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The primordial scalar power spectrum is well constrained by the cosmological data on large scales,
primarily from the observations of the anisotropies in the cosmic microwave background. Over the last few
years, it has been recognized that a sharp rise in power on small scales will lead to the enhanced formation
of primordial black holes (PBHs) and also generate secondary gravitational waves (GWs) of higher and,
possibly, detectable amplitudes. It is well understood that scalar power spectra with COBE normalized
amplitude on the cosmic microwave background scales and enhanced amplitudes on smaller scales can be
generated due to deviations from slow roll in single, canonical scalar field models of inflation. In fact, an
epoch of so-called ultraslow roll inflation can lead to the desired amplification. We find that scenarios that
lead to ultraslow roll can be broadly classified into two types, one wherein there is a brief departure from
inflation (a scenario referred to as punctuated inflation) and another wherein such a departure does not
arise. In this work, we consider a set of single field inflationary models involving the canonical scalar field
that lead to ultraslow roll and punctuated inflation and examine the formation of PBHs as well as the
generation of secondary GWs in these models. Apart from considering specific models, we reconstruct
potentials from certain functional choices of the first slow roll parameter leading to ultraslow roll and
punctuated inflation and investigate their observational signatures. In addition to the secondary tensor
power spectrum, we calculate the secondary tensor bispectrum in the equilateral limit in these scenarios.
Moreover, we calculate the inflationary scalar bispectrum that arises in all the cases and discuss the imprints
of the scalar non-Gaussianities on the extent of PBHs formed and the amplitude of the secondary GWs
generated. We conclude with a discussion on the wider implications of our results.

DOI: 10.1103/PhysRevD.103.083510

I. INTRODUCTION

With the recent observations of gravitational waves
(GWs) from merging binary black holes involving a few to
tens of solar masses [1–12], there has been a considerable
interest in examining whether such black holes could have
a primordial origin [13–15]. The most popular mechanism
to generate primordial black holes (PBHs) is the infla-
tionary scenario (for earlier discussions, see, for example,
Refs. [16,17]; also see the recent reviews [18–21]). PBHs

are formed when the curvature perturbations generated
during inflation reenter the Hubble radius during the
radiation and matter dominated epochs. However, most
inflationary models permit only slow roll inflation and, in
such cases, the extent of PBHs produced proves to be
considerably smaller than required for any astrophysical
implications (see, for example, Ref. [22]). Recall that, on
large scales, the primordial scalar power spectrum is
strongly constrained by the increasingly precise observa-
tions of the anisotropies in the cosmic microwave back-
ground (CMB) (for recent constraints from Planck, see
Refs. [23,24]). In order to lead to a significant amount of
PBHs, the scalar power spectrum on small scales should
be considerably enhanced from the COBE normalized
values over the CMB scales (for an early discussion in this
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context, see, for instance, Ref. [22]). In inflation, this is
possible only when there are strong departures from slow
roll. It boils down to identifying inflationary potentials
that permit slow roll initially and then violating it for a
certain period of time, before restoring it again until close
to the termination of inflation.
In models of inflation driven by a single, canonical scalar

field, the so-called ultraslow roll scenario has turned out to
be the most popular mechanism in the literature to enhance
scalar power on small scales. This scenario involves a period
during inflation wherein the first slow roll parameter turns
very small (for the initial discussions, see Refs. [25–27]; in
this context, also see, for instance, Refs. [28,29]). In fact,
one finds that the scenario can be further divided into two
types, those which admit a brief period of departure from
inflation and another wherein no such departure arises. The
scenario wherein inflation is interrupted briefly is referred to
as punctuated inflation (for the original discussions, see
Refs. [30–32]; for later and recent efforts, see Refs. [33–36];
for a discussion in the context of PBHs, see Refs. [28,37]).
Interestingly, in such scenarios, the interruption of infla-
tion is inevitably followed by an epoch of ultraslow roll that
aids in boosting the power on small scales. While, in the
case of punctuated inflation, all the slow roll parameters
(including the first) turn large briefly, in ultraslow roll
inflation, the first slow parameter remains small until the
very end of inflation and slow roll is said to be violated due
to the large values achieved by the second and higher slow
roll parameters.
Often, the above-mentioned scenarios are achieved

with the aid of potentials which contain a point of inflection
[25–27,29,34,35]. The inflection point seems to play a
crucial role in these scenarios in inducing a period of
ultraslow roll after the short epoch of deviation from slow
roll. The two stages of slow roll and ultraslow roll lead to
either a step or a bumplike feature in the resulting infla-
tionary scalar power spectrum, depending on the details of
the intermediate departure from slow roll. The lower level of
the step is associated with the large scale modes that leave
the Hubble radius during the first epoch of slow roll and the
power is enhanced on small scales corresponding to modes
that leave the Hubble radius during the later epoch of
ultraslow roll. We should mention here that the punctuated
inflationary scenario has been considered to explain the
lower power observed at the small multipoles in the CMB
data. If one chooses the drop in power to occur at scales
roughly corresponding to the Hubble radius today, one finds
that the resulting power spectrum can improve the fit to the
CMB data to a certain extent (for an earlier analysis, see
Ref. [34]; for a recent discussion, see Ref. [36]).
We mentioned above that both ultraslow roll inflation

and punctuated inflation can lead to a sharp rise in power
on small scales. Evidently, if one chooses the rise to occur
at suitable scales, then one can utilize these power spectra
to lead to enhanced formation of PBHs. As has been

established, such an enhanced amplitude for the scalar
power spectrum can induce secondary GWs when these
modes reenter the Hubble radius at later times during the
radiation dominated epoch (for the original discussions,
see, for example, Refs. [38–41]; for recent discussions in
this context, see Refs. [42–44]). These secondary GWs
with boosted amplitudes can, in principle, be detected by
current and forthcoming observatories such as LIGO/Virgo
[45], pulsar timing arrays (PTA) [46–48], the laser inter-
ferometer space antenna (LISA) [49,50], the big bang
observer (BBO) [51–53], the deci-hertz interferometer
gravitational wave observatory (DECIGO) [54,55], and
the Einstein telescope (ET) [56,57]. Moreover, the devia-
tions from slow roll inflation, even as they boost the scalar
power spectrum on small scales, also lead to larger levels of
scalar non-Gaussianities on these scales (in this context,
see, for example, Refs. [58–60]). These non-Gaussianities
can, in principle, further increase the extent of PBH
formation (for early discussions, see, for example,
Refs. [22,61,62]; for recent discussions, see Refs. [63–
70]) as well as the strength of the secondary GWs (see
Refs. [71–73]; for a very recent discussion, also see
Ref. [74]). In this work, we examine the enhanced
formation of PBHs and the generation of secondary
GWs in ultraslow roll and punctuated inflation. We also
numerically evaluate the inflationary scalar bispectrum
generated on small scales in these scenarios and utilize
the results to discuss the corresponding imprints on the
extent of PBHs formed and the amplitude of secondary
GWs. In addition to considering specific potentials that
lead to the scenarios of our interest, we choose functional
forms for the first slow roll parameter leading to ultraslow
roll and punctuated inflation, reverse engineer potentials
and examine the observational implications (for other
efforts in these directions, see, for instance,
Refs. [22,75–77]). Interestingly, such an exercise also
confirms the understanding that, in models of inflation
involving a single, canonical scalar field, a point of
inflection in the potential seems essential to lead to ultra-
slow roll or punctuated inflation.
This paper is organized as follows. In the following

section, we shall introduce the different models of our
interest which lead to ultraslow roll and punctuated
inflation. In Sec. III, we shall discuss the power spectra
that arise in these models and illustrate how the intrinsic
entropy perturbation associated with the scalar field proves
to be responsible for enhancing the amplitude of the
curvature perturbations. In this section, we shall also
highlight some of the challenges that one encounters in
constructing viable models of ultraslow roll and punctuated
inflation. In Sec. IV, we shall consider specific forms for the
first slow roll parameter leading to ultraslow roll and
punctuated inflation, and reverse engineer the potentials
that lead to such scenarios. We shall also discuss the
power spectra that arise in these cases. In Secs. V and VI,
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we shall discuss extent of PBHs formed and calculate the
dimensionless parameters characterizing the power as well
as bispectra of secondary GWs generated in the models and
scenarios of interest. We shall also compare our results with
the constraints from observations. In Sec. VII, we shall
calculate the dimensionless non-Gaussianity parameter fNL
associated with the scalar bispectrum in all the different
cases. We shall highlight some of the properties of the non-
Gaussianity parameter fNL and then go on to discuss the
imprints of the scalar non-Gaussianities on the formation of
PBHs and the generation of secondary GWs. In Sec. VIII,
we shall conclude with a summary of the main results. We
shall relegate some of the related discussions to six
Appendixes.
A few remarks on our conventions and notations are in

order at this stage of our discussion. We shall work with
natural units such that ℏ ¼ c ¼ 1 and set the reduced
Planck mass to be MPl ¼ ð8πGÞ−1=2. We shall adopt the
signature of the metric to be ð−;þ;þ;þÞ. Note that Latin
indices shall represent the spatial coordinates, except
for k, which shall be reserved for denoting the wave
number. We shall assume the background to be the
spatially flat Friedmann-Lemaître-Robertson-Walker line
element described by the scale factor a and the Hubble
parameter H. Also, an overdot and an overprime shall
denote differentiation with respect to the cosmic time t
and the conformal time η, respectively. Moreover, N shall
denote the number of e-folds.

II. MODELS OF ULTRASLOW ROLL AND
PUNCTUATED INFLATION

In this section, we shall briefly describe the specific
models of interest that lead to ultraslow roll and punctuated
inflation. We should mention that all the five models that
we shall discuss in the following two subsections contain a
point of inflection. Recall that, the first slow roll parameter
is defined as ϵ1 ¼ − _H=H2. The higher order slow roll
parameters are defined in terms of the first slow roll
parameter ϵ1 through the relations

ϵnþ1 ¼
d ln ϵn
dN

ð1Þ

for n ≥ 1. As it is the first three slow roll parameters, viz.
ϵ1, ϵ2, and ϵ3, that determine the amplitude and shape of the
power spectrum as well as the bispectrum, we shall
illustrate the behavior of these slow roll parameters in
the models of interest.

A. Potentials leading to ultraslow roll inflation

We shall consider two specific models that permit
ultraslow roll inflation. The first potential we shall consider,
which leads to a period of ultraslow roll inflation, is often
written in the following form (see, for instance, Ref. [25]):

VðϕÞ ¼ V0

6x2 − 4αx3 þ 3x4

ð1þ βx2Þ2 ; ð2Þ

where x ¼ ϕ=v, with v being a constant rescaling factor.
We shall work with the following choices of the parameters
involved: V0=M4

Pl ¼ 4 × 10−10, v=MPl ¼
ffiffiffiffiffiffiffiffiffiffiffi
0.108

p
, α ¼ 1,

and β ¼ 1.4349. For these choices of parameters, the
inflection point, say, ϕ0, is located at 0.39MPl. We find
that, if we choose the initial value of the field to be
ϕi ¼ 3.614MPl, then inflation lasts for about 63 e-folds
in the model. For convenience, we shall hereafter refer to
the potential (2), along with the above-mentioned set of
parameters, as USR1.
The second potential that we shall consider is given

by [28]

VðϕÞ¼V0

�
tanh

�
ϕffiffiffi
6

p
MPl

�
þAsin

�
tanh ½ϕ=ð ffiffiffi

6
p

MPlÞ�
fϕ

��2

;

ð3Þ

and we shall work with the following values of the
parameters involved: V0=M4

Pl ¼ 2×10−10, A ¼ 0.130383,
and fϕ ¼ 0.129576. We find that, for these values of the
parameters, the inflection point occurs at ϕ0 ¼ 1.05MPl.
For the initial value of the field ϕi ¼ 6.1MPl, we obtain
about 66 e-folds of inflation in the model. We shall refer to
the potential (3) and the above set of parameters as USR2.
As we mentioned, the background dynamics driven by

these potentials can be well captured by the behavior of the
first three slow roll parameters ϵ1, ϵ2, and ϵ3. We have
plotted the evolution of these quantities as a function of
e-folds N in Fig. 1. It is clear from the behavior of ϵ1 that
these models permit two different regimes of slow roll,
separated by a short phase of departure from slow roll. Note
that the value of ϵ1 during the second regime of slow roll is
a few orders of magnitude smaller than its value during the
initial regime, thereby leading to the nomenclature of
ultraslow roll inflation. We should point out that there is
no deviation from inflation in these models, as the first slow
roll parameter always remains smaller than unity until the
very end of inflation. The transition from slow roll to
ultraslow roll is rather rapid and this aspect is reflected by
the sharp rise and fall in the amplitude of the second and
third slow roll parameters within a short period. It should
also be highlighted that the second slow roll parameter ϵ2 is
large and negative (about −6 and −7 in USR1 and USR2)
during the ultraslow phase when the first slow roll
parameter ϵ1 is rapidly decreasing. The parameter ϵ2
changes sign when ϵ1 begins to rise as the field crosses
the point of inflection and rolls down towards the minimum
of the potential. But, ϵ2 continues to remain relatively large
(it is about 0.2 and 0.9 in the cases of USR1 and USR2)
even during this latter phase, when compared to the typical
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slow roll values encountered, say, at early times before the
transition to the epoch of ultraslow roll.
To gain a better understanding of the dynamics involved,

in Fig. 2, we have also plotted the evolution of the scalar
field in phase space for the case of USR2. Evidently,
trajectories from different initial conditions eventually
merge with the primary trajectory of interest. The transition
to the ultraslow roll regime corresponds to the sharp
upward turn in the phase space trajectory when the velocity
of the field decreases as it nears the point of inflection. It is
interesting to note that the solution obtained in the slow roll

approximation closely follows the primary trajectory even
during the ultraslow roll regime. The field crosses the point
of inflection, eventually emerging from the ultraslow
regime, and inflation ends as the field approaches the
minimum of the potential.

B. Potentials permitting punctuated inflation

As we have discussed, punctuated inflation corresponds
to a scenario wherein a short period of departure from
inflation is sandwiched between two epochs of slow roll.

FIG. 1. The behaviors of the first three slow roll parameters ϵ1 (on top), ϵ2 (in the middle), and ϵ3 (at the bottom) have been plotted in
the models of interest which lead to ultraslow roll and punctuated inflation. We have plotted the behaviors for all the five models we have
discussed, viz. USR1 and USR2 (as solid and dashed curves, on the left) as well as PI1, PI2, and PI3 (as solid, dashed, and dotted curves,
on the right). Note that all the models consist of two distinct regimes of slow roll and ultraslow roll inflation, while the punctuated
inflationary models also contain a short period of departure from inflation.

