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Distributed Hypothesis Testing based on
Unequal-Error Protection Codes

Sadaf Salehkalaibar, IEEE Member and Michèle Wigger, IEEE Senior Member

Abstract—Coding and testing schemes for binary hypothesis
testing over noisy networks are proposed and their corresponding
type-II error exponents are derived. When communication is
over a discrete memoryless channel (DMC), our scheme combines
Shimokawa-Han-Amari’s hypothesis testing scheme with Borade-
Nakiboglu-Zheng’s unequal error protection (UEP) for channel
coding where source and channel codewords are simultaneously
decoded. The resulting exponent is optimal for the newly in-
troduced class of generalized testing against conditional inde-
pendence. When communication is over a multi-access channel
(MAC), our scheme combines hybrid coding with UEP. The
resulting error exponent over the MAC is optimal in the case
of generalized testing against conditional independence with
independent observations at the two sensors when the MAC
decomposes into two individual DMCs. In this case, separate
source-channel coding is sufficient and no UEP is required. This
same conclusion holds also under arbitrarily correlated sensor
observations when testing is against independence.

I. INTRODUCTION

Sensor networks are important parts of the future Internet
of Things (IoT). In these networks, data collected at sensors is
transmitted over a wireless medium to remote decision centers,
which use this information to decide on one of multiple
hypotheses. We follow previous works in the information
theory community [1], [2] and assume that the terminals
observe memoryless sequences that follow one of two possible
joint distributions, depending on the underlying hypothesis
H ∈ {0, 1}. The performance of the decision system is
characterized by two error probabilities: the probability of
type-I error of deciding on H = 1 when the true hypothesis
is H = 0, and the probability of type-II error of deciding
on H = 0 when the true hypothesis is H = 1. We consider
asymmetric scenarios where one of the two errors (typically
the type-II error) is more harmful than the other, and therefore
a more stringent constraint on the asymptotic decay of this
error probability is imposed. Specifically, the type-I error
probability can decay to 0 arbitrarily slowly in the blocklength,
whereas the type-II error probability is required to decay
exponentially fast. The goal of our research is to find the
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largest possible type-II error exponent for a given distributed
decision system.

This problem statement has first been considered for the
setup with a single sensor and a single decision center when
communication is over a noiseless link of given capacity [1],
[2]. For this canonical problem, the optimal error exponent
has been identified in the special cases of testing against
independence [1] and testing against conditional indepen-
dence. In the former case, the joint distribution of the two
sources under H = 1 equals the product of the two marginal
distributions under H = 0. In the latter case, this product
structure holds only conditional on a second observation at the
decision center, which has same marginal distribution under
both hypotheses. The optimal exponent for testing against
conditional independence is achieved by the Shimokawa-Han-
Amari (SHA) scheme [3], which applies Wyner-Ziv source
coding combined with two local joint typicality tests at the
sensor (between the quantized sequence and the sensor’s
observation) and at the decision center (between the quantized
sequence and the decision center’s observation). The decision
center declares the alternative hypothesis H = 1 whenever
one of the two joint typicality tests fails. To this end, the
sensor sends a special 0-message over the noiseless link to
the decision center whenever its local typicality test fails. The
reason for sending this special 0-message is that given the
more stringent constraint on the type-II error probability, the
decision center should decide on H = 1 in case of slightest
doubt.

The SHA scheme yields an achievable error exponent for
all distributed hypothesis testing problems (not only testing
against conditional independence) [3], but it might not be
optimal in general [4]. The SHA scheme has been extended
to various more involved setups such as noiseless networks
with multiple sensors and a single decision center [2], [5]–
[7]; networks where the sensor and the decision center can
communicate interactively [8], [9]; multi-hop networks [10],
and networks with multiple decision centers [10], [11].

The main focus of this paper is to extend above works
to noisy channels. In [12], it was shown that the optimal
exponent for testing against conditional independence over
a discrete memoryless channel (DMC) coincides with the
optimal exponent for the same test over a noiseless link of rate
equal to the capacity of the DMC. A similar result is obtained
also for multi-access channels (MACs) with two individual
DMCs connecting the two transmitters to the single receiver
[12]. In these previous works, the optimal error exponent is
thus not degraded because channels are noisy. Only capacity
matters.
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In this paper, we build on our conference publications [13]
and [14] and propose coding and testing schemes for general
hypothesis testing over DMCs and (not necessarily orthogonal)
MACs. Our schemes suggest that for general hypothesis tests,
the transition law of the channel matters, not only its capacity.

For DMCs, we propose a scheme that combines the SHA
hypothesis testing scheme with Borade-Nakiboglu-Zheng’s
(BNZ) Unequal Error Protection (UEP) [15], [16] coding to
specially protect the 0 source-coding message. Source and
channel codewords are decoded jointly, similar to [17]. Notice
that under separate sequential decoding or when the UEP code
is replaced by a standard channel code, the error exponent of
our scheme degrades in general.

The proposed scheme achieves the optimal exponent for
a generalization of testing against conditional independence
where the observations at the decision center can follow
a different marginal distribution under the two hypotheses.
This optimal exponent is shown to be achievable also with a
simplified scheme that combines the SHA hypothesis testing
scheme with a capacity-achieving code in a separate source-
channel coding architecture. This contrasts the findings in [18]
stating that for testing against conditional independence an
operational separation does not hold.

The error exponent achieved by our DMC scheme consists
of three competing exponents. Two of them coincide with
that of the noiseless setup [3] when the rate of the noiseless
link is replaced by the mutual information between the input
and output of the channel. The third error exponent coincides
with BNZ’s missed-detection exponent [15]. Depending on the
DMC and the type of hypothesis test to perform, this third
error exponent can be active or not. It is in particular not active
for above described generalized testing against conditional
independence tests, illustrating why the optimal type-II error
exponent in this setup only depends on the DMC’s capacity
but not on its other properties.

Using hybrid coding [19], above coding and testing scheme
is extended to MACs. In this case, the error exponent achieved
by our scheme is expressed in terms of nine competing expo-
nents. One of them corresponds to that of [2]; three of them
correspond to an incorrect decoding of the hybrid scheme;
three of them correspond to the missed-detection exponents
of the UEP scheme; and the other two correspond both to
the UEP mechanism and incorrect decoding. The proposed
coding scheme establishes the optimal error exponent of the
generalized testing against conditional independence when the
sources at the transmitters are independent under both hy-
potheses and the MAC decomposes into two individual DMCs.
In this case, hybrid coding can be replaced by separate source-
channel coding and no UEP is required. Separate source-
channel coding is more generally shown to attain the optimal
error exponent for arbitrary source correlations when testing
against independence over two individual DMCs.

The last contribution of the paper is a study of a Gaussian
example with jointly Gaussian sources (that do not correspond
to testing against independence) and a Gaussian MAC. For
this example, the error exponents achieved by our coding
and testing scheme are evaluated and numerical simulations
show that they are close to a new upper bound on the

optimal exponent that we derive based on Witsenhausen’s
max-correlation argument [20].

Following [13], in a parallel work [12], Sreekumar and
Gündüz proposed two coding and testing schemes for the
general hypothesis testing problem over DMCs. Their schemes
either employ hybrid coding (similar to our MAC scheme) or
maximum likelihood decoding. Which one of the two achieves
the better exponent might depend on the source distributions
and the DMC. We show in this paper that in some cases the
exponent of the hybrid coding scheme strictly improves over
the exponent for the DMC presented in this paper. However,
as we explained in some cases our exponent is optimal and
thus our simpler scheme is sufficient. For certain hypothesis
testing problems, an even simpler scheme based on separate
channel coding and hypothesis testing achieves the optimal
type-II error exponent.

We conclude this introduction with a summary of the main
contributions of the paper and remarks on notation.

A. Contributions

The main contributions of the paper are as follows.
• A coding and testing scheme for DMCs is proposed

(Theorem 1 in Section II). The scheme is based on
SHA’s hypothesis testing scheme and UEP channel cod-
ing where source and channel codewords are decoded
jointly. A matching converse is derived for generalized
testing against conditional independence (Theorem 2 in
Section II), thus establishing the optimal exponent for
this case. The employed UEP mechanism and the joint
decoding of source and channel codewords are important
ingredients of our scheme. Without them, the error expo-
nent of our scheme degrades. (See Remark 1 and Fig. 3
in Section II-D.)

• A coding and testing scheme for MACs is proposed (The-
orem 4 in Section III). The scheme is based on hybrid
coding and UEP. A matching converse is derived for gen-
eralized testing against conditional independence over an
orthogonal MAC when the sources are independent under
both hypotheses (Theorem 5 in Section III). In this special
case, separate source-channel coding is sufficient and
no UEP is required. Separate source-channel coding is
shown to be optimal also for testing against independence
under arbitrarily correlated sensor observations when the
MAC decomposes into two orthogonal DMCs from each
of the sensors to the decision center (Proposition 2 in
Section III). The results on the MAC are concluded
with the study of a Gaussian example, where the error
exponent achieved by our scheme numerically matches a
newly derived upper bound on the optimal error exponent
(Corollary 4 and Theorem 6 in Section III-D, see also
Fig. 6).

B. Notation

We mostly follow the notation in [21]. Random variables are
denoted by capital letters, e.g., X, Y, and their realizations by
lower-case letters, e.g., x, y. Script symbols such as X and
Y stand for alphabets of random variables, and Xn and Yn
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for the corresponding n-fold Cartesian products. Sequences
of random variables (Xi, ..., Xj) and realizations (xi, . . . , xj)
are abbreviated by Xj

i and xji . When i = 1, then we also use
Xj and xj instead of Xj

1 and xj1.
We write the probability mass function (pmf) of a discrete

random variable X as PX , which we also indicate as X ∼
PX . To distinguish the pmf of a random variable X under
the two hypotheses, we also use QX for the pmf of X under
the hypothesis H = 1. The conditional pmf of X given Y is
written as PX|Y , or as QX|Y when H = 1.

The term D(P‖Q) stands for the Kullback-Leibler (KL)
divergence between two pmfs P and Q over the same alphabet.
We use tp(an, bn) to denote the joint type of the pair of
sequences (an, bn), and ctp(an|bn) for the conditional type
of an given bn [22]. For a joint type πABC over alpha-
bet A × B × C, we denote by IπABC (A;B|C) the mutual
information assuming that the random triple (A,B,C) has
pmf πABC ; similarly for the entropy HπABC (A) and the
conditional entropy HπABC (A|B). Sometimes we abbreviate
πABC by π. Also, when πABC has been defined and is clear
from the context, we write πA or πAB for the corresponding
subtypes. When the type πABC coincides with the actual pmf
of a triple (A,B,C), we omit the subscript and simply write
H(A), H(A|B), and I(A;B|C).

For a given PX and a constant µ > 0, let T nµ (PX) be the
set of µ-typical sequences in Xn as defined in [8, Sec. 2.4].
Similarly, T nµ (PXY ) stands for the set of jointly µ-typical
sequences. The expectation operator is written as E[·]. We
abbreviate independent and identically distributed by i.i.d..

II. HYPOTHESIS TESTING OVER DISCRETE MEMORYLESS
CHANNELS

A. System Model

Consider the distributed hypothesis testing problem in
Fig. 1, where a transmitter observes source sequence Xn and
a receiver source sequence Y n. Under the null hypothesis:

H = 0: (Xn, Y n) i.i.d. ∼ PXY , (1)

and under the alternative hypothesis:

H = 1: (Xn, Y n) i.i.d. ∼ QXY . (2)

for two given pmfs PXY and QXY . The transmitter can
communicate with the receiver over n uses of a discrete
memory channel (W,V,ΓV |W ) where W denotes the finite
channel input alphabet, V the finite channel output alphabet,

ΓV |W

Fig. 1. Hypothesis testing over a DMC ΓV |W .

and ΓV |W the DMC transition law. Specifically, the transmitter
feeds inputs

Wn = f (n)(Xn) (3)

to the channel, where f (n) denotes the chosen (possibly
stochastic) encoding function

f (n) : Xn →Wn. (4)

The receiver observes the ouputs V n, where for a given
input Wt = wt,

Vt ∼ ΓV |W (·|wt), t ∈ {1, . . . , n}. (5)

Based on the sequence of channel outputs V n and the source
sequence Y n, the receiver decides on the hypothesis H. That
means, it produces the guess

Ĥ = g(n)(V n, Y n), (6)

by means of a decoding function

g(n) : Vn × Yn → {0, 1}. (7)

Definition 1: An exponent θ is said achievable, if for
each ε > 0 and sufficiently large blocklengths n, there exist
encoding and decoding functions (f (n), g(n)) such that the
corresponding type-I and type-II error probabilities at the
receiver

αn := Pr[Ĥ = 1|H = 0], (8)

βn := Pr[Ĥ = 0|H = 1], (9)

satisfy

αn ≤ ε, (10)

and

− lim
n→∞

1

n
log2 βn ≥ θ. (11)

The goal is to maximize the achievable type-II error exponent
θ.

B. Coding and Testing Scheme

Our coding and testing scheme combines SHA’s hypothesis
testing scheme for a noiseless link [3] with BNZ’s UEP
channel coding that protects the 0-message (which indicates
that the transmitter decides on H = 1) better than the other
messages [15], [16]. In fact, since here we are only interested
in the type-II error exponent, the receiver should decide on
H = 0 only if the transmitter also shares this opinion.

We describe the coding and testing scheme in detail. The
analysis is presented in Appendix A.
Preparations: Choose a large positive integer n, an auxiliary
distribution PT over W , a conditional channel input distribu-
tion PW |T , and a conditional source distribution PS|X over a
finite auxiliary alphabet S so that

I(S;X) < I(S;Y ) + I(V ;W |T ), (12)

where mutual informations in this section are calculated ac-
cording to the following joint distribution

PSXYWV T = PS|X · PXY · PT · PW |T · ΓV |W . (13)
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Wn = Wn(m)

Wn = Tn

Dec. and Reconstruct Yes

No

Fig. 2. Coding and testing scheme for hypothesis testing over a DMC.

Then, choose a sufficiently small µ > 0. If I(S;X) <
I(W ;V |T ), let

R = I(S;X) + µ, (14)
R′ = 0. (15)

If I(S;X) ≥ I(W ;V |T ), let

R = I(W ;V |T )− µ, (16)
R′ = I(S;X)− I(W ;V |T ) + 2µ. (17)

Code Construction: Construct a random codebook

CS =
{
Sn(m, `) : m ∈ {1, ..., b2nRc}, ` ∈ {1, ..., b2nR

′
c}
}
,

(18)
by independently drawing all codewords i.i.d. according to
PS(s) =

∑
x∈X PX(x)PS|X(s|x).

Generate a sequence Tn i.i.d. according to PT . Construct a
random codebook

CW =
{
Wn(m) : m ∈ {1, ..., b2nRc}

}
superpositioned on Tn where each codeword is drawn inde-
pendently according to PW |T conditioned on Tn. Reveal the
realizations of the codebooks and the realization of the time-
sharing sequence Tn = tn to all terminals.
Transmitter: Given that it observes the source sequence Xn =
xn, the transmitter looks for a pair (m, `) that satisfies

(sn(m, `), xn) ∈ T nµ/2(PSX). (19)

If successful, it picks one of these pairs uniformly at random
and sends the codeword wn(m) over the channel. Otherwise
it sends the sequence of inputs tn over the channel.
Receiver: Assume that V n = vn and Y n = yn. The
receiver first looks for indices m′ ∈ {1, . . . , b2nRc} and
`′ ∈ {1, . . . , b2nR′c} such that the following two conditions
are simultaneously satisfied:

(tn, wn(m′), vn) ∈ T nµ (PTWV ), (20)

and

Htp(sn(m′,`′),yn)(S|Y ) = min
m̃,˜̀

Htp(sn(m̃,˜̀),yn)(S|Y ). (21)

If one or multiple such pairs exist, it chooses one of them
uniformly at random and checks whether the chosen pair
(m′, `′) satisfies the following typicality check:

(sn(m′, `′), yn) ∈ T nµ (PSY ). (22)

If successful, it declares Ĥ = 0. Otherwise, it declares Ĥ = 1.

C. Results on the Error Exponent

The coding and testing scheme described in the previous
section allows to establish the following theorem.

Theorem 1: Every error exponent θ ≥ 0 that satisfies the
following condition (23) is achievable:

θ ≤ max
PS|X ,PT ,PW |T :

I(S;X|Y )≤I(W ;V |T )

min
{
θstandard, θdec, θmiss}, (23)

where for given (conditional) pmfs PS|X , PT , and PW |T we
define the joint pmf

PSXYWV T := PS|X · PXY · PT · PW |T · ΓV |W . (24)

and the exponents

θstandard := min
P̃SXY :

P̃SX=PSX
P̃SY =PSY

D(P̃SXY ‖PS|XQXY ), (25)

θdec := min
P̃SXY :

P̃SX=PSX
P̃Y =PY

H(S|Y )≤HP̃ (S|Y )

D(P̃SXY ‖PS|XQXY )

+ I(V ;W |T )− I(S;X|Y ), (26)

θmiss := D(PY ‖QY ) + I(V ;W |T )− I(S;X|Y )

+
∑
t∈W

PT (t) ·D(PV |T=t‖ΓV |W=t). (27)

Here, mutual informations, the conditional entropy term
H(S|Y ), and the conditional marginal pmf PV |T are calcu-
lated with respect to the joint distribution in (24).

Proof: See Appendix A.

The expressions in Theorem 1 show three competing error
exponents. In (25) and (26), we recognize the two competing
error exponents of the SHA scheme for the noiseless setup:
θstandard is the exponent associated with the event that the
receiver reconstructs the correct binned codeword and decides
on Ĥ = 0 instead of H = 1, and θdec is associated
with the event that either the binning or the noisy channel
introduces a decoding error followed by a wrong decision on
the hypothesis. The exponent θmiss in (27) is new and can
be associated with the event that the specially protected 0-
message is wrongly decoded followed by a wrong decision on
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the hypothesis. We remark in particular that θmiss contains the
term

Emiss :=
∑
t∈W

PT (t) ·D(PV |T=t‖PV |W=t), (28)

which represents the largest possible miss-detection exponent
for a single specially protected message at a rate I(W ;V |T )
[15].

Which of the three exponents θstandard, θdec, θmiss is smallest
depends on the source and channel parameters and of the
choice of PS|X , PT , and PW |T .

Remark 1 (Separate versus Joint Source-Channel Decod-
ing): The scheme in Subsection II-B is a joint source-channel
coding scheme: it employs independent source and channel
codebooks but the receiver jointly decodes the channel and
source codewords1.

We compare our proposed error exponent with that of the
corresponding separate source-channel coding scheme where
the receiver first decodes the channel codeword using joint
typicality decoding and then the source codeword using Han’s
conditional minimum-entropy decoder. The error exponent
achieved by this separation-based scheme is generally smaller
and given by:

θdec
sep = max

PS|X ,PT ,PW |T :

I(S;X|Y )≤I(W ;V |T )

min
{
θstandard, θdec

sep , θ
miss}, (29)

where θstandard and θmiss are defined as before and

θdec
sep := min

P̃SXY :
P̃SX=PSX
P̃Y =PY

D(P̃SXY ‖PS|XQXY )+I(V ;W |T )−I(S;X|Y ).

(30)
We notice that θdec

sep is generally smaller than θdec because of the
relaxed minimization, which does not include the conditional
entropy constraint. We thus conclude that changing the joint
source-channel coding scheme presented in Subsection II-B
to separate source-channel coding can reduce the achieved
error exponent if θdec is a minimizer of (23) and the entropy
constraint in the minimization of θdec is stringent.

Remark 2 (UEP versus Standard Channel Coding): If in the
presented scheme, the UEP sequence tn is set to a constant and
the encoder sends a standard random codeword wn(0) instead
of tn, then the miss-detection error exponent θmiss needs to be
replaced by the exponent

θmiss
no-UEP := D(PY ‖QY ) + I(W ;V )− I(S;X|Y ). (31)

In this case, the error exponent achieved by our scheme
depends on the DMC only through the mutual information
I(W ;V ), and if W is chosen the capacity-achieving input
distribution, then only through its capacity C. Since the expo-
nents θmiss

no-UEP and θdec are increasing in I(W ;V ), choosing a
capacity-achieving W maximizes the error exponent achieved
by our scheme without UEP.

1The error exponent of Theorem 1 was first given in [13] where it was
mistakenly reported to be achievable with separate source-channel coding. A
careful analysis reveals that the separate source-channel coding scheme in
[13] achieves only the exponent in (29).

Notice further that the exponent θmiss
no-UEP is smaller or equal

to both θdec
sep and θdec, and therefore, without UEP, the separate

and the joint source-channel coding schemes perform equally
well. In other words, the performance of a simplified version
of our scheme that does not employ a UEP channel code
is achieved by a scheme that simply combines the SHA
hypothesis testing scheme with a standard capacity-achieving
code. No joint source-channel decoding is required.

