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We explore the physical consequences of a scenario when the standard Hermitian Nambu–Jona-
Lasinio (NJL) model spontaneously develops a non-Hermitian PT -symmetric ground state via dy-
namical generation of an anti-Hermitian Yukawa coupling. We demonstrate the emergence of a
noncompact non-Hermitian (NH) symmetry group which characterizes the NH ground state. We
show that the NH group is spontaneously broken both in weak- and strong-coupling regimes. In
the chiral limit at strong coupling, the NH ground state develops inhomogeneity, which breaks the
translational symmetry. At weak coupling, the NH ground state is a spatially uniform state, which
lies at the boundary between the PT -symmetric and PT -broken phases. Outside the chiral limit,
the minimal NJL model does not possess a stable non-Hermitian ground state.

I. INTRODUCTION

The Nambu–Jona-Lasinio (NJL) model [1] describes
the dynamics of interacting relativistic fermions. The
model is often employed as a viable low-energy effective
theory of quantum chromodynamics (QCD) because the
NJL model, similarly to QCD, exhibits both the dynam-
ical mass gap generation and the chiral symmetry break-
ing. The model naturally describes basic chiral features
of the QCD ground state as well as particularities of the
mesonic spectrum, and captures effects of finite temper-
ature and baryonic density [2].

Similarly to QCD, the NJL model is described by a
Hermitian Lagrangian. The ground states of both theo-
ries are naturally assumed to be Hermitian. In our defi-
nition, the “Hermiticity” of the ground state means that
elementary excitations over this ground state possess a
Hermitian dynamics and, therefore, are described by a
Hermitian model. In our paper, we attempt to describe
a scenario, when a Hermitian model may spontaneously,
via a dynamical mechanism, generate a non-Hermitian
ground state.

Non-Hermitian terms usually appear in open systems
when a physical system interacts an the external envi-
ronment. Due to the energy exchange with the environ-
ment, some of those systems reside in an off-equilibrium
but steady regime. A well-balanced steady state may be
described by a Hamiltonian with real-valued eigenener-
gies. This is the case of the class of Parity-Time (PT )
symmetric systems, where the Hermiticity condition is
traded by the commutation of the Hamiltonian (and the
eigenstates) with the combined parity P and time rever-
sal inversion T operation [3]. This combined symmetry
allows for an unitary dynamical evolution and real spec-
trum.

Non-Hermitian physics has previously been addressed
in the contexts of interacting models of relativistic
fermions. For example, the inclusion of non-Hermitian

PT -symmetric interactions may support real energy
spectra in fermionic theories in 1+1 and 3+1 dimen-
sions [4]. Anti-Hermitian Yukawa interactions may lead
to an anomalous radiative mass-gap generation in a
model of the right-handed sterile neutrinos, while the en-
ergetics of the system forbids the emergence of a dynam-
ically generated mass [5]. Inclusion of a particular PT -
and chirally symmetric bilinear non-Hermitian term con-
tributes to the mass gap generation in the NJL model
and leads to a rich phase structure [6].

Our proposal differs from the already existing ap-
proaches. Instead of incorporation of a non-Hermitian
coupling to the original model, we consider the possibil-
ity that a perfectly Hermitian model develops, via a dy-
namical mechanism, a non-Hermitian ground state with
a physically meaningful set of features.

Non-Hermitian physics of relativistic fermions may ap-
pear in fireballs of quark-gluon plasma (QGP) created in
heavy-ion collisions. A fireball of QGP is a relativistically
expanding out-of-equilibrium system. Although this sys-
tem does not reside in a steady regime, the fermionic
interactions may generate a non-Hermitian ground state
in a steady-state non-equilibrium regime, which is real-
ized in between the early moments of the plasma until the
evolution of the QGP approaches the chiral crossover and
eventual hadronization. The non-Hermitian description
of the QGP in the expanding non-equilibrium regime is
supported by the widely acknowledged fact that the equi-
librium ground state of a generic non-Hermitian Hamil-
tonian is often related to an out-of-equilibrium ground
state of an appropriate Hermitian system [7]. In many
cases, the Hermitian and non-Hermitian Hamiltonians
are indeed related to each other by a (non-Unitary) sim-
ilarity transformations. In a coherence with the above
remarks, we notice that non-Hermitian Dirac fermions
allow for realization of the chiral magnetic effect [8] in
the thermal equilibrium regime [9], while the similar ef-
fect is forbidden in the thermal equilibrium for the ordi-
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nary Hermitian Dirac fermions [10–15]. The concept of
non-Hermitian quantum theory may also be extended to
gauge-gravity duality [16].