FIG. 2. The dynamics of the scalar field in the phase space ϕ − ϕN , where ϕN ¼ dϕ=dN, has been illustrated for the models USR2 (on
the left) and PI3 (on the right). Apart from the trajectory for the specific initial conditions we shall be working with (plotted in red), we
have also plotted the evolution for a few other initial conditions (as solid curves in different colors). Moreover, in the case of the primary
trajectory, we have indicated the lapse in time every three e-folds (as black dots on the red curves). Further, we have highlighted the
evolution arrived at using the standard slow roll approximation (as dotted blue curves). Note that the vertical lines (in dashed black)
identify the point of inflection.
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With the help of specific examples, we shall illustrate that
the period of departure from inflation is inevitably followed
by an epoch of ultraslow roll inflation.
A simple model that has been examined in the early

literature which permits interrupted inflation is described
by the potential (see Ref. [30]; also see Refs. [31,32])

VðϕÞ ¼ V0ð1þ Bϕ4Þ: ð4Þ

It should be evident that the inflection point for this model
is located at ϕ ¼ 0. For B=M4

Pl ¼ 0.5520, one finds that the
model leads to two epochs of inflation separated by a brief
interruption of inflation. In fact, around the interruption, the
first slow roll parameter rises above unity and quickly falls
to very small values, resulting in a period of ultraslow roll.
It is easy to argue that such a behavior arises due to the
constant term V0 in the potential [30]. But the presence of
the constant term simultaneously leads to an important
drawback of the model. Once inflation is restored after the
interruption, it is found that the eventual slow roll regime
lasts forever. There is no conventional termination of
inflation as the constant term V0 sustains slow roll
evolution even when the field has reached the bottom of
the potential. So, one is either forced to terminate inflation
by hand or invoke an additional source to end inflation.
Despite these drawbacks, we shall nevertheless briefly
discuss the model due to its simplicity. We shall work
with the above-mentioned value for the parameter B and
choose V0=M4

Pl ¼ 8 × 10−13. We shall set the initial value
of the field to be ϕi ¼ 17MPl, and we shall assume that
inflation ends after 70 e-folds. We shall hereafter refer to
this model as PI1.
The second potential that we shall consider can be

expressed as (see, for instance, Refs. [34,35,78])

VðϕÞ ¼ m2

2
ϕ2 −

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λðn − 1Þp

m
n

�
ϕn þ λ

4
ϕ2ðn−1Þ; ð5Þ

where n is an integer. These potentials contain a point of
inflection at

ϕ0 ¼
�

2m2

λðn − 1Þ
�
1=½2ðn−2Þ�

: ð6Þ

We shall focus on the case n ¼ 3, wherein the potential
above reduces to

VðϕÞ ¼ m2

2
ϕ2 −

2m2

3ϕ0

ϕ3 þ m2

4ϕ2
0

ϕ4; ð7Þ

and we shall work with the following values of the
parameters: m=MPl ¼ 1.8 × 10−6 and ϕ0=MPl ¼ 1.9777.
As we shall soon discuss, these choice of parameters indeed
admit punctuated inflation. However, one finds, as in the
case of PI1, the above potential (for the parameters

mentioned) does not naturally result in an end of inflation.
Despite this limitation, we shall discuss the model, since, it
should be clear that, modulo the denominator, the potential
describing USR1 [cf. Eq. (2)] is essentially the same as the
potential (5). We shall choose the initial value of the field to
be ϕi ¼ 20MPl, and we shall again assume that inflation
ends after 70 e-folds. We shall refer to this model as PI2.
Another model we shall consider that permits punctuated

inflation is motivated by supergravity. It is described by the
potential (see Ref. [28]; for a very recent discussion, also
see Ref. [79])

VðϕÞ ¼ V0

�
c0 þ c1 tanh

�
ϕffiffiffiffiffiffi
6α

p
�
þ c2tanh2

�
ϕffiffiffiffiffiffi
6α

p
�

þ c3tanh3
�

ϕffiffiffiffiffiffi
6α

p
��

2

; ð8Þ

and we shall work with the following values for the
parameters involved: V0=M4

Pl ¼ 2.1×10−10, c0¼ 0.16401,
c1 ¼ 0.3, c2 ¼ −1.426, c3 ¼ 2.20313, and α ¼ 1. This
model too contains a point of inflection and, for the above
values for the parameters, the inflection point is located at
ϕ0 ¼ 0.53MPl. If we choose the initial value of the field
to be ϕi ¼ 7.4MPl, we find that inflation ends after about
68 e-folds. We shall refer to this model as PI3. For the
above choice of the parameters, apart from a plateau for
large field values, the potential admits a second plateau at
smaller values of the field. As we shall see soon, it is these
aspects of the potential that permits punctuated inflation
and thereby aids in boosting the scalar power spectrum at
small scales.
As in the case of the ultraslow roll models we had

discussed in the previous subsection, we have plotted the
first three slow roll parameters ϵ1, ϵ2, and ϵ3 for the models
PI1, PI2, and PI3 in Fig. 1. It is easy to see from the plots
that the behavior of the three slow roll parameters are very
similar across the models and they differ only in their
location of the departures from slow roll. Evidently, after an
initial slow roll regime, a brief departure from inflation
occurs with ϵ1 growing above unity. The interruption of
inflation is immediately followed by a period of ultraslow
roll with ϵ1 falling to a value that is considerably smaller
than its value during the initial slow roll regime. Moreover,
other than PI3, the models have no definite end of inflation
since ϵ1 does not rise to unity once the ultraslow roll regime
has begun. Further, note that, when the epoch of ultraslow
roll sets in, as in USR1 and USR2, the second slow roll
parameter ϵ2 turns large and negative in all the cases of PI1,
PI2, and PI3. The parameter ϵ2 eventually approaches zero
in the cases of PI1 and PI2, since the first slow roll
parameter never rises from its very low values in these
models. However, in PI3, since ϵ1 rises ultimately leading
to the end of inflation, the second slow roll parameter ϵ2
eventually turns positive (from nearly −7) and attains a
large value (around 1.2), in very much the same manner it

PRIMORDIAL BLACK HOLES AND SECONDARY … PHYS. REV. D 103, 083510 (2021)

083510-5



had in USR2. As with USR2, we have plotted the behavior
of the field in phase space for the case of PI3 in Fig. 2. It
should be clear from the figure that the velocity of the field
reaches larger values in the case of PI3 than in the case of
USR2 prior to entering the ultraslow roll regime. Evidently,
it is this behavior that is responsible for the brief inter-
ruption of inflation.

III. EVOLUTION OF THE CURVATURE
PERTURBATION AND POWER SPECTRA

In this section, we shall discuss the scalar and tensor
power spectra that arise in the models permitting ultraslow
roll and punctuated inflation we had introduced in the
previous section. However, before we go on to discuss
the power spectra, we shall illustrate the behavior of the
curvature perturbations during the period of deviation from
slow roll. Specifically, we shall highlight the role played by
the intrinsic entropy perturbations in the enhancement of
the amplitude of the curvature perturbations over wave
numbers that leave the Hubble radius either immediately
prior to or during the departure from slow roll.

A. Scalar and tensor modes and power spectra

Let R and γij denote the curvature and the tensor
perturbations at the first order, respectively. Also, let Rk

and γkij denote the Fourier modes associated with these
perturbations. Recall that the modes Rk and γkij satisfy the
differential equations

R00
k þ 2

z0

z
R0

k þ k2Rk ¼ 0; ð9aÞ

γkij
00 þ 2

a0

a
γkij

0 þ k2γkij ¼ 0; ð9bÞ

where z ¼ ffiffiffiffiffiffiffi
2ϵ1

p
MPla, with ϵ1 being the first slow roll

parameter. Moreover, note that, if R̂k and γ̂kij denote the
operators associated with the scalar and tensor modes on
quantization, the scalar and tensor power spectra PSðkÞ and
PTðkÞ are defined in terms of these operators through the
relations

hR̂kðηeÞR̂k0 ðηeÞi ¼
2π2

k3
PSðkÞδð3Þðkþ k0Þ; ð10aÞ

hγ̂kijðηeÞγ̂ijk0 ðηeÞi ¼
2π2

k3
PTðkÞδð3Þðkþ k0Þ; ð10bÞ

where ηe is the conformal time at late times, close to the end
of inflation. We should mention that, in the above expres-
sions, the expectation values on the left-hand side are to be
evaluated in the specified initial quantum state, which we
shall assume to be the Bunch-Davies vacuum. Let fk and gk
denote the positive frequency modes (associated with the

Bunch-Davies vacuum) in terms of which the operators R̂k

and γ̂kij are decomposed. Then, in terms of the quantities fk
and gk, the power spectra PSðkÞ and PTðkÞ can be
expressed as

PSðkÞ ¼
k3

2π2
jfkðηeÞj2; ð11aÞ

PTðkÞ ¼ 8
k3

2π2
jgkðηeÞj2: ð11bÞ

B. Role of the intrinsic entropy perturbation

Often the evolution of the curvature perturbations in
nontrivial scenarios involving departures from slow roll
inflation are examined in terms of the behavior of the
quantity z (see, for instance, Refs. [28,80,81]). We find that
it proves to be instructive to understand this aspect from the
behavior of the intrinsic entropy perturbations [31,33]. It is
well known that, in contrast to perfect fluids, scalar fields,
in general, possess nonvanishing nonadiabatic pressure
perturbation δpNA or, equivalently, the intrinsic entropy
perturbation S, which are related through the expression (in
this context, see, for example, Refs. [82,83])

δpNA ¼ p0

H
S; ð12Þ

where p denotes the pressure associated with the back-
ground andH ¼ aH is the conformal Hubble parameter. In
the case of inflation driven by a single, canonical scalar
field, one can show that the intrinsic entropy perturbation
Sk associated with a given mode of the field can be
expressed in terms of the corresponding curvature pertur-
bation, say, Rk, as follows [31,33]:

R0
k ¼ −

�
2a2p0

M2
PlðH0 −H2Þ

��
1

1 − c2A

�
Sk; ð13Þ

where cA ¼
ffiffiffiffiffiffiffiffiffiffiffi
p0=ρ0

p
is adiabatic speed of the scalar

perturbations, with ρ being the background energy density.
It is easy to show using the equation of motion (9a)
describing the curvature perturbation that, in the super
Hubble limit, the intrinsic entropy perturbation Sk decays
as e−2N . However, it is found that, during deviations from
slow roll, for modes which are either about to leave or have
just left the Hubble radius, the amplitude of the intrinsic
entropy perturbation briefly increases, sourcing the curva-
ture perturbation [32,33]. This, in turn, alters the amplitude
of the curvature perturbation for modes which cross the
Hubble radius just before or during the departure from
slow roll.
To demonstrate these effects, in Fig. 3, we have plotted

the evolution of the curvature and the intrinsic entropy
perturbations in the inflationary models USR2 and PI3. In
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order to highlight the differences in the behavior of the
modes, we have plotted the evolution of the amplitudes for
three modes which leave the Hubble radius just prior to the
start of the departure from slow roll inflation, immediately
after start of the period of transition, and during the middle
of the transition. We should point out that we have plotted
the imaginary parts of Rk and Sk since they dominate
at late times. Moreover, they allow us to highlight the

oscillations in the sub-Hubble regime. The time when these
oscillations cease is an indication that the modes have
crossed the Hubble radius. Evidently, there is a sharp rise in
the amplitude of the intrinsic entropy perturbation for all
the modes during the departure from slow roll inflation.
We should add here that the corresponding real parts ofRk
and Sk behave in a roughly similar manner. It is the sharp
rise in Sk that is responsible for either an enhancement or a

FIG. 3. The evolution of the amplitudes of the imaginary parts of the curvature perturbation Rk (on the left) and the corresponding
intrinsic entropy perturbation Sk (on the right) have been plotted for the three wave numbers k ¼ 1010, 1011 and 1014 Mpc−1 (in light,
lime, and dark green, respectively) in the two models USR2 (on top) and PI3 (at the bottom) as a function of e-folds. We have also
included the behavior of the first two slow roll parameters ϵ1 and jϵ2j (in red and blue, respectively, on the left) in these models to
indicate the regime (demarcated by the cyan band) over which the transition from slow roll to ultraslow roll occurs. The first mode with
the smallest wave number is already in the super-Hubble regime when the departure from slow roll sets in, and the amplitude of the
corresponding curvature perturbation is hardly affected by the transition. The second mode is barely in the super-Hubble regime when
the transition from slow roll begins. The amplitude of its curvature perturbation is slightly attenuated as it emerges from the departure
from slow roll. However, the amplitude of the curvature perturbation associated with the third mode, which leaves the Hubble radius
right in the middle of the transition, exhibits a considerable enhancement due to the transition. These changes in the curvature
perturbations can be attributed to the rapid growth in the corresponding entropy perturbations (plotted on the right) during the transition.
We find that Sk grows as either e3N or e4N (indicated as dashed lines) during the transition. We also find that the entropy perturbations
eventually die down as e−2N in the super-Hubble limit (indicated by dotted lines) as expected. It is these behaviors that lead to features in
the inflationary scalar power spectra.
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suppression in the asymptotic (i.e., late time) amplitude of
the curvature perturbation, thereby leading to features in the
power spectrum (for related discussions in this context, also
see, for instance, Refs. [28,84]). In contrast, we find that
there is relatively little effect of the deviation from slow roll
on the evolution of the amplitude of the tensor perturba-
tions. Due to this reason, the tensor power spectrum
exhibits far less sharper features than the scalar power
spectrum.

C. Scalar and tensor power spectra

We shall now turn to the scalar and tensor power spectra
that arise in the ultraslow roll and punctuated inflationary
scenarios we had discussed in the last section. Barring the
brief rise of ϵ1 above unity in the models of punctuated
inflation and the location of the deviations from slow roll
inflation, we had seen that the behavior of the first three
slow roll parameters were very similar in the different
models of our interest (cf. Fig. 1). We can expect these
features to be reflected in the corresponding power spectra.
In Fig. 4, we have plotted the power spectra arising in all
the five models, viz. USR1, USR2, PI1, PI2, and PI3.
We shall first point out the features in the scalar power

spectra that are common to all the models. All the models
exhibit a rise in scalar power on small scales corresponding
to modes that leave the Hubble radius during the second

stage of slow roll. Moreover, the location of the rise in
power is determined by the time when the deviation from
slow roll occurs. This is due to the fact that, as we discussed
in the previous subsection, it is the amplitude of the modes
which exit the Hubble radius during the phase of departure
from slow roll that are enhanced compared to the ampli-
tudes of modes which leave during the initial phase of slow
roll. Further, the modes that exit the Hubble radius during
the epoch of ultraslow roll carry the imprints of the
extremely small values of the first slow roll parameter
and hence exhibit higher amplitudes.
Let us now consider the power spectra in the models

USR1 and USR2. The location of features in the spectra is
determined by the finely tuned values of parameters of
the potential and the time when the modes leave the
Hubble radius. Note that both USR1 and USR2 have a
definite end of inflation. Let us say that the pivot scale
k� ¼ 0.05 Mpc−1 leaves the Hubble radius N� number of
e-folds prior to the end of inflation. For USR1 and USR2,
to arrive at the power spectra plotted in Fig. 4, we have
assumed that N� ¼ ð50.0; 56.2Þ. The occurrence of a peak
in the scalar power spectra at small scales in these models
can be easily understood if we recall the behavior of the
slow roll parameters in these cases. Note that, in slow roll
inflation, the scalar spectral index nS is given in terms of the
first two slow roll parameters as nS ¼ 1–2ϵ1 − ϵ2. Though
the regime of our interest does not strictly correspond to

FIG. 4. The scalar (in red) and tensor power spectra (in blue) have been plotted in the various ultraslow roll and punctuated inflationary
models of our interest—USR1 and USR2 (as solid and dashed curves, on top) and PI1, PI2, and PI3 (as solid, dashed, and dotted curves,
at the bottom)—over a wide range of scales. Note that the enhancement of power on small scales is more in the case of USR2 than
USR1. Moreover, in the case of the punctuated inflationary models, the scalar power in PI1 and PI2 do not eventually come down at very
small scales due to the fact that inflation does not terminate in these models. We should also point out that, in contrast to the scalar power
spectra, the tensor power spectra have lower power at small scales when compared to the large scales.
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slow roll dynamics, we can utilize this relation to roughly
understand the rise and fall of the scalar power spectra. We
had earlier mentioned that, as ϵ1 decreases rapidly during
the epoch of ultraslow roll and eventually rises from its very
small values, ϵ2 changes from relatively large negative
values to positive values in USR1 and USR2. Since ϵ1 is
very small during the ultraslow roll regime, for modes
which leave around this epoch, the spectral index nS
mimics the behavior of −ϵ2, changing from large positive
values (corresponding to an initially blue spectrum) to
negative values (corresponding to a red spectrum on
smaller scales), leading to a peak in the power spectra.
Clearly, we also require that the power spectra at large
scales are consistent with the current constraints on the
scalar spectral index nS and the tensor-to-scalar ratio r from
the CMB data [23,24]. We find that the models USR1 and
USR2 lead to ðnS; rÞ ¼ ð0.945; 0.015Þ and (0.946, 0.007)
at the pivot scale. We should add a word of caution in this
regard. The above values for nS and r lie barely within the
2-σ limits on the respective parameters according to the
latest constraints from Planck [24]. Importantly, if one were
to even slightly change the values of the model parameters,
the features in the power spectra get considerably altered. In
other words, there is a severe fine tuning involved in
arriving at the desired power spectra, an aspect which is
well known and has been highlighted earlier (in this regard,
see, for instance, Ref. [27]).
Let us now turn to the power spectra arising in the

punctuated inflationary models. Once again, we can under-
stand the behavior of the spectra at small scales in these
cases from the relation between the scalar spectral index
and the slow roll parameters. Recall that, while PI3 has a
finite duration of inflation, there exists the problem of
termination of inflation in the models PI1 and PI2. Due to
this reason, as should be evident from the power spectra
plotted in Fig. 4, the power never comes down in PI1 and
PI2 because the eventual slow roll regime lasts for a long
duration. However, since the evolution of the slow roll
parameters in PI3 mimic their behavior in USR1 and
USR2, the resulting scalar power spectrum exhibits a peak
for the same reason that we discussed above, viz. the
relatively large values and the change in the sign of the
second slow roll parameter ϵ2. For the three models of PI1,
PI2, and PI3, we have set N� ¼ ð60.0; 60.0; 54.5Þ to arrive
at their respective spectra presented in Fig. 4. We find that,
for the choice of parameters that lead to COBE normalized
scalar amplitude on large scales, the scalar spectral index
and the tensor-to-scalar ratio at the pivot scale prove to be
ðnS; rÞ ¼ ð0.885; 0.580Þ, (0.909, 0.461), and (0.944, 0.009)
in PI1, PI2, and PI3, respectively. Evidently, PI1 and PI2
are ruled out due to the large tensor-to-scalar ratio (beyond
the upper limits from Planck) generated on the CMB scales
in these models. In contrast, PI3 leads to a rather small
tensor-to-scalar ratio that is consistent with the bounds
from the Planck data and also comes close to satisfying the

constraints on nS [23,24]. As far as the extent of
boosting the power on small scales and the tunability of
the model parameters are concerned, PI3 seems to require
the same extent of fine-tuning as USR1 and USR2. In
contrast to PI3, we find that it is easier to achieve sustained
amplification of power over a wider range of scales in PI1
and PI2. But, obviously, it is achieved at the high cost that
inflation does not end within the desired duration, essen-
tially making them unviable. Nevertheless, we believe
that there are lessons to be learnt from the simpler models
PI1 and PI2 and we will exploit the main features of these
models to reverse engineer desired potentials in the
following section.
Lastly, let us make a few remarks on the tensor power

spectra that we obtain in the various models. Note that the
tensor power spectra also exhibit a steplike feature in all the
models, but the step is in the opposite direction as
compared to the scalars, with the amplitude of tensors at
small scales being a few orders of magnitude smaller than
their amplitude over large scales [34,35,85]. This can be
attributed to the fact that after the period of deviation from
slow roll, the inflaton evolves over smaller values of the
field and hence smaller values of the potential.