From the previous two remarks, we conclude that generally
the UEP mechanism and the joint decoding are necessary in
our scheme to attain the error exponent in Theorem 1. The
following corollary shows that for a certain class of source
distributions they are not beneficial and the performance of
Theorem 1 is also achieved by a simple scheme that combines
SHA hypothesis testing with a standard capacity-achieving
code.

Corollary 1: For source distributions PXY and QXY where
irrespective of the choice of the auxiliary distribution PS|X :

min
P̃SXY :

P̃SX=PSX
P̃Y =PY

H(S|Y )≤HP̃ (S|Y )

EPY [D(P̃SX|Y ‖PS|XQX|Y )] = 0, (32)

error exponent θmiss is never smaller than θdec, and therefore
non-active. In this case, it is best to choose T a constant and W
a capacity-achieving input. So, when condition (32) is satisfied
for all auxiliary distributions PS|X , then Theorem 1 specializes
to:

θ ≤ max
PS|X :

I(S;X|Y )≤C

min
{
θ̃standard, θ̃dec}, (33)

where

θ̃standard := min
P̃SXY :

P̃SX=PSX
P̃SY =PSY

D(P̃SXY ‖QXY PS|X), (34)

θ̃dec := D(PY ‖QY ) + C − I(S;X|Y ). (35)

Notice that since W is chosen to achieve capacity, θ̃dec =
θmiss

no-UEP and moreover for the considered sources θ̃dec = θdec
sep .

Thus, the exponent in (33) is achievable by combining SHA’s
hypothesis testing scheme with a standard capacity-achieving
code.

We consider a special case where the expression in (33) can
be further simplified and the resulting exponent can be proved
to be optimal.

Theorem 2: If there exists a function f from Y to an
auxiliary domain Z so that

under H = 1: X → f(Y )→ Y, (36)

and the pair (X, f(Y )) has the same distribution under both
hypotheses, then the optimal error exponent is:

θ∗ = D(PY ‖QY ) + max
PS|X :

I(S;X|f(Y ))≤C

I(S;Y |f(Y )), (37)

where C denotes the capacity of the DMC.

Michèle Wigger�
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Proof: The achievability is based on Theorem 1 and
observing that the setup under consideration satisfies Condi-
tion (32). See Appendix B.

This theorem recovers the optimal error exponents for
testing against conditional independence over a noisy channel
[12, Lemma 5] or over a noiseless link [5, Theorem 1]. It
is however more general, because here Y can have different
marginals under both hypotheses. As we explained at the end
of Corollary 1 above, the optimal exponent θ∗ is achievable
even with a basic separate source-channel coding scheme that
combines the SHA scheme in [3] with a standard capacity-
achieving code. This contrasts the findings in [18] stating that
for the problem of testing against conditional independence an
operational separation between hypothesis testing and channel
coding does not hold.

Proposition 1: The result of Theorem 2 remains valid when
there is instantaneous noise-free feedback from the receiver to
the transmitter.

Proof: A close inspection reveals that the converse proof
of the theorem remains valid even with feedback.

Theorem 2 was stated for discrete memoryless sources.
It can be shown that it remains valid when the sources are
memoryless and jointly Gaussian.

Example 1 (Theorem 2 for Gaussian sources): For given
ρ0 ∈ [0, 1], define the two covariance matrices

K0
XY =

[
1 ρ0

ρ0 1

]
and K1

XY =

[
1 0
0 1

]
. (38)

Under the null hypothesis,

H = 0: (X,Y ) ∼ N (0,K0
XY ), (39)

and under the alternative hypothesis,

H = 1: (X,Y ) ∼ N (0,K1
XY ). (40)

Moreover, assume that the transmitter communicates to the
receiver over a DMC of capacity C. This setup is a special
case of Theorem 2. Appendix C shows that in this case, the
optimal error exponent in (37) evaluates to:

θ∗ =
1

2
log2

(
1

1− ρ2
0 + ρ2

0 · 2−2C

)
. (41)

This result recovers as a special case the optimal exponent
for testing against independence of Gaussian sources over a
noiseless link in [5, Corollary 7].

D. Numerical Example to Theorem 1

We now present an example and evaluate the largest type-II
error exponents attained by Theorem 1 for this example. We
also show that depending on the parameters of the sources or
the channel, a different error exponent θstandard, θdec, or θmiss is
active. Let under the null hypothesis

H = 0: X ∼ Bern(p0), Y = X ⊕N0,

N0 ∼ Bern(q0), (42)

for N0 independent of X . Under the alternative hypothesis:

H = 1: X ∼ Bern(p1), Y ∼ Bern(p0 ? q0), (43)

with X and Y independent. Assume that ΓV |W is a binary
symmetric channel (BSC) with cross-over probability r ∈
[0, 1/2].

For this example, QXY = QXPY and therefore θstandard

simplifies to:

θstandard = D(PSX‖PS|XQX)

+ min
P̃SXY :

P̃SX=PSX
P̃SY =PSY

EPSX
[
D(P̃Y |SX‖PY )

]
(44)

= D(PX ||QX) + I(S;Y ), (45)

Moreover, since P̃SXY = PSXPY is a valid choice in the
minimization of θdec, this latter exponent simplifies to:

θdec = D(PSX‖PS|XQX)

+ min
P̃SXY :

P̃SX=PSX
P̃Y =PY

H(S|Y )≤HP̃ (S|Y )

D(P̃Y |SX‖PY ) + I(V ;W |T )− I(S;X|Y )

(46)
= D(PX‖QX) + I(V ;W |T )− I(S;X|Y ). (47)

As a consequence, Theorem 1 simplifies to:

θ ≤ max
PS|X ,PTW :

I(S;X|Y )≤I(W ;V |T )

min
{
θstandard, θdec, θmiss}, (48)

where

θstandard ≤ D(PX‖QX) + I(S;Y ), (49)

θdec ≤ D(PX‖QX) + I(V ;W |T )− I(S;X|Y ), (50)

θmiss ≤
∑
t∈W

PT (t)D(PV |T=t‖PV |W=t)

+ I(V ;W |T )− I(S;X|Y ). (51)

Depending on the parameters of the setup and the choice of
the auxiliary distributions, either of the exponents θstandard, θdec,
or θmiss is active. For example, when the cross-over probability
of the BSC is large, r ≥ 0.4325, then

D(PX‖QX) ≥
∑
t∈W

PT (t)D(PV |T=t‖ΓV |W=t) + I(V ;W |T ),

(52)

and irrespective of the choice of the random variables S, T,W
the exponent θmiss is smaller than θstandard and θdec. Since
I(S;X|Y ) ≥ 0, it is then optimal to choose S constant and
(T,W ) so as to maximize the sum∑

t∈W
PT (t)D(PV |T=t‖ΓV |W=t) + I(V ;W |T )

=
∑

t,w∈W
PTW (t, w)D(ΓV |W=w‖ΓV |W=t). (53)

That means, choose W and T deterministically equal to two
maximally distinguishable inputs. Since on a BSC there are
only two inputs (0 and 1) and the channel law is symmetric
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with respect to these inputs, for r ∈ (0.4325, 0.5) the largest
error exponent achieved by our scheme is:

θ̂ := max
PS|X ,PTW :

I(S;X|Y )≤I(W ;V |T )

min{θstandard, θdec, θmiss}

= D(PV |W=0‖PV |W=1) = (1− 2r) log
1− r
r

. (54)

For example, when r = 4
9 , one obtains θ̂ = 0.0358 = 1

9 log 5
4 .

In contrast, when the cross-over probability of the BSC
is small, the miss-detection exponent (28) is large and the
exponent θmiss is never active irrespective of the choice of
the auxiliary random variable S. The overall exponent is then
determined by the smaller of θstandard and θdec, and in particular
by a choice S,X,W that makes the two equal. In this case,
for a scenario with parameters p0 = 0.2, q0 = 0.3, p1 = 0.4,
and r = 0.1, the largest exponent achieved by our scheme is
θ = 0.19. Notice that it suffices to consider auxiliary random
variables S over alphabets of size |X |+1. This can be proved
using standard arguments as explained in [21, Appendix C].

In the following, we study the maximum error exponent
achieved by our scheme θ̂ in function of the channel cross-
over probability r. This dependency is shown in Figure 3, and
Table I indicates which of the three exponents θstandard, θdec,
θmiss is smallest. Notice that for r ≥ 0.296, error exponent
θmiss is smallest, and for r ≤ 0.046, error exponent θstandard is
smallest.

An important feature of our scheme is the UEP mechanism
used to send the 0-message. As explained in Remark 2, without
UEP, exponent θmiss in (51) needs to be replaced by the smaller
exponent

θmiss
no-UEP = D(PY ‖QY ) + I(V ;W )− I(S;X|Y ). (55)

Notice that θmiss
no-UEP ≤ θdec and thus without UEP our coding

and testing scheme would achieve only exponents that satisfy

θ ≤ θ̂no-UEP := max
PS|X ,PTW :

I(S;X|Y )≤I(W ;V |T )

min
{
θstandard, θmiss

NoUEP

}
,

(56)

Figure 3 also shows the exponent in (56).

E. Comparison with the Parallel Work [12]

In our conference publication [13] we used UEP and the
conditional entropy decoder for the problem of distributed hy-
pothesis testing over a noisy channel. Sreekumar and Gündüz
proposed in [12] to replace the separate source and channel
codes with a single hybrid code, similarly to our hybrid
scheme for the MAC presented in the following Section III.
(See also the conference publication [14]). Additionally, unlike
in our MAC scheme, [12] lets the UEP codeword depend on
the encoder’s source sequence Xn. As we will see at the end
of this section, this dependence can enhance the miss-detection
error exponent.

We recall here the exponent achieved with hybrid coding in
[12].

Theorem 3 (Theorem 5 in [12]): Every error exponent θ ≥ 0
that satisfies the following condition (57) is achievable:

θ ≤ max
PT ,PS|XT ,PW |XST ,PW ′|XT :

I(S;X|T )≤I(S;V,Y |T )

min
{
θstandard

hyb , θdec
hyb, θ

miss
hyb

}
,

(57)

where for given (conditional) pmfs PT , PS|XT , PW |SXT ,
PW ′|XT , we define the joint pmfs

PSXYWV T = PXY · PT · PS|XT · PW |XST · ΓV |W , (58)
QSXYWV T = QXY · PT · PS|XT · PW |XST · ΓV |W , (59)
Q′XYW ′V T = QXY · PT · PW ′|XT · ΓV |W , (60)

and the exponents

θstandard
hyb := min

P̃SXY V T :
P̃SXT=PSXT
P̃SY V T=PSY V T

D(P̃SXY V T ‖QSXY V T ), (61)

θdec
hyb := min

P̃SXY V T :
P̃SXT=PSXT
P̃Y V T=PY V T

H(S|Y V T )≤HP̃ (S|Y V T )

D(P̃SXY V T ‖QSXY V T )

+ I(S;Y, V |T )− I(S;X|T ), (62)

θmiss
hyb := D(PY V T ‖Q′Y V ′T ) + I(S;Y, V |T )− I(S;X|T ).

(63)

Unless otherwise stated, mutual informations and entropies are
with respect to the pmf defined in (58).

Theorem 3 recovers our Theorem 1 as a special case when
S = (S′,W ) and W ′ = T with the pair (S′, X) independent
of the pair (T,W ). (Here, the random variable S′ takes on
the role of S in Theorem 1.) Inspired by [12, Example 1] we
present a simple example where above exponent of [12, The-
orem 5] outperforms our Theorem 1. In fact, simple uncoded
transmission achieves a better exponent for this example than
Theorem 1.

Example 2: Let both sources be Bernoulli-1/2 and let
X = Y under H = 0 but X 6= Y under H = 1. The two
source distributions PXY and QXY are thus as indicated by
the following two tables:

PXY X = 0 X = 1

Y = 0 1 0
Y = 1 0 1

and
QXY X = 0 X = 1

Y = 0 0 1
Y = 1 1 0

We further consider a binary symmetric channel (BSC) of
parameter α ∈ [0, 1], i.e.,

ΓV |W (v|w) =

{
1− α, if v = w

α, if v 6= w.
(64)

We first upper bound the achievable error exponent of Theo-
rem 1 and then show that this upper bound is outperformed
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Fig. 3. The achievable error exponents with and without unequal error protection, θ̂ in (54) and θ̂NoUEP in (56), for the proposed example with p0 = 0.2,
p1 = 0.4 and q0 = 0.3.

0 ≤ r ≤ 0.286 0.286 ≤ r ≤ 0.5

θ̂NoUEP θmiss
no-UEP = θstandard θmiss

no-UEP ≤ θ
standard

0 ≤ r ≤ 0.046 0.046 ≤ r ≤ 0.296 0.296 ≤ r ≤ 0.351 0.351 ≤ r ≤ 0.5

θ̂ θstandard ≤ min{θdec, θmiss} θdec = θstandard ≤ θmiss θstandard = θmiss ≤ θdec θmiss ≤ min{θstandard, θdec}

TABLE I
THE SMALLEST ERROR EXPONENT AS A FUNCTION OF r

by uncoded transmission. To upper bound the exponent of
Theorem 1, we simply focus on the exponent θdec. We notice
that the minimization in θdec evaluates to zero by the choice
P̃SXY = PSX · QY |X , which satisfies the optimization
constraints because HP (S|Y ) = HP (S|X) = HP̃ (S|X) =
HP̃ (S|Y ). Therefore,

θdec = I(W ;V |T )− I(S;X|Y )

≤ CBSC(α) = 1− hb(α), (65)

where CBSC(α) denotes the capacity of a BSC of parameter α
and hb(α) denotes the binary entropy function. We conclude
that the exponent θ achieved by Theorem 1 for this example
is upper bounded by the capacity of the DMC 1− hb(α).

The achievable error exponent of uncoded transmission
without UEP can be obtained from above Theorem 3 by
choosing the pmfs PT , PS|XT , PW |XST , and PW ′|XT such
that W ′ = W = X and S and T are both deterministic, e.g.,
equal to 0. In this case, since W ′ = W the two joint pmfs
Q′YW ′V and Q′YW ′V coincide and since S is deterministic, the
mutual information terms in Theorem 3 all vanish. Moreover,
the choice P̃XY V = PY V · QX|V Y is the optimal choice in
both minimizations, which both evaluate to D(PY V ‖QY V ).
As a consequence, for the described choice, i.e., for uncoded

transmission, we have:

θstandard
hyb = θdec

hyb = θmiss
hyb

= D(PY V ‖QY V ) (66)

=
1

2
D(PV |Y=0‖QV |Y=0) +

1

2
D(PV |Y=1‖QV |Y=1) (67)

= 2 · 1

2

(
α log2

α

1− α
+ (1− α) log2

1− α
α

)
(68)

= α log2

1

1− α
+ (1− α) log2

1

α
− hb(α) (69)

≥ 1− hb(α), (70)

where the inequality is strict unless α = 1/2.
We conclude that for this example, the exponent achieved

by Theorem 3 is strictly larger than the exponent achieved by
our Theorem 1 whenever α 6= 1/2.

Finally, notice that the desired performance of Theorem 3
was achieved by the choice W ′ = X , in which case the UEP
codeword coincides with the source sequence Xn. If we let
W ′ only depend on T , i.e., W ′ = T = 0, the miss-detection
exponent would only evaluate to

D(PY V ‖QY ΓV |W=T ) =
1

2
D(PV |Y=1‖QV |W=0) (71)
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=
1

2

(
α log2

α

1− α
+ (1− α) log2

1− α
α

)
,

(72)

and thus would be smaller.
The work [12] also proposed a separate channel-coding

and hypothesis-testing scheme based on maximum likelihood
decoding of the channel codewords. The corresponding error
exponent in [12, Theorem 2] is generally larger than the one
discussed in Remark 1, which is based on joint typicality
decoding. It is unclear at the moment whether in certain cases
the error exponent in [12, Theorem 2] can even improve
over the exponent in [12, Theorem 5] which applies the joint
typicality decoding common to hybrid coding.

III. HYPOTHESIS TESTING OVER MULTI-ACCESS
CHANNELS

A. System Model

Consider a setup with two sensors that communicate to a
single decision center over a discrete memoryless multiple-
access channel (MAC), see Fig. 4. The channel is described
by the quadruple (W1 × W2,V,ΓV |W1,W2

), where W1 and
W2 denote the finite channel input alphabets and V denotes
the finite channel output alphabet. Each transmitter i (i = 1, 2)
observes the sequence Xn

i and produces channel inputs Wn
i

as
Wn
i = f

(n)
i (Xn

i ) (73)

by means of a possibly stochastic encoding function

f
(n)
i : Xni →Wn

i . (74)

The receiver observes the corresponding channel outputs V n

as well as the source sequence Y n. Under the null hypothesis

H = 0: (Xn
1 , X

n
2 , Y

n) i.i.d. ∼ PX1X2Y , (75)

and under the alternative hypothesis

H = 1: (Xn
1 , X

n
2 , Y

n) i.i.d. ∼ QX1X2Y , (76)

for two given pmfs PX1X2Y and QX1X2Y . The receiver should
decide on the hypothesis H. Besides Y n, it also observes the

ΓV |W1W2

Fig. 4. Hypothesis testing over a noisy MAC.

MAC ouputs V n, where for given inputs W1,t = w1,t and
W2,t = w2,t,

Vt ∼ ΓV |W1W2
(·|w1,t, w2,t), t ∈ {1, . . . , n}. (77)

It thus produces the guess

Ĥ = g(n)(V n, Y n) (78)

using a decoding function

Vn × Yn → {0, 1}. (79)

Definition 2: An exponent θ is said achievable, if for
each ε > 0 and sufficiently large blocklength n, there exist
encoding and decoding functions (f (n), g(n)) such that the
corresponding type-I and type-II error probabilities at the
receiver

αn := Pr[Ĥ = 1|H = 0], (80)

βn := Pr[Ĥ = 0|H = 1], (81)

satisfy

αn ≤ ε, (82)

and

− lim
n→∞

1

n
log2 βn ≥ θ. (83)

The goal is to maximize the type-II error exponent θ.

B. Coding and Testing Scheme

Our coding and testing scheme for the MAC combines local
hypothesis tests at the transmitters with hybrid coding [19] and
UEP codes. Details are as follows.

We describe a coding and testing scheme for distributed
hypothesis testing over a noisy MAC, see Fig. 5.
Preparations: Choose a sufficiently large blocklength n, aux-
iliary alphabets S1 and S2, and functions

fi : Si ×Xi →Wi, i ∈ {1, 2}, (84)

and define the shorthand notation

ΓV |S1S2X1X2
(v|s1, s2, x1, x2) :=

ΓV |W1W2
(v|f1(s1, x1), f2(s2, x2)),

∀s1 ∈ S1, s2 ∈ S2, x1 ∈ X1, x2 ∈ X2. (85)

Choose then a distribution PT1T2
over W1 ×W2, and for i ∈

{1, 2}, a conditional distribution PSi|XiT1T2
over Si in a way

that:

I(S1;X1|T1, T2) < I(S1;S2, Y, V |T1, T2), (86a)
I(S2;X2|T1, T2) < I(S2;S1, Y, V |T1, T2), (86b)

I(S1, S2;X1, X2|T1, T2) < I(S1, S2;Y, V |T1, T2) (86c)

when these mutual informations and all subsequent mutual
informations in this section are evaluated according to the joint
pmf

PS1S2X1X2Y V T1T2
= PS1|X1T1T2

· PS2|X2T1T2
· PX1X2Y

·PT1T2
· ΓV |S1S2X1X2

. (87)
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Wn
1 = f1(S

n
1 (m1), X

n
1 )

Wn
2 = f2(S

n
2 (m2), X

n
2 )

Quantize 1

Fail

Fig. 5. Coding and testing scheme for hypothesis testing over a MAC.

Further, choose µ > 0 and positive rates:

Ri = I(Si;Xi|T1, T2) + µ, i ∈ {1, 2}, (88)

so that the following three conditions hold:

R1 < I(S1;S2, Y, V |T1, T2), (89a)
R2 < I(S2;S1, Y, V |T1, T2), (89b)

R1 +R2 < I(S1, S2;Y, V |T1, T2) + I(S1;S2|T1, T2).
(89c)

Code Construction: Generate a pair of sequences Tn1 =
(T1,1, . . . , T1,n) and Tn2 = (T2,1, . . . , T2,n) by independently
drawing each pair (T1,k, T2,k) according to PT1T2

. For i ∈
{1, 2}, construct a random codebook

CSi =
{
Sni (mi) : mi ∈ {1, ..., b2nRic}

}
, (90)

superpositioned on (Tn1 , T
n
2 ) by independently drawing the

k-th component of each codeword according to the conditional
law PSi|T1T2

(·|T1, T2) when T1,k = t1, and T2,k = t2. Reveal
the realizations of the codebooks and the realizations (tn1 , t

n
2 )

of (Tn1 , T
n
2 ) to all terminals.