In Condensed Matter Physics, the situation is simi-
lar. The problem of symmetry-broken states in interact-
ing many-body systems with already incorporated non-
Hermiticities has been studied in several physical systems
in the recent years. The questions of interest include the
effect of non-Hermitian terms in topological supercon-
ductivity [17], how the phenomenology attributed to Ma-
jorana states might appear in the topologically trivial re-
gion due to coupling to the environment [18], or the pos-
sibility of non-Hermitian superfluidity with a complex-
valued interaction constant [19]. Also some problems
known to reside in the strongly coupling regime have
been investigated when non-Hermitian terms are consid-
ered. These are the case, for example, of the Kondo
effect [20], the out-of-equilibrium-induced coupling be-
tween the Higgs mode and the Leggett modes in driven
superconductors [21], or the Kibble-Zurek mechanism
in non-Hermitian environments [22]. In all these cases,
the non-Hermitian elements are associated to open sys-
tems coupled to the environment or when the system are
driven out of equilibrium. Only recently, the possibility
of a non-Hermitian superconducting ground states out of
an interacting Hermitian system has been proposed [23].
The non-Hermitian albeit PT -symmetric superconduc-
tivity displays a different phenomenology than the Her-
mitian counterpart.

The organization of this article is as follows: In Sec-
tion II we briefly review the phenomenology of a free
model of non-Hermitian Dirac fermions where the non-
Hermiticity is explicitly imposed at the Lagrangian level.
The NJL model and its standard Hermitian ground state
are introduced in Section III. The homogeneous non-
Hermitian ground states are discussed in Section IV while
their inhomogeneities are address within the Ginzburg-
Landau approach in Section V. An outlook on further
development and our conclusions are given in the last
two sections. The Appendix contains the presentation
of the gradient expansion of the effective non-Hermitian
action with the nonhomogeneous terms included.

II. FREE NON-HERMITIAN FERMIONS

The PT -invariant non-Hermitian extension of the La-
grangian for a Dirac fermion [24–28] has the following
form:

Lψ = ψ̄
(
i/∂ −m−m5γ

5
)
ψ, (1)

where m is the mass of the fermion field ψ and m5

is a non-Hermitian mass. Standard notations for the
fermionic fields will be employed throughout the article:
ψ̄ = ψ†γ0, and /∂ = γµ∂µ where γµ and γ5 are the Dirac
matrices.

In the momentum space, the Hamiltonian of the sys-

tem (1) is given by the following operator,

Ĥ = α · k + βm+ βγ5m5, (2)

where α = γ0γ and β = γ0 are the original Dirac nota-
tions. Due to the presence of the last term, the Hamilto-
nian (2) is not a Hermitian operator: Ĥ 6= Ĥ† provided
m5 6= 0.

The Hamiltonian (2), however, commutes with the

product of parity P and time T inversions: [PT , Ĥ] = 0,
thus implying that the theory respects the PT symme-
try. These discrete operations affect the coordinates as
follows: P(t,x) = (t,−x) and T (t,x) = (−t,x). The
parity inversion P acts linearly on the fermionic fields:

P :

{
ψ(t,x) → γ0ψ(t,x),

ψ̄(t,x) → ψ̄(t,x)γ0,
(3)

while the time inversion T is represented by an anti-linear
operator:

T :

{
ψ(t,x) → iγ1γ2ψ∗(t,x),

ψ̄(t,x) → ψ̄∗(t,x)iγ1γ2.
(4)

Therefore, the Lagrangian (1) describes a PT symmetric
non-Hermitian theory of Dirac fermions.

The Lagrangian (1) gives the following classical equa-
tions of motion: (

i/∂ −m−m5γ
5
)
ψ = 0 , (5)

ψ̄
(
i
←−
/∂ +m+m5γ

5
)

= 0 . (6)

The positive-frequency solutions of the Dirac equation,

ψ(x) = u(p)e−ip·x, (7)

are expressed via the spinor u(p) which satisfies the Dirac
equation in the momentum space:(

/p−m−m5γ
5
)
u(p) = 0, (8)

pµ = (p0,p) is the the four-momentum and p · x = pµx
µ

is the scalar product in the Minkowski space. The self-
consistency of Eq. (8) requires p2 = M2 and determines
the energy spectrum (p0 ≡ Ep):

Ep =
√
p2 +M2, (9)

where the mass of the fermionic excitation is

M =
√
m2 −m2

5. (10)

The same statement applies also to the negative-energy
solutions. We always take |m| > |m5| to insure that the
mass M is a real quantity. This range of parameters cor-
respond to the “PT -symmetric” phase. If the Hermitian
mass |m| is smaller than the non-Hermitian mass |m5|,
then the system resides in the “PT -broken” phase which
is characterized by paired complex branches of fermionic
energies that make the vacuum unstable. The stability
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of the non-Hermitian theory in the PT symmetric re-
gion is the direct consequence of PT symmetry of the
Hamiltonian (2).

In the absence of both non-Hermitian m5 and Hermi-
tian m5 masses, the free fermionic theory (1) possesses
the global vector and global axial symmetries described
by the continuous transformations, respectively:

U(1)V : ψ→ eiωV ψ, ψ̄ → ψ̄e−iωV , (11a)

U(1)A : ψ→ eiγ
5ωAψ, ψ̄ → ψ̄eiγ

5ωA , (11b)

with the coordinate-independent parameters ωV and ωA.
In the limit of the vanishing masses, m = m5 = 0, the

continuous symmetries (11) lead to the following vector
and pseudo-vector Noether currents, respectively:

jµV = ψ̄γµψ , (12a)

jµA = ψ̄γµγ5ψ , (12b)

which are conserved at the classical level.
However, if the masses m and m5 are nonzero, then

the currents (12) are no more conserved:

∂µj
µ
V = −2im5ψ̄γ

5ψ , (13a)

∂µj
µ
A = 2im ψ̄γ5ψ . (13b)

The Hermitian mass m breaks the axial U(1)A symme-
try (11b) while the non-Hermitian mass m5 breaks the
vector U(1)V symmetry (11a).