D. Challenges in constructing viable models

With the experience of examining a handful of infla-
tionary models, let us briefly summarize the challenges in
constructing viable and well-motivated models that lead to
enhanced power on small scales.
To begin with, we need to ensure that the scalar spectral

index nS and the tensor-to-scalar ratio r are consistent with
the cosmological data over the CMB scales. Moreover, in
order to boost the extent of PBHs formed and the amplitude
of the secondary GWs, we require enhanced power on
small scales. Simultaneously, we need to make sure that
inflation ends in a reasonable number of (say, about 65)
e-folds. It is found that, as one attempts to resolve one
issue, say, reduce the level of fine tuning or permit room to
shift the location of the features in the scalar power
spectrum, another difficulty, such as the prolonged duration
of inflation, creeps in.
We should point out here that a given potential that

admits ultraslow roll inflation for a set of values of the
parameters involved may permit punctuated inflation for
another set (in this context, see Appendix A). For that
reason, we should stress that the potentials themselves
cannot always be classified as ultraslow roll or punctuated
inflationary models. Hence, the dichotomy of ultraslow roll
and punctuated inflationary scenarios that we have created
may be considered somewhat artificial. However, we find it
intriguing that whenever a potential admits restoration of
inflation after a brief interruption, it seems to naturally
result in a regime of ultraslow roll inflation. We believe that
this aspect ought to be exploited to construct well motivated
and viable canonical, single field inflationary models that
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also lead to enhanced PBH formation and generate sec-
ondary GWs of significant amplitudes.
With the eventual aim of overcoming these difficulties in

single, canonical scalar field models of inflation, we shall
now attempt to reconstruct potentials that possess the
desired features.

IV. REVERSE ENGINEERING POTENTIALS
ADMITTING ULTRASLOW ROLL AND

PUNCTUATED INFLATION

In this section, we shall assume specific time dependence
for the first slow roll parameter ϵ1 so that it leads to
ultraslow roll or punctuated inflation. With the functional
form of ϵ1ðNÞ at hand, we shall reconstruct the potentials
using the equations of motion for the background and
evaluate the resulting scalar and tensor power spectra that
arise in the different scenarios [75–77].

A. Choices of ϵ1ðNÞ
We shall consider the following two forms for ϵ1ðNÞ

which lead to ultraslow roll or punctuated inflation for
suitable choice of the parameters involved:

ϵI1ðNÞ ¼ ½ϵ1að1þ ϵ2aNÞ�
�
1 − tanh

�
N − N1

ΔN1

��

þ ϵ1b þ exp

�
N − N2

ΔN2

�
; ð14aÞ

ϵII1 ðNÞ ¼ ϵI1ðNÞ þ cosh−2
�
N − N1

ΔN1

�
: ð14bÞ

We find that considering a parametrization of the first
slow roll parameter rather than the quantity z or the scale
factor a proves to be much more convenient and easy to
model the scenarios of our interest (in this context, see
the recent efforts [86,87]). The approach we adopt also
allows us to easily ensure that the CMB constraints on
large scales are satisfied. The above forms of ϵ1ðNÞ are
supposed to represent the ultraslow roll and the punc-
tuated inflationary scenarios we had discussed earlier. For
convenience, we shall hereafter refer to the reconstructed
inflationary scenarios arising from the forms of ϵ1ðNÞ in
Eqs. (14a) and (14b) as RS1 and RS2, respectively. We
shall now highlight a few points concerning the above
constructions before proceeding to calculate the resulting
power spectra.
Consider RS1 described by ϵ1ðNÞ in Eq. (14a). Note that

the functional form contains seven parameters, viz. ϵ1a, ϵ1b,
ϵ2a, N1, N2, ΔN1, and ΔN2. For suitable choices of these
parameters, this form of ϵ1ðNÞ leads to a period of slow roll
followed by an epoch of ultraslow roll, before inflation
eventually ends, as encountered in the ultraslow models
USR1 and USR2 we had discussed in the last section.
While ϵ1a and ϵ1b determine the values of the first slow

roll parameter during slow roll and ultraslow roll, the
parameters N1 and N2 determine the duration of these two
phases. Note that the first term in the functional form (14a)
is expressed as a product of two parts. The first part
involving the parameter ϵ2a induces a small time depend-
ence during the early stages. Such a time dependence is
necessary to achieve slow roll inflation, which leads to
scalar and tensor power spectra that are consistent with the
CMB data. Recall that, in slow roll inflation, the scalar
spectral index and the tensor-to-scalar ratio are given by
nS ¼ 1–2ϵ1 − ϵ2 and r ¼ 16ϵ1, with the slow roll param-
eters evaluated at the timewhen the modes cross the Hubble
radius. For suitable choices of ϵ1a and ϵ2a, we find that
we can arrive at spectra that are consistent with the
constraints on nS and r from CMB, viz. nS ¼ 0.9649�
0.0042 and r < 0.056 at the pivot scale [23,24]. The second
part of the first term containing the hyperbolic tangent
function aids in the transition from the slow roll to the
ultraslow roll phase around the e-fold N1. We need to set
N1 so that all the large scale modes leave the Hubble radius
during the first slow roll phase.
The second term ϵ1b in Eq. (14a) essentially prevents the

first slow parameter ϵ1 from reducing to zero beyond N1.
Since ϵ1b defines the ultraslow roll phase of the model, we
shall choose the parameter to be much smaller than ϵ1a.
The last term involving the exponential factor has been
included to essentially ensure that ϵ1 rapidly rises at later
times, crossing unity at N2, resulting in the termination
of inflation. Lastly, the rapidity of the transitions from
slow roll to ultraslow roll and from ultraslow roll to the
end of inflation are determined by the parameters ΔN1 and
ΔN2, respectively. In summary, since ϵ1a and ϵ2a are
constrained by the CMB data on large scales, we have five
free parameters, viz. ϵ1b, N1, N2, ΔN1, and ΔN2, to
construct the features we desire in the scalar power spectra
over small scales.
Let us now turn to RS2 with ϵ1ðNÞ described by

Eq. (14b). In this case, evidently, the term involving the
hyperbolic cosine function has been added to the form of
ϵ1ðNÞ in RS1. This additional terms leads to a brief
interruption of inflation around the e-fold N1, as is
encountered in the punctuated inflationary models PI1,
PI2, and PI3 discussed earlier.
Both the constructions of ϵ1 above have been motivated

to simplify the study of models containing an epoch of
ultraslow roll with or without punctuation and thus pro-
ducing inflationary spectra with either extended or local-
ized features on small scales. The advantage of these
constructions is that the parameters are easy to tune, which
allows us to directly infer the corresponding effects on the
background dynamics and importantly on the power
spectra, unlike the specific inflationary models examined
earlier. Of course, this has been possible due to the fact the
reconstructions involve more parameters than the potentials
we have considered.
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B. Reconstructed potentials and the corresponding
scalar and tensor power spectra

Using the Friedmann equations and the equation of
motion governing the inflaton, it is straightforward to show
that the time evolution of the scalar field ϕðNÞ and the
Hubble parameter HðNÞ can be expressed in terms of the
slow roll parameter ϵ1ðNÞ as follows:

ϕðNÞ ¼ ϕi −MPl

Z
N

Ni

dN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵ1ðNÞ

p
; ð15aÞ

HðNÞ ¼ Hi exp

�
−
Z

N

Ni

dNϵ1ðNÞ
�
; ð15bÞ

where ϕi and Hi are the values of the scalar field and the
Hubble parameter at some initial e-fold Ni. We can use the
above relations to arrive at the required background
quantities given a functional form for ϵ1ðNÞ. These

background quantities can then be utilized to evaluate
the resulting scalar and tensor power spectra. It is useful to
note that the potential VðNÞ can be expressed in terms of
the Hubble parameter and the first slow roll parameter as

VðNÞ ¼ M2
PlH

2ðNÞ½3 − ϵ1ðNÞ�: ð16Þ

Having obtained ϕðNÞ and VðNÞ, clearly, we can construct
VðϕÞ parametrically.
In Fig. 5, we have plotted the two choices (14) for ϵ1ðNÞ

and the corresponding potentials for a small range of the
parameter ΔN1 that determines the duration of the tran-
sition from slow roll to ultraslow roll. The parameters
we have worked with in the case of the reconstructed
scenario RS1 are as follows: ϵ1a ¼ 10−4, ϵ2a ¼ 5 × 10−2,
ϵ1b ¼ 10−10, N1 ¼ 42, N2 ¼ 72, and ΔN2 ¼ 1.1. We have
varied the parameter ΔN1 over the range (0.3345, 0.7) to
obtain the bands of ϵ1 and the corresponding potential in

FIG. 5. We have plotted the functional forms of ϵ1ðNÞ (in blue, on the left) as well as the corresponding reconstructed potentials (in
blue, on the right) in the cases of RS1 (on top) and RS2 (at the bottom) for suitable values of the parameters involved. In fact, we have
plotted the behavior in RS1 and RS2 as bands corresponding to a small range of the parameterΔN1, which determines the duration of the
transition from slow roll to ultraslow roll. For comparison, we have also plotted the behavior of ϵ1 (in red, on the left) and illustrated the
potentials (in red, on the right) in the models USR2 (on top) and PI3 (at the bottom). We have chosen the parameters in the cases of RS1
and RS2 so that they closely resemble the behavior of ϵ1 in the models USR2 and PI3. Interestingly, we find that the reconstructed
potentials always contain a point of inflection. Note that, in the cases of RS1 and RS2, we have set V0 ¼ H2

i M
2
Pl, which corresponds to

V0 ¼ 5.625 × 10−9M4
Pl.
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the figure. Similarly, in the case of RS2, the parameters we
have chosen to work with are as follows: ϵ1a ¼ 8 × 10−5,
ϵ2a ¼ 6.25 × 10−2, ϵ1b ¼ 10−10, N1 ¼ 48, N2 ¼ 72, and
ΔN2 ¼ 0.8. The parameter ΔN1 has been varied over the
range (0.3847, 0.5) to arrive at the bands of ϵ1 and the
corresponding potential. We should note that the band
describing the potential is more pronounced in the case of
RS2 than in RS1. The choices for ϵ1a and ϵ2a have been
made so that the resulting power spectra are consistent with
the Planck constraints on the scalar spectral index nS and
the tensor-to-scalar ratio r at the pivot scale that we
mentioned earlier. For comparison, in the figure, we have
also included the behavior of the first slow parameter as
well as the form of the potential in the models USR2 and
PI3. It should be clear that, for suitable values of the
parameters, our functional forms for ϵ1ðNÞ closely mimic
the corresponding behavior in these models. Moreover,
from the parametric forms of VðϕÞ constructed numeri-
cally, we have been able to determine if the reconstructed
potentials in the cases of RS1 and RS2 contain a point of
inflection. At an accuracy of 0.1%, we find that the
reconstructed potentials indeed contain an inflection point.
With the background quantities at hand, it is straightfor-

ward to compute the power spectra by integrating the
differential equations (9) for the curvature and the tensor
perturbations. In Fig. 6, we have plotted the power spectra
that arise in the scenarios RS1 and RS2. We have also
compared the power spectra in these cases with the spectra
in USR2 and PI3. It is clear that, while the scalar power
spectra from the reconstructed potentials are indeed very
similar to the power spectra from USR2 and PI3, the
corresponding tensor power spectra exhibit some
differences. Since we shall be focusing on the observational
imprints of the scalar perturbations generated during
inflation, we shall ignore these differences for now. We
shall make a few clarifying remarks regarding this point in
the concluding section.
Earlier, we had emphasized the point that the models

USR2 and PI3 are highly fine-tuned and that it is difficult to
move the locations of the peaks in the scalar power spectra
substantially without either considerably affecting the
duration of inflation or the spectra over the CMB scales.
In contrast, because of the presence of the additional
parameters, the scenarios RS1 and RS2 are easier to tune
and, as a result, we find that we can shift the location of the
peak as well as broaden its width. In Fig. 6, apart from
the spectra in RS1 and RS2 which closely mimic the scalar
spectra that arise in USR2 and PI3, we have plotted the
power spectra for two other sets of parameters which lead
to peaks at different locations and also exhibit a broader
peak. These spectra have been achieved by choosing
different values for the parameter N1, while keeping the
other parameters fixed at the values mentioned earlier. To
arrive at the spectra with the broader peaks in Fig. 6, we
have set N1 ¼ 34 and 26 in the case of RS1 and N1 ¼ 40

and 32 in the case of RS2. We should mention that a smaller
choice of N1 leads to a peak at a smaller wave number.
Moreover, the bands associated with these two spectra
correspond to the variation of the parameter ΔN1 over the
domain we had mentioned before.
In the next two sections, we shall study the imprints of

the various power spectra on the formation of PBHs and the
generation of secondary GWs.

V. FORMATION OF PBHs

Let us begin by recalling a few essentials. Scales with
wave numbers greater than k ≃ 10−2 Mpc−1 renter the
Hubble radius during the radiation dominated epoch. When
these modes reenter the Hubble radius, the perturbations
in the matter density at the corresponding scales collapse to
form structures. We shall assume that the density contrast in
matter characterized by the quantity δ is a Gaussian random
variable described by the probability density

PðδÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
−

δ2

2σ2

�
; ð17Þ

where σ2 is the variance of the spatial density fluctuations.
Let us assume that perturbations with a density contrast

FIG. 6. The scalar (in solid blue) and tensor power spectra (in
dashed blue) resulting from the scenarios RS1 (on top) and RS2
(at the bottom) have been plotted over a wide range of wave
numbers. For comparison, we have also plotted the scalar (in
solid red) and tensor (in dashed red) power spectra that arise in
the cases of USR2 (on top) and in PI3 (at the bottom). In the cases
of RS1 and RS2 (plotted in blue), we have chosen the parameters
so that the peak in the scalar power spectra roughly coincides
with the peaks in the models of USR2 and PI3 (plotted in red),
respectively. In addition, we have plotted the spectra arising in
RS1 and RS2 for two other values of the parameter N1 to produce
peaks in the scalar power at smaller wave numbers (in green and
orange). Actually, we have plotted the spectra in RS1 and RS2 as
bands (in blue, green, and orange) corresponding to a small range
of the parameter ΔN1 [cf. Eqs. (14)].
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beyond a certain threshold, say, δc, are responsible for the
formation of PBHs. In such a case, the fraction, say, β, of the
density fluctuations that collapse to form PBHs is described
by the integral (in this context, see the reviews [18–21])

β ¼
Z

1

δc

dδPðδÞ ≃ 1

2

�
1 − erf

�
δcffiffiffiffiffiffiffi
2σ2

p
��

; ð18Þ

where erfðzÞ denotes the error function. Note that the lower
limit of the above integral is the threshold value of the density
contrast beyond which matter is expected to collapse to form
PBHs. We should clarify here that the value of δc is not
unique and it is expected to depend on the amplitude of the
perturbation at a given scale (see Refs. [16,88]; in this
context, also see the recent discussions [20,89–93]). The
choice of δc becomes important for the reason that the extent
of PBHs formed is exponentially sensitive to its value. In
order to calculate the extent of PBHs formed, we shall work
with the following values of δc: 1=3, 0.35, and 0.4.
During the radiation dominated epoch, the matter power

spectrum PδðkÞ and the inflationary scalar power spectrum
PSðkÞ are related through the expression

PδðkÞ ¼
16

81

�
k
aH

�
4

PSðkÞ: ð19Þ

The variance in the spatial density fluctuations σ2, which
determines the fraction β of PBHs formed [cf. Eq. (18)],
can be expressed as an integral over the matter power
spectrum PδðkÞ. In order to introduce a length scale, say, R,
the variance is smoothed over the scale with the aid of a
window function WðkRÞ. The variance σ2ðRÞ can then be
written as