Transmitter i ∈ {1, 2}: Given source sequence Xn
i = xni ,

Transmitter i looks for an index mi that satisfies

(sni (mi), x
n
i , t

n
1 , t

n
2 ) ∈ T nµ/2(PSiXiT1T2). (91)

If successful, it picks one of these indices uniformly at random
and sends the sequence wni over the channel, where

wi,k = fi(si,k(mi), xi,k), k ∈ {1, . . . , n},

and where si,k(mi) denotes the k-th component of codeword
sni (mi). Otherwise, Transmitter i sends tni over the channel.

Receiver: Assume that the receiver observes the sequences
V n = vn and Y n = yn. It first searches for a pair of indices
(m′1,m

′
2) that satisfies the condition:

Htp(sn1 (m′1),sn2 (m′2),yn,vn,tn1 ,t
n
2 )(S1, S2|Y, V, T1, T2)

= min
m̃1,m̃2

Htp(sn1 (m̃1),sn2 (m̃2),yn,vn,tn1 ,t
n
2 )(S1, S2|Y, V, T1, T2).

(92)

It picks one such pair at random and checks whether the
chosen pair (m′1,m

′
2) satisfies

(sn1 (m′1), sn2 (m′2), yn, vn, tn1 , t
n
2 ) ∈ T nµ (PS1S2Y V T1T2

). (93)

If successful, it declares Ĥ = 0. Otherwise, it declares Ĥ = 1.

C. Results on the Error Exponent
The coding and testing scheme described in the previous

section yields Theorem 4 ahead. For given (conditional) pmfs
PT1T2

, PS1|X1T1T2
, and PS2|X2T1T2

, and functions f1 and f2

as in (84), let the conditional and joint pmfs ΓV |S1S2X1X2
and

PS1S2X1X2Y V T1T2
be as in (85) and (87). Define also for all

s1 ∈ S1, s2 ∈ S2, t1 ∈ T1, t2 ∈ T2, x1 ∈ X1, x2 ∈ X2, and
v ∈ V:

Γ
(1)
V |T1S2X2

(v|t1, s2, x2) := ΓV |W1W2
(v|t1, f2(s2, x2)), (94)

Γ
(2)
V |S1X1T2

(v|s1, x1, t2) := ΓV |W1W2
(v|f1(s1, x1), t2), (95)

Γ
(12)
V |T1T2

(v|T1, T2) := ΓV |W1W2
(v|t1, t2), (96)

and the following nine exponents:

θstandard := min
P̃S1S2X1X2Y T1T2V

:

P̃SiXiT1T2
=PSiXiT1T2

, i∈{1,2},
P̃S1S2Y V T1T2

=PS1S2Y V T1T2

D
(
P̃S1S2X1X2Y V T1T2

‖PS1|X1T1T2
PS2|X2T1T2

·QX1X2Y PT1T2ΓV |S1S2X1X2

)
,

(97)
θdec,1 := min

P̃S1S2X1X2Y V T1T2
:

P̃SiXiT1T2
=PSiXiT1T2

, i∈{1,2},
P̃S2Y V T1T2

=PS2Y V T1T2

H(S1|S2,Y,V,T1,T2)≤HP̃ (S1|S2,Y,V,T1,T2)

D
(
P̃S1S2X1X2Y T1T2V ‖PS1|X1T1T2

PS2|X2T1T2

·QX1X2Y PT1T2ΓV |S1S2X1X2

)
+I(S1;Y, V |S2, T1, T2)− I(S1;X1|S2, T1, T2), (98)

θdec,2 := min
P̃S1S2X1X2Y V T1T2

:

P̃SiXiT1T2
=PSiXiT1T2

, i∈{1,2},
P̃S1Y V T1T2

=PS1Y V T1T2

H(S2|S1,Y,V,T1,T2)≤HP̃ (S2|S1,Y,V,T1,T2)
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D
(
P̃S1S2X1X2Y V T1T2

‖PS1|X1T1T2
PS2|X2T1T2

·QX1X2Y PT1T2ΓV |S1S2X1X2

)
+I(S2;Y, V |S1, T1, T2)− I(S2;X2|S1, T1, T2), (99)

θdec,12 := min
P̃S1S2X1X2Y V T1T2

:

P̃SiXiT1T2
=PSiXiT1T2

, i∈{1,2},
P̃Y V T1T2

=PY V T1T2

H(S1,S2|Y,V,T1,T2)≤HP̃ (S1,S2|Y,V,T1,T2)

D
(
P̃S1S2X1X2Y V T1T2

‖PS1|X1T1T2
PS2|X2T1T2

(100)

·QX1X2Y PT1T2ΓV |S1S2X1X2

)
+I(S1, S2;Y, V |T1, T2)− I(S1, S2;X1, X2|T1, T2), (101)

θmiss,1a := min
P̃S2X2Y V T1T2

:

P̃S2X2T1T2
=PS2X2T1T2

P̃Y V T1T2
=PY V T1T2

H(S2|Y,V,T1,T2)≤HP̃ (S2|Y,V,T1,T2)

D
(
P̃S2X2Y V T1T2

‖PS2|X2T1T2
QX2Y PT1T2

Γ
(1)
V |T1S2X2

)
+I(S1, S2;V, Y |T1, T2)− I(S1, S2;X1, X2|T1, T2), (102)

θmiss,1b := min
P̃S1S2X2Y V T1T2

:

P̃S2X2T1T2
=PS2X2T1T2

P̃S2Y V T1T2
=PS2Y V T1T2

D
(
P̃S2X2Y V T1T2

‖PS2|X2T1T2
QX2Y PT1T2

Γ
(1)
V |T1S2X2

)
+I(S1;V, Y |S2, T1, T2)− I(S1;X1|S2, T1, T2), (103)

θmiss,2a := min
P̃S1X1Y V T1T2

:

P̃S1X1T1T2
=PS1X1T1T2

P̃Y V T1T2
=PY V T1T2

H(S1|Y,V,T1,T2)≤HP̃ (S1|Y,V,T1,T2)

D
(
P̃S1X1Y V T1T2

‖PS1|X1T1T2
QX1Y PT1T2

Γ
(2)
V |S1X1T2

)
+I(S1, S2;V, Y |T1, T2)− I(S1, S2;X1, X2|T1, T2), (104)

θmiss,2b := min
P̃S1X1Y V T1T2

:

P̃S1X1T1T2
=PS1X1T1T2

P̃S1Y V T1T2
=PS1Y V T1T2

D
(
P̃S1X1Y V T1T2

‖PS1|X1T1T2
QX1Y PT1T2

Γ
(2)
V |S1X1T2

)
+I(S2;V, Y |S1, T1, T2)− I(S2;X2|S1, T1, T2), (105)

θmiss,12 := EPT1T2

[
D(PY V |T1T2

‖QY Γ
(12)
V |T1T2

)
]

+I(S1, S2;Y, V |T1, T2)− I(S1, S2;X1, X2|T1, T2), (106)

where the conditional pmf PY V T1T2
, mutual informations,

and—unless otherwise stated—conditional entropies are cal-
culated according to the joint pmf PS1S2X1X2Y V T1T2 in (87).

Theorem 4: Error exponent θ ≥ 0 is achievable, if it satisfies

θ ≤ max min{θstandard, θdec,1, θdec,2, θdec,12, θmiss,1a, θmiss,1b,

θmiss,2a, θmiss,2b, θmiss,12},
(107)

where the maximization is over all (conditional) pmfs PT1T2 ,
PS1|X1T1T2

, and PS2|X2T1T2
, and functions f1 and f2 as in

(84) so that the conditions in (86) are satisfied with strict
inequalities “<” replaced by non-strict inequalities “≤”.

Proof: See Appendix D.

Notice that the solution to the minimization problem in
(102) is smaller than the solution to the minimization problem
in (103). (In fact, the constraints are less stringent since
P̃S2Y V T1T2 = PS2Y V T1T2 implies P̃Y V T1T2 = PY V T1T2 and
H(S2|Y, V, T1, T2) ≤ HP̃ (S2|V, T1, T2).) In the same way,
the solution to the minimization problem in (103) is smaller
than the solution to the minimization in (105). However, since
the difference of mutual informations in (102) is larger than
the one in (103), and the one in (104) is larger than the one
in (105), it is à priori not clear which of these exponents is
smallest.

A similar reasoning shows that the solution to the mini-
mization problem in (101) is smaller than the solutions to
the minimization problems in (97), (99), and (98), but the
difference of mutual informations is larger. It is thus again
unclear which of these exponents is smallest.

Remark 3: Theorem 4 recovers Theorem 1 as a special case
when one of the sources is degenerate, e.g., X2 is a constant,
or the MAC degrades to a DMC, e.g., because ΓV |W1W2

does not depend on W2. When X2 is a constant or ΓV |W1W2

does not depend on W2, there is no loss in optimality by
choosing S2 and T2 constants. In this case, the exponent
θdec,2 and θmiss,2b coincide both with the exponent θstandard

and exponents θdec,12 and θmiss,2a coincide both with θdec,1.
Moreover, θmiss,1a coincides with θmiss,1b and θmiss,12. Choosing
S1 = (S̄1,W1) and W1 independent of the pair (X1, S̄1) (i.e.,
choosing independent source and channel codebooks) finally
specializes Theorem 4 to Theorem 1 under the described
assumptions.

Remark 4: The error exponents in the preceding theorem
are obtained by means of the hybrid coding scheme described
in the previous subsection III-B. Choosing the auxiliary ran-
dom variables S1 and S2 constant and W1 = f1(X1) and
W2 = f2(X2), is equivalent to replacing hybrid coding with
uncoded transmission. Choosing instead the auxiliary random
variables S1 = (W1, S̄1) and S2 = (W2, S̄2) and the tuple
(T1, T2,W1,W2) independent of the tuple (S̄1, S̄2, X1, X2),
is equivalent to replacing the single hybrid source-channel
codebook by two independent source and channel codebooks.
Specifically, (S̄1, S̄2) then correspond to the source coding
random variables and (T1, T2,W1,W2) to the channel coding
random variables. Notice that even with independent code-
books, the proposed scheme performs joint source-channel
coding because the source and channel codewords are decoded
jointly. With separate decoding, the conditional entropy con-
ditions in the minimizations in (99)–(101) are lost.

In this paper we restrict to hybrid coding. Similarly to
standard joint source-channel coding, in some cases better
schemes can be designed by using structured codes [23]–
[25]. Moreover, as explained at the end of Section II-E
at hand of the DMC, the achievable error exponent in
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Theorem 4 can be improved if throughout the conditional
laws Γ

(1)
V |T1S2X2

(v|t1, s2, x2), Γ
(2)
V |S1X1T2

(v|s1, x1, t2), and

Γ
(12)
V |T1T2

(v|T1, T2) are replaced, respectively, by

Γ
(1)
V |T1X1S2X2

(v|t1, x1, s2, x2)

:= ΓV |W1W2
(v|η1(t1, x1), f2(s2, x2)) (108)

Γ
(2)
V |S1X1T2X2

(v|s1, x1, t2, x2)

:= ΓV |W1W2
(v|f1(s1, x1), η2(t2, x2)) (109)

Γ
(12)
V |T1X1T2X2

(v|t1, x1, t2, x2)

:= ΓV |W1W2
(v|η1(t1, x1), η2(t2, x2)), (110)

for some (randomized) functions η1(·, ·) and η2(·, ·).
To attain the desired performance, the scheme proposed in

Section III-B needs to be modified so that in case of an UEP
event, Transmitter i ∈ {1, 2} does not send wni = tni but
wi,k = ηi(ti,k, xi,k), for k ∈ {1, . . . , n}.

The introduced UEP mechanism with the special input se-
quences tn1 and tn2 and hybrid coding are in general important
features of our scheme, without which the achieved exponent
degrades. As we will see in the following, and similar to
the DMC scenario, this is not the case for various special
cases. We start by stating an achievable set of exponents
for generalized testing against conditional independence by
simplifying Theorem 4 for this setup. The simplified exponent
requires hybrid coding but does not depend on the chosen UEP
sequences tn1 and tn2 . In fact, it can even be obtained if in the
scheme proposed in Subsection III-B the UEP sequences tn1
and tn2 are replaced with standard hybrid coding inputs.

Corollary 2: In the special case where Y = (Ȳ , Z) and
under the alternative hypothesis H = 1:

QX1X2Ȳ Z = PX1X2Z ·QȲ |Z , (111)

any error exponent θ ≥ 0 that satisfies

θ ≤ max
(
EPZV

[
D(PȲ |ZV ‖QȲ |Z)

]
+ I(S1, S2; Ȳ |Z, V )

)
(112)

is achievable, where the maximization is over all (conditional)
pmfs PS1|X1

, and PS2|X2
, and functions f1 and f2 as in (84)

that satisfy the following conditions:

I(S1;X1|S2, Z) ≤ I(S1;V |S2, Z), (113a)
I(S2;X2|S1, Z) ≤ I(S2;V |S1, Z), (113b)

I(S1, S2;X1, X2|Z) ≤ I(S1, S2;V |Z), (113c)

and all mutual informations and the conditional pmf PȲ |ZV
are calculated with respect to the joint pmf

PS1S2X1X2Ȳ ZV = PS1|X1
PS2|X2

PX1X2Ȳ ZΓV |S1S2X1X2
.

(114)

Proof: See Appendix E.

For testing against conditional independence, i.e.,

QȲ |Z = PȲ |Z , (115)

and when communication is over noiseless links of given rates,
Corollary 2 recovers as a special case the result in [5, Theorem
1].

Similarly, for testing against independence, i.e., when

QX1X2Y = PX1X2
PY , (116)

and when the MAC ΓV |W1W2
decomposes into two orthogonal

DMCs ΓV1|W1
and ΓV2|W2

, i.e.,

V = (V1, V2), (117a)
ΓV1V2|W1W2

(v1, v2|w1, w2) = ΓV1|W1
(v1|w1) · ΓV2|W2

(v2|w2),

(117b)

then specializing Corollary 2 to two independent source and
channel codebooks recovers the achievable error exponent in
[12, Theorem 6]. The proposed joint source-channel coding
scheme can then be replaced by a simple separate source-
channel coding scheme without UEP.

Specializing Corollary 2 to separate source-channel coding
without hybrid coding and UEP (but with a time-sharing
sequence) results in the following corollary.

Corollary 3: Reconsider the setup in Corollary 2. Using sep-
arate source-channel coding without UEP, any error exponent
θ ≥ 0 is achievable that satisfies

θ ≤ EPZ
[
D(PȲ |Z‖QȲ |Z)

]
+ max I(S̄1, S̄2; Ȳ |Z), (118)

where the maximization is over all (conditional) pmfs PS̄1|X1
,

PS̄2|X2
, PT , PW1|T , and PW2|T that satisfy the following

conditions:

I(S̄1;X1|S̄2, Z) ≤ I(W1;V |W2, T ), (119a)
I(S̄2;X2|S̄1, Z) ≤ I(W2;V |W1, T ), (119b)

I(S̄1, S̄2;X1, X2|Z) ≤ I(W1,W2;V |T ), (119c)

and where all mutual informations are calculated with respect
to the joint pmf

PS̄1S̄2X1X2Ȳ ZTW1W2V = PS̄1|X1
· PS̄2|X2

· PX1X2Ȳ Z · PT
· PW1|T · PW2|T · ΓV |W1W2

.
(120)

This corollary recovers, for example, the optimal error expo-
nent in [5, Corollary 4] for the Gaussian one-helper hypothesis
testing against independence problem where communication
takes place over two individual noiseless links. As shown in
[5, Corollary 4], in this case the exponent of Corollary 3
is optimal. The following theorem proves that the exponent
in Corollary 3 is also optimal for generalized testing against
independence when the sources are independent under both
hypotheses.

Theorem 5: Consider generalized testing against indepen-
dence with independent sources, i.e.,

PX1X2Y = PX1
· PX2

· PY |X1X2
(121)

QX1X2Y = PX1
· PX2

·QY , (122)

and assume that communication from the sensors to the
decision center takes place over two orthogonal DMCs ΓV1|W1

and ΓV2|W2
as defined in (117). Let C1 and C2 denote the
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capacities of the two DMCs ΓV1|W1
and ΓV2|W2

. The optimal
error exponent is:

θ∗ = D(PY ‖QY ) + max
PS̄i|Xi ,PWi ,i∈{1,2}
I(S̄1;X1|S̄2)≤C1

I(S̄2;X2|S̄1)≤C2

I(S̄1,S̄2;X1,X2)≤C1+C2

I(S̄1, S̄2;Y ).

(123)

Proof: Achievability follows directly by specializing
Corollary 3 to Z a constant and thus Ȳ = Y . The converse is
proved in Appendix F.

It can be shown that the above theorem remains valid for
the following example with independent Gaussian sources.

Example 3 (Theorem 5 for Gaussians): Let X1 and X2 be
independent standard Gaussians under both hypotheses. Under
the null hypothesis,

H = 0: Y = X1 +X2 +N0, N0 ∼ N (0, σ2
0),

(124)

for an N0 independent of (X1, X2) and for a given nonnega-
tive variance σ2

0 > 0. Under the alternative hypothesis,

H = 1: Y ∼ N (0, σ2
y), independent of (X1, X2),

(125)

for a given nonnegative variance σ2
y > 0. Further assume an

orthogonal MAC as in (117b) with the two individual DMCs
of capacities C1 and C2.

The described setup is a special case of the setup considered
in Theorem 5. Appendix H shows that in this case, the optimal
exponent in (123) evaluates to:

θ∗ =
1

2
log2

(
σ2
y

2−2C1 + 2−2C2 + σ2
0

)

+

(
2 + σ2

0

2σ2
y

− 1

2

)
· log2 e. (126)

Theorem 5 shows that separate source-channel coding is op-
timal for generalized testing against conditional independence
over two orthogonal channels. The following proposition ex-
tends this result to all joint source distributions PX1X2

. The
proposition also provides a multi-letter characterization of the
optimal error exponent in this case.

Proposition 2: Consider testing against independence over
an orthogonal MAC, i.e., assume that (115)–(117) hold. Then,
the optimal error exponent is given by

θ∗ = D(PY ‖QY ) + lim
N→∞

1

N
max I(SN1 , S

N
2 ;Y N ),

(127)

where the maximization is over all PSN1 |XN1 and PSN2 |XN2
satisfying:

lim
N→∞

1

N
I
(
XN

1 ;SN1 |SN2
)
≤ C1, (128)

lim
N→∞

1

N
I
(
XN

2 ;SN2 |SN1
)
≤ C2, (129)

lim
N→∞

1

N
I
(
XN

1 , X
N
2 ;SN1 , S

N
2

)
≤ C1 + C2. (130)

Proof: The achieved error exponent is a multi-letter exten-
sion of the exponent in Theorem 5, and can thus be achieved
by applying the coding and testing scheme of Theorem 5 to
n-tuples of source symbols and channel uses. The converse
proof follows similar arguments as in [26, Theorem 2.4]. It is
detailed out in Appendix G for completeness.

D. Correlated Gaussian Sources over a Gaussian MAC

In this last subsection of Section III, we focus on testing
against independence over a Gaussian MAC when the sources
are jointly Gaussian (but not necessarily independent as in
Example 3). Consider a symmetric Gaussian setup where
under both hypotheses:

(X1, X2) ∼ N (0,KX1X2
) (131)

for a positive semidefinite covariance matrix

KX1X2
=

[
1 ρ
ρ 1

]
, 0 ≤ ρ ≤ 1. (132)

Assume as in Example 3 that under the null hypothesis,

H = 0: Y = X1 +X2 +N0, N0 ∼ N (0, σ2
0),

(133)

for N0 independent of (X1, X2) and for σ2
0 > 0, and under

the alternative hypothesis,

H = 1: Y ∼ N (0, σ2
y), independent of (X1, X2),

(134)

for σ2
y > 0.

Communication takes place over the Gaussian MAC

V = W1 +W2 +N, (135)

where the noise N is zero-mean Gaussian of variance σ2 > 0,
independent of the inputs (W1,W2). Each transmitter’s input
sequence is subject to an average block-power constraint P .

The described setup corresponds to generalized testing
against conditional independence. Since Corollary 2 can be
shown to hold also for this Gaussian setup, the following
achievability result holds:

Corollary 4: For the described Gaussian setup any error
exponent θ ≥ 0 is achievable that satisfies the following
condition:

θ ≤ max
1

2
log2

 σ2
y

2ξ2(1+ρ)σ2

2ξ2(α−β)2·(1+ρ)+σ2(1+ρ+ξ2) + σ2
0


+

1

2

(
σ2

0 + 2 + 2ρ

σ2
y

− 1

)
· log2 e, (136)

where the maximization is over all ξ2, α2, β2, γ2 ≥ 0 satisfy-
ing

γ2 + α2 + β2ξ2 ≤ P, (137)

and

(1 + ξ2)2 − ρ2

(1 + ξ2) · ξ2
≤
σ2 + 2P − γ2 + 2α2ρ− (α·(1+ρ)+β·ξ2)2

1+ξ2

σ2 + 2(α−β)2·(1+ρ)ξ2

1+ρ+ξ2

,

(138a)
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Fig. 6. Upper and lower bounds on the optimal exponent θ∗ of the proposed
Gaussian example as a function of P for ρ = 0.8, σ2

0 = 1, σ2
y = 1.5 and

σ2 = 1.

