though the geometry of the network and its location far away from the templates we used
is a major impediment to deriving accurate locations.

We first relocated these five templates using the P wave arrival times of all the 58 stations used in this study
and used these five relocated templates to locate the detected earthquakes, one after the other. The first step
of the location procedure consists in defining the origin time of the detected earthquake d. The precise time
of detection for every station that detected d is used. We then hypothesized that the detected earthquake d is
located near its detecting template x and used the travel time of x to estimate the origin time of the detected
earthquake. We did so for all the stations that detected the earthquakes and computed the mean origin time.

Two earthquakes (numbers 32 and 33 in our catalog) that we detect were not present in the JMA cata-
log but listed by the International Seismological Center (ISC; Willemann & Storchak, 2001) (https://doi.
org/10.31905/D808B830). In the following, we will use them to compare our results with the ISC cata-
log. According to the ISC, these two earthquakes occurred on 30 May 2015 at 22h16mn17.46s and on 31
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May 2015 at 11h38mn26.05. Using our method, their respective times of occurrence are 22h16m11.8s and
11h38mn24.38s. Figure S8 shows the distribution for the detected earthquake number 32. In this example,
the second of the origin time is between 9 and 12.5 with a mean of 11.82. Figure S9 shows the different loca-
tions that result from using these different origin times; 3.5 s of difference corresponds to 10 km of distance
between the different locations.

Then, the mean origin time is used to estimate the travel time of the newly detected earthquake. The
last stage consists of computing a double difference relocation of the detected earthquakes using HypoDD
(Waldhauser & Ellsworth, 2000) and these travel times, hypothesizing that their first location is the location
of the template that detected them. We used a 1D velocity model of 12 layers with a Vp/Vs ratio of 1.73 km/s
presented in Table S1.

2.4. Location Uncertainty Estimation
To test the robustness of our method, we applied it to the templates. This is possible because all the templates
detected each other during the study. Here, we use only the inter-detection times (i.e., a template with other
templates) and do not take into account the auto-detections (i.e., a template with itself). Figure S10 shows
the location of the templates according to the JMA catalog, compared with the relative relocation using 1)
HypoDD on the P-wave arrival times and 2) our method. Hypocenters of templates move by a maximum of
40, 20, and 12 km in longitude, latitude and depth, respectively. Our method shows the same deviation of
the template locations except for the template number 2, which is located to the west.

Furthermore, our technique locates the earthquake number 32 at lat = 27.83◦N; lon = 140.65◦E;
depth = 686 km, while the ISC located it at lat = 27.99◦N; lon = 140.60◦E; depth = 700 km (22 km apart).
For the earthquake number 33, our location is at lat = 27.80◦N; lon = 140.73◦E; depth = 677 km, and the
ISC locates it at lat = 27.79◦N; lon = 141.33◦E; depth = 700 km (57 km apart).

Finally, we look at the difference between the S wave arrival times and P wave arrival (Ts − Tp) times at
station JP.JCJ (located on the Ogasawara Island). The templates have a Ts−Tp time of 64 s, and the detected
earthquakes presented in the stacks indicate Ts − Tp times spanning from 55 to 77 s (Figure S11).

2.5. Magnitude Estimation
To estimate the magnitude of the newly detected earthquakes, we used the relation defined in Lengliné
et al. (2012) : m1 = m2 + 1.35log10(A1∕A2), with m1 and m2 as the earthquake magnitude of the detected
earthquake and reference earthquake, respectively, and A their maximum amplitude. We compute m1 for
all the stations, using the main shock as the reference, and keep the mean value. The amplitude ratio is
calculated over a 30-s long window, filtered between 2 and 8 Hz. Since this relation was found for shallow
earthquakes, we shall test its validity for deeper earthquakes on the four templates we used. We obtained
magnitudes M of 5.0, 3.5, 5.3, and 3.8 compared to 5.1, 3.6, 5.6, and 3.8 in the JMA catalog. An example of
this computation is given in Figure S12 to show the deviation of the magnitude value that we obtain for all
the templates. Earthquakes 32 and 33 both have magnitudes of 3.4, whereas the magnitude estimation of
ISC (mb) is 3.6 and 3.3, respectively.

Based on this relation, we are able to compute magnitude estimates M for the newly detected earthquakes.
For each new earthquake, we compute the amplitude ratio of the detected earthquake with its template.
We finally obtain an estimate of the magnitude computing the average of the magnitudes for stations that
detected the earthquake. In this study, we do not weight the stations by their computed coherency since all
stations have comparable coherency values.