σ2ðRÞ ¼
Z

∞

0

dk
k
PδðkÞW2ðkRÞ; ð20Þ

and we shall work with a Gaussian window function of the
form WðkRÞ ¼ e−ðk2R2Þ=2.
There remains the task of relating the scale R to the mass,

say, M, of the PBHs formed. Let MH denote the mass
within the Hubble radius H−1 at a given time. It is
reasonable to suppose that a certain fraction of the total
mass within the Hubble radius, say, M ¼ γMH, goes on to
form PBHs when a mode with wave number k reenters the
Hubble radius. The quantity γ that has been introduced
reflects the efficiency of the collapse. In the absence of any
other scale, it seems natural to choose k ¼ R−1, and make
use of the fact that k ¼ aH when the modes reenter the
Hubble radius, to finally obtain the relation between R and
M. One can show that R and M are related as follows:

R ¼ 21=4

γ1=2

�
g�;k
g�;eq

�
1=12

�
1

keq

��
M
Meq

�
1=2

; ð21Þ

where keq is the wave number that reenters the Hubble
radius at the epoch of radiation-matter equality, and Meq

denotes the mass within the Hubble radius at equality. Also,
the quantities g�;k and g�;eq represent the number of
relativistic degrees of freedom at the times of PBH
formation and radiation-matter equality, respectively. It
can be easily determined that Meq ¼ 5.83 × 1047 kg, so
that we can express the above relation between R andM in
terms of the solar mass M⊙ as follows:

R¼ 4.72×10−7
�

γ

0.2

�
−1=2

�
g�;k
g�;eq

�
1=12

�
M
M⊙

�
1=2

Mpc:

ð22Þ

On using the above arguments, we can arrive at
the fraction of PBHs, say, fPBH, that contribute to the
dark matter density today. The quantity fPBHðMÞ can be
expressed as

fPBHðMÞ¼21=4γ3=2βðMÞ
�
Ωmh2

Ωch2

��
g�;k
g�;eq

�
−1=4

�
M
Meq

�
−1=2

;

ð23Þ

where Ωm and Ωc are the dimensionless parameters
describing the matter and cold matter densities, with
the Hubble parameter, as usual, expressed as H0 ¼
100hkmsec−1 Mpc−1. In our calculations, we shall choose
γ¼ 0.2, g�;k¼106.75 and g�;eq¼3.36 and set Ωmh2¼ 0.14,
Ωch2 ¼ 0.12, with the last two being the best fit values
from the recent Planck data [94,95]. On substituting these
values, one can arrive at the following expression for
fPBHðMÞ:

fPBHðMÞ¼
�

γ

0.2

�
3=2

�
βðMÞ

1.46×10−8

�

×

�
g�;k
g�;eq

�
−1=4

�
M
M⊙

�
−1=2

: ð24Þ

Given a primordial power spectrumPSðkÞ, we can utilize
the relations (19) and (20) to arrive at the quantity σ2ðRÞ.
Then, using the relation (21), we can determine σ2 as a
function of M and utilize the result (18) to obtain βðMÞ.
With βðMÞ at hand, we can use the relation (24) to finally
arrive at fPBHðMÞ for a given inflationary scalar power
spectrum. In Fig. 7, we have plotted fPBHðMÞ for the
models of USR2, PI3, RS1, and RS2. In the figure, we have
also indicated the constraints from the various observations
such as constraints from gravitational lensing [96,97],
constraints due to the limits on extragalactic background
photons from PBH evaporation [17], constraints from
microlensing searches by Kepler [98], MACHO [99],
EROS [100], and OGLE [101], constraints from the large
scale structure [17], constraints from the CMB anisotropies
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due to accretion onto PBHs (FIRAS and WMAP3) [102]
and, finally, constraints from the dynamics of ultrafaint
dwarf galaxies [103]. (For the latest and comprehensive
list of these constraints and a detailed discussion, see
Refs. [104,105]. For related discussions in these contexts,
also see Refs. [106–109].) We find that, in the cases of
USR2 and RS1, where the location of the peaks in the
scalar power spectra approximately match, the maximum
values of fPBH achieved are 1.5 × 10−2 and 0.10, respec-
tively. For the models PI3 and RS2, when the peaks are
located at roughly the same wave number, we similarly
obtain fPBH to be 3 × 10−3 and 0.11 at their respective
maxima. In these cases, the maxima in fPBHðMÞ are
located over the domain M ≃ 10−16–10−12 M⊙. For peaks
in the scalar power spectra that occur at smaller wave
numbers in the cases of RS1 and RS2, as expected, the
locations of the maxima in fPBHðMÞ shift towards larger
masses of PBHs. Interestingly, for the power spectra in
RS1 and RS2, which exhibit a broad peak beginning at
k ≃ 106 Mpc−1, there arise maxima in fPBH at tens of

solar masses. However, the corresponding maximum
value of fPBH at M ≃ 10 M⊙ is a few orders of magnitude
smaller than the maximum values we discussed above
at smaller masses. This arises despite the fact the
amplitude of the scalar power spectra at their peak is
the same in all these cases. We believe that this result can
be attributed to the dependence of fPBH on M as M−1=2

[cf. Eq. (24)]. We should point out here that the shaded
bands corresponding to RS1 and RS2 in Fig. 7 indicate
the range of fPBH that can be generated by varying the
parameter ΔN1 in the functional forms of ϵ1ðNÞ
[cf. Eqs. (14)]. The intersection of the shaded bands
with the constraints readily translate to the limits on this
parameter in our reconstructions RS1 and RS2. We find
that a smaller ΔN1 leads to a steeper growth of power
and hence to a higher fraction of PBHs. Therefore, for a
fixed set of values for the other parameters, the con-
straints essentially restrict the rapidity of the transition of
inflation from slow roll to ultraslow roll epoch in our
reconstructions.

FIG. 7. The fraction of PBHs contributing to the dark matter density today fPBH has been plotted for the various models and scenarios
of interest, viz. USR2 and RS1 (on top, in red and blue) and PI3 and RS2 (at the bottom, in red and blue). We have plotted the quantity
fPBH for the following three values of δc: 1=3 (as solid curves) and 0.35 (as dashed curves) and 0.4 (as dotted curves). In the cases of RS1
and RS2, apart from the original choices of parameters that led to scalar spectra that closely matched the spectra in USR2 and PI3, we
have plotted the quantity fPBH for spectra which had exhibited broader peaks starting at smaller wave numbers (cf. Fig. 6). As in the
previous figure, in the cases of RS1 and RS2, we have plotted bands corresponding to a range of the parameter ΔN1. We have also
indicated the latest direct (in different colors) and indirect (in gray) constraints on fPBH from a variety of observations. We should
mention here that the indirect constraints depend on additional assumptions. Evidently, for the parameters of the potentials we have been
working with, USR2 leads to a larger formation of PBHs than PI3. Moreover, note that the existing observational constraints already
limit the parameter ΔN1 in the reconstructions RS1 and RS2.
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VI. GENERATION OF SECONDARY GWs

In this section, we shall calculate the secondary power
and bispectrum of GWs induced by the scalar perturbations
at the second order.

A. The secondary tensor power spectrum

Earlier, we had described the scalar and tensor pertur-
bations at first order in terms of the curvature perturbation
R and the quantity γij (cf. Sec. III A). It is well known that,
at the linear order, the scalar and tensor perturbations
evolve independently, with their evolution being governed
by the corresponding equations of motion, viz. Eqs. (9).
However, one finds that, at the second order, the tensor
perturbations are sourced by quadratic terms involving the
first order scalar perturbations (for early discussions in this
context, see for instance, Refs. [38–41]). These contribu-
tions due to the scalar perturbations become important
particularly when the amplitude of the scalar power
spectrum is boosted over small scales such as in the
situations leading to enhanced formation of PBHs. In this
subsection, we shall calculate the dimensionless density
parameter associated with the GWs, say, ΩGW, generated
due to the scalar perturbations in the different models and
scenarios of interest.
Let us begin by outlining the primary steps towards the

calculation of ΩGWðfÞ, where f is the frequency associated
with the wave number k. We shall start with the following
perturbed metric:

ds2 ¼ a2ðηÞ
�
−ð1þ 2ΦÞdη2

þ
�
ð1 − 2ΨÞδij þ

1

2
hij

�
dxidxj

�
; ð25Þ

where Φ and Ψ are the Bardeen potentials describing the
scalar perturbations at the first order, while the quantity hij
represents the second order tensor perturbations. We should
clarify that we have denoted the second order tensor
perturbation as hij in order to distinguish them from the
first order tensor perturbations γij, which we had intro-
duced earlier. The transverse and traceless nature of the
tensor perturbations implies that ∂ihij ¼ 0 and hii ¼ 0. In
our discussion below, we shall assume that anisotropic
stresses are absent so that Φ ¼ Ψ.
The tensor perturbations hij can be decomposed in terms

of the Fourier modes, say, hk, as

hijðη; xÞ ¼
Z

d3k

ð2πÞ3=2 ½e
þ
ijðkÞhþk ðηÞ þ e×ijðkÞh×k ðηÞ�eik·x;

ð26Þ

where eþijðkÞ and e×ijðkÞ denote the polarization tensors
which have nonzero components in the plane perpendicular

to the direction of propagation, viz. k̂. The polarization
tensors eþijðkÞ and e×ijðkÞ can be expressed in terms of the

set of orthogonal unit vectors ðeðkÞ; ēðkÞ; k̂Þ in the follow-
ing manner (see, for instance, the review [110]):

eþijðkÞ ¼
1ffiffiffi
2

p ½eiðkÞejðkÞ − ēiðkÞējðkÞ�; ð27aÞ

e×ijðkÞ ¼
1ffiffiffi
2

p ½eiðkÞējðkÞ þ ēiðkÞejðkÞ�: ð27bÞ

The orthonormal nature of the vectors eðkÞ and ēðkÞ lead to
the normalization condition: eλijðkÞeλ0;ijðkÞ ¼ δλλ

0
, where λ

and λ0 can be either þ or ×.
The equation of motion governing the Fourier modes hk

can be arrived at using the second order Einstein equations
describing the tensor perturbation hij and the Bardeen
equation describing the scalar perturbation Ψ at the first
order (see, for example, Refs. [38,39]; for recent discus-
sions, see Refs. [43,111–113]). One finds that the equation
governing hk can be written as

hλk
00 þ 2Hhλk

0 þ k2hλk ¼ Sλk; ð28Þ

with the source term Sλk being given by

SλkðηÞ ¼ 4

Z
d3p

ð2πÞ3=2 e
λðk; pÞ

�
2ΨpðηÞΨk−pðηÞ

þ 4

3ð1þ wÞH2
½Ψ0

pðηÞ þHΨpðηÞ�

× ½Ψk−p
0ðηÞ þHΨk−pðηÞ�

�
; ð29Þ

where, evidently, Ψk represents the Fourier modes of
the Bardeen potential, whileH and w denote the conformal
Hubble parameter and the equation of state parameter
describing the Universe at the conformal time η. Also,
for convenience, we have defined the quantity eλðk; pÞ ¼
eλijðkÞpipj. While discussing the formation of PBHs earlier,
we had assumed that the scales of our interest reenter the
Hubble radius during the epoch of radiation domination.
In such a case, we have w ¼ 1=3 and H ¼ 1=η. Moreover,
during radiation domination, it is well known that we
can express the Fourier modes Ψk of the Bardeen potential
in terms of the inflationary Fourier modes Rk of the
curvature perturbations generated during inflation through
the relation

ΨkðηÞ ¼
2

3
T ðkηÞRk; ð30Þ

where T ðkηÞ is the transfer function given by
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T ðkηÞ ¼ 9

ðkηÞ2
�
sin ðkη= ffiffiffi

3
p Þ

kη=
ffiffiffi
3

p − cos ðkη=
ffiffiffi
3

p
Þ
�
: ð31Þ

Utilizing the Green’s function corresponding to the tensor
modes during radiation domination, we can express the
inhomogeneous contribution to hλk as [43]

hλkðηÞ ¼
4

9k3η

Z
d3p

ð2πÞ3=2 e
λðk; pÞRkRk−p

×

�
Ic

�
p
k
;
jk − pj

k

�
cosðkηÞ

þ I s

�
p
k
;
jk − pj

k

�
sinðkηÞ

�
; ð32Þ

where the quantities Icðv; uÞ and Isðv; uÞ are described by
the integrals

Icðv; uÞ ¼ −4
Z

∞

0

dτ τ sin τf2T ðvτÞT ðuτÞ

þ ½T ðvτÞ þ vτT vτðvτÞ�½T ðuτÞ þ uτT uτðuτÞ�g;
ð33aÞ

Isðv; uÞ ¼ 4

Z
∞

0

dτ τ cos τf2T ðvτÞT ðuτÞ

þ ½T ðvτÞ þ vτT vτðvτÞ�½T ðuτÞ þ uτT uτðuτÞ�g;
ð33bÞ

with T z ¼ dT =dz. The above integrals can be carried out
analytically and they are given by

Icðv; uÞ ¼ −
27π

4v3u3
Θðvþ u −

ffiffiffi
3

p
Þðv2 þ u2 − 3Þ2; ð34aÞ

Isðv;uÞ¼−
27

4v3u3
ðv2þu2−3Þ

×

�
4vuþðv2þu2−3Þ log

				3− ðv−uÞ2
3− ðvþuÞ2

				
�
;

ð34bÞ

where ΘðzÞ denotes the theta function. It is useful to note
that Ic;sðv; uÞ ¼ Ic;sðu; vÞ.
The power spectrum of the secondary GWs, say,

Phðk; ηÞ, generated due to the second order scalar pertur-
bations can be defined as follows:

hhλkðηÞhλ
0
k0 ðηÞi ¼

2π2

k3
Phðk; ηÞδð3Þðkþ k0Þδλλ0 : ð35Þ

Note that hλk involves products of the Fourier modes Rk

and Rk−p of the curvature perturbations generated during
inflation [cf. Eq. (32)]. Evidently, the power spectrum
PhðkÞ of the secondary GWs will involve products of four
such variables. Since, the quantityRk is a Gaussian random
variable, we can express the four-point function in terms of
the two-point functions or, equivalently, the inflationary
scalar power spectrum PSðkÞ [cf. Eq. (10a)] as

Phðk;ηÞ¼
4

81k2η2

Z
∞

0

dv
Z

1þv

j1−vj
du

�
4v2− ð1þv2−u2Þ2

4uv

�
2

PSðkvÞPSðkuÞ× ½Icðu;vÞcosðkηÞþIsðu;vÞsinðkηÞ�2: ð36Þ

We shall now choose to average Phðk; ηÞ over small timescales so that the trigonometric functions in the above
expressions are replaced by their average over a time period. In such a case, only the overall time dependence remains,
leading to [42,43]

Phðk; ηÞ ¼
2

81k2η2

Z
∞

0

dv
Z

1þv

j1−vj
du

�
4v2 − ð1þ v2 − u2Þ2

4uv

�
2

PSðkvÞPSðkuÞ½I2
cðu; vÞ þ I2

sðu; vÞ�; ð37Þ

where the line over Phðk; ηÞ implies that we have averaged over small timescales. The energy density of GWs associated
with a Fourier mode corresponding to the wave number k at a time η is given by [110]

ρGWðk; ηÞ ¼
M2

Pl

8

�
k
a

�
2

Phðk; ηÞ: ð38Þ

The corresponding dimensionless density parameter ΩGWðk; ηÞ can be defined in terms of the critical density ρcrðηÞ
as [43]

ΩGWðk; ηÞ ¼
ρGWðk; ηÞ
ρcrðηÞ

¼ 1

24

�
k
H

�
2

Phðk; ηÞ: ð39Þ
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Note that the dimensionless density parameterΩGWðk; ηÞ
above has been evaluated during the radiation dominated
epoch. Once the modes are inside the Hubble radius, the
energy density of GWs decay just as the energy density of
radiation does. Upon utilizing this point, we can express
ΩGWðkÞ today in terms of the above ΩGWðk; ηÞ as follows:

h2ΩGWðkÞ ¼
�
g�;k
g�;0

�
−1=3

Ωrh2ΩGWðk; ηÞ;

≃ 1.38 × 10−5
�

g�;k
106.75

�
−1=3

×

�
Ωrh2

4.16 × 10−5

�
ΩGWðk; ηÞ; ð40Þ

where Ωr and g�;0 denote the dimensionless energy density
of radiation and the number of relativistic degrees of
freedom today. We should point out here that, since H ∝
η−1 during radiation domination and Phðk; ηÞ ∝ η−2, the
quantity ΩGWðk; ηÞ in the expression (39) is actually
independent of time. Moreover, the observable parameter
today is usually expressed as a function of the frequency,
say, f, which is related to the wave number k as

f ¼ k
2π

¼ 1.55 × 10−15
�

k
1 Mpc−1

�
Hz: ð41Þ

In Fig. 8, we have plotted the quantity ΩGWðfÞ arising in
the models USR2 and PI3 as well as the reconstructed
scenarios RS1 and RS2. In the figure, we have also
included the sensitivity curves associated with the various
current and forthcoming observatories, viz. PTA and the
square kilometer array (SKA) [114], LISA [111], MAGIS-
100 [43,115], BBO [51–53], DECIGO [54,55], Einstein
telescope [57], advanced LIGOþ Virgo [45,116], and CE
[117]. (For a summary of the sensitivity curves and their
updated versions, see Ref. [114] and the associated
website.) We should mention here that the estimated
sensitivity curves have been arrived at assuming a power
law spectrum (the so-called power-law integrated curves)
over the bands of interest. These sensitivities are expected
to be achieved by integrating over frequency in addition to
integrating over time [118,119]. It should be evident from
the figure that the strength of the GWs generated in the
models and scenarios we have examined here is significant
enough to be detectable by one or more of these observa-
tories. Recall that, spectra arising in the scenarios RS1 and

FIG. 8. The dimensionless density parameter ΩGW associated with the secondary GWs generated in the models and reconstructed
scenarios of USR2 and RS1 (in red and blue, on top) as well as PI3 and RS2 (in red and blue, at the bottom) have been plotted as a
function of the frequency f. We have also plotted the ΩGW produced by the scenarios RS1 and RS2 with broader peaks beginning at
smaller wave numbers (in green and orange). The bands of spectra, as with the previous figures, correspond to variation of the parameter
ΔN1 for a given N1. Moreover, we have included the sensitivity curves of various existing and upcoming observational probes of GWs
(as shaded regions, in the top part of the panels). Clearly, it should be possible to detect the GWs generated in the models and scenarios
of our interest by some of the forthcoming observatories.
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RS2 with broad peaks starting from a wave number
of about 106 Mpc−1 had led to PBHs with tens of solar
masses. It should be clear from Fig. 8 that the constraints
from PTA on ΩGW already rule out such spectra for certain
values of ΔN1.