(1 + ξ2)2 − ρ2

ξ4
≤ σ2 + 2P + 2α2ρ

σ2 + 2(α−β)2·(1+ρ)ξ2

1+ρ+ξ2

. (138b)

Proof: See Appendix I.

The following theorem provides an upper bound on the
optimal error exponent.

Theorem 6: For the proposed Gaussian setup, the optimal
error exponent θ∗ satisfies

θ∗ ≤ 1

2
· log2

 σ2
y

2(1+ρ)σ2

2P (1+ρ)+σ2 + σ2
0


+

1

2

(
σ2

0 + 2 + 2ρ

σ2
y

− 1

)
· log2 e. (139)

Proof: See Appendix J.
Figure 6 compares the presented upper and lower bounds on
the optimal error exponent θ∗. They are very close for the
considered setup. For comparison, the figure also shows the
exponent that is achieved with the same choice of source
variables but with separate source-channel coding. That means,
by specializing the exponent in (136) to α = β = 0.

IV. SUMMARY AND DISCUSSION

The paper proposes coding and testing schemes for dis-
tributed binary hypothesis testing over DMCs and MACs based
on hybrid coding (in case of MAC) and UEP mechanisms that
specially protect the transmission of single messages (typically
the tentative guesses of the sensor nodes). These features
can significantly improve the achieved error exponents. The
schemes recover previous optimality results for testing against
conditional independence when terminals are connected by
noisefree links or DMCs, and they are shown to achieve the
optimal exponents for a more general testing setup that we
term generalized testing against conditional independence.

In this work, we have focused on the most basic communi-
cation channels: DMCs and MACs. Similar investigations can
be performed for other networks. Another interesting line of
research concerns the bandwidth-mismatched scenario where
source and channel sequences have different blocklengths. Our
coding scheme for the DMC extends in a straightforward

manner to this more involved case and the corresponding
error exponents are obtained by multiplying capacity and mu-
tual informations and divergences involving channel random
variables by the bandwidth mismatch factor. The proposed
hybrid coding scheme for the MAC is more difficult to extend,
similarly to classic joint source-channel coding [27], [28].

APPENDIX A
PROOF OF THEOREM 1

The proof of the theorem is based on the scheme in
Section II-B. Fix a choice of the blocklength n, a small positive
µ, and (conditional) pmfs PT , PW |T , and PS|X so that (12)
holds. Assume that I(S;X) ≥ I(W ;V |T ), in which case the
rates R and R′ are chosen as in (16) and (17). Also, set for
convenience of notation:

PS′(s) = PS(s), ∀s ∈ S, (140)
PW ′|T (w|t) = PW |T (w|t), ∀t ∈ T , w ∈ W. (141)

Let Pnµ,type-I be the subset of types over the product alphabet
Sn × Sn × Yn that satisfy the following conditions for all
(s, s′, y) ∈ S × S × Y:

|πSY (s, y)− PSY (s, y)| ≤ µ, (142)
|πS′(s′)− PS(s)| ≤ µ, (143)

HπS′Y (S′|Y ) ≤ HπSY (S|Y ). (144)

Notice that, when we let n → ∞ and then µ → 0, each
element in Pnµ,type-I will approach an element of

P∗type-I :=
{
P̃SS′Y : P̃SY = PSY and P̃S′ = PS and

HP̃S′Y
(S′|Y ) ≤ HP̃SY

(S|Y )
}
. (145)

Consider now the type-I error probability averaged over the
random code construction. Let (M,L) be the indices of the
codeword chosen at the transmitter, if they exist, and define
the following events:

ETx : {@(m, `) : (Sn(m, `), Xn) ∈ T nµ/2(PSX)} (146)

E(1)
Rx : {(Sn(M,L), Y n) /∈ T nµ (PSY )} (147)

E(2)
Rx : {∃m′ 6= M : (Tn,Wn(m′), V n) ∈ T nµ (PTWV )}

(148)

E(3)
Rx : {∃`′ 6= L : (Sn(M, `′), Y n) ∈ T nµ (PSY ) and

Htp(Sn(M,L),Y n)(S|Y ) ≥ Htp(Sn(M,`′),Y n)(S|Y )}.
(149)

When the decoder decides on Ĥ = 1, then at least one of the
events ETx, E(1)

Rx , E(2)
Rx , or E(3)

Rx has occurred. Therefore,

EC [αn] ≤ Pr
[
ETx

∣∣∣H = 0
]

+ Pr
[
E(1)

Rx

∣∣∣EcTx,H = 0
]

+ Pr
[
E(2)

Rx

∣∣∣E(1)c
Rx , EcTx,H = 0

]
+ Pr

[
E(3)

Rx

∣∣∣E(1)c
Rx , E(2)c

Rx , EcTx,H = 0
]

(150)

≤ ε/8 + ε/8 + ε/8 + ε/8 (151)
= ε/2, (152)

where the second inequality holds for all sufficiently large
values of n. In fact the first summand of (150) can be
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upper bounded by means of the covering lemma [21] and
using the rate constraints (16) and (17); the second by
means of the Markov lemma [21] and the way the code-
word Sn(M,L) is picked; the third summand can be upper
bounded by means of the packing lemma [21] and using the
rate constraint (16); and the fourth summand can be upper
bounded as described in the following. By the symmetry of
the codebook construction, when bounding the probability
Pr
[
E(3)

Rx

∣∣∣E(1)c
Rx , E(2)c

Rx , EcTx,H = 0
]
, we can specify M = L =

1 and proceed as:

Pr
[
E(3)

Rx

∣∣∣E(1)c
Rx , E(2)c

Rx , EcTx,M = L = 1,H = 0
]

(a)

≤
b2nR′c∑
`′=2

Pr
[
Sn(1, `′) ∈ T nµ (PS) ,

Htp(Sn(1,1),Y n)(S|Y ) ≥ Htp(Sn(1,`′),Y n)(S|Y )
∣∣∣

(Sn(1, 1), Y n) ∈ T nµ (PSY ),

(Sn(1, 1), Xn) ∈ T nµ/2(PSX),

M = L = 1, H = 0
]

(153)

≤
b2nR′c∑
`′=2

Pr
[
Htp(Sn(1,1),Y n)(S|Y ) ≥ Htp(Sn(1,`′),Y n)(S|Y )

∣∣
(Sn(1, 1), Y n) ∈ T nµ (PSY ),

(Sn(1, 1), Xn) ∈ T nµ/2(PSX),

Sn(1, `′) ∈ T nµ (PS), M = L = 1, H = 0
]

(154)

=
∑
πSS′Y
∈Pnµ,type-I

b2nR′c∑
`′=2

∑
sn,s′n,yn:

tp(sn,s′n,yn)
=πSS′Y

Pr
[
Sn(1, 1) = sn, Sn(1, `′) = s′n, Y n = yn

∣∣
(Sn(1, 1), Y n) ∈ T nµ (PSY ),

(Sn(1, 1), Xn) ∈ T nµ/2(PSX),

Sn(1, `′) ∈ T nµ (PS), M = L = 1, H = 0
]

(155)

(b)
=

∑
πSS′Y
∈Pnµ,type-I

b2nR′c∑
`′=2

∑
sn,s′n,yn:

tp(sn,s′n,yn)
=πSS′Y

Pr
[
Sn(1, 1) = sn, Y n = yn

∣∣
(Sn(1, 1), Y n) ∈ T nµ (PSY ),

(Sn(1, 1), Xn) ∈ T nµ/2(PSX),

Sn(1, `′) ∈ T nµ (PS), M = L = 1, H = 0
]

·Pr
[
Sn(1, `′) = s′n

∣∣
(Sn(1, 1), Y n) ∈ T nµ (PSY ),

(Sn(1, 1), Xn) ∈ T nµ/2(PSX),

Sn(1, `′) ∈ T nµ (PS), M = L = 1, H = 0
]

(156)

(c)

≤ (n+ 1)|S|
2·|Y|

∑
πSS′Y ∈Pnµ,type-I

b2nR′c∑
`′=2

∑
sn,s′n,yn:

tp(sn,s′n,yn)=πSS′Y

2−nHπ(S,Y ) · 2−nHπ(S′)

(157)

(d)

≤ (n+ 1)|S|
2·|Y|

∑
πSS′Y ∈Pnµ,type-I

b2nR′c∑
`′=2

2nHπ(S,S′,Y ) · 2−nHπ(S,Y ) · 2−nHπ(S′)

(158)

= (n+ 1)|S|
2·|Y| ∑

πSS′Y ∈Pnµ,type-I

2n(R′−Iπ(S′;Y,S)) (159)

≤ (n+ 1)|S|
2·|Y| ∑

πSS′Y ∈Pnµ,type-I

2n(R′−Iπ(S′;Y )) (160)

(e)

≤ (n+ 1)|S|
4·|Y|2 · max

πSS′Y ∈Pnµ,type-I

2n(R′−I(S;Y )+δn(µ)) (161)

(f)

≤ ε/8, (162)

where δn(µ) is a function that tends to 0 as n→∞ and then
µ→ 0. The steps are justified as follows:

• (a) holds because event E(3)
Rx can only hold if

there exists at least one index `′ 6= 1 such that
both Htp(Sn(1,1),Y n)(S|Y ) ≥ Htp(Sn(1,`′),Y n)(S|Y ) and
(Sn(1, `′), Y n) ∈ T nµ (PSY ) hold, and because the latter
condition implies Sn(1, `′) ∈ T nµ (PS);

• (b) holds because conditioned on the events
(Sn(1, 1), Y n) ∈ T nµ (PSY ), (Sn(1, 1), Xn) ∈
T nµ/2(PSX), Sn(1, `′) ∈ T nµ (PS), M = L = 1
and H = 0, the codeword Sn(1, `′) is independent of
the pair (Sn(1, 1), Y n);

• (c) holds because even conditioned on the events
(Sn(1, 1), Y n) ∈ T nµ (PSY ), (Sn(1, 1), Xn) ∈
T nµ/2(PSX), Sn(1, `′) ∈ T nµ (PS), M = L = 1,
and H = 0, all pairs (sn, yn) of same joint type have
the same probability and all sequences s′n of same
type have the same probability, and because there are at
least 1

(n+1)|S|·|Y|
· 2nHπSY (S,Y ) sequences of joint type

πSY [22, Lemma 2.3] and at least 1
(n+1)|S|

· 2nHπS′ (S
′)

sequences of type πS′ ;
• (d) holds because there are at most 2nHπ(S,S′,Y ) different
n-length sequences of same joint type πSS′Y ;

• (e) holds because |Pnµ,type-I| ≤ (n + 1)|S|
2·|Y|, because

Hπ(S′|Y ) ≤ Hπ(S|Y ), because each element of Pnµ,type-I
must approach an element of P∗type-I when n → ∞ and
µ → 0, and by the continuity of the entropy function;
and

• (f) holds for all sufficiently large n and small µ because
R′ < I(S;Y ) and δn(µ)→ 0 as n→∞ and then µ→ 0.
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Now, consider the type-II error probability averaged over
the random code construction. For all m,m′ ∈ {1, . . . , b2nRc}
and `, `′ ∈ {1, . . . , b2nR′c} define events:

ETx(m, `) : {(Sn(m, `), Xn) ∈ T nµ/2(PSX), Wn(m) is sent},
(163)

and

ERx(m′, `′) :

{(Sn(m′, `′), Y n) ∈ T nµ (PSY ),

(Tn,Wn(m′), V n) ∈ T nµ (PTWV ),

Htp(Sn(m′,`′),Y n)(S|Y ) = min
m̃,˜̀

Htp(Sn(m̃,˜̀),Y n)(S|Y )}, (164)

and notice that when averaged over all codebooks,

EC [βn] = Pr[Ĥ = 0|H = 1]

= Pr

 ⋃
m′,`′

ERx(m′, `′)
∣∣∣H = 1

 , (165)

where the union is over all indices (m′, `′) ∈ {1, . . . , b2nRc}×
{1, . . . , b2nR′c}. By the union bound, above probability is
upper bounded by the sum of the probabilities of the following
four events:

B1 : {∃ (m, `) s.t. ETx(m, `) and ERx(m, `)}, (166)
B2 : {∃ (m,m′, `, `′) with m 6= m′

s.t. ETx(m, `) and ERx(m′, `′)}, (167)

B3 : {∃ (m, `, `′) with ` 6= `′

s.t. ETx(m, `) and ERx(m, `′)}, (168)

B4 : {∀ (m, `) EcTx(m, `) holds
and ∃ (m′, `′) s.t. ERx(m′, `′)}, (169)

i.e.,

EC [βn] ≤
4∑
i=1

Pr
[
Bi
∣∣H = 1

]
. (170)

We will bound the four probabilities on the RHS of (170)
individually. To simplify notation, we introduce the following
sets of types

Pµ,standard = {πSXY : |πSX − PSX | < µ/2,

|πSY − PSY | < µ}, (171)
Pµ,decoding = {πSS′XY : |πSX − PSX | < µ/2,

|πS′Y − PSY | < µ, Hπ(S′|Y ) ≤ Hπ(S|Y )}.
(172)

Consider the probability of the first event B1:

Pr [B1|H = 1]

≤
∑
m,`

Pr
[
Sn(m, `), Xn) ∈ T nµ/2(PSX),

(Sn(m, `), Y n) ∈ T nµ (PSY ),

(Tn,Wn(m), V n) ∈ T nµ (PTWV )
∣∣∣ H = 1

]
(173)

≤
∑
m,`

Pr
[
(Sn(m, `), Xn) ∈ T nµ/2(PSX),

(Sn(m, `), Y n) ∈ T nµ (PSY )
∣∣∣ H = 1

]
(174)

(g)

≤ 2n(R+R′) · (n+ 1)|S||X ||Y|

· max
πSXY ∈Pµ,standard

2−nD(πSXY ‖PSQXY ), (175)

where inequality (g) holds by Sanov’s theorem and by the way
the source sequences, the codewords, and the channel outputs
are generated. Define now

θ̃standard
µ := min

π∈Pµ,standard
D(πSXY ‖PSQXY )−R−R′ − δ′1,n,

(176)

where δ′1,n := |S||X ||Y| log(n+1)
n , and observe that by (16)

and (17):

θ̃standard
µ = min

π∈Pµ,standard
D(πSXY ‖PSQXY )− I(S;X)− µ− δ′1,n

= min
π∈Pµ,standard

D(πSXY ‖PS|XQXY )− δ1,n(µ)

= θstandard
µ − δ1,n(µ), (177)

for a sequence of functions δ1,n(µ) that goes to zero as n→∞
and µ→ 0, and

θstandard
µ := min

πSXY ∈Pµ,standard
D(πSXY ‖PS|XQXY ). (178)

Combining (175)–(177), we obtain:

Pr
[
B1|H = 1

]
≤ 2−n

(
θstandard
µ −δ1,n(µ)

)
. (179)

Consider next the probability of event B2:

Pr [B2|H = 1]

≤
∑
m,m′:
m6=m′

∑
`,`′

Pr
[
(Sn(m, `), Xn) ∈ T nµ/2(PSX),

Wn(m) is sent, (Sn(m′, `′), Y n) ∈ T nµ (PSY ),

Htp(Sn(m′,`′),Y n)(S|Y ) = min
m̃,˜̀

Htp(Sn(m̃,˜̀),Y n)(S|Y ),

(Tn,Wn(m′), V n) ∈ T nµ (PTWV )
∣∣∣ H = 1

]
(180)

=
∑
m,m′:
m6=m′

∑
`,`′

Pr
[
(Sn(m, `), Xn) ∈ T nµ/2(PSX),

(Sn(m′, `′), Y n) ∈ T nµ (PSY ),

Htp(Sn(m′,`′),Y n)(S|Y ) = min
m̃,˜̀

Htp(Sn(m̃,˜̀),Y n)(S|Y )∣∣∣ H = 1
]

· Pr
[
Wn(m) is sent,

(Tn,Wn(m′), V n) ∈ T nµ (PTWV )
∣∣ H = 1

]
(181)

≤
∑
m,m′:
m6=m′

∑
`,`′

Pr
[
(Sn(m, `), Xn) ∈ T nµ/2(PSX),

(Sn(m′, `′), Y n) ∈ T nµ (PSY ),
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Htp(Sn(m′,`′),Y n)(S|Y ) ≤ Htp(Sn(m,`),Y n)(S|Y )∣∣∣ H = 1
]

· Pr
[
(Tn,Wn(m′), V n) ∈ T nµ (PTWV )∣∣Wn(m) is sent,H = 1

]
(182)

=
∑
m,m′:
m6=m′

∑
`,`′

Pr
[∣∣tp(Sn(m, `), Xn)− PSX

∣∣ < µ/2,

∣∣tp(Sn(m′, `′), Y n)− PSY
∣∣ < µ, (183)

Htp(Sn(m′,`′),Y n)(S|Y ) ≤ Htp(Sn(m,`),Y n)(S|Y )∣∣∣ H = 1
]

(184)

· Pr
[
(Tn,Wn(m′), V n) ∈ T nµ (PTWV )∣∣Wn(m) is sent,H = 1

]
(185)

=
∑
m,m′:
m6=m′

∑
`,`′

∑
π∈Pµ,decoding

Pr
[
tp(Sn(m, `), Sn(m′, `′), Xn, Y n) = πSS′XY∣∣∣ H = 1

]
(186)

· Pr
[
(Tn,Wn(m′), V n) ∈ T nµ (PTWV )∣∣Wn(m) is sent,H = 1

]
≤ 2n(2R+2R′) max

π∈Pµ,decoding
2−n

(
D
(
πSS′XY ‖PSPS′QXY

)
−δ′2,n

)
· max
πTW ′V :

|πTW ′V −PTWV |≤µ
2−n

(
D
(
πTW ′V ‖PTV PW ′|T

)
−δ′′2,n

)
,

(187)

where the last inequality holds by Sanov’s theorem and by the
way the codebooks and the channel outputs are generated and
δ′2,n, δ

′′
2,n are sequences that tend to 0 as n→∞. Define

θ̃dec
µ := min

π∈Pµ,decoding
D
(
πSS′XY ‖PSPS′QXY

)
+ min

πTW ′V :
|πTW ′V −PTWV |≤µ

D
(
πTW ′V ‖PTV PW ′|T

)
− 2R− 2R′ − δ′2,n − δ′′2,n, (188)

and observe that:

θ̃dec
µ

(eq.(16)&(17))
= min

π∈Pµ,decoding
D
(
πSS′XY ‖PSPS′QXY

)
+ min

πTW ′V :
|πTW ′V −PTWV |≤µ

D
(
πTW ′V ‖PTV PW ′|T

)
−2I(S;X)− 2µ− δ′2,n − δ′′2,n (189)

(CR)
= min

π∈Pµ,decoding

[
D(πSXY ‖PSQXY )

+EπSXY
[
D(πS′|SXY ‖PS′)

] ]
+ min

πTW ′V :
|πTW ′V −PTWV |≤µ

D
(
πTW ′V ‖PTV PW ′|T

)
−2I(S;X)− 2µ− δ′2,n − δ′′2,n (190)

(DP)

≥ min
π∈Pµ,decoding

[
D(πSXY ‖PSQXY )

+EπY
[
D(πS′|Y ‖PS′)

] ]
+ min

πTW ′V :
|πTW ′V −PTWV |≤µ

D
(
πTW ′V ‖PTV PW ′|T

)
−2I(S;X)− 2µ− δ′2,n − δ′′2,n (191)

(h)
= min

π∈Pµ,decoding
D(πSXY ‖PS|XQXY ) + I(S;Y )

+I(W ;V |T )− I(S;X)− δ2,n(µ) (192)
= min

π∈Pµ,decoding
D(πSXY ‖PS|XQXY ) + I(S;Y )

+I(W ;V |T )− I(S;X)− δ2,n(µ) (193)
= θdec

µ − δ2,n(µ), (194)

for a sequence of functions δ2,n(µ) that goes to zero as n→∞
and µ→ 0, and

θdec
µ := min

πSS′XY ∈Pµ,decoding
D(πSXY ‖PS|XQXY )

+ I(S;Y ) + I(W ;V |T )− I(S;X). (195)

Here, (CR) and (DP) refer to chain rule and data processing
inequality arguments, (h) follows because |πTW ′V−PTWV | ≤
µ and PW ′|T = PW |T and because |πS′Y −PSY | ≤ µ. (Notice
that the DP-inequality can be shown to hold with equality.)
Combining (187), (188), and (194), we have

Pr
[
B2|H = 1

]
≤ 2−n

(
θdec
µ −δ2,n(µ)

)
. (196)

Consider next the third event B3:

Pr
[
B3

∣∣H = 1
]

≤
∑
m

∑
`,`′

Pr
[
(Sn(m, `), Xn) ∈ T nµ/2(PSX),

Wn(m) is sent, (Sn(m, `′), Y n) ∈ T nµ (PSY ),

(Tn,Wn(m), V n) ∈ T nµ (PTWV ),

Htp(Sn(m,`′),Y n)(S
′|Y ) = min

m̃,˜̀
Htp(Sn(m̃,˜̀),Y n)(S|Y )∣∣∣H = 1

]
(197)

≤
∑
m

∑
`,`′

Pr
[
(Sn(m, `), Xn) ∈ T nµ/2(PSX),

(Sn(m, `′), Y n) ∈ T nµ (PSY ),

Htp(Sn(m,`′),Y n)(S
′|Y ) = min

m̃,˜̀
Htp(Sn(m̃,˜̀),Y n)(S|Y )∣∣∣H = 1

]
(198)

≤ 2n(R+2R′) · max
πSS′XY ∈Pµ,decoding

2−n
(
D(πSS′XY ‖PSPSQXY )−δ′3,n

)
,
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(199)

for some sequence δ′3,n that tends to 0 as n → ∞. Here,
the last inequality holds by Sanov’s theorem and the way the
codebooks and the channel outputs are generated.