However, one can see from the non-conservation pat-
tern (13) that the model admits the following linear com-
bination of the currents (12):

JµV = jµV +
m5

m
jµA, (14)

which is conserved at the classical level:

∂µJ
µ
V = 0. (15)

The definition (14) gives us the new conserved vector
current.

The new axial current is orthogonal to the new vector
current (14):

JµA = jµA −
m5

m
jµV . (16)

This quantity is not conserved at the classical level:

∂µJ
µ
A = 2i

m2 −m2
5

m
ψ̄γ5ψ, (17)

similarly to the ordinary axial current.
A system with a finite density of the conserved charge

J0
V may be controlled by the thermodynamically conju-

gated chemical potential. Certain consequences of the
finite-density non-Hermitian fermions are discussed in
Ref. [9]. Below we proceed to the investigation of the
ground state of a Hermitian NJL model in which the non-
Hermitian theory (1) may arise as an effective theory in
a spontaneously formed non-Hermitian ground state.

III. HERMITIAN GROUND STATE IN THE
NJL MODEL

A. Nambu-Jona–Lasinio model

The NJL model provides a simplest description of in-
teracting fermions which features the chiral symmetry
breaking and the mass gap generation. We consider the
standard Hermitian NJL model described by the follow-
ing Lagrangian:

LNJL = ψ̄(i/∂ −m0)ψ +
G

2

[(
ψ̄ψ
)2

+
(
ψ̄iγ5ψ

)2]
, (18)

which describes the single fermion species ψ with a bare
mass m0. The coupling constant G determines the
strength of the local four-fermion interaction.

In the massless limit, m0 = 0, the NJL Lagrangian (18)
is invariant under vector (11a) and axial (11b) global
transformations. The U(1)V symmetry may be gauged
via the coupling of the fermions to the electromagnetic
field. Since in the physical world the vector (electric)
current is always conserved, the U(1)V symmetry should
never be broken in realistic models. However, the U(1)A
may become broken at the quantum level. In the single-
species model that we consider (18), the breaking of the
chiral symmetry appears spontaneously due to the four-
fermion interaction as we discuss below.1

In the presence of the fermionic mass, m0 6= 0, the
U(1)V symmetry (11a) is maintained, while the axial
symmetry (11b) gets explicitly broken. In QCD, how-
ever, the bare mass (also called “current mass”) m0 is
much smaller then the dynamically generated fermionic
mass. Therefore, the effects of the axial mass are small
and the axial symmetry (11b) is said to be approximately
correct. Below, we review the derivation of the standard
Hermitian ground states and the dynamical mass gap
generation in the NJL model (18). Afterwards, we will
proceed to the investigation of the non-Hermitian mass
gap generation in the same model.

In the scenario we are considering here, the non-
Hermiticity is broken dynamically within the Hermitian
model. For a different version of the NJL model, where
the non-Hermiticity is broken explicitly via a coupling
of the NJL Lagrangian (18) to a non-Hermitian back-
ground, we refer the reader to Ref. [6].

B. Hermitian ground state in the NJL model

In the standard approach, the partition function of the
NJL model (18),

Z =

∫
DψDψ̄ exp

{
i

∫
d4xLNJL(ψ̄, ψ)

}
, (19)

1 In the single-fermion model, the U(1)A symmetry (11b) may be
called both axial and chiral. This terminological degeneracy is
lifted in the multi-species models.
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is partially bosonized by inserting the identities2

1 =

∫
Dσ exp

{
− i

2G

∫
d4x

(
σ +Gψ̄ψ

)2}
, (20a)

1 =

∫
Dφ exp

{
− i

2G

∫
d4x

(
φ+Gψ̄iγ5ψ

)2}
, (20b)

under the integral over the fermionic fields in Eq. (19).
The fields σ and φ are real-valued quantities.

The prefactors in the exponents of Eq. (20) are chosen
in such a way that, after the substitution of Eqs. (20) to
Eq. (19),

Z =

∫
DψDψ̄DσDφ exp

{
i

∫
d4xLNJL(ψ̄, ψ;σ, φ)

}
,

(21)
the four-fermion interaction terms of Eq. (18) disappear:

LNJL(ψ̄, ψ;σ, φ) = ψ̄
[
i/∂ − σ − iγ5φ)

]
ψ

− (σ −m0)2 + φ2

2G
. (22)

The partially-bosonized NJL Lagrangian (21) becomes a
bilinear expression in terms the original fermionic fields,
coupled, via the Yukawa interactions, with the scalar
σ and pseudoscalar φ auxiliary fields.3 In the expres-
sion (21) we have shifted the σ–field, σ → σ−m0 for the
sake of further convenience.