3. Results
We found 49 new earthquakes (Data Set S2), of which 28 are foreshocks and 21 are aftershocks (Figure 3a
and Data Set S2). The newly detected earthquakes have magnitudes M ranging from 1.9 to 4.8 with a mean
value of 3.2 (Figures 3b and 3d), that is, below the magnitude of completeness ≈ 3.7 of the JMA catalog for
earthquakes located deeper than 350 km.

The earthquakes we detect follow the Gutenberg-Richter law (Figure S13), and the magnitude of complete-
ness of the new catalog (Mc) is ≈ 2.8. Following the method of Woessner and Wiemer (2005), we applied
different fits to our data set using several magnitudes of completeness to estimate the b-value even though
the data set we use is sparse. The b-value is constant from the magnitude of completeness of 2.8 to magni-
tude 4 and is of 0.6 ± 0.1 (Figure S14), in agreement with a previous study where b-value was computed for
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Figure 3. Analysis of the newly detected earthquakes. (a) Cumulative number of earthquakes with time. Vertical lines
indicate the origin time of the templates, the first one being the main shock. (b) Magnitude M versus time of all
detected earthquakes. (c) Distribution of the coherency of all the earthquakes. (d) Distribution of the magnitude M of
all the earthquakes.

earthquakes between 500- and 700-km depths (Zhan, 2017). Apart from the detection of the templates with
themselves, the coherency value C ranges from 0.81 to 0.86 with a mean value of 0.82 (Figure 3c), mean-
ing that no repeating earthquakes (i.e., earthquakes with highly comparable waveforms and which sources
overlap, at least partially) were detected as opposed to what has been observed in the Fiji-Tonga (Wiens &
Snider, 2001).

The foreshocks distribution in time is far from being random. On the contrary, it shows a clear change of
seismic rate on 11 February 2015 until the occurrence of the main shock (Figure 3), confirming that we detect
real earthquakes and not random noise. It can be fitted by an exponential function (with a characteristic time
of≈30 days) or by an inverse Omori-law with p = 1.5 (Figure 4, black and pink dashed lines, respectively, and
Figure S15). Furthermore, following the method described in Bouchon et al. (2013), we obtain a probability
of 85% that this acceleration is not due to chance.

This acceleration disappears when decreasing the coherency threshold, while it becomes clearer for thresh-
olds larger than 0.81 (Figure S16). Looking at the earthquakes with values of Dt <25 s (Figure 4, purple line),

Figure 4. Normalized cumulative number of earthquakes sorted by Dt values where Dt is the difference between the
matrix of arrival times of the template and the detected earthquakes. The total number of earthquakes is given in
brackets in the inset. Vertical lines indicate the origin time of the templates. In the acceleration phase, dashed black
and pink lines indicate the exponential and Omori-type fit, respectively, of the acceleration phase. In the postseismic
phase, the magenta dashed line shows the Omori-decay for aftershocks with Dt < 25 s. Earthquakes with Dt value
between 10 and 25 s experienced the acceleration phase but not the aftershock decay, showing that the acceleration
impacted a larger area than the aftershock sequence.
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Figure 5. Map view of the reliably located (Dt < 25 s) detected earthquakes for three time periods, color coded by the
number of stations that detected it, as shown by the key at the bottom. The star shows the main shock location. Dates
are given as yyyy/mm/dd. The two left figures show the migration of the foreshocks towards the east, and the
rightmost the 2-month aftershock sequence. White circles are the templates, detected at 58 stations. (Figure S7 shows
all the 49 earthquakes.)

the acceleration phase prior to the main shock is also enhanced while it completely disappears for earth-
quakes with Dt >25 s (equation (2), Figure 4, dashed, green line). This means that the closer the detected
earthquakes are to the templates, the more they are active before the main shock. Indeed, the acceleration
phase is very well seen by earthquakes that have a 10 s< Dt <25 s (Figure 4, red line), which corresponds to
distances of 80 to 200 km from the templates with a velocity of 8 km/s. Thus, we will consider only earth-
quakes with a Dt <25 s in the following. As increasing the coherency threshold or lowering Dt are both
equivalent to sharpening the focus within the surroundings of the templates, this phase of preparation is a
robust observation, and it is observed for the first time for a deep-focus earthquake and is similar to that seen
in laboratory experiments using intact rocks (Lei, 2003; Wang et al., 2017). This is important as it strongly
suggests the possible absence of a preexisting fault in the slab. The 21 new aftershocks found in this study
follow an Omori-type power-law decay with an exponent p ≃ 0.91 (Figure 4, magenta dashed line). The
aftershock decay is clearly visible for Dt <25 s but is more prominent for Dt <10 s. However, the number of
aftershocks still remains small for such a large earthquake compared to shallow ones (Frohlich, 2006).