Define

θ̃
′dec
µ := min

πSS′XY ∈Pµ,decoding
D(πSS′XY ‖PSPS′QXY )

−R− 2R′ − δ′3,n, (200)

and notice that:

θ̃
′dec
µ

(eq.(16)&(17))
= min

πSS′XY ∈Pµ,decoding
D(πSS′XY ‖PSPS′QXY )

+I(W ;V |T )− 2I(S;X)− 3µ− δ′3,n

(CR)&(DP)

≥ min
πSS′XY ∈Pµ,decoding

[
D(πSXY ‖PSQXY )

+EπY
[
D(πS′|Y ‖PS′)

]]
+I(W ;V |T )− 2I(S;X)− 3µ− δ′3,n

(i)
= min

πSS′XY ∈Pµ,decoding
D(πSXY ‖PS|XQXY )

+I(S;Y ) + I(W ;V |T )− I(S;X)− δ3,n(µ)

= θdec
µ − δ3,n(µ), (201)

where δ3,n(µ) is a sequence of functions that goes to zero as
n→∞ and µ→ 0. Here, (i) holds because |πS′Y − PSY | ≤
µ. (Notice that the DP-inequality can again be shown to hold
with equality.) By (199)–(201), we conclude

Pr
[
B3|H = 1

]
≤ 2−n

(
θdec
µ −δ3,n(µ)

)
. (202)

Finally, consider the probability of the fourth event B4. By
the union bound:

Pr
[
B4

∣∣H = 1
]

≤
∑
m′

∑
`′

Pr

[( ⋂
(m,`)

EcTx(m, `)

)
∩ ERx(m′, `′)

∣∣∣∣ H = 1

]
(203)

(j)

≤
∑
m′

∑
`′

Pr

[
(Sn(m′, `′), Y n) ∈ T nµ (PSY )

∣∣∣∣ H = 1

]
·Pr

[
(Tn,Wn(m′), V n) ∈ T nµ (PTWV )

∣∣∣∣( ⋂
(m,`)

EcTx(m, `)

)
, H = 1

]
(204)

(k)

≤
∑
m′

∑
`′

 ∑
πS′Y :

|πS′Y −PSY |<µ

2−nD(πS′Y ‖PS′QY )



·

 ∑
πTW ′V :

|πTW ′V −PTWV |<µ

2−nD(πTW ′V ‖PTW ′ΓV |W=T )


(205)

≤ 2n(R+R′) · max
πS′Y :

|πS′Y −PSY |<µ
2−n(D(πS′Y ‖PS′QY )−δ′4,n)

· max
πTW ′V :

|πTW ′V −PTWV |<µ
2−n(D(πTW ′V ‖PTW ′ΓV |W=T )−δ′′4,n),

(206)

where δ′4,n and δ′′4,n are sequences that tend to 0 as n →
∞. Here, (j) holds because the tuple (Tn,Wn(m′), V n) is
generated independently of the pair (Sn(m′, `′), Y n) and (k)
holds by Sanov’s theorem and the way the codebooks and the
source sequences are generated.

Define now

θ̃miss
µ := min

πS′Y :
|πS′Y −PSY |<µ

D(πS′Y ‖PS′QY )

+ min
πTW ′V :

|πTW ′V −PTWV |<µ
D(πTW ′V ‖PTW ′ΓV |W=T )

−R−R′ − δ′4,n − δ′′4,n, (207)

and notice that by (16) and (17):

θ̃miss
µ = min

πS′Y :
|πS′Y −PSY |<µ

D(πS′Y ‖PS′QY )

+ min
πTW ′V :

|πTW ′V −PTWV |<µ
D(πTW ′V ‖PTW ′ΓV |W=T )

−I(S;X)− µ− δ′4,n − δ′′4,n (208)
(l)
= D(PSY ‖PSQY ) +D(PTWV ‖PTWΓV |W=T )

−I(S;X)− δ4,n(µ) (209)
(CR)
= D(PY ‖QY ) +D(PTWV ‖PTWΓV |W=T )

+I(S;Y )− I(S;X)− δ4,n(µ) (210)
= θmiss

µ − δ4,n(µ), (211)

for some sequence of functions δ4,n(µ) that tends to 0 as
n→∞ and µ→ 0 and

θmiss
µ := D(PY ‖QY ) + I(S;Y ) +D(PTWV ‖PTWΓV |W=T )

− I(S;X). (212)

Here, step (l) holds because |πTW ′V − PTWV | ≤ µ, and
|πS′Y − PSY | ≤ µ. By (205)–(211), we have

Pr
[
B4

∣∣H = 1
]
≤ 2−n

(
θmiss
µ −δ4(µ)

)
. (213)

Combining (170) with (179), (196), (202) and (213), proves
that for sufficiently large blocklengths n and sufficiently small
values of µ, the average type-II error probability satisfies

EC [βn] ≤ 4 ·max
{

2−nθ
standard
µ , 2−nθ

dec
µ , 2−nθ

miss
µ

}
. (214)

By standard arguments and successively eliminating the worst
half of the codewords with respect to αn and the exponents
θstandard
µ , θdec

µ , and θmiss
µ , it can be shown that there exists at

least one codebook for which

αn ≤ ε, (215)

βn ≤ 64 ·max
{

2−nθ
standard
µ , 2−nθ

dec
µ , 2−nθ

miss
µ

}
. (216)

Letting µ→ 0 and n→∞, we get θstandard
µ → θstandard, θdec

µ →
θdec, θmiss

µ → θmiss.
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This proves the theorem for I(S;X) ≥ I(W ;V |T ). When
I(S;X) < I(W ;V |T ), rates R and R′ are chosen as in (14)
and (15). The analysis is similar to above, but since R′ = 0,
event B3 can be omitted.

APPENDIX B
PROOF OF THEOREM 2

Let f be a function satisfying the properties in the theorem.
In this case, QX|Y = PX|f(Y ) and for the choice

P̃SXY = PS|XPX|f(Y )PY (217)

the expectation in (32) evaluates to 0. The proposed choice in
(217) is a valid candidate for the minimization in (32) as we
show in the following. It is straightforward to see from (217)
that the marginal P̃Y coincides with PY . One can also observe
that:

P̃SX(s, x)

=
∑
y

P̃SXY (s, x, y) (218)

= PS|X(s|x) ·
∑
y

PX|f(Y )(x|f(y))PY (y) (219)

= PS|X(s|x) ·
∑
z

PX|f(Y )(x|z)

 ∑
y : z=f(y)

PY (y)

 (220)

= PS|X(s|x) ·
∑
z

PX|f(Y )(x|z)Pf(Y )(z) (221)

= PS|X(s|x) · PX(x) (222)
= PSX(s, x). (223)

To show H(S|Y ) ≤ HP̃ (S|Y ), we introduce the enhanced
type

P̃SXY Y ′ = P̃SXY · P̃Y ′|Xf(Y ), (224)

with P̃SXY as chosen in (217) and P̃Y ′|Xf(Y ) = PY |Xf(Y ).
By (217), similarly to (223), we then have

P̃SXY ′(s, x, y
′)

=
∑
y

P̃SXY ′Y (s, x, y′, y) (225)

= PS|X(s|x)
∑
z

PX|f(Y )(x|z)PY |X,f(Y )(y
′|x, z)

·
( ∑
y : z=f(y)

PY (y)
)

(226)

= PS|X(s|x)
∑
z

PX|f(Y )(x|z)PY |X,f(Y )(y
′|x, z)Pf(Y )(z)

(227)

= PS|X(s|x)
∑
z

PX,f(Y ),Y (x, z, y′) (228)

= PS|X(s|x)PXY (x, y′) (229)
= PSXY (s, x, y′), (230)

and we conclude

H(S|Y ) = HP̃ (S|Y ′) (231)
(a)
= HP̃ (S|Y ′, f(Y )) (232)
(b)
= HP̃ (S|Y ′, f(Y ), Y ) (233)

≤ HP̃ (S|Y ). (234)

where (a) holds because under P̃ we have f(Y ) = f(Y ′)
with probability 1 and (b) holds because under P̃ we have the
Markov chain S → (Y ′, f(Y )) → Y . We can thus conclude
that we are in the case treated in Remark 1.

We continue to evaluate the right-hand side of (33). Let
PS|X satisfy the stronger condition I(S;X|f(Y )) ≤ C. Then,

θdec ≥ D(PY ‖QY ) + I(S;X|f(Y ))− I(S;X|Y )

= D(PY ‖QY ) + I(S;Y |f(Y )), (235)

where the second inequality holds by the Markov chain S →
X → (Y, f(Y )). Now, notice that under the conditions of the
corollary:∑
x∈X

PS|X(s, x)QXY (x, y)

=
∑
x∈X

(
PS|X(s|x)PX|f(Y )(x|f(y))

)
·QY (y) (236)

= PS|f(Y )(s|f(y)) ·QY (y) (237)

and thus by (34):

θstandard ≥ D(PY ‖QY ) + min
πSY :

πSY =PSY

D(πS|Y ‖PS|f(Y )) (238)

= D(PY ‖QY ) + I(S;Y |f(Y )). (239)

We now prove the converse direction. Defining Zi := f(Yi)
and δ(ε) := H(ε)/n/(1−ε) and following standard arguments
[8], we obtain

θ ≤ 1

(1− ε)n
D(PV nY n|H=0‖PV nY n|H=1) + δ(ε) (240)

≤ 1

(1− ε)n
D(PV nY n|H=0‖PV nY n|H=1) + δ(ε) (241)

=
1

(1− ε)n
EPY n

[
D(PV n|Y n,H=0‖PV n|Zn,H=1)

]
+

1

(1− ε)
·D(PY ‖QY ) + δ(ε) (242)

≤ 1

(1− ε)n
I(V n;Y n|Zn)

+
1

(1− ε)
·D(PY ‖QY ) + δ(ε) (243)

=
1

(1− ε)n

n∑
i=1

I(V n, Y i−1, Zi−1, Zni+1;Yi|Zi) (244)

+
1

(1− ε)
·D(PY ‖QY ) + δ(ε) (245)

≤ 1

(1− ε)n

n∑
i=1

I(V n, Xi−1, Zi−1, Zni+1;Yi|Zi) (246)

+
1

(1− ε)
·D(PY ‖QY ) + δ(ε) (247)

≤ 1

(1− ε)
(
I(S;Y |f(Y )) +D(PY ‖QY )

)
+ δ(ε), (248)

where the last inequality follows by introducing a time-sharing
random variable Q that is uniform over {1, . . . , n} and by
defining S := (Q,V n, XQ−1, ZQ−1, ZnQ+1) and Y = YQ.
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We turn to the constraint on capacity:

C ≥ I(Wn;V n) (249)
≥ I(Wn;V n|Zn) (250)
≥ I(Xn;V n|Zn) (251)

≥
n∑
i=1

I(Xi;V
n, Xi−1, Zi−1, Zni+1|Zi) (252)

≥ I(X;S|f(Y )), (253)

where for the last inequality we defined X = XQ. The proof
is established by noticing the Markov chain

S −X − Y. (254)

APPENDIX C
PROOF OF EXAMPLE 1

Notice that X and Y are independent under H = 1.
Moreover, Y (and X) has same marginal under both hy-
potheses. Therefore, when applying Theorem 2, the term
D(PY ‖QY ) = 0 and the function f can be ignored.

Let now S = X+G with G a zero-mean Gaussian random
variable of variance ξ2 and independent of X . For this choice:

I(S;Y ) =
1

2
log2

 1

1− ρ2
0

1+ξ2

 , (255)

and

I(S;X) =
1

2
log2

(
1 + ξ2

ξ2

)
. (256)

Thus, by Theorem 2, the optimal exponent for the presented
Gaussian setup is lower bounded as:

θ∗ ≥ max
ξ2 : 1

2 log2

(
1+ξ2

ξ2

)
≤C

1

2
log2

 1

1− ρ2
0

1+ξ2

 (257)

=
1

2
log2

(
1

1− ρ2
0 + ρ2

0 · 2−2C

)
. (258)

We now show that θ∗ is also upper bounded by the right-hand
side of (258). To this end, notice first that:

I(S;X) =
1

2
log2(2πe)− h(X|S), (259)

and thus constraint C ≥ I(S;X) is equivalent to:

22h(X|S) ≥ (2πe) · 2−2C . (260)

Moreover, (under H = 0) one can write Y = ρ0X + F , with
F zero-mean Gaussian of variance 1 − ρ2

0 and independent
of X . This implies that for any S forming the Markov chain
S −X − Y , also the pair (S,X) is independent of F . By the
EPI and because h(ρ0X) = log2 |ρ0|+ h(X), we then have:

h(Y |S) ≥ 1

2
log2

(
2πe

(
1

2πe
22h(ρ0X|S) + (1− ρ2

0)

))
(261)

=
1

2
log2

(
2πe

(
ρ2

0

2πe
22h(X|S) + (1− ρ2

0)

))
. (262)

By Theorem 2, the optimal error exponent is upper bounded
as:

θ∗ = max
S:

s.t. (260)

I(S;Y ) (263)

= h(Y )− min
S:

(260) holds

h(Y |S) (264)

(a)

≤ 1

2
log2(2πe)

− min
S:

(260) holds

1

2
log2

(
2πe

(
ρ2

0

2πe
22h(X|S) + (1− ρ2

0)

))
(265)

(b)

≤ 1

2
log2(2πe)− 1

2
log2

(
2πe

(
ρ2

0 · 2−2C + (1− ρ2
0)
))
(266)

=
1

2
log2

(
1

1− ρ2
0 + ρ2

0 · 2−2C

)
, (267)

where (a) holds by (262) and (b) by (260). Combining this
upper bound with the lower bound in (258), completes the
proof.

APPENDIX D
PROOF OF THEOREM 4

The proof is based on the scheme of Section III-B. Fix
a choice of the blocklength n, the small positive µ, the
(conditional) pmfs PT1T2

, PS1|X1T1T2
and PS2|X2T1T2

, and the
functions f1 and f2 so that (86) holds. Define the set Pnµ,type-I
to be the subset of types πS1S′1S2S′2V Y T1T2

such that for all
(s1, s

′
1, s2, s

′
2, v, y, t1, t2) ∈ S1 × S1 × S2 × S2 × V × Y ×

W1 ×W2 the following four conditions hold:

|πSiXiT1T2(si, xi, t1, t2)− PSiXiT1T2(si, xi, t1, t2| ≤ µ/2, i ∈ {1, 2},
(268a)

|πS1S2Y V T1T2(s1, s2, y, v, t1, t2)

− PS1S2Y V T1T2(s1, s2, y, v, t1, t2)| ≤ µ, (268b)

HπS′1S
′
2Y V T1T2

(S′1, S
′
2|Y, V, t1, t2

≤ HπS1S2Y V T1T2
(S1, S2|Y, V, T1, T2), (268c)

|πS′1S′2T1T2
(s′1, s

′
2, t1, t2)− PS1S2T1T2

(s′1, s
′
2, t1, t2)| ≤ µ.

(268d)

Also, set for convenience of notation:

PS′1|T1T2
(s1|t1, t2) := PS1|T1T2

(s1|t1, t2),

∀(s1, t1, t2) ∈ S1 × T1 × T2, (269)
PS′2|T1T2

(s2|t1, t2) := PS2|T1T2
(s2|t1, t2),

∀(s2, t1, t2) ∈ S2 × T1 × T2. (270)

In the following, for simplicity of presentation, we abbreviate
the pair (Tn1 , T

n
2 ) by Tn and its realization (tn1 , t

n
2 ) by tn.

We first analyze the type-I error probability averaged over
the random code construction. Let (M1,M2) be the indices
of the chosen codewords at the transmitters, if they exist, and
define the following events:

ETxi :
{
@ mi : (Sni (mi), X

n
i ,T

n) ∈ T nµ/2(PSiXiT)
}
,
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i ∈ {1, 2}, (271)

E(1)
Rx :

{
(Sn1 (M1), Sn2 (M2), Y n, V n,Tn) /∈ T nµ (PS1S2Y VT)

}
,

(272)

E(2)
Rx :

{
∃ m′1 6= M1,m

′
2 6= M2 :

Htp(sn1 (m′1),sn2 (m′2),yn,vn,tn)(S1, S2|Y, V,T)

= min
m̃1,m̃2

Htp(sn1 (m̃1),sn2 (m̃2),yn,vn,tn)(S1, S2|Y, V,T)
}
,

(273)

E(3)
Rx :

{
∃ m′2 6= M2 :

Htp(sn1 (M1),sn2 (m′2),yn,vn,tn)(S1, S2|Y, V,T)

min
m̃2

= Htp(sn1 (M1),sn2 (m̃2),yn,vn,tn)(S1, S2|Y, V,T)
}
,

(274)

E(4)
Rx :

{
∃ m′1 6= M1 :

Htp(sn1 (m′1),sn2 (M2),yn,vn,tn)(S1, S2|Y, V,T)

= min
m̃1

Htp(sn1 (m̃1),sn2 (M2),yn,vn,tn)(S1, S2|Y, V,T)
}
.