B. The secondary tensor bispectrum

In this section, we shall evaluate the secondary tensor
bispectrum generated in the inflationary models and sce-
narios of our interest. The secondary tensor bispectrum,
say, Bλ1λ2λ3

h ðk1; k2; k3Þ is defined as

hhλ1k1ðηÞh
λ2
k2
ðηÞhλ3k3ðηÞi

¼ ð2πÞ3Bλ1λ2λ3
h ðk1; k2; k3; ηÞδð3Þðk1 þ k2 þ k3Þ: ð42Þ

We can evaluate the above tensor bispectrum during
the radiation dominated era by using the expression (32)
for hλkðηÞ. As we had discussed, hλkðηÞ is quadratic in the
Gaussian variables Rk. Therefore, obviously, the bispec-
trum Bλ1λ2λ3

h ðk1; k2; k3; ηÞwill involve six of these variables.
Upon utilizing Wick’s theorem applicable to Gaussian
random variables, one can show that the tensor bispectrum
consists of eight terms all of which lead to the same
contribution [43,113]. For convenience, we shall define
Gλ1λ2λ3

h ðk1;k2;k3;ηÞ¼ð2πÞ−9=2Bλ1λ2λ3
h ðk1;k2;k3;ηÞ and here-

after refer to Gλ1λ2λ3
h ðk1; k2; k3; ηÞ as the secondary tensor

bispectrum. We find that the secondary tensor bispectrum
can be expressed as

Gλ1λ2λ3
h ðk1; k2; k3; ηÞ

¼
�
8π

9

�
3 1

ðk1k2k3ηÞ3
Z

d3p1eλ1ðk1; p1Þeλ2ðk2; p2Þ

× eλ3ðk3; p3Þ
PSðp1Þ
p3
1

PSðp2Þ
p3
2

PSðp3Þ
p3
3

× J
�
p1

k1
;
p2

k1
; η
�
J
�
p2

k2
;
p3

k2
; η
�
J
�
p3

k3
;
p1

k3
; η
�
; ð43Þ

where p2 ¼ p1 − k1, p3 ¼ p1 þ k3 and, for convenience,
we have set

J

�
p1

k1
;
p2

k1
; η

�
¼ Ic

�
p1

k1
;
p2

k1

�
cos ðk1ηÞ

þ I s

�
p1

k1
;
p2

k1

�
sin ðk1ηÞ; ð44Þ

with Icðv; uÞ and Isðv; uÞ given by Eqs. (34). In a manner
partly similar to the case of the secondary tensor power
spectrum, we shall replace the trigonometric functions
by their averages so that the function Jðx; y; ηÞ is instead
given by

J̄ðv; uÞ ¼ 1ffiffiffi
2

p ½I2
cðv; uÞ þ I2

sðv; uÞ�1=2: ð45Þ

Our aim in this work is to understand the amplitude of the
secondary tensor bispectrum generated due to the scalar
perturbations for modes that reenter the Hubble radius
during the radiation dominated era. For simplicity, we shall
restrict our analysis to the equilateral limit of the bispectrum
so that k1 ¼ k2 ¼ k3 ¼ k. In order to determine the integrals
involved in the expression (43), we shall choose a specific
configuration for the vectors k1, k2, and k3. We shall assume
that the vectors lie in the x‐y planewith k3 oriented along the
negative x direction. In such a case, we find that the vectors
ðk1; k2; k3Þ in the equilateral limit are given by

k1 ¼ ðk=2;
ffiffiffi
3

p
k=2; 0Þ; k2 ¼ ðk=2;−

ffiffiffi
3

p
k=2; 0Þ;

k3 ¼ ð−k; 0; 0Þ: ð46Þ
We shall choose p1 ¼ ðp1x; p1y; p1zÞ so that, since p2 ¼
p1 − k1 and p3 ¼ p1 þ k3, we have

p2 ¼ ðp1x − k=2; p1y −
ffiffiffi
3

p
k=2; p1zÞ;

p3 ¼ ðp1x − k; p1y; p1zÞ: ð47Þ
We find that such a choice of Cartesian coordinates proves to
be convenient to carry out the integrals involved than the
cylindrical polar coordinates that have been adopted earlier
[43,113]. Therefore, the tensor bispectrum in the equilateral
limit Gλ1λ2λ3

h ðkÞ can be written as

k6Gλ1λ2λ3
h ðk; ηÞ

¼
�

8π

9
ffiffiffi
2

p
�

3 1

ðkηÞ3
Z

∞

−∞
dp1x

Z
∞

−∞
dp1y

×
Z

∞

−∞
dp1zeλ1ðk1; p1Þeλ2ðk2; p2Þeλ3ðk3; p3Þ

×
PSðp1Þ
p3
1

PSðp2Þ
p3
2

PSðp3Þ
p3
3

J̄

�
p1

k
;
p2

k

�

× J̄

�
p2

k
;
p3

k

�
J̄

�
p3

k
;
p1

k

�
: ð48Þ

The factors eλðk; pÞ involving the polarization tensor can
be readily evaluated for our configurations of ðk1; k2; k3Þ
and ðp1; p2; p3Þ (for details, see Appendix B). Since λ can be
þ or ×, clearly, the tensor bispectrumGλ1λ2λ3

h ðk; ηÞ has eight
components. However, we find that e×ðk; pÞ is odd in p1z
[cf. Eqs. (B1)]. As a result, the tensor bispectrum proves to
be nonzero only for the following combinations of ðλ1λ2λ3Þ:
ðþ þ þÞ, ðþ × ×Þ, ð×þ ×Þ, and ð× ×þÞ. Also, note that
the integral above describing the tensor bispectrum in the
equilateral limit is symmetric under the simultaneous
interchange of λ1 ↔ λ2, k1 ↔ k2 and p1 ↔ p2. This implies
that, in the equilateral limit of interest, the tensor bispectrum
for the three components ðþ × ×Þ, ð×þ ×Þ, and ð× ×þÞ
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are equal. Hence, we are left with onlyGþþþ
h ðk; ηÞ and, say,

Gþ××
h ðk; ηÞ to evaluate.
We proceed to numerically evaluate Gþþþ

h ðkÞ and
Gþ××

h ðkÞ in the situations of our interest, viz. namely
USR2, PI3, RS1, and RS2. Because the scalar power
spectra in these cases exhibit a localized maxima, we
restrict our evaluation of the tensor spectrum to the range of
wave numbers around the peak. We find that the integrand
in Eq. (48) exhibits a maximum around jp1j ≃ k and,
beyond that, it quickly decreases in all the three directions
of integration. In fact, the contributions to the integral prove
to be negligible for jp1j≳ 100k. So, we choose the limits
for our integrals over p1x, p1y, and p1z to be ð−103k; 103kÞ.
In order to understand the behavior of the tensor

bispectrum, we shall calculate the dimensionless quantity
referred to the shape function, say, ShðkÞ, which is defined
as [43,113]

Sλ1λ2λ3h ðkÞ ¼ k6Gλ1λ2λ3
h ðk; ηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P3

hðk; ηÞ
q : ð49Þ

Note that, in this expression, both the quantities
k6Gλ1λ2λ3

h ðkÞ and P3
hðkÞ are dimensionless. Moreover, the

overall dependence on time cancels leading to a shape
function that is time independent. In Fig. 9, we have plotted
the shape functions Sþþþ

h ðkÞ and Sþ××
h ðkÞ for the four cases

of interest, viz. USR2, PI3, RS1, and RS2. We find that the
amplitude of ShðkÞ for a given model or scenario is
maximum around the wave number where the scalar power
spectrum exhibits a peak. This is true for both the cases of
Sþþþ
h ðkÞ and Sþ××

h ðkÞ though there is a certain asymmetry
in the behavior of the functions about the peak. Note that
the amplitude of ShðkÞ remains large over large wave
numbers, while it quickly reduces to small values at smaller
wave numbers. In fact, this behavior should not come as a
surprise since such a behavior was also encountered in the
case of ΩGWðfÞ (cf. Fig. 8). It is interesting to note that
Sþþþ
h ðkÞ and Sþ××

h ðkÞ settle down to about 10 and −250,
respectively, at large wave numbers. Recall that the
secondary tensor bispectra and hence the shape functions
we have illustrated in Fig. 9 have been evaluated during the
radiation dominated epoch, when the modes are well inside
the Hubble radius. They will have to be evolved until today
to examine the corresponding observational imprints which
may possibly be detected by upcoming missions such as,
say, LISA and PTA (in this context, see Ref. [113]; also see
Refs. [120–122]).

VII. CONTRIBUTIONS TO PBH FORMATION
AND SECONDARY GWs FROM SCALAR

NON-GAUSSIANITIES

Until now, we have focused on the imprints of the scalar
power spectrum on the extent of PBHs formed and the

generation of secondary GWs. Clearly, if the scalar non-
Gaussianities prove to be large in a given inflationary
model, it seems plausible that they would significantly alter
the observables fPBH, ΩGW, and Sh [22,61–72]. To under-
stand the possible effects of non-Gaussianities on fPBH,
ΩGW, as well as Sh, in this section, we shall first calculate
the scalar bispectrum and thereby the corresponding non-
Gaussianity parameter fNL in the two inflationary models
USR2 and PI3 and the reconstructed scenarios RS1 and
RS2. We shall then discuss the corresponding contributions
from the scalar bispectrum to fPBH, ΩGW, and Sh.

A. Evaluating the scalar bispectrum

The scalar bispectrum is the three point function of the
curvature perturbation in Fourier space, and it is defined in
terms of the operator R̂k that we had introduced earlier as
follows [123,124]:

hR̂k1ðηeÞR̂k2ðηeÞR̂k3ðηeÞi
¼ ð2πÞ3BSðk1; k2; k3Þδð3Þðk1 þ k2 þ k3Þ: ð50Þ

Recall that, ηe is a time close to the end of inflation and, in
this expression, the expectation value on the left-hand side
is to evaluated in the perturbative vacuum [125–127]. Note

FIG. 9. The dimensionless shape function ShðkÞ characterizing
the tensor bispectrumhas been plotted in the equilateral limit for the
models and scenarios of interest, viz. USR2 and RS1 (in red and
blue, in the top panel) as well as PI3 and RS2 (in red and blue, in the
bottom panel). We have plotted both the nonzero components
Sþþþ
h ðkÞ (as solid curves) andSþ××

h ðkÞ (as dashed curves) for all the
cases. In plotting the results for RS1 and RS2, we have setN1 ¼ 42
and 48 and chosenΔN1 to be the lowest valuewithin our windows,
viz. 0.3345 and 0.3847.We find that, at large wave numbers [when
compared to the location of the peak in the scalar power spectra
(cf. Figs. 4 and 6)], the amplitudes of Sþþþ

h ðkÞ and Sþ××
h ðkÞ settle

down to around 10 and −250, respectively. Also, at wave numbers
smaller than the location of the peak, the amplitudes of both the
components prove to be of order unity or less in all the cases.
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that the three wave vectors ðk1; k2; k3Þ form the edges of a
triangle. For convenience, we shall hereafter set

BSðk1; k2; k3Þ ¼ ð2πÞ−9=2Gðk1; k2; k3Þ; ð51Þ
and refer to Gðk1; k2; k3Þ as the scalar bispectrum.
The so-called Maldacena formalism is the most complete

approach to evaluate the scalar bispectrum in a given
inflationary model [125–127]. In this approach, one first
obtains the third order action governing the curvature
perturbation. With the third order action at hand, the scalar
bispectrum is evaluated using the standard rules of pertur-
bative quantum field theory. For the case of inflation driven
by a single, canonical scalar field, the third order action is
found to consist of six bulk terms, apart from the boundary
terms [128]. One can show that the scalar bispectrum
Gðk1; k2; k3Þ generated by such an action can be expressed
as follows (see, for instance, Refs. [59,60]; in this context,
also see Ref. [36]):

Gðk1;k2;k3Þ¼
X7
C¼1

GCðk1;k2;k3Þ;

¼M2
Pl

X6
C¼1

½fk1ðηeÞfk2ðηeÞfk3ðηeÞGCðk1;k2;k3Þ

þ complex conjugate�þG7ðk1;k2;k3Þ;
ð52Þ

where, as we discussed earlier, fk are the positive frequency
Fourier modes of the curvature perturbation. Amongst the
seven terms in the above expression for the scalar bispec-
trum, the first six correspond to the bulk terms in the third
order action, whereas the seventh arises due to a boundary
term, and it is usually absorbed through a field redefinition
[128]. The quantities GCðk1; k2; k3Þ, with C ¼ ð1; 6Þ, are
integrals associated with the bulk terms in the action and, as
one can expect, apart from the background quantities, they
involve the modes fk and its derivative f0k. (We have listed
these integrals explicitly in Appendix C.) The seventh term
G7ðk1; k2; k3Þ that arises due to the contribution from a
boundary term can be expressed as [36,128]

G7ðk1; k2; k3Þ ¼ −iM2
Pl½fk1ðηeÞfk2ðηeÞfk3ðηeÞ�

× ½a2ϵ1ϵ2f�k1ðηÞf�k2ðηÞfk3 0�ðηÞ
þ two permutations�ηeηi
þ complex conjugate; ð53Þ

where ηi is the time when the initial conditions are imposed
on the scalar perturbations. We should mention that the
remaining boundary terms do not contribute in the scenar-
ios of our interest.
As in the case of the scalar power spectrum, due to the

deviation from slow roll, it proves to be difficult to
evaluate the scalar bispectrum analytically in the

inflationary models of interest. Therefore, we resort to
numerics. There now exists a standard procedure to
numerically compute the scalar bispectrum in inflationary
models involving a single, canonical scalar field [58,60].
Recall that, in the case of the power spectrum, it is
adequate to impose the Bunch-Davies initial conditions on
the modes when they are sufficiently inside the Hubble
radius. Apart from some special situations wherein the
boundary conditions may need to be imposed deeper
inside the Hubble, one often imposes the conditions when
k=ðaHÞ ≃ 102. Since the amplitude of the scalar as well as
tensor perturbations freeze when they are adequately
outside the Hubble radius, say, when k=ðaHÞ ≃ 10−5,
one can evaluate the power spectra at such a time for
the different modes. Note that, in order to arrive at the
bispectrum we need to carry out integrals that involve the
background quantities, the scalar modes fk and its time
derivative f0k [cf. Eqs. (52) and (C1)]. These integrals need
to be carried out from a time ηi when the initial conditions
are imposed on the modes until the late time ηe towards the
end of inflation. We had mentioned that the amplitudes of
the modes freeze soon after they leave the Hubble radius.
Due to this reason, one finds that the super-Hubble
contributions to the scalar bispectrum prove to be negli-
gible [60]. Therefore, one can carry out the integrals
from the time when k=ðaHÞ ≃ 102 to the time when
k=ðaHÞ ≃ 10−5. However, since the bispectrum involves
three modes, in general, one needs to integrate from the
time when the smallest of the three wave numbers is well
inside the Hubble radius to the time until when the largest
of the wave numbers is sufficiently outside. Moreover, in
order to choose the correct perturbative vacuum, one has
to impose a cutoff in the sub-Hubble regime [126]. We
impose a democratic (in wave number) cutoff of the
form exp−½κðk1 þ k2 þ k3Þ=ð3aHÞ�, where κ is a positive
definite and small quantity [36,58,60]. In fact, such a
cutoff aids in the efficient numerical computation of the
integrals involved. One can choose a suitable value of κ
depending on how deep from inside the Hubble radius the
integrals are to be carried out.