The interpretation of the auxiliary fields σ and φ may
be deduced from the saddle-point equations of the parti-
tion function (21):

〈σ〉 = m0 +G
〈
ψ̄ψ
〉
, 〈φ〉 = G

〈
ψ̄iγ5ψ

〉
. (23)

The vacuum expectation value of the condensate σ plays
a role of the mass of the fermion field. At the sad-
dle point, the vacuum expectation values of the scalar
and pseudoscalar auxiliary fields acquire contributions
proportional, correspondingly, to the scalar and pseu-
doscalar condensates of fermionic fields (23). The emer-
gence of the scalar fermion condensate (also called “chiral
condensate”)

〈
ψ̄ψ
〉

leads to two dynamical phenomena.
First, the chiral condensate is not invariant under the
chiral transformations (11b) and therefore it breaks the
chiral symmetry. Second, the emergence of the chiral
condensate leads to the mass gap generation (23) as the
field σ plays a role of the fermion mass (22). The pseu-
doscalar condensate vanishes in the physical vacuum〈

ψ̄iγ5ψ
〉

= 0, (24)

implying, according to Eq. (23), that the mean value of
the field φ vanishes as well, 〈φ〉 = 0.

2 Hereafter we omit inessential normalization factors in front of
the functional integrals.

3 For the model with a single fermion, we reserve the letter φ for
the pseudoscalar instead of the standard notation π.

The applicability of the saddle-point approximation
becomes justified for the NJL model with many fermion
flavors Nf . In the limit Nf → ∞, the saddle-point cal-
culation becomes exact. The consistency of the physical
interpretation (23) is guaranteed by the fact that the bi-
linears ψ̄ψ and ψ̄iγ5ψ, similarly to the auxiliary fields σ
and φ, are real-valued quantities for any spinor field ψ.

Below, we will treat the auxiliary fields σ and φ in
the mean-field approximation. For the sake of brevity,
we will use the same notations for the fields and their
expectation values, σ = 〈σ〉 and φ = 〈φ〉. In a leading
order, we assume that these fields are independent of the
spacetime coordinates. Later, we will consider physical
excitations over this uniform background.

The integration over the fermionic fields in the par-
tition function (22) leads to the following purely scalar
representation of the NJL model:

Z =

∫
DσDφ exp

{
− i

2G

∫
d4x

[
(σ −m0)2 + φ2

]
+ln det

[
i/∂ − (σ + iγ5φ)

]}
. (25)

In the completely bosonized representation of the NJL
model (25), the chiral invariance (11b) is translated to
a chiral (axial) rotation for the following combination of
the scalar and pseudoscalar fields:

σ + iγ5φ→ e−iγ5θ (σ + iγ5φ) e−iγ5θ ≡ σ̃ + iγ5φ̃. (26)

For coordinate–independent condensates σ and φ, the
fermionic determinant depends only on the combination
σ2 +φ2 which is invariant under the chiral rotation (26).

It is convenient to use the rotation (26) to turn the
combination σ+iγ5φ into the purely scalar field with the

absolute value |σ̃| =
√
σ2 + φ2. Taking σ̃ a real positive

number (σ̃ > 0 and φ̃ = 0) and renaming back σ̃ → σ,
we find that the fermionic sector of partially bosonized
mean-field NJL model corresponds to a theory of massive
fermions with an effective mass m = σ and vanishing
pseudoscalar field φ = 0 after the chiral rotation.

Using then the expression for the functional trace of
an operator Ô,

tr Ô =

∫
d4x

∫
dk0

2π

∫
d3k

(2π)3
Ok0,k, (27)

we get for the (chirally-rotated) last term in Eq. (25) the
following expression:

ln det
(
i/∂ − σ

)
= −i

∫
d4xVint(σ), (28)

with the potential for the field σ:

Vint(σ) = i

∫
dk0

2π

∫
d3k

(2π)3
tr ln

/k − σ
Λ

. (29)

Here /k ≡ γµkµ and the (so far arbitrary) quantity of
the dimension of mass Λ is needed to maintain correct
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dimension. Hereafter we will ignore inessential additive
constants in the potentials and actions.

Although it is possible to continue the derivation in
Minkowski space-time, it is convenient to perform the
Wick rotation to the Euclidean momentum space:

k0 → ik4 ,

∫
dk0

2π
→ i

∫
dk4

2π
. (30)

We arrive to the potential (29) given by the following
expression:

Vint(σ) = −2

∫
d4k

(2π)4
ln
k2 + σ2

Λ2
, (31)

where d4k = dk4d
3k. Here we used the fact that under

the Wick rotation /k = γ0k0−γ ·k→ −γ4k4−γ ·k = −/k,
supplemented by the standard chain of relations:∫

d4k

(2π)4
tr ln

/k − σ
Λ

=
1

2

∫
d4k

(2π)4
tr

[
ln
/k + σ

Λ
+ ln
−/k + σ

Λ

]
(32)

=
1

2

∫
d4k

(2π)4
tr ln

k2 + σ2

Λ2
0

= 2

∫
d4k

(2π)4
ln
k2 + σ2

Λ2
.

The effective potential for the scalar field σ is then

V (σ) =
(σ −m0)2

2G
− 2

∫
d4k

(2π)4
ln
k2 + σ2

Λ2
. (33)

The kinetic term for the σ field is absent in the mean-field
approach with the uniform σ background.