(275)

Notice that the event
(
ETx1
∪ETx2

∪E(1)
Rx ∪E

(2)
Rx ∪E

(3)
Rx ∪E

(4)
Rx

)c
implies that the receiver decides on Ĥ = 0. Thus, we obtain

EC [αn] ≤ Pr [ETx1 ] + Pr [ETx2 ] + Pr
[
E(1)

Rx

∣∣∣EcTx1
, EcTx2

]
+ Pr

[
E(2)

Rx

∣∣∣EcTx1
, EcTx2

, E(1)c
Rx

]
+ Pr

[
E(3)

Rx

∣∣∣EcTx1
, EcTx2

, E(1)c
Rx

]
+ Pr

[
E(4)

Rx

∣∣∣EcTx1
, EcTx2

, E(1)c
Rx

]
(276)

≤ ε/6 + ε/6 + ε/6 + ε/6 + ε/6 + ε/6 (277)
= ε, (278)

where the second inequality holds for all sufficiently small
values of µ and sufficiently large blocklengths n and can be
proved as follows. The first and second summands of (276)
can be upper bounded by means of the covering lemma [21]
and the rate constraint (88); the third by means of the Markov
lemma [21]. To prove the upper bound on the fourth term,
consider the following set of inequalities

Pr
[
E(2)

Rx

∣∣∣EcTx1
, EcTx2

, E(1)c
Rx , H = 0

]
= Pr

[
Htp(sn1 (M1),sn2 (M2),yn,vn,tn)(S

′
1, S
′
2|Y, V,T)

≥ min
m̃1 6=M1
m̃2 6=M2

Htp(sn1 (m̃1),sn2 (m̃2),yn,vn,tn)(S1, S2|Y, V,T)

∣∣∣∣
(Sni (Mi), X

n
i ,T

n) ∈ T nµ/2(PSiXiT), i ∈ {1, 2},

(Sn1 (M1), Sn2 (M2), Y n, V n,Tn) ∈ T nµ (PS1S2Y VT),

H = 0

]
(279)

(a)
= Pr

[
Htp(sn1 (1),sn2 (1),yn,vn,tn)(S

′
1, S
′
2|Y, V,T)

≥ min
m̃1 6=1
m̃2 6=1

Htp(sn1 (m̃1),sn2 (m̃2)|yn,vn,tn)(S1, S2|Y, V,T)

∣∣∣∣
(Sni (1), Xn

i ,T
n) ∈ T nµ/2(PSiXiT), i ∈ {1, 2},

(Sn1 (1), Sn2 (1), Y n, V n,Tn) ∈ T nµ (PS1S2Y VT),

M1 = M2 = 1, H = 0

]
(280)

= Pr

[ ⋃
m̃1 6=1
m̃2 6=1

{
Htp(sn1 (1),sn2 (1),yn,vn,tn)(S

′
1, S
′
2|Y, V,T)

≥ Htp(sn1 (m̃1),sn2 (m̃2),yn,vn,tn)(S1, S2|Y, V,T)
}∣∣∣∣

(Sni (1), Xn
i ,T

n) ∈ T nµ/2(PSiXiT), i ∈ {1, 2},

(Sn1 (1), Sn2 (1), Y n, V n,Tn) ∈ T nµ (PS1S2Y VT),

M1 = M2 = 1, H = 0

]
(281)

(b)

≤
2nR1∑
m̃1=2

2nR2∑
m̃2=2

∑
π∈Pnµ,type-I

∑
sn1 ,s

′n
1 ,s

n
2 ,s
′n
2 ,v

n,yn,tn:

tp(sn1 ,s
′n
1 ,s

n
2 ,s
′n
2 ,v

n,yn,tn)=π

Pr

[
Sn1 (1) = sn1 , S

n
2 (1) = sn2 , V

n = vn, Y n = yn,Tn = tn
∣∣∣∣

(Sni (1), Xn
i ,T

n) ∈ T nµ/2(PSiXiT), i ∈ {1, 2},

(Sn1 (1), Sn2 (1), Y n, V n,Tn) ∈ T nµ (PS1S2Y VT),

M1 = M2 = 1, H = 0

]
·Pr

[
Sn1 (m̃1) = s′n1

∣∣∣∣Tn = tn,

(Sni (1), Xn
i ,T

n) ∈ T nµ/2(PSiXiT), i ∈ {1, 2},

M1 = M2 = 1, H = 0

]
·Pr

[
Sn2 (m̃2) = s′n2

∣∣∣∣Tn = tn,

(Sni (1), Xn
i ,T

n) ∈ T nµ/2(PSiXiT), i ∈ {1, 2},

M1 = M2 = 1, H = 0

]
(282)

(c)

≤
∑

π∈Pnµ,type-I

2nR1 · 2nR2 · 2nHπ(S1,S
′
1,S2,S

′
2,Y,V,T)

·2−nHπ(S1,S2,Y,V,T) · 2−nHπ(S′1|T)

·2−nHπ(S′2|T) (283)

≤
∑

π∈Pnµ,type-I

2n(R1+R2−Hπ(S′1,S
′
2|Y,V,T))

·2−nHπ(S′1|T) · 2−nHπ(S′2|T) (284)
(d)

≤ (n+ 1)|S1|2|S2|2|Y||V||W1||W2|

·2n(R1+R2−I(S1,S2;V,Y |T)−I(S1;S2|T)+δ(µ)) (285)

(e)

≤ ε/6, (286)

where δ(µ) is a function that tends to 0 as µ→ 0, and
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• (a) holds by the symmetry of the code construction and
the encoding;

• (b) holds by the union bound and because conditioned
on Tn and M1 = M2 = 1, the sequences Sn1 (m̃1) and
Sn2 (m̃2) are generated independently of each other and
of all other sequences;

• (c) holds because all 2nHπ(S1,S2,Y,V,T) tuples
(sn1 , s

n
2 , v

n, yn, tn) of the same type π have same
conditional probability and similarly all 2nHπ(S′i|T)

sequences sni , for i ∈ {1, 2}, of same joint type with tn

have same conditional probability;
• (d) holds because for all π in Pnµ,type-I,
Hπ(S′1, S

′
2|Y, V,T) ≤ Hπ(S1, S2|Y, V,T), because

|πS′1S′2T−PS1S2T| ≤ µ and |πS1S2Y VT−PS1S2Y VT| ≤
µ and the continuity considerations, and by the standard
upper bound on the number of types;

• (e) holds by the rate constraint in (89c).
That also the fifth and sixth summands of (276) are upper
bounded by ε/6, can be shown in a similar way.

Next, we analyze the type-II error probability averaged over
the random code construction. Define events:

ETxi(mi) :
{(
Sni (mi), X

n
i ,T

n
)
∈ T nµ/2(PSiXiT)

and Wn
i = fi(S

n
i (mi), X

n
i ) is sent

}
(287)

and

ERx(m′1,m
′
2) :{(

Sn1 (m′1), Sn2 (m′2), Y n, V n,Tn
)
∈ T nµ (PS1S2Y VT)

and

Htp(Sn1 (m′1),Sn2 (m′2),Y n,V n,Tn)(S
′
1, S
′
2|Y, V,T) =

min
m̃1,m̃2

Htp(Sn1 (m̃1),Sn2 (m̃2),Y n,V n,Tn)(S1, S2|Y, V,T)
}
,

(288)

Notice that

EC [βn] = Pr
[
Ĥ = 0|H = 1

]
= Pr

 ⋃
m′1,m

′
2

ERx(m′1,m
′
2)
∣∣∣H = 1

 , (289)

where the union is over indices (m′1,m
′
2) ∈ {1, . . . ,

⌊
2nR1

⌋
}×

{1, . . . ,
⌊
2nR2

⌋
}. Notice further that the above probability is

upper bounded by the sum of the probabilities of the following
nine events:
B1:

{
∃(m1,m2) s.t.
ETx1(m1) and ETx2(m2) and ERx(m1,m2)

}
B2:

{
∃(m1,m

′
1,m2) with m1 6= m′1 s.t.

ETx1
(m1) and ETx2

(m2) and ERx(m′1,m2)
}

B3:
{
∃(m1,m2,m

′
2) with m2 6= m′2 s.t.

ETx1
(m1) and ETx2

(m2) and ERx(m1,m
′
2)
}

B4:
{
∃(m1,m

′
1,m2,m

′
2) with m1 6= m′1 and m2 6= m′2

s.t. ETx1
(m1) and ETx2

(m2) and ERx(m′1,m
′
2)
}

B5:
{
∀m1 EcTx1

(m1) holds and ∃(m′1,m2,m
′
2) with

m2 6= m′2 s.t. ETx2
(m2) and ERx(m′1,m

′
2)
}

B6:
{
∀m1 EcTx1

(m1) holds
}
∪
{
∃(m′1,m2) s.t.

ETx2
(m2) and ERx(m′1,m2)

}
B7:

{
∀m2 EcTx2

(m2) holds
}
∪
{
∃(m1,m

′
1,m

′
2) with

m1 6= m′1 s.t.
(
ETx1

(m1) and ERx(m′1,m
′
2)
)}

B8:
{
∀m2 EcTx2

(m2) holds
}
∪
{
∃(m1,m

′
2) s.t.(

ETx1
(m1) and ERx(m1,m

′
2)
)}

B9:
{
∀(m1,m2)

(
EcTx1

(m1) ∪ EcTx2
(m2)

)
hold

}
∪{

∃(m′1,m′2) s.t. ERx(m′1,m
′
2)
}

So, we have

EC [βn] ≤
9∑
`=1

Pr
[
B`
∣∣H = 1

]
. (290)

We will bound the nine probabilities on the right-hand side of
(290) individually. To simplify the notation, we introduce the
following sets of types:

Pµ,standard := {πS1S2X1X2Y VT :

|πSiXiT − PSiXiT| < µ/2, i ∈ {1, 2},
|πS1S2Y VT − PS1S2Y VT| < µ},

(291)
Pµ,dec,1 :=

{
πS1S′1S2X1X2Y VT :

|πSiXiT − PSiXiT| < µ/2, i ∈ {1, 2},
|πS′1S2Y VT − PS1S2Y VT| < µ,

Hπ(S′1|S2, Y, V,T) ≤ Hπ(S1|S2, Y, V,T)
}
,

(292)

Pµ,dec,2 :=
{
πS1S2S′2X1X2Y VT :

|πSiXiT − PSiXiT| < µ/2, i ∈ {1, 2},
|πS1S′2Y VT − PS1S2Y VT| < µ,

Hπ(S′2|S1, Y, V,T) ≤ Hπ(S2|S1, Y, V,T)
}
,

(293)

Pµ,dec,12 :=
{
πS1S′1S2S′2X1X2Y VT :

|πSiXiT − PSiXiT| < µ/2, i ∈ {1, 2},
|πS′1S′2Y VT − PS1S2Y VT| < µ,

Hπ(S′1, S
′
2|Y, V,T) ≤ Hπ(S1, S2|Y, V,T)

}
,

(294)

Pµ,miss,1a :=
{
πS′1S2S′2X2Y VT :

|πS2X2T − PS2X2T| < µ/2,

|πS′1S′2Y VT − PS1S2Y VT| < µ,

H(S′1, S
′
2|Y, V,T) ≤ Hπ(S′1, S2|Y, V,T)

}
,

(295)
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Pµ,miss,1b :=
{
πS′1S2X2Y VT :

|πS2X2T − PS2X2T| < µ/2,

|πS′1S2Y VT − PS1S2Y VT| < µ
}
, (296)

Pµ,miss,2a :=
{
πS1S′1S

′
2X1Y VTY :

|πS1X1T − PS1X1T| < µ/2,

|πS′1S′2Y VT − PS′1S′2Y VT| < µ,

H(S′1, S
′
2|Y, V,T) ≤ Hπ(S1, S

′
2|Y, V,T)

}
,

(297)

Pµ,miss,2b :=
{
πS1S′2X1Y VT :

|πS1X1T − PS1X1T| < µ/2,

|πS1S′2Y VT − PS1S2Y VT| < µ
}
. (298)

Consider the probability of event B1. By Sanov’s theorem
[29] and the way the source sequences and the codebooks
are generated, we have

Pr
[
B1

∣∣H = 1
]
≤
∑
m1,m2

Pr
[
(Sni (mi), X

n
i ,T

n) ∈ T nµ/2(PSiXiT) and

Wn
i = fi(S

n
i (mi), X

n
i ) is sent for i ∈ {1, 2}, and

(Sn1 (m1), Sn2 (m2), Y n, V n, Tn1 , T
n
2 ) ∈ T nµ (PS1S2Y VT)∣∣∣H = 1

]
(299)

≤ 2n(R1+R2) · max
π∈Pµ,standard

2
−n
(
D

(
πS1S2X1X2Y VT

∥∥∥PS1|TPS2|TQX1X2Y

·PTΓV |S1S2X1X2

)
−δ′1,n

)
,

(300)

for some sequence δ′1,n that tends to 0 as n → ∞. Define
now:

θ̃standard
µ := min

π∈Pµ,standard

D
(
πS1S2X1X2Y VT‖PS1|TPS2|TQX1X2Y PT

· ΓV |S1S2X1X2

)
−R1 −R2 − δ′1,n, (301)

and observe that:

θ̃standard
µ

(eq. (88))
= min

π∈Pµ,standard

D
(
πS1S2X1X2Y VT‖PS1|TPS2|TQX1X2Y PT

·ΓV |S1S2X1X2

)
−I(S1;X1|T)− I(X2;S2|T)− 2µ− δ′1,n

(302)
= min

π∈Pµ,standard

D
(
πS1S2X1X2Y VT‖PS1|X1TPS2|X2TQX1X2Y

·PTΓV |S1S2X1X2

)
−δ1,n(µ) (303)

= θstandard
µ − δ1,n(µ), (304)

for some sequence of functions δ1,n(µ) that goes to zero as
n→∞ and µ→ 0 and

θstandard
µ := min

π∈Pµ,standard
D
(
πS1S2X1X2Y VT‖PS1|X1TPS2|X2T

·QX1X2Y PTΓV |S1S2X1X2

)
(305)

Combining (300)–(304), we have:

Pr
[
B1

∣∣H = 1
]
≤ 2−n(θstandard

µ −δ1,n(µ)). (306)

Consider next event B2. Recall that ctp(an|bn) denotes the
conditional type of sequence an given bn. Its probability can
be upper bounded as:

Pr
[
B2

∣∣H = 1
]

≤
∑

m1,m′1,m2

Pr
[(
ETx1

(m1) ∩ ETx2
(m2) ∩ ERx(m′1,m2)

)∣∣∣H = 1
]

(307)

≤
∑

m1,m′1,m2

Pr
[
(Sni (mi), X

n
i ,T

n) ∈ T nµ/2(PSiXiT) and

Wn
i = fi(S

n
i (mi), X

n
i ) is sent for i ∈ {1, 2},

(Sn1 (m′1), Sn2 (m2), Y n, V n,Tn) ∈ T nµ (PS1S2Y VT),

Htp(Sn1 (m′1),Sn2 (m2),Y n,V n,Tn)(S
′
1|S2, Y, V,T)

≤ Htp(Sn1 (m1),Sn2 (m2),Y n,V n,Tn)(S1|S2, Y, V,T)∣∣∣H = 1
]

(308)

=
∑

m1,m′1,m2

∑
π∈Pµ,dec,1

Pr
[
Wn
i = fi(S

n
i (mi), X

n
i ),

tp (Sn1 (m1), Sn1 (m′1), Sn2 (m2), Xn
1 , X

n
2 , Y

n, V n,Tn)

= πS1S′1S2X1X2Y VT

∣∣H = 1
]

(309)

≤
∑

m1,m′1,m2

∑
π∈Pµ,dec,1

Pr
[
tp (Sn1 (m1), Sn1 (m′1), Sn2 (m2), Xn

1 , X
n
2 , Y

n,Tn)

= πS1S′1S2X1X2YT

∣∣H = 1
]

·Pr
[
ctp
(
V n|Sn1 (m1), Sn1 (m′1), Sn2 (m2), Xn

1 , X
n
2 , Y

n,Tn
)

= πV |S1S′1S2X1X2YT

∣∣∣
tp (Sn1 (m1), Sn1 (m′1), Sn2 (m2), Xn

1 , X
n
2 , Y

n,Tn)

= πS1S′1S2X1X2YT, Wn
i = fi(S

n
i (mi), X

n
i ), H = 1

]
(310)

≤
∑

m1,m′1,m2

(n+ 1)|S1|2|S2||X1||X2||Y||W1||W2|

· min
π∈Pµ,dec,1

[
2
−nD(πS1S

′
1S2X1X2YT||PS1|TPS′1|T

PS2|TQX1X2Y
PT)
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·2−nEπ [D(πV |S1S
′
1S2X1X2YT||ΓV |S1S2X1X2

)]

]
(311)

≤ 2−nθ̃
dec,1
µ , (312)

where we define:

θ̃dec,1
µ := min

π∈Pµ,dec,1
D
(
πS1S′1S2X1X2Y VT‖PS1|TPS′1|TPS2|T

·QX1X2Y PTΓV |S1S2X1X2

)
−2R1 −R2 − δ′2,n (313)

for some sequence δ′2,n that tends to 0 as n→∞. Notice the
following set of inequalities. By (88):

θ̃dec,1
µ = min

π∈Pµ,dec,1
D
(
πS1S′1S2X1X2Y VT‖PS1|TPS′1|TPS2|T

·QX1X2Y PTΓV |S1S2X1X2

)
−2I(S1;X1|T)− I(S2;X2|T)− 3µ− δ′2,n (314)

(CR)
= min

π∈Pµ,dec,1

[
D
(
πS1S2X1X2Y VT‖PS1|TPS2|T

·QX1X2Y PTΓV |S1S2X1X2

)
+EπS1S2X1X2Y VT

[
D(πS′1|S1S2X1X2Y VT‖PS′1|T)

]]
−2I(S1;X1|T)− I(S2;X2|T)− 3µ− δ′2,n (315)

(DP)
≥ min

π∈Pµ,dec,1

[
D
(
πS1S2X1X2Y VT‖PS1|TPS2|T

·QX1X2Y PTΓV |S1S2X1X2

)
+EπS2Y VT

[
D(πS′1|S2Y VT‖PS′1|T)

]]
−2I(S1;X1|T)− I(S2;X2|T)− 3µ− δ′2,n (316)

(g)
= min

π∈Pµ,dec,1
D(πS1S2X1X2Y VT‖PS1|X1TPS2|X2T

·QX1X2Y PTΓV |S1S2X1X2
)

+I(S1;S2, Y, V |T)− I(S1;X1|T)

−δ2,n(µ) (317)
(h)
= min

π∈Pµ,dec,1
D
(
πS1S2X1X2Y VT‖PS1|X1TPS2|X2T

·QX1X2Y PTΓV |S1S2X1X2

)
+I(S1;Y, V |S2,T)− I(S1;X1|S2,T)

−δ2,n(µ) (318)

= θdec,1
µ − δ2,n(µ), (319)

where δ2,n(µ) is a sequence of functions that goes to zero
as n → ∞ and µ → 0; (g) holds because |πS′1S2Y VT −
PS1S2Y VT| ≤ µ; and (h) holds by the Markov chain S2 →
(X1,T)→ S1, and we defined

θdec,1
µ := min

π∈Pµ,dec,1
D(πS1S2X1X2Y VT‖PS1|X1TPS2|X2T

·QX1X2Y PTΓV |S1S2X1X2
)

+I(S1;S2, Y, V |T)− I(S1;X1|T). (320)

Combining (308)–(319), one then obtains:

Pr
[
B2

∣∣H = 1
]
≤ 2−n(θdec,1

µ −δ2,n(µ)). (321)

In a similar way, one can also derive the upper bound

Pr
[
B3

∣∣H = 1
]
≤ 2−n(θdec,2

µ −δ3,n(µ)), (322)

where

θdec,2
µ := min

π∈Pµ,dec,2

D
(
πS1S2X1X2Y VT‖PS1|X1TPS2|X2T

·QX1X2Y PTΓV |S1S2X1X2

)
+ I(S2;Y, V |S1,T)− I(S2;X2|S1,T), (323)

and δ3,n(µ) is a sequence of functions that goes to zero as
n→∞ and µ→ 0.

Next, consider event B4. Using similar steps as before, its
probability can be upper bounded as

Pr
[
B4

∣∣H = 1
]
≤ 2−nθ̃

dec,12
µ , (324)

where

θ̃dec,12
µ := min

π∈Pµ,dec,12

D
(
πS1S′1S2S′2X1X2Y VT‖PS1|TPS′1|TPS2|TPS′2|T

·QX1X2Y PTΓV |S1S2X1X2

)
−2R1 − 2R2 − δ′4,n, (325)

and δ′4,n is a sequence that tends to 0 as n→∞ and µ→ 0.
We have the following set of inequalities. By (88):

θ̃dec,12
µ = min

π∈Pµ,dec,12
D
(
πS1S′1S2S′2X1X2Y VT‖PS1|TPS′1|T

·PS2|TPS′2|TQX1X2Y PTΓV |S1S2X1X2

)
−2I(S1;X1|T)− 2I(S2;X2|T)− 4µ− δ′4,n (326)

(DP)
≥ min

π∈Pµ,dec,12

[
D
(
πS1S2X1X2Y VT‖PS1|TPS2|T

·QX1X2Y PTΓV |S1S2X1X2

)
+EπY VT

[
D(πS′1S′2|Y VT‖PS′1|TPS′2|T)

]]
−2I(S1;X1|T)− 2I(S2;X2|T)− 4µ− δ′4,n (327)

(i)
= min

π∈Pµ,dec,12
D
(
πS1S2X1X2Y VT‖PS1|X1TPS2|X2T

·QX1X2Y PTΓV |S1S2X1X2

)
+I(S1, S2;Y, V |T) + I(S1;S2|T)

−I(S1;X1|T)− I(S2;X2|T)− δ4,n(µ) (328)

(j)
= min

π∈Pµ,dec,12
D
(
πS1S2X1X2Y VT‖PS1|X1TPS2|X2T

·QX1X2Y PTΓV |S1S2X1X2

)
+I(S1, S2;Y, V |T)− I(S1, S2;X1, X2|T)
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−δ4,n(µ) (329)

= θdec,12
µ − δ4,n(µ), (330)

where δ4,n(µ) is a sequence of functions that goes to zero as
n→∞ and µ→ 0 and

θdec,12
µ := min

π∈Pµ,dec,12
D
(
πS1S2X1X2Y VT‖PS1|X1TPS2|X2T

·QX1X2Y PTΓV |S1S2X1X2

)
+I(S1, S2;Y, V |T)− I(S1, S2;X1, X2|T). (331)

Here, (i) holds by |πS′1S′2Y VT − PS1S2Y VT| ≤ µ, by re-
arranging terms, and by the continuity of KL-divergence; and
(j) holds by the Markov chains (S2, X2) → (X1,T) → S1

and (S1, X1)→ (X2,T)→ S2. Combining (324)–(330), one
then obtains:

Pr
[
B4

∣∣H = 1
]
≤ 2−n(θdec,12

µ −δ4,n(µ)). (332)

We upper bound the probability of event B5. We have:

Pr
[
B5

∣∣H = 1
]

≤
∑

m′1,m2,m′2

Pr
[
Wn

1 = Tn1 , (Sn2 (m2), Xn
2 ,T

n) ∈ T nµ/2(PS2X2T),

(Sn1 (m′1), Sn2 (m′2), Y n, V n,Tn) ∈ T nµ (PS2Y VT)

Htp(Sn1 (m′1),Sn2 (m′2),Y n,V n,Tn)(S
′
1, S
′
2|Y, V,T)

≤ Htp(Sn1 (m′1),Sn2 (m2),Y n,V n,Tn)(S1, S2|Y, V,T)∣∣∣H = 1
]