B. Amplitude and shape of fNL
The non-Gaussianity parameter, say, fNLðk1; k2; k3Þ,

corresponding to the scalar bispectrum is defined as
(see, for instance, Refs. [59,60])

fNLðk1;k2;k3Þ¼−
10

3

1

ð2πÞ4 k
3
1k

3
2k

3
3Gðk1;k2;k3Þ

× ½k31PSðk2ÞPSðk3Þþ two permutations�−1;
ð54Þ

where PSðkÞ denotes the scalar power spectrum
[cf. Eq. (11a)]. With the scalar power and bispectra at
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hand, evidently, it is straightforward to arrive the non-
Gaussianity parameter fNL for a given model.
Based on prior experience, we would like to emphasize a

few points concerning the expected shape and amplitude of
the scalar bispectrum before we go on to present the results
for fNL in the different models and scenarios we have
introduced earlier. As is well known, in slow roll infla-
tionary models involving a single, canonical scalar field,
the scalar non-Gaussianity parameter fNL proves to be of
the order of the first slow roll parameter ϵ1 [125–127]. In
other words, the parameter fNL is typically of the order of
10−2 or smaller in such situations. Moreover, the bispec-
trum is found to have an equilateral shape, with the fNL
parameter slightly peaking when k1 ¼ k2 ¼ k3 (in this
context, see, for instance, Ref. [60]). However, when
departures from slow roll occur, the non-Gaussianity
parameter fNL can be expected to be of the order of unity
or larger, depending on the details of the background
dynamics. Further, in contrast to the slow roll case, wherein
there is only a weak dependence of the parameter fNL on
scale, when departures from slow roll occur, the parameter
turns out to be strongly scale dependent. Needless to say,
we can expect that the non-Gaussianity parameter fNL to be
relatively large as well as strongly scale dependent in the
situations of our interest.
Let us now discuss the results we obtain in the different

models we have introduced. In order to illustrate the
complete shape of the bispectrum, the non-Gaussianity
parameter fNL is usually presented as a density plot in, say,
the ðk3=k1Þ − ðk2=k1Þ plane [60,129]. It proves to be a bit
of a numerical challenge to compute the complete shape of
the bispectrum across the wide range of wave numbers over
which we have evaluated the power spectra. As a result, we
shall focus on the amplitude of fNL in the equilateral and
the squeezed limits, i.e., when k1 ¼ k2 ¼ k3 ¼ k and when
k1 → 0, k2 ≃ k3 ¼ k, respectively. It is easier to calculate
the scalar bispectrum in the equilateral limit as we just need
to follow the evolution of one mode at a time. To arrive at
the scalar bispectrum in the squeezed limit, we shall set
k2 ¼ k3 ¼ k and choose k1 ¼ 10−3k. We have confirmed
that our results are robust against choosing a smaller value
of k1. Before we go to illustrate the amplitude and shape of
the non-Gaussianity parameter fNL, let us understand the
behavior of the scalar bispectrum Gðk1; k2; k3Þ itself. In
Fig. 10, we have plotted the scalar bispectra that arise in the
equilateral and squeezed limits in the models of USR2 and
PI3. We would like to highlight a few aspects regarding the
amplitude and shape of the bispectra. Note that the scalar
bispectra have roughly the same shape in the equilateral
and squeezed limits. Also, they closely resemble the
corresponding scalar power spectra and, in particular, they
exhibit a dip and a peak around the same locations
(cf. Fig. 4). Moreover, at small scales, the scalar bispectra
have a larger amplitude in the equilateral limit than in the
squeezed limit. Further, in the equilateral limit, the scalar

bispectra have almost the same amplitude as the power
spectra near the peak.
Let us now understand the behavior of the non-

Gaussianity parameter fNL. In Figs. 11 and 12, we have
plotted the behavior of the fNL parameter in the equilateral
and squeezed limits over a wide range of wave numbers in
the models USR2 and PI3 as well as the scenarios RS1 and
RS2. The following points are evident from the two figures.
First, in the equilateral limit, the non-Gaussianity parameter
fNL proves to be fairly large (of the order of 101 − 104)
over a small range of wave numbers. In fact, the fNL exhibit
an upward spike in their amplitude around exactly the same
wave numbers wherein the scalar power spectra exhibit a
downward spike (cf. Figs. 4 and 6). Since the definition of
the parameter fNL [cf. Eq. (54)] contains the scalar power
spectrum in the denominator, the upward spike can be
partly attributed to the downward spike in the power
spectrum. If we ignore the large spike, we find that fNL ≃
1–10 around these wave numbers. It is worth noting that
these wave numbers correspond to those modes which
leave the Hubble radius just prior to or during the transition
from the slow roll to the ultraslow roll regime. In contrast,
the non-Gaussianity parameter fNL proves to be relatively
small (at most of order unity) over wave numbers where the
scalar power spectra exhibit their peak. However, we
should clarify that, though the value of fNL is smaller
than unity around this domain, it is considerably larger than
its typical value in slow roll inflation (of about 10−2, such
as over the CMB scales in our models). For instance, in

FIG. 10. The amplitude of the dimensionless scalar bispectra
has been plotted in the equilateral (on top) and squeezed limits (at
the bottom) for the models USR2 (in red) and PI3 (in blue).
Clearly, the bispectra have approximately the same shape as the
corresponding power spectra (cf. Fig. 4). Note that, at small
scales, the dimensionless bispectra have considerably lower
amplitudes in the squeezed limit when compared to their values
in the equilateral limit, whereas they have roughly the same
amplitude over the CMB scales.
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USR2 and PI3, we find that, in the equilateral limit, fNL is
about −0.37 and −0.44, respectively, near the locations of
the peak in the power spectra. This can be attributed to the
large value of ϵ2 during the ultraslow roll regime. Second,
in the squeezed limit, the scalar bispectrum is expected to
satisfy the so-called consistency condition wherein it can be
completely expressed in terms of the scalar power spectrum
[125,130]. This translates to the condition fCRNLðkÞ ¼
ð5=12Þ½nSðkÞ − 1� in the squeezed limit, where nSðkÞ −
1 ¼ d lnPSðkÞ=d ln k is the scalar spectral index. In
Figs. 11 and 12, apart from plotting fNL in the squeezed
limit, we have also plotted the quantity fCRNL obtained from
the scalar spectral index. We should add that we have also
examined the validity of the consistency relation more
closely by working with a smaller k1. We find that the
consistency condition is indeed satisfied even when there
arise strong features in the scalar power spectrum in all the
scenarios of our interest (in this context, however, see
Appendix D). Therefore, in the squeezed limit, we find that
fNL is at most of order unity around the peaks of the scalar
power spectra.

It seems important that we clarify a point regarding the
validity of the consistency condition at this stage of our
discussion. One may be concerned if the period of ultraslow
roll, with its large value of ϵ2, could lead to a violation of
the consistency condition over wave numbers that leave the
Hubble radius during this epoch (in this context, see
Refs. [131–133]). Recall that the amplitude of scalar modes
over a certain range of wave numbers are modified to
some extent during the transition from slow roll to ultra slow
roll (cf. Fig. 3). However, since, in the cases of our interest,
the epoch of ultraslow roll ends leading to the eventual
termination of inflation, the amplitude of the scalar
modes asymptotically freeze at sufficiently late times (for
further details, see Appendix E; in this context, also see
Refs. [69,134]).Due to this asymptotic behavior of the scalar
modes, it should not come as a surprise that the consistency
condition is satisfied in the models and scenarios of our
interest despite the phase of ultraslow roll (for very recent
discussions in this context, see Refs. [135,136]).

C. Imprints of fNL on fPBH and ΩGW

Recall that the observationally relevant dimensionless,
scalar non-Gaussianity parameter fNL is usually introduced
through the following relation (see Ref. [137]; also see
Refs. [59,60]):

Rðη; xÞ ¼ RGðη; xÞ − 3

5
fNL½RGðη; xÞ�2; ð55Þ

FIG. 11. The scalar non-Gaussianity parameter fNL has been
plotted in the equilateral (on top) and the squeezed (at the bottom)
limits for the model of USR2 (in red) and the reconstructed
scenario RS1 (in blue and green). Note that, in the case of RS1,
we have worked with our original choice of N1 ¼ 42 and plotted
the lower (in blue) and the upper (in green) bounds of fNL
corresponding to the range over which the parameter ΔN1 is
varied. In the case of USR2, we have also plotted the consistency
condition fCRNLðkÞ ¼ ð5=12Þ½nSðkÞ − 1� (as purple dots) along
with the results in the squeezed limit. Despite the deviations
from slow roll leading to strong features in the scalar power and
bispectra, we find that the consistency condition is always
satisfied. The insets highlight the fNL around the wave numbers
where the scalar power spectra exhibit their peaks. It is clear that
the parameter fNL attains larger values in the equilateral (where
fNL ≃ 101–104 at its maximum) than the squeezed (where
fNL ≃ 1–10) limit. Importantly, we find that fNL is at most of
order unity near the peaks of the scalar power spectra.

FIG. 12. The scalar non-Gaussianity parameter fNL has been
plotted in the equilateral and the squeezed limits for the model
PI3 and the reconstructed scenario RS2 in the same manner (and
the same choices of colors) as in the cases of USR2 and RS1 in
the previous figure. In the case of RS2, we have worked with our
initial choice of N1 ¼ 48 and plotted the lower (in blue) and the
upper (in green) bounds of fNL corresponding to the range over
which the parameter ΔN1 is varied. It should be evident that our
earlier comments regarding the results for USR2 and RS1 apply
to the cases of PI3 and RS2 as well.
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where RG denotes the Gaussian contribution. In Fourier
space, this relation can be written as (see, for instance,
Ref. [59])

Rk ¼ RG
k −

3

5
fNL

Z
d3p

ð2πÞ3=2R
G
pRG

k−p: ð56Þ

If one uses this expression for Rk and evaluates the
corresponding two-point correlation function in Fourier
space, one obtains that [71,72]

hR̂kR̂k0 i ¼
2π2

k3
δð3Þðkþ k0Þ

�
PSðkÞ þ

�
3

5

�
2 k3

2π
f2NL

×
Z

d3p
PSðpÞ
p3

PSðjk − pjÞ
jk − pj3

�
; ð57Þ

where PSðkÞ is the original scalar power spectrum defined
in the Gaussian limit [cf. Eq. (10a)], while the second term
represents the leading non-Gaussian correction. We find
that we can write the non-Gaussian correction to the scalar
power spectrum, say, PCðkÞ, as follows:

PCðkÞ ¼
�
3

5

�
2

f2NL

Z
∞

0

dv
Z

1þv

j1−vj

du
v2u2

PSðkvÞPSðkuÞ;

¼
�
12

5

�
2

f2NL

Z
∞

0

ds
Z

1

0

dd
ðs2 − d2Þ2 PS½kðsþ dÞ=2�

× PS½kðs − dÞ=2�: ð58Þ

Since we have evaluated the scalar non-Gaussianity
parameter in the inflationary models of our interest, we
can now calculate the non-Gaussian corrections PCðkÞ to
the scalar power spectrum and the corresponding modifi-
cations to fPBH, ΩGW, and Sh. However, before we do so,
we need to clarify an important point. In introducing the
scalar non-Gaussianity parameter through the relation (55),
it has been assumed that fNL is local; i.e., it is independent
of the wave number [137]. In contrast, the parameter fNL
proves to be strongly scale dependent in all the situations
we have considered. In order to be consistent with the fact
that the fNL in Eq. (55) is local, we shall consider the
squeezed limit of the parameter (in this context, also see the
discussions in Ref. [63]). Moreover, in the expression (58)
for PCðkÞ, we shall assume that fNL is dependent on the
wave number k, with k2 ¼ k3 ≃ k and k1 ≪ k to be
consistent with the squeezed limit. In Fig. 13, we have
plotted the original Gaussian power spectrum as well the
modified power spectrum including the non-Gaussian
corrections PCðkÞ. Recall that the non-Gaussianity param-
eter fNL had contained sharp spikes around the wave
numbers where the Gaussian scalar power spectra had
exhibited a downward spike (cf. Figs. 11 and 12). While
evaluating the modified power spectra, we have regulated
the maximum value of these spikes to be jfNLj ≃ 100.
Evidently, the non-Gaussian corrections to the scalar power

spectrum are insignificant. This can be attributed to the fact
that the peaks in the original power spectrum PSðkÞ and the
non-Gaussianity parameter fNL are located at different
wave numbers. Therefore, we find the corresponding
modifications to fPBH, ΩGW, and Sh are insignificant as
well. This conclusion can also be understood from the fact
the amplitude of the dimensionless bispectrum in the
squeezed limit is considerably smaller than the amplitude
of the scalar power spectrum around its peak (cf. Fig. 10).
We should clarify a particular point regarding the non-

Gaussian corrections we have calculated in this section.
Note that we have calculated the cubic order non-Gaussian
corrections to the power spectrum. This method proves to be
adequate to examine the imprints of non-Gaussianities on
the dimensionless energy density ΩGW describing the
secondary GWs. However, the approach does not com-
pletely account for the effects of non-Gaussianities on the
fraction fPBH of PBHs produced (for an early discussion on
the topic, see Ref. [138]; for recent discussions, see
Refs. [139,140]). In the context of PBHs, the non-
Gaussianities also change the shape of the probability
distribution characterizing the overdensities at the time of
their formation, which we have assumed to be a Gaussian
[cf. Eq. (17)] These effects due to the non-Gaussianities are
expected to be larger (than the corrections to the power
spectrumwe have calculated), and they need to be taken into
account to arrive at the modified fPBH [139].

FIG. 13. The original scalar power spectrum PSðkÞ (in solid
red) and the modified spectrum PSðkÞ þ PCðkÞ (in dashed blue)
arrived at upon including the non-Gaussian corrections, have
been plotted for the models of USR2 (on top) and PI3 (at the
bottom). In these models, the non-Gaussianity parameter fNL had
exhibited sharp spikes in its amplitude around wave numbers
where the Gaussian scalar power spectrum had contained down-
ward spikes. We should clarify here that, in order to arrive at the
modified power spectra, we have regulated the spikes in the fNL
parameter so that its maximum value around these wave numbers
is 102. Clearly, the modifications to the scalar spectra, particularly
at their peak, is hardly significant.
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VIII. CONCLUSIONS