The ground state of the model is determined by the
minimization of the action with respect to the σ field. We
employ the four-momentum regularization scheme with a
hard ultraviolet cutoff. The regularized potential (33) is:

V (σ) =
(σ −m0)2

2G
− 1

4π2

∫ Λ

0

k3dk ln
k2 + σ2

Λ2

=
σ2

2G
+ Λ4v

(
σ2

Λ2

)
, (34)

where the quantity Λ serves an ultraviolet cutoff which
plays a role of a physical parameter in this model and

v(x) = − 1

16π2

[
x+ x2 lnx+

(
1− x2

)
ln(x+ 1)

]
. (35)

The critical coupling,

Gc = 4π2Λ−2 ' 39.48 Λ−2 , (36)

defines two regimes of the theory. Consider first the case
of zero bare mass m0 = 0. For a weak coupling G < Gc,
the potential V (σ) takes its minimum at vanishing field
σ = 0 which defines a chirally symmetric vacuum. At
strong coupling G > Gc, the minimum of the potential
is reached at σ 6= 0, the chiral symmetry gets broken
and the fermions acquire the mass M = 〈σ〉 ∼ Λ via
the dynamical mechanism. A small nonzero bare mass,
m0 6= 0, shifts the minimum σ to a nonzero value σ ∼

m0 at weak coupling G. However, the dynamical mass
generation overwhelm the bare mass, Λ � m0, and the
in the chirally broken phase, the mass of the fermion is
given by the dynamically generated mass.

Alternatively, one can determine the ground state by
solving a system of the mass-gap equations that cor-
respond to the extremization of the effective potential
with respect to the dynamical field: δV (σ, φ)/δσ = 0
and δV (σ, φ)/δφ = 0. Restoring the pseudoscalar field
φ in the effective potential (33), we obtain the following
system of equations:

σ −m0 − 4G

∫ Λ d4k

(2π)4

σ

k2 + σ2 + φ2
= 0, (37a)

φ− 4G

∫ Λ d4k

(2π)4

φ

k2 + σ2 + φ2
= 0, (37b)

which has the same solution that we discussed above.
While both methods often give identical solutions, the di-
rect minimization of the effective potential allows to ver-
ify that the ground state corresponds indeed to a globally
stable state given by the global minimum of the effective
potential.

IV. NON-HERMITIAN GROUND STATE IN
THE NJL MODEL

A. Non-Hermitian bosonization

In what follows we exploit the possibility that the par-
tial bosonization, performed with the help of the stan-
dard identities (20), is not the only possible choice that
can be employed for the bosonization.

In order to maintain the explicit Hermiticity of the
model, we required for the fields σ and φ to be real-valued
quantities. Below, we leave the condition of the Hermitic-
ity and consider the complex-valued bosonic fields.

To this end, we generalize the identities (19) using four,
instead of the two ones (20):

1 =

∫
Dσ1 exp

{
− i

2Gσ1

∫
d4x

(
σ1 +Gσ1ψ̄ψ

)2}
, (38a)

1 =

∫
Dσ2 exp

{
− i

2Gσ2

∫
d4x

(
σ2 + iGσ2ψ̄ψ

)2}
, (38b)

1 =

∫
Dφ1 exp

{
− i

2Gφ1

∫
d4x

(
φ1 +Gφ1ψ̄iγ5ψ

)2}
,(38c)

1 =

∫
Dφ2 exp

{
− i

2Gφ2

∫
d4x

(
φ2 −Gφ2ψ̄γ5ψ

)2}
.(38d)

Inserting these identities into Eq. (19), we find that we
might cancel the four-fermion interaction terms of the
NJL Lagrangian (18) provided the parameters in Eq. (38)
satisfy the following conditions:

Gσ1 −Gσ2 = G, Gφ1 −Gφ2 = G. (39)
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Repeating all steps as in the Hermitian counterpart,
we get the new partially bosonized Lagrangian:

LNJL = −1

2

(
(σ1 −m0)2

Gσ1
+

σ2
2

Gσ2
+

φ2
1

Gφ1
+

φ2
2

Gφ2

)
+ψ̄

[
i/∂ − (σ1 + iσ2)− iγ5(φ1 + iφ2)

]
ψ, (40)

in which we have redefined the field σ1 → σ1 − m0 for
convenience.

Let us consider the fermionic part of the NJL La-
grangian (40). For the state σ2 = 0 and φ2 = 0, the
theory reduces to the standard Hermitian case considered
earlier: the axial freedom (26) may be used to remove the
field φ1 and we arrive to the bosonized mean-field theory,
given by Eqs. (34) and (35), with the condensate σ ≡ σ1.

In the rest of this section we assume, unless explicitly
stated otherwise, that the bosonic fields do not depend on
the coordinates. The case of the non-uniform background
with space-dependent fields will be considered in the next
section.