(333)

=
∑

m′1,m2,m′2

∑
π∈Pµ,miss,1a

Pr
[
tp(Sn1 (m′1), Sn2 (m2), Sn2 (m′2), Xn

2 , Y
n, V n,Tn)

= πS′1S2S′2XY VT, Wn
1 = Tn1 ,

∣∣∣H = 1
]

(334)

≤
∑

m′1,m2,m′2

∑
π∈Pµ,miss,1a

Pr
[
tp
(
Sn1 (m′1), Sn2 (m2), Sn2 (m′2), Xn

2 , Y
n,Tn

)
= πS′1S2S′2XYT

∣∣∣H = 1
]

·Pr
[
ctp
(
V n|Sn1 (m′1), Sn2 (m2), Sn2 (m′2), Xn

2 , Y
n,

Tn1 , T
n
2

)
= πV |S′1S2S′2XYT

∣∣∣
tp(Sn1 (m′1), Sn2 (m2), Sn2 (m′2), Xn

2 , Y
n,Tn)

= πS′1S2S′2XYT, W
n
1 = Tn1 , H = 1

]
(335)

≤
∑

m′1,m2,m′2

∑
π∈Pµ,miss,1a

2
−n(D(πS′1S2S

′
2X2YT‖PS′1|TPS2|TPS′2|T

QX2Y
PT)−δ′5,n)

·2
−n(Eπ

S′1S2S
′
2X2YT

[D(πV |S′1S2S
′
2X2YT‖Γ

(1)

V |T1S2X2
)]−δ′′5,n)

(336)

≤2−nθ̃
miss,1a
µ , (337)

where δ′5,n, δ
′′
5,n are sequences that tend to 0 as n→∞ and

θ̃miss,1a
µ := min

π∈Pµ,miss,1a
D
(
πS′1S2S′2X1X2Y VT‖PS′1|TPS2|TPS′2|T

·QX2Y PTΓ
(1)
V |T1S2X2

)
−R1 − 2R2 − δ′5,n − δ′′5,n. (338)

We have the following set of inequalities. By (88):

θ̃miss,1a
µ = min

π∈Pµ,miss,1a
D
(
πS′1S2S′2X1X2Y VT‖PS′1|TPS2|TPS′2|T

·QX2Y PTΓ
(1)
V |T1S2X2

)
−I(S1;X1|T)− 2I(S2;X2|T)

−3µ− δ′5,n − δ′′5,n (339)
(DP)
≥ min

π∈Pµ,miss,1a

[
D
(
πS2X1X2Y VT‖PS2|TQX2Y PT

·Γ(1)
V |T1S2X2

)
+EπY VT

[
D(πS′1S′2|Y VT‖PS′1|TPS′2|T)

]]
−I(S1;X1|T)− 2I(S2;X2|T)− 3µ− δ′5,n − δ′′5,n

(340)

= min
π∈Pµ,miss,1a

D(πS2X2Y VT‖PS2|X2TQX2Y PT

·Γ(1)
V |T1S2X2

)
+I(S1, S2;Y, V |T) + I(S1;S2|T)

−I(S1;X1|T)− I(S2;X2|T)− δ5,n(µ) (341)

= min
π∈Pµ,miss,1a

D(πS2X2Y VT‖PS2|X2TQX2Y PT

·Γ(1)
V |T1S2X2

)
+I(S1, S2;Y, V |T)− I(S1, S2;X1, X2|T)

−δ5,n(µ) (342)

= θmiss,1a
µ − δ5(µ), (343)

where δ5(µ) is a sequence of functions that goes to zero as
n→∞ and µ→ 0 and

θmiss,1a
µ :=

min
π∈Pµ,miss,1a

D(πS2X2Y VT‖PS2|X2TQX2Y PTΓ
(1)
V |T1S2X2

)
+I(S1, S2;Y, V |T)− I(S1, S2;X1, X2|T). (344)
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Combining (337)–(343) leads to:

Pr
[
B5

∣∣H = 1
]
≤ 2−n(θmiss,1a

µ −δ5(µ)). (345)

The probability of event B6 can be upper bounded in a
similar way to obtain:

Pr
[
B6

∣∣H = 1
]
≤ 2−nθ̃

miss,1b
µ , (346)

where

θ̃miss,1b
µ :=

min
π∈Pµ,miss,1b

D
(
πS′1S2X2Y VT‖PS′1|TPS2|TQX2Y PTΓ

(1)
V |T1S2X2

)
−R1 −R2 − δ′6,n (347)

for some sequence δ′6,n that tends to 0 as n → ∞. We have
the following set of inequalities. By (88):

θ̃miss,1b
µ = min

π∈Pµ,miss,1b
D
(
πS′1S2X2Y VT‖PS′1|TPS2|TQX2Y

·PTΓ
(1)
V |T1S2X2

)
−I(S1;X1|T)− I(S2;X2|T)− 2µ− δ′6,n (348)

(CR)
= min

π∈Pµ,miss,1b

[
D(πS2X2Y VT‖PS2|TQX2Y PT

·Γ(1)
V |T1S2X2

)

+EπS2X2Y VT

[
D(πS′1|S2X2Y VT‖PS′1|T)

]]
−I(S1;X1|T)− I(S2;X2|T)− 2µ− δ′6,n (349)

(DP)
≥ min

π∈Pµ,miss,1b

[
D(πS2X2Y VT‖PS2|TQX2Y PT

·Γ(1)
V |T1S2X2

)

+EπS2Y VT

[
D
(
πS′1|S2Y VT‖PS′1|T

)]]
−I(S1;X1|T)− I(S2;X2|T)− 2µ− δ′6,n (350)

(k)
= min

π∈Pµ,miss,1b
D(πS2X2Y VT‖PS2|TQX2Y PT

·Γ(1)
V |T1S2X2

)

+I(S1;S2, Y, V |T)− I(S1;X1|T)

−I(S2;X2|T)− δ6,n(µ) (351)
= min

π∈Pµ,miss,1b
D(πS2X2Y VT‖PS2|X2TQX2Y PT

·Γ(1)
V |T1S2X2

)

+I(S1;S2, Y, V |T)− I(S1;X1|T)− δ6,n(µ)

(352)
(l)
= min

π∈Pµ,miss,1b
D(πS2X2Y VT‖PS2|X2TQX2Y PT

·Γ(1)
V |T1S2X2

)

+I(S1;Y, V |S2,T)− I(S1;X1|S2,T)− δ6,n(µ)

(353)

= θmiss,1b
µ − δ6,n(µ), (354)

where δ6,n(µ) is a sequence of functions that goes to zero as
n→∞ and µ→ 0 and

θmiss,1b
µ :=

min
π∈Pµ,miss,1b

D(πS2X2Y VT‖PS2|X2TQX2Y PTΓ
(1)
V |T1S2X2

)

+I(S1;Y, V |S2,T)− I(S1;X1|S2,T). (355)

Here, (k) holds because |πS′1Y VT − PS1Y VT| ≤ µ and (l)
holds because of the Markov chain S1 → (X1,T) → S2.
From (337)–(354), we obtain

Pr
[
B6

∣∣H = 1
]
≤ 2−n(θmiss,1b

µ −δ6,n(µ)). (356)

Following similar steps to above, one can show that

Pr
[
B7

∣∣H = 1
]
≤ 2−n(θmiss,2a

µ −δ7,n(µ)), (357)

Pr
[
B8

∣∣H = 1
]
≤ 2−n(θmiss,2b

µ −δ8,n(µ)), (358)

where δ7,n(µ) and δ8,n(µ) are sequences of functions that go
to zero as n→∞ and µ→ 0 and

θmiss,2a
µ :=

min
π∈Pµ,miss,2a

D(πS1X1Y VT‖PS1|X1TQX1Y PTΓ
(2)
V |S1X1T2

)

+ I(S1, S2;Y, V |T)− I(S1, S2;X1, X2|T), (359)

θmiss,2b
µ :=

min
π∈Pmiss,2b

D(πS1X1Y VT‖PS1|X1TQX1Y PTΓ
(2)
V |S1X1T2

)

+ I(S2;Y, V |S1,T)− I(S2;X2|S1,T). (360)

Finally, the probability of event B9 can be upper bounded
as:

Pr
[
B9

∣∣H = 1
]
≤ 2−nθ̃

miss,12
µ , (361)

where

θ̃miss,12
µ := min

π:
|πS′1S′2Y VT−PS1S2Y VT|<µ

D(πS′1S′2Y VT‖PS′1|TPS′2|TQY PTΓ
(12)
V |T)

−R1 −R2 − δ′9,n, (362)

for some sequence δ′9,n that tends to 0 as n → ∞. We have
the following set of inequalities. By (88)

θ̃miss,12
µ = min

π:
|πS′1S′2Y VT−PS1S2Y VT|<µ

D(πS′1S′2Y VT‖PS′1|TPS′2|TQY PTΓ
(12)
V |T)

−I(S1;X1|T)− I(S2;X2|T)− 2µ− δ′9,n (363)

= min
π:

|πS′1S′2Y VT−PS1S2Y VT|<µ

[
D(πY VT‖QY PTΓ

(12)
V |T)

+EπY VT

[
D(πS′1S′2|Y VT‖PS′1|TPS′2|T)

]]
−I(S1;X1|T)− I(S2;X2|T)− 2µ− δ′9,n

(364)

(m)
= EPT

[
D(PY V |T‖QY Γ

(12)
V |T)

]
+ I(S1, S2;Y, V |T)
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−I(S1, S2;X1, X2|T)− δ9,n(µ) (365)

= θmiss,12
µ − δ9,n(µ), (366)

where δ9,n(µ) is a sequence of functions that goes to zero as
n→∞ and µ→ 0 and

θmiss,12
µ := EPT

[
D(PY V |T‖QY Γ

(12)
V |T)

]
+ I(S1, S2;Y, V |T)I(S1, S2;X1, X2|T). (367)

Here, (m) holds because |πY VT − PY VT| ≤ µ and
|πS′1S′2Y VT − PS1S2Y VT| ≤ µ and by the Markov chains
S1 → (X1,T) → S2 and S2 → (X2,T) → S1. Combining
(361)–(366) yields:

Pr
[
B9

∣∣H = 1
]
≤ 2−n(θmiss,12

µ −δ9,n(µ)). (368)

Combining now (306), (321), (322), (332), (345), (356),
(357), (358), and (368), for sufficiently large values of n and
small values of µ, the average type-II error probability can be
bounded as:

EC [βn] ≤ 2 max
{

2−nθ
standard
µ , 2−nθ

dec,1
µ , 2−nθ

dec,2
µ , 2−nθ

dec,12
µ ,

2−nθ
miss,1a
µ , 2−nθ

miss,1b
µ , 2−nθ

miss,2a
µ , 2−nθ

miss,2b
µ , 2−nθ

miss,12
µ

}
.

(369)

By standard arguments and successively eliminating the worst
half of the codebooks, it can be shown that there exists at least
one codebook for which:

αn ≤ ε, (370)

βn ≤ 1024 ·max
{

2−nθ
standard
µ , 2−nθ

dec,1
µ , 2−nθ

dec,2
µ , 2−nθ

dec,12
µ ,

2−nθ
miss,1a
µ , 2−nθ

miss,1b
µ , 2−nθ

miss,2a
µ , 2−nθ

miss,2b
µ , 2−nθ

miss,12
µ

}
.

(371)

Letting n→∞ and µ→ 0 for i ∈ {1, 2}, we get θstandard
µ →

θstandard, θdec,i
µ → θdec,i, θdec,12

µ → θdec,12, θmiss,ia
µ → θmiss,ia,

θmiss,ib
µ → θmiss,ib and θmiss,12

µ → θmiss,12, which concludes the
proof of the theorem.

APPENDIX E
PROOF OF COROLLARY 2

Choose for each i ∈ {1, 2} the random variable Ti = ti
deterministically, and a (conditional) pmf PSi|Xi and function
fi : Si×Xi →Wi so that conditions (113) are satisfied. It can
be noticed that for the present setup such a choice also satisfies
the conditions (86). Therefore, by Theorem 4, any error
exponent satisfying (107) for the chosen pmfs and functions
is achievable. In the following, we simplify the conditions in
(107) for our choice. For convenience of notation, we define
the following conditional laws:

ΓV |S2Z(v|s2, z)

,
∑

s1,x1,x2

PS1|X1
(s1|x1) · PS2|X2

(s2|PX1X2|Z(x1, x2|z)x2)·

·ΓV |S1S2X1X2
(v|s1, s2, x1, x2), (372)

Γ
(1)
V |Z(v|z) ,

∑
s2,x2

PS2|X2
(s2|x2) · PX2|Z(x2|z)

·Γ(1)
V |T1S2X2

(v|t1, s2, x2), (373)

Γ
(1)
V |S2Z

(v|z) ,
∑
x2

PX2|Z(x2|z) · Γ(1)
V |T1S2X2

(v|t1, s2, x2),

(374)

Γ
(2)
V |Z(v|z) ,

∑
s1,x1

PS1|X1
(s1|x1) · PX1|Z(x1|z)

·Γ(2)
V |S1X1T2

(v|s1, x1, t2), (375)

Γ
(2)
V |S2Z

(v|z) ,
∑
x1

PX1|Z(x1|z)Γ(2)
V |S1X1T2

(v|s1, x1, t2).

(376)

We start by simplifying the decoding-error exponents:

θdec,1 := min
P̃S1S2X1X2Y V

:

P̃SiXi=PSiXi , i∈{1,2},
P̃S2Ȳ ZV

=PS2Ȳ ZV

H(S1|S2,Ȳ ,Z,V )≤HP̃ (S1|S2,Ȳ ,Z,V )

D
(
P̃S1S2X1X2Ȳ ZV ‖PS1|X1

PS2|X2
PX1X2Z

QȲ |ZΓV |S1S2X1X2

)
+I(S1; Ȳ , Z, V |S2)− I(S1;X1|S2) (377)

(CR)
= min

P̃S1S2X1X2
:

P̃SiXi=PSiXi , i∈{1,2},
P̃S2Ȳ ZV

=PS2Ȳ ZV

H(S1|S2,Ȳ ,Z,V )≤HP̃ (S1|S2,Ȳ ,Z,V )[
D
(
P̃S1S2X1X2Z‖PS1|X1

PS2|X2
PX1X2Z

)
+EP̃S1S2X1X2Z

[D(P̃Ȳ V |S1S2X1X2Z‖
QȲ |ZΓV |S1S2X1X2

)
]]

+I(S1; Ȳ , Z, V |S2)− I(S1;X1|S2) (378)
(DP)

≥ min
P̃S1S2X1X2,

:

P̃SiXi,=PSiXi,, i∈{1,2},
P̃S2Ȳ ZV

=PS2Ȳ Z

H(S1|S2,Ȳ ,Z,V )≤HP̃ (S1|S2,Ȳ ,Z,V )[
D
(
P̃S1S2X1X2Z‖PS1|X1

PS2|X2
PX1X2Z

)
+EP̃S2Z

[D(P̃Ȳ V |S2Z‖QȲ |ZΓV |S2Z)
]]

+I(S1; Ȳ , Z, V |S2)− I(S1;X1|S2) (379)
(a)
= min

P̃S1S2X1X2
:

P̃SiXi=PSiXi , i∈{1,2},
P̃S2,Ȳ ,ZV

=PS2Ȳ ZV

H(S1|S2,Ȳ ,Z,V )≤HP̃ (S1|S2,Ȳ ,Z,V )

D
(
P̃S1S2X1X2Z‖PS1|X1

PS2|X2
PX1X2Z

)

+EPS2ZV
[D(PȲ |S2ZV ‖QȲ |Z)

]
+I(S1; Ȳ , Z, V |S2)− I(S1;X1|S2) (380)

(b)
= EPS2ZV

[D(PȲ |S2ZV ‖QȲ |Z
)

+I(S1; Ȳ , Z, V |S2)− I(S1;X1|S2), (381)
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where (a) holds by the second constraint in the minimization
and (b) holds because KL-divergence is nonnegative and
P̃S1S2X2Z = PS1|X1

PS2|X2
PX1X2Z is a valid choice in the

minimization and because PV |S2Z = ΓV |S2Z .

Moreover, above inequality
(DP)

≥ holds with equality, be-
cause evaluating D

(
P̃S1S2X1X2Ȳ ZV ‖PS1|X1

PS2|X2
PX1X2Z

QȲ |ZΓV |S1S2X1X2

)
for the choice

P̃S1S2X1X2Ȳ ZV = PS1|X1
PS2|X2

PX1X2ZPȲ V |S2Z (382)

(which is a valid candidate for the minimization) results in
the KL-divergence on the right-hand side of (381). So, we
conclude that

θdec,1 = EPS2ZV
[D(PȲ |S2ZV ‖QȲ |Z)]

+I(S1; Ȳ , Z, V |S2)− I(S1;X1|S2), (383a)

and in an analogous way it can be shown that also

θdec,2 = EPS1ZV
[D(PȲ |S1ZV ‖QȲ |Z

)
+I(S2; Ȳ , Z, V |S1)− I(S2;X1|S1), (383b)

and

θdec,12 = EPZV [D(PȲ |ZV ‖QȲ |Z
)
]

+I(S1, S2; Ȳ , Z, V )− I(S1, S2;X1, X2). (383c)

Following similar steps, we obtain:

θmiss,1a

= min
P̃S2X2Ȳ ZV

:

P̃S2X2
=PS2X2

P̃Ȳ ZV =PȲ ZV
H(S2|Ȳ ,Z,V )≤HP̃ (S2|Ȳ ,Z,V )

D
(
P̃S2X2Ȳ ZV ‖PS2|X2

PX2ZQȲ |ZΓ
(1)
V |T1S2X2

)
+I(S1, S2;V, Ȳ , Z)− I(S1, S2;X1, X2) (384)

(CR)&(DP)

≥ min
P̃S2X2Ȳ ZV

:

P̃S2X2
=PS2X2

P̃Ȳ ZV =PȲ ZV
H(S2|Ȳ ,Z,V )≤HP̃ (S2|Ȳ ,Z,V )[

D
(
P̃S2X2Z‖PS2|X2

PX2Z

)
+EP̃Z

[
D
(
P̃Ȳ V |Z‖QȲ |ZΓ

(1)
V |Z
)]]

+I(S1, S2;V, Ȳ , Z)− I(S1, S2;X1, X2) (385)

= EPZ
[
D(PȲ V |Z‖QȲ |ZΓ

(1)
V |Z)

]
+I(S1, S2;V, Ȳ , Z)− I(S1, S2;X1, X2), (386)

and

θmiss,1b

= min
P̃S2X2Ȳ ZV

:

P̃S2X2
=PS2X2

P̃S2Ȳ ZV
=PS2Ȳ ZV

D
(
P̃S2X2Ȳ ZV ‖PS2|X2

PX2ZQȲ |ZΓ
(1)
V |T1S2X2

)

+I(S1;V, Ȳ , Z|S2)− I(S1;X1|S2) (387)

(CR)&(DP)

≥ min
P̃S2X2Ȳ ZV

:

P̃S2X2
=PS2X2

P̃S2Ȳ ZV
=PS2Ȳ ZV

[
D
(
P̃S2X2Z‖PS2|X2

PX2Z

)

+EP̃S2Z

[
D
(
P̃Ȳ V |S2Z‖QȲ |ZΓ

(1)
V |S2Z

)]]
+I(S1;V, Ȳ , Z|S2)− I(S1;X1|S2) (388)

≥ EPS2Z

[
D(PȲ V |S2Z‖QȲ |ZΓ

(1)
V |S2Z

)
]

+I(S1;V, Ȳ , Z|S2)− I(S1;X1|S2). (389)

Therefore:

θmiss,1a = EPZ
[
D(PȲ V |Z‖QȲ |ZΓ

(1)
V |Z)

]
+I(S1, S2;V, Ȳ , Z)− I(S1, S2;X1, X2) (390a)

θmiss,1b ≥ EPS2Z

[
D(PȲ V |S2Z‖QȲ |ZΓ

(1)
V |S2Z

)
]

+I(S1;V, Ȳ , Z|S2)− I(S1;X1|S2). (390b)

By similar arguments, also

θmiss,2a = EPZ
[
D(PȲ V |Z‖QȲ |ZΓ

(2)
V |Z)

]
+I(S1, S2;V, Ȳ , Z)− I(S1, S2;X1, X2) (390c)

θmiss,2b ≥ EPS1Z

[
D(PȲ V |S1Z‖QȲ |ZΓ

(2)
V |S2Z

)
]

+I(S2;V, Ȳ , Z|S1)− I(S2;X1|S1). (390d)

Finally, it is straightforward to see that

θmiss,12 = EPZ
[
D(PȲ V |Z‖QȲ |ZΓ

(12)
V | )

]
+I(S1, S2;V, Ȳ , Z)− I(S1, S2;X1, X2). (390e)

Comparing (383a) with (390b), by the nonnegativity and
the chain rule of KL-divergence, we see that exponent θmiss,1b

is redundant in view of exponent θdec,1. In the same way,
exponent θmiss,2b is redundant in view of θdec,2 and the three
exponents θmiss,1a, θmiss,2a, θmiss,12 are redundant in view of
θdec,12.