In this work, we had considered models involving a
single, canonical scalar field that lead to ultraslow roll or
punctuated inflation. All these models had contained a
point of inflection, which seems essential to achieve the
epoch of ultraslow roll required to enhance scalar power on
small scales. We had also examined the extent of PBHs
formed and the secondary GWs generated in these models
and had compared them with the constraints on the
corresponding observables fPBH and ΩGW. These models
require a considerable extent of fine tuning in order to lead
to the desirable duration of inflation (of say, 60–70 e-folds),
be consistent with the constraints from the CMB on large
scales, and simultaneously exhibit higher scalar power on
small scales.
In order to explore the possibilities in single field models

further, we had also considered scenarios wherein the
functional forms for the first slow roll parameter closely
mimic the typical behavior in ultraslow roll and punctuated
inflation. We had reconstructed the potentials associated
with these scenarios, evaluated the resulting scalar and
tensor power spectra as well as the corresponding imprints
on fPBH, ΩGW, and Sh. The presence of extra parameters in
the choices for ϵ1ðNÞ had allowed us to construct the
required scenarios rather easily. Interestingly, we had found
that the reconstructed potentials too contain a point of
inflection as the original models do. This lends further
credence to the notion that a point of inflection is essential
to achieve ultraslow roll or punctuated inflation. However,
we should add a note of caution that, while we were able to
broadly capture the expected shape of the scalar power
spectra in the reconstructed scenarios, there were some
differences in the tensor power spectra in these scenarios
and the original models. Moreover, we find that these
reconstructed scenarios allow us to easily examine the rate
of growth of the scalar power from the CMB scales to small
scales (for a discussion in this context, see Refs. [76,81]).
While the steepest growth possible in the reconstructed
scenario RS1 has nS − 1 ≃ 4, we find that the growth is
nonuniform but faster in RS2 with nS − 1 between 4 and 6
over the relevant range of wave numbers (for details, see
Appendix F). Further, though we have been able to
reconstruct the potentials numerically in the scenarios
RS1 and RS2, it would be worthwhile to arrive at analytical
forms of these potentials [75–77].
We had also computed the scalar bispectrum and the

associated non-Gaussianity parameter fNL in these models
and scenarios. We had found that the parameter fNL is
strongly scale dependent in all the cases. Also, the non-
Gaussianities had turned out to be fairly large (with, say,
fNL > 10 over a range of wave numbers) in the equilateral
limit. Moreover, we had found that the consistency con-
dition governing the non-Gaussianity parameter is always
satisfied, despite the period of sharp departure from slow
roll, implying that the non-Gaussianity parameter in the

squeezed limit is at most of order unity around the domain
where the scalar power spectra exhibit their peak. Due to
this reason, we had found that the non-Gaussian corrections
to power spectra were negligible leading to insignificant
modifications to the observables fPBH, ΩGW, and Sh on
small scales. However, we should point out that the effects
of non-Gaussianities on fPBH and ΩGW have been included
in a simple fashion and a more detailed approach seems
required to account for the complicated scale dependence
of fNL [64,64–66,68,69]. It has recently been argued that,
in the squeezed limit of the bispectrum, the part satisfying
the consistency relation should be subtracted away as it
cannot be observed (in this context, see Refs. [141,142];
however also see Ref. [143]). If this is indeed so, since
the scalar bispectrum satisfies the consistency condition in
the squeezed limit in the models and scenarios we have
examined, the cubic order non-Gaussian corrections to the
power spectrum would then identically vanish.
Moreover, we had calculated the secondary tensor

bispectrum generated in the different inflationary models
of interest during the radiation dominated epoch.
Interestingly, we had found that the shape function char-
acterizing the tensor bispectrum has an amplitude of about
10–250 at small wave numbers in all the models and
scenarios of interest. It seems important to evolve the shape
function until today and examine the possibility of observ-
ing its imprints in ongoing efforts such as PTA [120] and
forthcoming missions such as LISA [113,121,122]. We are
currently investigating these issues in a variety of single and
two field models of inflation [144–152].
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APPENDIX A: THE DICHOTOMY
OF ULTRASLOW ROLL AND
PUNCTUATED INFLATION

With the help of an example, in this Appendix, we shall
illustrate that a given inflationary potential can permit
ultraslow roll as well as punctuated inflation for different
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sets of parameters. The potential that we shall consider,
when expressed in terms of the quantity x ¼ ϕ=v that we
had introduced in the context of USR1, is given by [29]

VðϕÞ ¼ V0

αx2 − βx4 þ γx6

ð1þ δx2Þ2 : ðA1Þ

In Figure 14, we have plotted the evolution of the first slow
roll parameter ϵ1 in the above potential for the following
two sets of parameters: V0=M4

Pl ¼ 1.3253 × 10−9, γ ¼ 1,
δ¼1.5092 and ðv=MPl;α;βÞ¼ð4.3411;8.522×10−2;0.469Þ
and ð10; 8.53 × 10−2; 0.458Þ. We obtain about 75 e-folds
of inflation in these cases for ϕi ¼ 17.245MPl and
ϕi ¼ 13.4MPl. It is clear from the figure that, while the
first set of parameters lead to punctuated inflation, the
second set does not permit an interruption of inflation until
the very end. This example illustrates the point that a
potential itself cannot be classified as an ultraslow roll or a
punctuated inflationary model.

APPENDIX B: THE FUNCTIONAL FORMS OF
THE POLARIZATION FACTORS

Recall that, eλðk; pÞ ¼ eλijðkÞpipj. For our choice of
ðk1; k2; k3Þ and ðp1; p2; p3Þ [cf. Eqs. (46) and (47)], we find
that eλðk; pÞ can be evaluated to be

eþðk1; p1Þ ¼
1

4
ffiffiffi
2

p ð3p2
1x þ p2

1y − 2
ffiffiffi
3

p
p1xp1y − 4p2

1zÞ;

ðB1aÞ

eþðk2; p2Þ ¼
1

4
ffiffiffi
2

p ð3p2
1x þ 3k2 þ p2

1y þ 2
ffiffiffi
3

p
p1xp1y

− 6kp1x − 2
ffiffiffi
3

p
kp1y − 4p2

1zÞ; ðB1bÞ

eþðk3; p3Þ ¼
1ffiffiffi
2

p ðp2
1y − p2

1zÞ; ðB1cÞ

e×ðk1; p1Þ ¼ −
1ffiffiffi
2

p ð
ffiffiffi
3

p
p1x − p1yÞp1z; ðB1dÞ

e×ðk2; p2Þ ¼
1ffiffiffi
2

p ½
ffiffiffi
3

p
ðp1x − kÞ þ p1y�p1z; ðB1eÞ

e×ðk3; p3Þ ¼ −
ffiffiffi
2

p
p1yp1z: ðB1fÞ

APPENDIX C: INTEGRALS DETERMINING THE
SCALAR BISPECTRUM

The quantities GCðk1; k2; k3Þ appearing in the expression
(52) for the scalar bispectrum represent six integrals that
involve the scale factor, the slow roll parameters, the modes
fk and their time derivatives f0k. They correspond to the six
bulk terms appearing in the cubic order action governing
the curvature perturbation, and they are described by the
following expressions [36,59,60]:

G1ðk1; k2; k3Þ ¼ 2i
Z

ηe

ηi

dη a2ϵ21ðf�k1f0�k2f0�k3 þ two permutationsÞ; ðC1aÞ

G2ðk1; k2; k3Þ ¼ −2iðk1 · k2 þ two permutationsÞ
Z

ηe

ηi

dη a2ϵ21f
�
k1
f�k2f

�
k3
; ðC1bÞ

G3ðk1; k2; k3Þ ¼ −2i
Z

ηe

ηi

dη a2ϵ21

�
k1 · k2
k22

f�k1f
0�
k2
f0�k3 þ five permutations

�
; ðC1cÞ

G4ðk1; k2; k3Þ ¼ i
Z

ηe

ηi

dηa2ϵ1ϵ02ðf�k1f�k2f0�k3 þ two permutationsÞ; ðC1dÞ

FIG. 14. The behavior of the first slow roll parameter ϵ1 has
been plotted for two sets of parameters describing the potential
(A1) and suitable initial conditions that lead to about 75 e-folds of
inflation. Note that the first set of values for the parameters leads
to punctuated inflation with ϵ1 (plotted in red) crossing unity
(indicated as a dotted horizontal line) twice, once prior to the
regime of ultraslow roll and eventually when inflation terminates.
The second set of parameters leads to an extended period of
ultraslow roll (plotted in blue) without any interruption of
inflation until the very end.
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G5ðk1; k2; k3Þ ¼
i
2

Z
ηe

ηi

dηa2ϵ31

�
k1 · k2
k22

f�k1f
0�
k2
f0�k3 þ five permutations

�
; ðC1eÞ

G6ðk1; k2; k3Þ ¼
i
2

Z
ηe

ηi

dη a2ϵ31

�
k21ðk2 · k3Þ

k22k
2
3

f�k1f
0�
k2
f0�k3 þ two permutations

�
: ðC1fÞ

These integrals are to be evaluated from a sufficiently early
time, say, ηi, when all the modes are well inside the Hubble
radius, until suitably late times, which can be conveniently
chosen to be a time close to the end of inflation, say, ηe.

APPENDIX D: A CLOSER EXAMINATION OF
THE CONSISTENCY RELATION

We had pointed out that, in the squeezed limit, i.e., when
k2≃k3¼ k and k1 → 0, the non-Gaussianity parameter fNL
is expected to satisfy the consistency condition fCRNLðkÞ ¼
ð5=12Þ½nSðkÞ − 1�, where nSðkÞ − 1 ¼ d lnPSðkÞ=d ln k is
the scalar spectral index. In the results presented earlier (in
Figs. 11 and 12), we had worked with k1 ¼ 10−3k to arrive
at fNL in the squeezed limit. While we find that the
consistency condition is satisfied to better than 5% over
a wide range of scales, we notice that there is some
departure around wave numbers corresponding to the peak
in the scalar power spectrum. To investigate this point more
closely, in Fig. 15, we have plotted the numerical results
around the peak in the scalar power spectrum for the
original choice of k1 as well as for k1 ¼ 10−1k and k1 ¼
10−5k in the case of the model PI3. We have considered the
case of k1 ¼ 10−1k since we find that roughly a decade of
modes exit the Hubble radius during the ultraslow roll

phase. Evidently, such a value of k1 would be insufficient
for it to be considered a squeezed mode. We find that the
value of fNL remains of order unity even when we confine
to modes which leave the Hubble radius during the period
of ultraslow roll. Also, as one would expect, we find that
the consistency condition is satisfied better and better as we
work with a smaller value of k1. We should clarify that
adequate care needs to be taken while evaluating the
integrals involved in the calculation of the bispectrum
during the ultraslow roll regime. Since there occur rapid
changes in the slow roll parameters during this epoch, we
should regulate the integrals with an appropriate choice for
the cutoff parameter κ, especially for the dominant con-
tribution G4ðk1; k2; k3Þ [cf. Appendix C]. With an appro-
priate cutoff and with smaller values for the squeezed mode
k1, we find that the match between fNL and fCRNL indeed
improves. Nevertheless, even with a smaller of choice of k1,
we still notice some difference near the peak in the power
spectrum. We feel that this is an artifact and we believe that
the difference can be overcome with a further smaller value
for k1. However, working with a very small k1 poses certain
numerical challenges, and we will leave it for future
investigation. We should mention that this an independent
issue and stress that it does not affect our main conclusions
related to PBHs and GWs.

FIG. 15. The non-Gaussianity parameter fNL in the squeezed limit (in blue) and the consistency condition fCRNL (in red) have been
plotted for the model PI3 over wave numbers around the peak in the scalar power spectrum. We have set the squeezed mode to be
k1 ¼ 10−1k (on the left), k1 ¼ 10−3k (in the middle), and k1 ¼ 10−5k (on the right) in plotting these figures. We have also indicated the
5% uncertainty in our numerical estimate as bands (in blue). Moreover, we have demarcated the range of modes (by vertical, dashed,
green lines) that leave the Hubble radius during the epoch of ultraslow roll in the model. Obviously, the choice of k1 ¼ 10−1k is
insufficient for k1 to be considered a squeezed mode. Such a choice has been made to illustrate the point that the value of fNL proves to
be of order unity even when we confine to modes that leave the Hubble radius during the period of ultraslow roll. Evidently, there is an
improvement in the extent to which the consistency condition is satisfied when we choose to work with smaller and smaller values of k1.
Though the match improves as we work with a smaller k1, we still seem to notice some deviation. This is possibly an artifact arising due
to the reason that, numerically, we are unable to work with an adequately small value of k1.
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APPENDIX E: ASYMPTOTIC BEHAVIOR OF
THE CURVATURE PERTURBATIONS

As we mentioned, it has been shown that an indefinite
ultraslow roll regime of inflation leads to the violation of
the consistency condition [131,132]. Since all the models
of our interest contain an ultraslow roll phase, one may
wonder if a violation of the consistency condition would
occur in these cases. As we have seen, the consistency

condition is satisfied in all the cases we have considered.
This is primarily due to the fact that the ultraslow roll phase
lasts only for a finite duration in our models, permitting the
eventual freezing of the amplitude of the curvature
perturbations.
In this Appendix, we shall illustrate this point with the

aid of a truncated version of the scenario RS1. We shall
consider the following two functional forms for ϵ1ðNÞ:

ϵIII1 ðNÞ¼ ½ϵ1að1þ ϵ2aNÞ�
�
1− tanh

�
N−N1

ΔN1

��
; ðE1Þ

ϵIV1 ðNÞ¼ ½ϵ1að1þϵ2aNÞ�
�
1− tanh

�
N−N1

ΔN1

��
þϵ1b: ðE2Þ

Evidently, while the first choice leads to an indefinite
period of ultraslow roll beyond the e-fold N1, the second
choice restores slow roll when ϵ1ðNÞ attains the value of
ϵ1b. In Fig. 16, we have plotted the behavior of these slow
roll parameters as well as the evolution of the curvature
perturbation for three modes which leave the Hubble radius
just prior to and after the onset of the ultraslow roll phase.
We have worked with the following values for parameters
involved in plotting the figure: ϵ1a ¼ 10−4, ϵ2a ¼ 0.05,
N1 ¼ 42, ΔN1 ¼ 0.5, and ϵ1b ¼ 10−10. It should be clear
that, while the amplitude of the curvature perturbation
grows indefinitely when the ultraslow roll continues, the
amplitude freezes when slow roll inflation is restored.

APPENDIX F: THE STEEPEST GROWTH OF
THE SCALAR POWER SPECTRUM

In models of ultraslow roll and punctuated inflation, we
have seen that the scalar power grows rapidly from its
COBE normalized values on the CMB scales to higher

FIG. 16. The functional forms ϵIII1 ðNÞ (in red) and ϵIV1 ðNÞ (in
blue) for the first slow roll parameter have been plotted
as a function of e-folds (on top). We have also illustrated the
evolution of the dominant, imaginary part, of the curvature
perturbation Rk for three representative modes in these two
scenarios (as solid, dashed, and dotted curves, in red and blue,
respectively, at the bottom). It is easy to see that (upon
comparison of, say, the dotted red and blue curves) that the
end of the ultraslow phase ensures that the amplitude of the
curvature perturbations eventually freeze.

FIG. 17. The scalar power spectra around the region where they exhibit the sharpest growth have been plotted in the cases of RS1 (on
the left) and RS2 (on the right) for a set of values of ΔN1. We have plotted the spectra for the following four values of ΔN1: (0.1, 0.08,
0.05, 0.01) (in red, blue, green, and purple, respectively). The insets illustrate the corresponding spectral indices nS − 1. We have also
indicated the k4 behavior in the case of RS1 (as dotted lines of corresponding colors on the left) to show how well it matches the spectra
during the growth. It should be evident that, while RS1 leads to a growth corresponding to nS − 1 ≃ 4, RS2 permits a steeper but
nonuniform growth with nS − 1 varying between four and six over the relevant wave numbers.
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values at smaller scales over wave numbers that leave the
Hubble radius during the transition from slow roll to
ultraslow roll. An interesting issue that is worth under-
standing is the steepest such growth that is possible in
models of inflation driven by a single, canonical scalar field.
It has been argued that the fastest growth will have nS −
1 ≃ 4 over this range of wave numbers (in this context, see
Ref. [76]; also see Ref. [81]). We find that the reconstructed
scenarios RS1 and RS2 easily permit us to examine this
issue. Recall that, in these scenarios, the parameter ΔN1

determines the rapidity of the transition from the slow roll to
the ultraslow roll regime [cf. Eqs. (14)].We find that it is this
parameter that dictates the steepness of the growth in the

corresponding scalar power spectra, with smaller ΔN1

producing a faster rise. We have examined the rate of
growth in the cases of RS1 and RS2 by varying ΔN1 over
a certain range, while keeping the other parameters fixed. In
Fig. 17, we have illustrated the spectra for four values of
ΔN1, which are relatively smaller than thosewe had used for
the reconstructions discussed earlier. It should be clear from
the figure that, in the case of RS1, the rise is fairly steady
as thevalue ofΔN1 ismade smaller, withnS − 1 ≃ 4 over the
growing regime. In the case of RS2, we find that nS − 1
varies between four and six over the growing regime and
therefore corresponds to a steeper but nonuniform growth of
the spectra.
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[93] A. Escrivà, C. Germani, and R. K. Sheth, J. Cosmol.

Astropart. Phys. 01 (2021) 030.
[94] P. Ade et al. (Planck Collaboration), Astron. Astrophys.

594, A13 (2016).
[95] N. Aghanim et al. (Planck Collaboration), Astron. As-

trophys. 641, A6 (2020).
[96] A. Barnacka, J. F. Glicenstein, and R. Moderski, Phys.

Rev. D 86, 043001 (2012).
[97] A. Katz, J. Kopp, S. Sibiryakov, and W. Xue, J. Cosmol.

Astropart. Phys. 12 (2018) 005.
[98] K. Griest, A. M. Cieplak, and M. J. Lehner, Phys. Rev.

Lett. 111, 181302 (2013).
[99] R. Allsman et al. (Macho Collaboration), Astrophys. J.

Lett. 550, L169 (2001).
[100] P. Tisserand et al. (EROS-2 Collaboration), Astron. As-

trophys. 469, 387 (2007).
[101] L. Wyrzykowski et al., Mon. Not. R. Astron. Soc. 416,

2949 (2011).
[102] M. Ricotti, J. P. Ostriker, and K. J. Mack, Astrophys. J.

680, 829 (2008).
[103] T. D. Brandt, Astrophys. J. 824, L31 (2016).
[104] B. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, arXiv:

2002.12778.