If the fields σ2 and φ2 are taken to be nonzero, then
the fermionic part of the Lagrangian (40) becomes non-
Hermitian. The excitations of a non-Hermitian theory
may possess a complex spectrum signaling instabilities.
The physical spectrum corresponds to the poles k0 =
±ωp with the following one-particle energy:

ωp =
√
k2 + (σ1 + iσ2)2 + (φ1 + iφ2)2. (41)

We use the axial (chiral) rotation (26) applied to the
combination σ + iγ5φ of now-complex fields σ = σ1 +
iσ2 and φ = φ1 + iφ2 to reduce an unphysical degree of
freedom. Given the fact that the unitarity of the chiral
transformation requires the parameter ωA of Eq. (26) to
be real, we may get rid of only one real-valued field. We
choose to remove, following the standard approach to the
NJL mode, the real component of the complex φ field,
φ1 = 0.

Similarly to the case of the standard Hermitian theory,
we take σ1 6= 0. In this case, the stability of the ground
state of the theory requires σ2 = 0. The requirements
φ1 = 0 and σ2 = 0 are enforced by taking the corre-
sponding constants to be zero, Gφ1 → 0 and Gσ2 → 0,
respectively. According to the algebraic conditions (39),
we are left with the two linearly-dependent coupling con-
stants Gσ1 = G and Gφ2 = −G and two one-component
fields σ1 ≡ σ and φ2 ≡ −φ5. Here we have redefined the
fields again for the sake of convenience.

Using the new non-Hermitian bosonization, we arrive
to the following representation of the NJL model:

LNJL =
φ2

5 − (σ −m0)2

2G
+ ψ̄

(
i/∂ − σ − γ5φ5

)
ψ. (42)

We immediately recognize that the field φ5 plays the
role of the non-Hermitian fermionic mass m5 already dis-
cussed in the context of the free theory (1) while the field
σ appears in the standard role of the usual Hermitian
mass m.

The coupling between the fermions and the the aux-
iliary field φ5 in the partially bosonized NJL La-
grangian (42) has the form of the anti-Hermitian Yukawa
coupling that has been studied recently [5, 29] in the phe-
nomenological context of sterile neutrinos.

The energy spectrum of fermions in the partially
bosonized NJL theory (42) is, now:

ωp =
√
k2 + σ2 − φ2

5, (43)

which is typical for the fermions which have both Hermi-
tian σ and non-Hermitian φ5 fermionic masses (10).

After integrating out the fermionic fields in the non-
Hermitian theory (42), we arrive to the effective potential
on the scalar and pseudo-scalar non-Hermitian fields:

V (σ, φ5) =
(σ −m0)2 − φ2

5

2G
+ Λ4v

(
σ2 − φ2

5

Λ2

)
, (44)

where the function v(x) is given in Eq. (35).
Please notice that the minimal realization of a scalar

non-Hermitian model involves two scalar fields, one of
them is a true scalar while another one is often chosen
as a pseudoscalar [27, 28]. This property is also main-
tained by the effective bosonized theory (44). The form
of the bosonized effective model (44) is qualitatively dif-
ferent from the multi-scalar model considered so far in
the literature [30–32].

The non-Hermitian model remains physically meaning-
ful provided the PT symmetry is unbroken:

σ2 > φ2
5. (45)

These considerations could naively (and, incorrectly) im-
ply that there is no obvious effect of the non-Hermiticity
on the physical properties of the model. Indeed, we are
free to denote the field combination in Eq. (44) as

M2 = σ2 − φ2
5 > 0, (46)

and to come back to the Hermitian model in terms of the
new field σ ≡M with the same fermionic spectrum (43):

ωp =
√
k2 +M2.

Contrary to the Hermitian bosonization of the NJL
model, there is no obvious interpretation of the field φ5 in
terms of a fermionic condensate. For example, a variation
of the action associated with the Lagrangian (42) with
respect to the field φ5 would give us the apparent relation

〈φ5〉
?
= G

〈
ψ̄γ5ψ

〉
, (47)

which could naively be interpreted – following the Her-
mitian case – as a relation that determines a saddle-point
of the effective theory. We notice, however, that the alge-
braic self-consistency of Eq. (47) is questionable because
the field φ5 at the left-hand side of Eq. (47) is a real-
valued quantity while the fermionic condensate at the
right-hand side of the same equation takes purely imagi-
nary values.

In an attempt to interpret the field φ5 in line of the
fermionic condensate (47), one could consider a possi-
bility that the saddle point (47) is realized for a purely
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imaginary field φ5. In this case, we could redefine the
field φ5 = iφ and come back to the Hermitian theory, in
which the mean field φ may be removed further by the
chiral rotation (26). This approach could be sustainable
if the minimum of the potential at the purely imaginary
φ5 is lower compared to its minimum at the real φ5. We
will explore this possibility below.

Before finishing this section, we would like to comment
that we could have arrived to the same non-Hermitian
model (42) by employing only the first and the last of
the identities of the alternative set (38) instead of the
original identities (20). This would be a fully legitimate
operation. We could also naively use a non-Unitary chiral
rotation (26) with a purely imaginary ωA and also come
to the same conclusion. The latter operation is, however,
logically forbidden because the transformation (11b) with
a purely imaginary ωA is not a symmetry of the original
theory.