We thus conclude that in this example and for any choice of
the pmfs PS1|X1

and PS2|X2
and functions f1 and f2 satisfying

(113), the following exponents are achievable:

θ ≤ max min{θstandard, θdec,1, θdec,2, θdec,12}, (391)

where θdec,1, θdec,2, θdec,12 are given in (383) and θstandard can
be simplified to:

θstandard = EPS1S2ZV

[
D(PȲ |S1S2ZV ‖QȲ |Z)

]
. (392)

We next show that if the pmfs PS1|X1
and PS2|X2

and the
functions f1 and f2 are chosen to satisfy inequalities (113),
then the minimum in (391) is attained by θstandard. In fact, we
can write the following set of inequalities:

θdec,1 = EPS2ZV
[D(PȲ |S2ZV ‖QȲ |Z

)
+I(S1; Ȳ , Z, V |S2)− I(S1;X1|S2) (393)

= EPS1S2ZV
[D(PȲ |S1S2ZV ‖QȲ |Z

)
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+I(S1;Z, V |S2)− I(S1;X1|S2) (394)
(d)

≥ EPS1S2ZV

[
D(PȲ |S1S2ZV ‖QȲ |Z)

]
(395)

= θstandard, (396)

where (d) holds by (113a); and by similar arguments also

θdec,2 ≥ θstandard (397)
θdec,12 ≥ θstandard. (398)

This concludes the proof.

APPENDIX F
PROOF OF CONVERSE FOR THEOREM 5

All mutual informations are calculated with respect to the
pmfs under H = 0. Define S̄1,t := (V n1 , X

t−1
1 ) and S̄2,t :=

(V n2 , X
t−1
2 ) and notice the Markov chains S̄1,t → X1,t → S̄2,t

and S̄2,t → X2,t → S1,t. Define δ(ε) := Hb(ε)/n/(1 − ε).
Then, by [8]:

θ ≤ 1

n(1− ε)
D(PV nY n|H=0‖PV nY n|H=1) + δ(ε) (399)

=
1

n(1− ε)
EPY n

[
D(PV n|Y n,H=0‖PV n|Y n,H=1)

]
+

1

1− ε
·D(PY ‖QY ) + δ(ε) (400)

=
1

n(1− ε)
EPY n

[
D(PV n|Y n,H=0‖PV n|H=1)

]
+

1

1− ε
·D(PY ‖QY ) + δ(ε) (401)

=
1

n(1− ε)
I(V n;Y n) +

1

1− ε
·D(PY ‖QY ) + δ(ε)

(402)

=
1

n(1− ε)

n∑
t=1

I(V n, Y t−1;Yt)

+
1

1− ε
·D(PY ‖QY ) + δ(ε) (403)

=
1

n(1− ε)

n∑
t=1

I(V n, Y t−1;Yt)

+
1

1− ε
·D(PY ‖QY ) + δ(ε) (404)

(a)

≤ 1

n(1− ε)

n∑
t=1

I(V n, Xt−1
1 , Xt−1

2 ;Yt)

+
1

1− ε
·D(PY ‖QY ) + δ(ε) (405)

=
1

n(1− ε)

n∑
t=1

I(S̄1,t, S̄2,t;Yt)

+
1

1− ε
·D(PY ‖QY ) + δ(ε), (406)

=
1

1− ε
I(S̄1, S̄2;Y ) +

1

1− ε
·D(PY ‖QY ) + δ(ε), (407)

where (a) follows from the Markov chain Y t−1 →
(V n, Xt−1

1 , Xt−1
2 ) → Yt. The last equality holds by defin-

ing a time-sharing random variable Q that is uniform over
{1, . . . , n} and S̄i := (Q,V ni , X

Q−1
i ), for i ∈ {1, 2}, and

Y := YQ.

Next, consider the following term,

I(Xn
1 ;V n1 |V n2 )

=

n∑
t=1

I(X1,t;V
n
1 |Xt−1

1 , V n2 ) (408)

(b)
=

n∑
t=1

I(X1,t;X
t−1
1 , V n1 |V n2 ) (409)

(c)
=

n∑
t=1

I(X1,t;X
t−1
1 , V n1 , X

t−1
2 |V n2 ) (410)

≥
n∑
t=1

I(X1,t;X
t−1
1 , V n1 |Xt−1

2 , V n2 ) (411)

=

n∑
t=1

I(X1,t; S̄1,t|S̄2,t) (412)

= nI(X1; S̄1|S̄2) (413)

where (b) and (c) follow from the Markov chains X1,t →
V n2 → Xt−1

1 and X1,t → (V n1 , V
n
2 , X

t−1
1 ) → Xt−1

2 , respec-
tively. Both Markov chains hold because Xn

1 and Xn
2 are inde-

pendent under both hypotheses and by the orthogonality of the
MAC. The last equality holds by defining Xi := (Q,Xi,Q),
for i ∈ {1, 2}. Notice that S̄i → Xi → Si.

Similarly, we get

I(Xn
2 ;V n2 |V n1 ) ≥ nI(X2; S̄2|S̄1), (414)

I(Xn
1 , X

n
2 ;V n1 , V

n
2 ) ≥ nI(X1, X2; S̄1, S̄2). (415)

On the other hand, we have

I(Xn
1 ;V n1 |V n2 )

≤ I(Wn
1 ;V n1 |V n2 ) (416)

= H(V n1 |V n2 )−H(V n1 |Wn
1 , V

n
2 ) (417)

≤ H(V n1 )−H(V n1 |Wn
1 , V

n
2 ) (418)

(d)
= H(V n1 )−H(V n1 |Wn

1 ) (419)
= I(Wn

1 ;V n1 ) (420)

≤
n∑
t=1

I(W1,t;V1,t) (421)

= nI(W1;V1) (422)
≤ nC1, (423)

where (d) follows from the Markov chain V n1 → Wn
1 → V n2

and the orthogonality assumption. The last equality holds by
defining Wi := (Q,Wi,Q) and Vi = Vi,Q for i ∈ {1, 2}.
Similarly, we have

I(Xn
2 ;V n2 |V n1 ) ≤ nC2, (424)

I(Xn
2 , X

n
1 ;V n1 , V

n
2 ) ≤ nC1 + nC2. (425)

Appropriately combining the derived inequalities concludes
the proof of the converse.

APPENDIX G
CONVERSE PROOF FOR PROPOSITION 2

The proof follows similar steps to [26]. Define δ(ε) :=
Hb(ε)/n/(1− ε). Then, by [8]:

θ ≤ 1

n(1− ε)
D(PV nY n|H=0‖PV nY n|H=1) + δ(ε) (426)
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=
1

n(1− ε)
EPY n

[
D(PV n|Y n,H=0‖PV n|Y n,H=1)

]
+

1

1− ε
·D(PY ‖QY ) + δ(ε) (427)

=
1

n(1− ε)
EPY n

[
D(PV n|Y n,H=0‖PV n|H=1)

]
+

1

1− ε
·D(PY ‖QY ) + δ(ε) (428)

=
1

n(1− ε)
I(V n;Y n) +

1

1− ε
·D(PY ‖QY ) + δ(ε) (429)

=
1

n(1− ε)
I(V n1 , V

n
2 ;Y n) +

1

1− ε
·D(PY ‖QY ) + δ(ε).

(430)

Next, consider the following set of inequalities:

I(Xn
1 ;V n1 |V n2 ) ≤ I(Wn

1 ;V n1 |V n2 ) (431)
= H(V n1 |V n2 )−H(V n1 |Wn

1 , V
n
2 ) (432)

≤ H(V n1 )−H(V n1 |Wn
1 , V

n
2 ) (433)

(a)
= H(V n1 )−H(V n1 |Wn

1 ) (434)
= I(Wn

1 ;V n1 ) (435)

≤
n∑
t=1

I(W1,t;V1,t) (436)

= nI(W1;V1) (437)
≤ nC1, (438)

where (a) follows from the Markov chain V n2 →Wn
1 → V n1 .

Similarly, we have

I(Xn
2 ;V n2 |V n1 ) ≤ nC2, (439)

I(Xn
1 , X

n
2 ;V n1 , V

n
2 ) ≤ n(C1 + C2). (440)

Defining the auxiliaries Sn1 and Sn2 to be V n1 and V n2 , re-
spectively, considering the Markov chains V n1 → Xn

1 → V n2 ,
V n2 → Xn

2 → V n1 and letting ε → 0 completes the proof of
the theorem.

APPENDIX H
PROOF OF EXAMPLE 3

We simplify the result of Theorem 5 for the proposed Gaus-
sian setup. Notice first that since X1 and X2 are independent
and because of the Markov chains S̄1 → X1 → X2 and
S̄2 → X2 → X1, the pair (X1, S̄1) is independent of (X2, S̄2).
As a consequence,

I(S̄1;X1|S̄2) = I(S̄1;X1) (441)
I(S̄2;X2|S̄1) = I(S̄2;X2) (442)

I(S̄1, S̄2;X1, X2) = I(S̄1;X1) + I(S̄2;X2), (443)

and the three constraints in the maximization of (123) simplify
to the two constraints:

I(S̄1;X1) ≤ C1, (444a)
I(S̄2;X2) ≤ C2. (444b)

Choose now the auxiliary random variables S̄1 and S̄2 as

S̄i = Xi + Fi, Fi ∼ N (0, ξ2
i ), i ∈ {1, 2}, (445)

where

ξ2
i :=

1

22Ci − 1
, i ∈ {1, 2}. (446)

It is easily checked that this choice satisfies constraints (444).
Moreover, the mutual information term in the achievable error
exponent evaluates to:

I(S̄1, S̄2;Y ) =
1

2
log2

2 + σ2
0

σ2
0 +

ξ2
1

1+ξ2
1

+
ξ2
2

1+ξ2
2

(447)

=
1

2
log2

2 + σ2
0

2−2C1 + 2−2C2 + σ2
0

, (448)

and the KL-divergence term to:

D(PY ‖QY )

= −h(Y ) + EPY
[
log2

1

QY

]
(449)

= −h(Y ) + EPY
[
log2

(√
2πσ2

ye
Y 2

2σ2
y

)]
(450)

= −h(Y ) +
1

2
log2

(
2πσ2

y

)
+ EPY

[
Y 2

2σ2
y

]
· log2 e (451)

= −h(Y ) +
1

2
log2

(
2πσ2

y

)
+

2 + σ2
0

2σ2
y

· log2 e (452)

= −1

2
log2

(
2πe(2 + σ2

0)
)

+
1

2
log2

(
2πσ2

y

)
+

2 + σ2
0

2σ2
y

· log2 e (453)

=
1

2
log2

(
σ2
y

2 + σ2
0

)
+

(
2 + σ2

0

2σ2
y

− 1

2

)
· log2 e. (454)

Combining (448) and (454), by Theorem 5, any error exponent
θ ≥ 0 is achievable if it satisfies:

θ ≤ 1

2
log2

σ2
y

2−2C1 + 2−2C2 + σ2
0

+

(
2 + σ2

0

2σ2
y

− 1

2

)
· log2 e.

(455)

We now show that by Theorem 5 no larger exponent
is achievable. Notice first that since each Xi is standard
Gaussian, constraints (444) are equivalent to

22h(Xi|S̄i) ≥ 2πe · 2−2Ci , i ∈ {1, 2}. (456)

Then, by Theorem 5, any exponent has to satisfy:

θ ≤ D(PY ‖QY ) + max
S̄1,S̄2
s.t. (456)

I(S̄1, S̄2;Y ) (457)

= D(PY ‖QY ) + h(Y )− min
S̄1,S̄2
s.t. (456)

h(Y |S̄1, S̄2) (458)

= D(PY ‖QY ) + h(Y )− min
S̄1,S̄2
s.t. (456)

h(Y |S̄1, S̄2) (459)

(a)

≤ D(PY ‖QY ) + h(Y )

− min
S̄1,S̄2
s.t. (456)

1

2
log2

(
2πe

(
1

2πe
22h(X1|S̄1,S̄2)

+
1

2πe
22h(X2|S̄1,S̄2)
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+
1

2πe
22h(N0|S̄1,S̄2)

))
(460)

(b)
= D(PY ‖QY ) + h(Y )

− min
S̄1,S̄2
s.t. (456)

1

2
log2

(
2πe

(
1

2πe
22h(X1|S̄1)

+
1

2πe
22h(X2|S̄2) + σ2

0

))
(461)

(c)

≤ D(PY ‖QY ) + h(Y )

− 1

2
log2

(
2πe
(

2−2C1 + 2−2C2 + σ2
0

))
(462)

=
1

2
log2

(
σ2
y

2−2C1 + 2−2C2 + σ2
0

)

+

(
2 + σ2

0

2σ2
y

− 1

2

)
· log2 e, (463)

where (a) follows from the conditional EPI and the fact that
given (S̄1, S̄2), the three random variables X1, X2, and N0 are
independent; (b) follows because X1 is independent of S̄2, X2

is independent of S̄1 and N0 is independent of both (S̄1, S̄2);
and (c) follows by (456). This concludes the proof.

APPENDIX I
PROOF OF COROLLARY 4

We evaluate the exponent in Corollary 2 for the fol-
lowing choice of Gaussian auxiliary random variables. Let
F1, F2, G1, G2 be independent zero-mean Gaussian random
variables of variances ξ2, ξ2, γ2, γ2 and independent of the
source variables (X1, X2, Y ). Then, define

S̄i := Xi +Gi, i ∈ {1, 2}, (464)

and

Si = (S̄i, Fi), i ∈ {1, 2}. (465)

We apply hybrid coding with channel inputs:

Wi = αXi + βGi + Fi, (466)

for some real numbers α and β such that

γ2 + α2 + β2 · ξ2 = P. (467)

We first investigate for which parameters α, β, γ, ξ, the pre-
sented choice of random variables satisfies the three constraints
in the corollary. Notice first that:

I(S1;V |S2)

=
1

2
log2

(
σ2 + 2P − γ2 + 2α2ρ− (α · (1 + ρ) + β · ξ2)2

1 + ξ2

)
− 1

2
log2

(
σ2 +

2(α− β)2 · (1 + ρ)ξ2

1 + ρ+ ξ2

)
, (468a)

I(S2;V |S1)

=
1

2
log2

(
σ2 + 2P + 2α2ρ− (α · (1 + ρ) + β · ξ2)2

1 + ξ2

)

− 1

2
log2

(
σ2 +

2(α− β)2 · (1 + ρ)ξ2

1 + ρ+ ξ2

)
, (468b)

and

I(S1, S2;V ) =
1

2
log2

(
σ2 + 2P + 2α2ρ

σ2 + 2(α−β)2·(1+ρ)ξ2

1+ρ+ξ2

)
. (468c)

Moreover,

I(S̄1;X1|S̄2) =
1

2
log2

(
(1 + ξ2)2 − ρ2

(1 + ξ2)ξ2

)
, (469a)

I(S̄2;X2|S̄1) =
1

2
log2

(
(1 + ξ2)2 − ρ2

(1 + ξ2)ξ2

)
, (469b)

and

I(S̄1, S̄2;X1, X2) =
1

2
log2

(
(1 + ξ2)2 − ρ2

ξ4

)
. (469c)

Combining (468) and (469), shows that the presented choice
of auxiliaries satisfies the three constraints (113a)–(113c) in
Corollary 2, whenever the two conditions (138) are satisfied.

We now evaluate the error exponent (136) for the proposed
choice of auxiliaries. To this end, notice that

EPV
[
D(PY |V ‖QY )

]
+ I(S1, S2;Y |V )

= D(PY ‖QY ) + I(V ;Y ) + I(S1, S2;Y ) (470)
= D(PY ‖QY ) + I(S1, S2, V ;Y ). (471)

Moreover,

I(S1, S2, V ;Y )

=
1

2
log2

(
σ2

0 + 2 + 2ρ
)

− 1

2
log2

(
σ2

0 +
2ξ2(1 + ρ)σ2

2ξ2(α− β)2 · (1 + ρ) + σ2(1 + ρ+ ξ2)

)
(472)

and (by similar steps as in (454)):

D(PY ‖QY )

= −h(Y ) + EPY
[
log2

1

QY

]
(473)

=
1

2
log2

(
σ2
y

2 + 2ρ+ σ2
0

)
+

(
2 + 2ρ+ σ2

0

2σ2
y

− 1

2

)
· log2 e.

(474)

Combining (472) and (474) yields the error exponent in (136).
This concludes the proof.

APPENDIX J
PROOF OF THEOREM 6

Fix a blocklength n and encoding and decoding/testing
functions. Then, notice that by Witsenhausen’s max-
correlation argument [20], see also [30],

1

2
log2

(
1 +

2P (1 + ρ)

σ2

)
≥ 1

n
I(Wn

1 ,W
n
2 ;V n) (475)

(a)

≥ 1

n
I(Xn

1 , X
n
2 ;V n) (476)
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=
1

n
h(Xn

1 , X
n
2 )− 1

n
h(Xn

1 , X
n
2 |V n) (477)

(b)
=

1

n
h(Xn

1 , X
n
2 )− 1

n
h(Xn

1 +Xn
2 , X

n
1 −Xn

2 |V n) + 1

(478)

=
1

n
h(Xn

1 , X
n
2 )− 1

n
h(Xn

1 +Xn
2 |V n)

− 1

n
h(Xn

1 −Xn
2 |Xn

1 +Xn
2 , V

n) + 1 (479)

(c)

≥ 1

n
h(Xn

1 , X
n
2 )− 1

n
h(Xn

1 +Xn
2 |V n)

− 1

n
h(Xn

1 −Xn
2 ) + 1 (480)

=
1

2
log2

(
(2πe) · (2 + 2ρ)

)
− 1

n
h(Xn

1 +Xn
2 |V n),(481)

where (a) holds by the Markov chain (Xn
1 , X

n
2 ) →

(Wn
1 ,W

n
2 ) → V n; (b) holds because for each t the vector

(X1,t + X2,t, X1,t − X2,t) is obtained from (X1, X2) by
rotating it with the matrix

A =

(
1 1
1 −1

)
, (482)

and because for any bivariate vector X differential entropy
satisfies h(AX) = h(X) + log |A| = h(X) + 1; and (c) holds
because conditioning cannot increase differential entropy. In-
equality (481) is equivalent to:

2
2
nh(Xn1 +Xn2 |V n) ≥ 2πe · 2(1 + ρ)σ2

2P (1 + ρ) + σ2
. (483)

We proceed to upper bound the error exponent. Define
δ(ε) := H(ε)/n/(1− ε). Then,

θ ≤ 1

n(1− ε)
D(PV nY n|H=0‖PV nY n|H=1) + δ(ε) (484)

=
1

1− ε
·D(PY ‖QY )

+
1

n(1− ε)
EPY n

[
D(PV n|Y n,H=0‖PV n|Y n,H=1)

]
+ δ(ε)

(485)

=
1

1− ε
·D(PY ‖QY )

+
1

n(1− ε)
EPY n

[
D(PV n|Y n,H=0‖PV n|H=1)

]
+ δ(ε)

(486)

=
1

1− ε
·D(PY ‖QY ) +

1

n(1− ε)
I(V n;Y n) + δ(ε) (487)

=
1

1− ε
·D(PY ‖QY )

+
1

n(1− ε)
[
h(Y n)− h(Y n|V n)

]
+ δ(ε) (488)

=
1

1− ε
·
[
D(PY ‖QY ) + h(Y )

]
− 1

n(1− ε)
h(Y n|V n) + δ(ε) (489)

(d)
=

1

1− ε
·
[
D(PY ‖QY ) + h(Y )

]
− 1

n(1− ε)
h(Xn

1 +Xn
2 +Nn

0 |V n) + δ(ε) (490)

(e)

≤ 1

1− ε
·
[
D(PY ‖QY ) + h(Y )

]
− 1

2(1− ε)
log2

(
2πe

(
1

2πe
2

2
nh(Xn1 +Xn2 |V n) + σ2

0

))
+δ(ε) (491)

(f)

≤ 1

1− ε
· [D(PY ‖QY ) + h(Y )]

− 1

2(1− ε)
log2

(
2πe

(
2(1 + ρ)σ2

2P (1 + ρ) + σ2
+ σ2

0

))
+ δ(ε)

(492)

(g)
=

1

2(1− ε)
· log2

 σ2
y

2(1+ρ)σ2

2P (1+ρ)+σ2 + σ2
0


+

1

2(1− ε)
·
(

2 + 2ρ+ σ2
0

σ2
y

− 1

)
· log2 e+ δ(ε), (493)

where (d) follows from the definition of Y n in (133); (e)
follows from the conditional EPI and noting that for given V n,
the two random variables Nn

0 and Xn
1 +Xn

2 are independent;
(f) follows from (483); (g) follows from (474). The proof is
concluded by letting ε→ 0.
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