Finally, the temporal distribution of earthquakes according to their Dt value indicates that the preseismic
phase activated a larger area than the aftershock phase did.

4. Discussion
Newly detected earthquakes are located at around 28◦N latitude (Figure 5) and at a depth close to 700 km
(Figure 6). Because of our network configuration, the resolution in latitude is better than the resolution
in longitude (Figure S10) and the location is more reliable for earthquakes detected by a large number of
stations (Figure S6). Nevertheless, the seismicity seems to be migrating towards the main shock, within the
duration of the acceleration phase (Figure 6, left and middle), while almost all the aftershocks are located
east of it (Figure 6, right). The vertical cross section (along AA′, Figure 1), reveals a backward bending of
the subducting Pacific slab at depth (Figure 6). Such backward bending was also interpreted from recent
tomographic imaging (Zhao et al., 2017) and has otherwise only been observed under Indonesia (Schöffel
& Das, 1999). According to thermo-mechanical models of the Izu-Bonin subduction zone (Čížková & Bina,
2015), this bending is consistent with the trench advancing westward (white arrows in Figure 1, Schellart
et al., 2007). With this geometry, the eastern part of the slab is also the oldest and coldest, which, from
mineral physics, is expected to displace the 660-km discontinuity to greater depths. This would explain both
the location of the main shock below 660 km and the observed longitudinal variations of the discontinuity
(Kuge, 2017). This is in good agreement with wave propagation modeling (Castle & Creager, 1998; Takemura
et al., 2016) and with the existence of a “heel part” of the slab hypothesized by Obayashi et al. (2017).

The structure of the slab at depth is debated: a thermal modeling study indicates a buckling of the slab (Yang
et al., 2017), while structural modeling suggests a piling up of the slab (Porritt & Yoshioka, 2016). In any case,
source modeling has shown that there is an important deformation at depth causing stress heterogeneity
(Chen et al., 2018; Ye et al., 2016). In light of our result, the slab seems to be flat between longitudes 140◦E
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Figure 6. Cross section views of the earthquakes with a Dt< 25 s, color coded with time and size proportional to their
magnitude M, as shown by the key on the right. Left: along AA′; right: along BB′. The focal mechanism is the GCMT
solution in Figure 1 but in vertical cross section, where AA′ and BB′ are marked. The locations of the templates and
detected earthquakes (open circle) and of the seismicity from the JMA catalog for the analyzed 6 months (grey dots) are
shown. Dashed lines indicate the possible 410- and 660-km discontinuities geometries. The green area indicates the
possible location of the MOW.

and 144◦E and 600- to 700-km depth, which is in good agreement with a recent tomography study (Zhang
et al., 2019), but we cannot infer the geometry of the slab at greater depth.

The BB′ cross section reveals that the earthquakes all seem located within a 50-km wide band (Figure 6,
right). This alignment of microseismicity within a deep and narrow band might be good support for trans-
formational faulting within a MOW. As could be expected for warm slabs (Zhan, 2017), small earthquakes
would occur by transformational faulting within the MOW, whereas large ones may nucleate inside of it (also
by transformational faulting) but would later expand outside the wedge via alternative frictional weakening
mechanisms such as melting (Kanamori et al., 1998) and with decreasing radiation efficiency (Zhan et al.,
2014). The seismicity starts where the bending is maximum, where large stress can trigger transformational
faulting reactions (Figures 5 and 6).

5. Conclusion
In conclusion, our observations suggest that the deep microseismicity in the Izu-Bonin subduction zone
is located within a thin MOW whose complex geometry is due to the backward bending of the slab. This
area is far from being seismically quiet and shows a relatively intense preseismic phase for the considered
depths with a cascading rupture process. This is consistent with recent laboratory experiments on deep
earthquakes triggered via transformational faulting (Wang et al., 2017) and, a priori, rules out shear heating
thermal runaway as a potential triggering mechanism for the Bonin Islands earthquake. Finally, whereas
shallow earthquakes can be preceded by repeating earthquakes (Bouchon et al., 2011; Kato et al., 2012; Kato
& Nakagawa, 2014), no repeaters were detected here. This again supports transformational faulting as the
principal mechanism at play as minerals can transform only once.
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