B. Non-Hermitian ground state in the chiral limit

We start this section by noticing that for m0 = 0,
the NJL potential in the bosonized mean-field represen-
tation (44) possesses the the emergent U(1) symmetry
group,

U(1)NH :

(
σ

φ5

)
→
(

coshωNH sinhωNH

sinhωNH coshωNH

)(
σ

φ5

)
,(48)

which is parameterized by an arbitrary real-valued angle
ωNH ∈ R. The non-Unitary transformation (48) corre-
sponds a noncompact Abelian group which keeps invari-
ant the combination of the scalar fields σ2 − φ2

5.
In presence of condensates of σ and/or φ5 fields, the

non-Hermitian symmetry (48) is broken spontaneously.
According to the standard lore, this breaking should lead
to new Goldstone bosons in the spectrum. Here we firstly
discuss the theory with m0 = 0, and in the next subsec-
tion we analyze the effects of a nonzero current mass.

In Fig. 1(a) we show the mean-field potential (44) in
the chirally symmetric (G < Gc) phase. If we restrict
ourselves to the purely Hermitian case, φ5 = 0, then the
minimum of the potential is reached at the symmetric
vacuum σ = 0 (marked by the small red sphere in the
figure.) In the full non-Hermitian plane, the minimum
is reached exactly at the border of the PT symmetric
region, σ = ±φ5. This vacuum state breaks the non-
Hermitian symmetry group (48).

Figure 1(b) shows the potential (44) in the chirally
broken (G > Gc) phase. The minimum of the potential,
shown by the blue line, respects the non-Hermitian sym-
metry (48). The green line shows the profile of the po-
tential in the Hermiticity region φ5 = 0 which is denoted
by the greenish plane. Both lines cross at the Hermitian
minimum of the potential: (σ, φ5)H = (σmin, 0). The
Hermitian minimum is related to all other non-Hermitian
minima via a non-compact transformation (48).

Thus, we conclude that in the case of m0 = 0, the non-
Hermitian ground state with nonvanishing scalar Her-
mitian field σ and the pseudoscalar non-Hermitian φ5

field can well be realized in the Hermitian NJL model.
The non-Hermitian ground state breaks the non-compact
non-Hermitian group (48).

C. The instability associated to a non-zero m0

The presence of the mass m0 in the potential (44)
breaks, mildly and explicitly, the non-Hermitian symme-
try (48). However, this small explicit symmetry break-
ing – which would be non-harmful in the usual Hermi-
tian theory, leads to the instability of the non-Hermitian
theory. This fact can be observed both for the weakly
coupled phase with G < Gc, Fig. 1(c), and for strongly
coupled phase (G > Gc), Fig. 1(d).

The same conclusions may also be easily reached ana-
lytically in the case of a large condensate, σ � m0. Then
the vacuum solution follows two lines φ5 ' ±σ and the
effective potential (44) is a linear function of the conden-
sate:

V (σ, φ5 = ±σ) ' −m0σ

G
+ const, (at σ � m0)(49)

which may be made arbitrarily low. While we do not
investigate this issue in detail in the present study, we
would like to comment that this instability might be re-
moved by inhomogeneous condensates by bringing fur-
ther terms to the free energy that depend on space deriva-
tives.

We conclude that the NJL does not possess a stable
vacuum in terms of uniform condensates in the presences
of a small explicit symmetry breaking given by small
(in fact, an infinitely small) mass m0 6= 0 if the non-
Hermitian condensate φ5 is allowed.

V. GINZBURG-LANDAU ANALYSIS

In this section we use a Ginzburg-Landau (GL) effec-
tive potential to analyze the ground state of the model.
This expansion is known to work well only in proximity of
a second-order phase transition: In doing this analysis,
we assume that the coupling constant is slightly larger
the critical coupling so that the condensate is not large.

We do not specify any concrete temperature or chem-
ical potential here, while we assume that the sixth or-
der coefficients (defined in next paragraphs) are positive
to have a bounded-from-below effective potential. The
structure of the GL potential, in particular the relations
between the coefficients of the polynomials and deriva-
tive terms, will be adapted from that of chiral symmetry
breaking of the NJL model [33].

The GL potential has to be consistent with the sym-
metry of the model, in particular it should be invariant
under the global transformation in Eq. (48). Up to the
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(a) (b)
(c) (d)

FIG. 1. The mean-field potential (44) as the function of the uniform, coordinate-independent σ and φ condensates in the chirally
symmetric (G < Gc) and chirally broken (G > Gc) phases at zero (m0 = 0) and non-zero (m0 = 0.1Λ) bare masses m0. The
critical coupling Gc is given in Eq. (36) and V0 = (Λ/2π)4. The projection on the (σ, φ) plane illustrates the region where the
PT symmetry is unbroken. The density plot at the projection shows the values of the potential ranging from the low (the blue)
to the high (the red) values. The greenish cross-section shows the Hermitian region (φ5 = 0) with the value of the potential
highlighted by the green line and the minimum of the effective potential marked by the red spheres. The blue line shows the
degenerate minimum of the potential in the full (σ, φ) plane.

sixth order in the fields and fourth order in derivatives,
the GL potential for the model at hand has to have the
form

FNH =
α2

2
~χ · ~χ+

α4

4
(~χ · ~χ)2 +

α6

6
(~χ · ~χ)3

+
β4

4
∇~χ.∇~χ

+
γ6

6
(~χ.~χ)

(
∇~χ.∇~χ

)2
+
δ6
6

(~χ ·∇~χ)
2

+
ε6

6
∆~χ.∆~χ, (50)

where ~χ = (σ, φ5) is the vector in the space of fields
equipped with the hyperbolic metric: ~χ.~χ = σ2− φ2

5 and
∇~χ·∇~χ = (∇σ)2−(∇φ5)2. As mentioned earlier, stabil-
ity requires that the sixth order coefficients are positive:
α6, β6, γ6, δ6, ε6 > 0.