PRIMORDIAL BLACK HOLES AND SECONDARY … PHYS. REV. D 103, 083510 (2021)

083510-29

https://doi.org/10.1103/PhysRevLett.102.161101
https://doi.org/10.1103/PhysRevLett.102.161101
https://doi.org/10.1103/PhysRevLett.107.069901
https://doi.org/10.1143/PTP.123.867
https://doi.org/10.1143/PTP.123.867
https://doi.org/10.1143/PTP.126.351
https://doi.org/10.1103/PhysRevD.97.123532
https://doi.org/10.1088/1475-7516/2018/09/012
https://doi.org/10.1088/1475-7516/2018/09/012
https://doi.org/10.1088/1475-7516/2020/09/037
https://doi.org/10.1088/1475-7516/2020/09/037
https://doi.org/10.1103/PhysRevLett.118.121101
https://doi.org/10.1103/PhysRevLett.119.029901
https://doi.org/10.1103/PhysRevLett.119.029901
https://doi.org/10.1086/157593
https://doi.org/10.3847/1538-4357/aabd3b
https://doi.org/10.3847/1538-4357/aabd3b
https://arXiv.org/abs/1702.00786
https://arXiv.org/abs/1702.00786
https://doi.org/10.1007/s10714-020-02691-1
https://doi.org/10.1103/PhysRevD.72.083005
https://doi.org/10.1103/PhysRevD.72.083005
https://doi.org/10.1088/0264-9381/23/7/014
https://doi.org/10.1088/0264-9381/23/7/014
https://arXiv.org/abs/1907.11305
https://doi.org/10.1088/0264-9381/28/9/094011
https://doi.org/10.1088/0264-9381/28/9/094011
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1088/0264-9381/29/12/124013
https://doi.org/10.1088/0264-9381/29/12/124013
https://doi.org/10.1088/0264-9381/30/7/079501
https://doi.org/10.1088/1475-7516/2008/04/010
https://doi.org/10.1088/1475-7516/2008/04/010
https://doi.org/10.1088/1475-7516/2012/01/008
https://doi.org/10.1088/1475-7516/2012/01/008
https://doi.org/10.1088/1475-7516/2013/05/026
https://doi.org/10.1088/1475-7516/2013/05/026
https://doi.org/10.1088/1475-7516/2006/07/008
https://doi.org/10.1088/1475-7516/2006/07/008
https://arXiv.org/abs/0708.3875
https://doi.org/10.1103/PhysRevD.96.063503
https://doi.org/10.1016/j.dark.2019.100275
https://doi.org/10.1016/j.dark.2019.100275
https://doi.org/10.1088/1475-7516/2018/03/016
https://doi.org/10.1088/1475-7516/2019/12/029
https://doi.org/10.1088/1475-7516/2019/12/029
https://doi.org/10.1088/1475-7516/2020/05/022
https://doi.org/10.1088/1475-7516/2020/05/022
https://doi.org/10.1088/1475-7516/2019/07/048
https://doi.org/10.1088/1475-7516/2019/07/048
https://doi.org/10.1103/PhysRevD.99.043536
https://doi.org/10.1103/PhysRevD.99.043536
https://doi.org/10.1088/1475-7516/2020/03/029
https://doi.org/10.1088/1475-7516/2020/03/029
https://doi.org/10.1103/PhysRevLett.122.201101
https://doi.org/10.1103/PhysRevLett.122.201101
https://doi.org/10.1103/PhysRevD.99.041301
https://doi.org/10.1088/1475-7516/2019/10/059
https://doi.org/10.1088/1475-7516/2019/10/059
https://arXiv.org/abs/2007.10686
https://doi.org/10.1103/PhysRevD.97.083509
https://doi.org/10.1103/PhysRevD.97.083509
https://doi.org/10.1088/1475-7516/2019/06/028
https://doi.org/10.1088/1475-7516/2019/06/028
https://doi.org/10.1088/1475-7516/2020/03/002
https://doi.org/10.1088/1475-7516/2020/03/002
https://doi.org/10.1088/1475-7516/2007/06/019
https://doi.org/10.1103/PhysRevD.103.023505
https://doi.org/10.1103/PhysRevD.103.023505
https://doi.org/10.1088/1475-7516/2018/07/005
https://doi.org/10.1088/1475-7516/2018/07/005
https://doi.org/10.1088/1475-7516/2020/04/048
https://doi.org/10.1088/1475-7516/2020/04/048
https://doi.org/10.1103/PhysRevD.63.023506
https://doi.org/10.1103/PhysRevD.81.103511
https://doi.org/10.1103/PhysRevD.81.103511
https://doi.org/10.1088/1475-7516/2018/06/034
https://doi.org/10.1088/1475-7516/2018/06/034
https://doi.org/10.1088/1475-7516/2019/06/049
https://doi.org/10.1088/1475-7516/2019/06/049
https://arXiv.org/abs/2011.09489
https://doi.org/10.1103/PhysRevD.103.023535
https://doi.org/10.1103/PhysRevD.70.041502
https://doi.org/10.1103/PhysRevLett.122.141302
https://doi.org/10.1103/PhysRevLett.122.141302
https://doi.org/10.1103/PhysRevD.101.063520
https://doi.org/10.1103/PhysRevD.101.063520
https://doi.org/10.1016/j.dark.2020.100466
https://doi.org/10.1103/PhysRevD.101.044022
https://doi.org/10.1103/PhysRevD.101.044022
https://doi.org/10.1088/1475-7516/2021/01/030
https://doi.org/10.1088/1475-7516/2021/01/030
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1103/PhysRevD.86.043001
https://doi.org/10.1103/PhysRevD.86.043001
https://doi.org/10.1088/1475-7516/2018/12/005
https://doi.org/10.1088/1475-7516/2018/12/005
https://doi.org/10.1103/PhysRevLett.111.181302
https://doi.org/10.1103/PhysRevLett.111.181302
https://doi.org/10.1086/319636
https://doi.org/10.1086/319636
https://doi.org/10.1051/0004-6361:20066017
https://doi.org/10.1051/0004-6361:20066017
https://doi.org/10.1111/j.1365-2966.2011.19243.x
https://doi.org/10.1111/j.1365-2966.2011.19243.x
https://doi.org/10.1086/587831
https://doi.org/10.1086/587831
https://doi.org/10.3847/2041-8205/824/2/L31
https://arXiv.org/abs/2002.12778
https://arXiv.org/abs/2002.12778


[105] A. M. Green and B. J. Kavanagh, J. Phys. G 48, 043001
(2021).

[106] P. Montero-Camacho, X. Fang, G. Vasquez, M. Silva, and
C. M. Hirata, J. Cosmol. Astropart. Phys. 08 (2019) 031.

[107] R. Laha, Phys. Rev. Lett. 123, 251101 (2019).
[108] B. Dasgupta, R. Laha, and A. Ray, Phys. Rev. Lett. 125,

101101 (2020).
[109] R. Laha, J. B. Muñoz, and T. R. Slatyer, Phys. Rev. D 101,

123514 (2020).
[110] M. Maggiore, Phys. Rep. 331, 283 (2000).
[111] N. Bartolo et al., J. Cosmol. Astropart. Phys. 12 (2016)

026.
[112] N. Bartolo, V. De Luca, G. Franciolini, A. Lewis, M.

Peloso, and A. Riotto, Phys. Rev. Lett. 122, 211301
(2019).

[113] N. Bartolo, V. De Luca, G. Franciolini, M. Peloso, D.
Racco, and A. Riotto, Phys. Rev. D 99, 103521 (2019).

[114] C. Moore, R. Cole, and C. Berry, Classical Quantum
Gravity 32, 015014 (2015).

[115] J. Coleman (MAGIS-100 Collaboration), Proc. Sci,
ICHEP2018 (2019) 021 [arXiv:1812.00482].

[116] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. D 100, 061101 (2019).

[117] B. P. Abbott et al. (LIGO Scientific Collaboration),
Classical Quantum Gravity 34, 044001 (2017).

[118] E. Thrane and J. D. Romano, Phys. Rev. D 88, 124032
(2013).

[119] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Nature (London) 460, 990 (2009).

[120] M. Tsuneto, A. Ito, T. Noumi, and J. Soda, J. Cosmol.
Astropart. Phys. 03 (2019) 032.

[121] C. Powell and G. Tasinato, J. Cosmol. Astropart. Phys. 01
(2020) 017.

[122] L. Iacconi, M. Fasiello, H. Assadullahi, and D. Wands, J.
Cosmol. Astropart. Phys. 12 (2020) 005.

[123] P. Ade et al. (Planck Collaboration), Astron. Astrophys.
594, A17 (2016).

[124] Y. Akrami et al. (Planck Collaboration), Astron. Astro-
phys. 641, A9 (2020).

[125] J. M. Maldacena, J. High Energy Phys. 05 (2003) 013.
[126] D. Seery and J. E. Lidsey, J. Cosmol. Astropart. Phys. 06

(2005) 003.
[127] X. Chen, Adv. Astron. 2010, 1 (2010).
[128] F. Arroja and T. Tanaka, J. Cosmol. Astropart. Phys. 05

(2011) 005.

[129] E. Komatsu, Classical Quantum Gravity 27, 124010
(2010).

[130] P. Creminelli and M. Zaldarriaga, J. Cosmol. Astropart.
Phys. 10 (2004) 006.

[131] M. H. Namjoo, H. Firouzjahi, and M. Sasaki, Europhys.
Lett. 101, 39001 (2013).

[132] J. Martin, H. Motohashi, and T. Suyama, Phys. Rev. D 87,
023514 (2013).

[133] H. Motohashi, A. A. Starobinsky, and J. Yokoyama, J.
Cosmol. Astropart. Phys. 09 (2015) 018.

[134] V. Sreenath, D. K. Hazra, and L. Sriramkumar, J. Cosmol.
Astropart. Phys. 02 (2015) 029.

[135] R. Bravo and G. A. Palma, arXiv:2009.03369.
[136] E. Pajer, J. Cosmol. Astropart. Phys. 01 (2021) 023.
[137] E. Komatsu and D. N. Spergel, Phys. Rev. D 63, 063002

(2001).
[138] C. T. Byrnes, E. J. Copeland, and A. M. Green, Phys. Rev.

D 86, 043512 (2012).
[139] M. Taoso and A. Urbano, arXiv:2102.03610.
[140] F. Riccardi, M. Taoso, and A. Urbano, arXiv:2102.04084.
[141] Y. Tada and V. Vennin, J. Cosmol. Astropart. Phys. 02

(2017) 021.
[142] T. Suyama, Y. Tada, and M. Yamaguchi, Prog. Theor. Exp.

Phys. 2020, 113E01 (2020).
[143] S. Matarrese, L. Pilo, and R. Rollo, J. Cosmol. Astropart.

Phys. 01 (2021) 062.
[144] S. S. Mishra and V. Sahni, J. Cosmol. Astropart. Phys. 04

(2020) 007.
[145] R.-G. Cai, S. Pi, S.-J. Wang, and X.-Y. Yang, J. Cosmol.

Astropart. Phys. 05 (2019) 013.
[146] R.-G. Cai, Z.-K. Guo, J. Liu, L. Liu, and X.-Y. Yang, J.

Cosmol. Astropart. Phys. 06 (2020) 013.
[147] A. Ashoorioon, A. Rostami, and J. T. Firouzjaee, arXiv:

1912.13326.
[148] J. Lin, Q. Gao, Y. Gong, Y. Lu, C. Zhang, and F. Zhang,

Phys. Rev. D 101, 103515 (2020).
[149] Z. Yi, Y. Gong, B. Wang, and Z.-h. Zhu, Phys. Rev. D 103,

063535 (2021). .
[150] G. A. Palma, S. Sypsas, and C. Zenteno, Phys. Rev. Lett.

125, 121301 (2020).
[151] J. Fumagalli, S. Renaux-Petel, J. W. Ronayne, and L. T.

Witkowski, arXiv:2004.08369.
[152] M. Braglia, D. K. Hazra, F. Finelli, G. F. Smoot, L.

Sriramkumar, and A. A. Starobinsky, J. Cosmol. Astropart.
Phys. 08 (2020) 001.

RAGAVENDRA, SAHA, SRIRAMKUMAR, and SILK PHYS. REV. D 103, 083510 (2021)

083510-30

https://doi.org/10.1088/1361-6471/abc534
https://doi.org/10.1088/1361-6471/abc534
https://doi.org/10.1088/1475-7516/2019/08/031
https://doi.org/10.1103/PhysRevLett.123.251101
https://doi.org/10.1103/PhysRevLett.125.101101
https://doi.org/10.1103/PhysRevLett.125.101101
https://doi.org/10.1103/PhysRevD.101.123514
https://doi.org/10.1103/PhysRevD.101.123514
https://doi.org/10.1016/S0370-1573(99)00102-7
https://doi.org/10.1088/1475-7516/2016/12/026
https://doi.org/10.1088/1475-7516/2016/12/026
https://doi.org/10.1103/PhysRevLett.122.211301
https://doi.org/10.1103/PhysRevLett.122.211301
https://doi.org/10.1103/PhysRevD.99.103521
https://doi.org/10.1088/0264-9381/32/1/015014
https://doi.org/10.1088/0264-9381/32/1/015014
https://arXiv.org/abs/1812.00482
https://doi.org/10.1103/PhysRevD.100.061101
https://doi.org/10.1088/1361-6382/aa51f4
https://doi.org/10.1103/PhysRevD.88.124032
https://doi.org/10.1103/PhysRevD.88.124032
https://doi.org/10.1038/nature08278
https://doi.org/10.1088/1475-7516/2019/03/032
https://doi.org/10.1088/1475-7516/2019/03/032
https://doi.org/10.1088/1475-7516/2020/01/017
https://doi.org/10.1088/1475-7516/2020/01/017
https://doi.org/10.1088/1475-7516/2020/12/005
https://doi.org/10.1088/1475-7516/2020/12/005
https://doi.org/10.1051/0004-6361/201525836
https://doi.org/10.1051/0004-6361/201525836
https://doi.org/10.1051/0004-6361/201935891
https://doi.org/10.1051/0004-6361/201935891
https://doi.org/10.1088/1126-6708/2003/05/013
https://doi.org/10.1088/1475-7516/2005/06/003
https://doi.org/10.1088/1475-7516/2005/06/003
https://doi.org/10.1155/2010/638979
https://doi.org/10.1088/1475-7516/2011/05/005
https://doi.org/10.1088/1475-7516/2011/05/005
https://doi.org/10.1088/0264-9381/27/12/124010
https://doi.org/10.1088/0264-9381/27/12/124010
https://doi.org/10.1088/1475-7516/2004/10/006
https://doi.org/10.1088/1475-7516/2004/10/006
https://doi.org/10.1209/0295-5075/101/39001
https://doi.org/10.1209/0295-5075/101/39001
https://doi.org/10.1103/PhysRevD.87.023514
https://doi.org/10.1103/PhysRevD.87.023514
https://doi.org/10.1088/1475-7516/2015/09/018
https://doi.org/10.1088/1475-7516/2015/09/018
https://doi.org/10.1088/1475-7516/2015/02/029
https://doi.org/10.1088/1475-7516/2015/02/029
https://arXiv.org/abs/2009.03369
https://doi.org/10.1088/1475-7516/2021/01/023
https://doi.org/10.1103/PhysRevD.63.063002
https://doi.org/10.1103/PhysRevD.63.063002
https://doi.org/10.1103/PhysRevD.86.043512
https://doi.org/10.1103/PhysRevD.86.043512
https://arXiv.org/abs/2102.03610
https://arXiv.org/abs/2102.04084
https://doi.org/10.1088/1475-7516/2017/02/021
https://doi.org/10.1088/1475-7516/2017/02/021
https://doi.org/10.1093/ptep/ptaa144
https://doi.org/10.1093/ptep/ptaa144
https://doi.org/10.1088/1475-7516/2021/01/062
https://doi.org/10.1088/1475-7516/2021/01/062
https://doi.org/10.1088/1475-7516/2020/04/007
https://doi.org/10.1088/1475-7516/2020/04/007
https://doi.org/10.1088/1475-7516/2019/05/013
https://doi.org/10.1088/1475-7516/2019/05/013
https://doi.org/10.1088/1475-7516/2020/06/013
https://doi.org/10.1088/1475-7516/2020/06/013
https://arXiv.org/abs/1912.13326
https://arXiv.org/abs/1912.13326
https://doi.org/10.1103/PhysRevD.101.103515
https://doi.org/10.1103/PhysRevD.103.063535
https://doi.org/10.1103/PhysRevD.103.063535
https://doi.org/10.1103/PhysRevLett.125.121301
https://doi.org/10.1103/PhysRevLett.125.121301
https://arXiv.org/abs/2004.08369
https://doi.org/10.1088/1475-7516/2020/08/001
https://doi.org/10.1088/1475-7516/2020/08/001