The symmetry alone does not allow to fix the relations
between the coefficients of the expansion in Eq. (50). In
order to simplify the GL potential we use the known re-
sults of the NJL model with chiral condensate: in fact,
the GL potential for the non-Hermitian model has to
have the same invariance under the chiral rotation of the
simpler NJL model, augmented with invariance under ro-
tation Eq. (48) and the latter can be implemented by the
replacement σ2 → σ2 − φ2

5 in the potential of the NJL
model.

In the NJL model with a chiral condensate the free

energy density in the GL approximation is given by [33]

FNJL(σ(x)) =
α2

2
σ2(x) +

α4

4

[
σ4(x) + (∇σ(x))2

]
+
α6

6

(
σ6(x) + 5σ2(x)

[
∇σ(x)

]2
+

1

2

[
∆σ(x)

]2)
,

(51)

The effective potential for the non-Hermitian ground
state can be obtained from Eq. (51) by the replacements

σ2 → ~χ · ~χ, (52)

(∇σ)
2 →∇~χ ·∇~χ, (53)

σ2 (∇σ)
2 → (~χ · ~χ)∇~χ ·∇~χ or (~χ ·∇~χ)

2
, (54)

(∆σ)
2 → ∆~χ ·∆~χ, (55)

where ~χ = (σ, φ5) has been defined above. Notice that
the NJL invariant on the left-hand side of Eq. (54)
leads to two possible terms in the non-Hermitian model,
namely those with coefficients γ6 and δ6 in Eq. (50). We
analyze the two limiting possibilities here, namely γ6 = 0
and δ6 = 0, noticing that in the former case we get a sta-
ble GL potential while in the latter case the free energy
is unbounded from below.

Starting with δ6 = 0, the GL free energy of the non-
Hermitian model reads

FNH(~χ(x)) =
α2

2
~χ.~χ (56)

+
α4

4

[
(~χ.~χ)2 + ∇~χ.∇~χ

]
+
α6

6

[(
~χ.~χ
)3

+ 5(~χ.~χ)
(
∇~χ.∇~χ

)2
+

1

2
∆~χ.∆~χ

]
.
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It is now useful to introduce two new fields, ξ and θ,
by means of the following transformation

σ = ξ cosh θ, φ5 = ξ sinh θ. (57)

Using the parameterization (57), we rewrite the free en-
ergy (56) as follows:

FNH(ξ, θ) =
α2

2
ξ2 +

α4

4
ξ4 +

α6

6
ξ6

+
α4

4

[
(∇ξ)2 − ξ2(∇θ)2

]
+

5α6

6

[
ξ2(∇ξ)2 − ξ4(∇θ)2

]
+
α6

12

[
∆ξ + ξ(∇θ)2

]2
−α6

12

[
2(∇ξ ·∇θ) + ξ∆θ

]2
, (58)

where we used the identities:

~χ.~χ = ξ2, (59)

∇~χ.∇~χ = (∇ξ)2 − ξ2(∇θ)2, (60)

∆~χ.∆~χ =
[
∆ξ + ξ(∇θ)2

]2 − [2(∇ξ ·∇θ) + ξ∆θ
]2
. (61)

The free energy (58) is invariant under rigid shifts
of the hyperbolic field θ → θ + θ0. This freedom
corresponds to the transformations of the global non-
Hermitian group (48). The corresponding non-Hermitian
Nambu-Goldstone boson is represented by the single
”pion” field φ5, which, in the linear order, is realized as
the hyperbolic phase θ with the kinetic-only action. No-
tice that the kinetic action enters the free energy with the
negative sign which is the expected property in the non-
Hermitian scalar gauge theories [27]. The negative sign
in front of the kinetic term of the θ field is the reason why
the presence of the ξ 6= 0 condensate breaks the transla-
tional symmetry of the strongly-coupled phase. We dis-
cuss this question below.

For α4 > 0, the terms proportional to (∇ξ)2 and
ξ2(∇θ)2 in (58) respectively increase and decrease the
free energy for an inhomogeneous ground state: there-
fore, for α4 > 0 it is likely that the lowest free energy is
achieved by a ground state of the form

ξ = ξ0, θ = θ(x), (62)

where ξ0 is a constant. For simplicity, we limit ourselves
here to the following ansatz:

ξ = ξ0, θ = θ0 + k · x, (63)

where k is a constant wave vector and θ0 is an arbitrary
constant phase. The vacuum with a nonzero wavevector
k breaks the rotational symmetry of the ground state.

Using the ansatz (63) in Eq. (58) we get the free energy
of the ground state:

FNH

∣∣∣∣
ξ=ξ0;θ=kx

=
α2

2
ξ2
0 +

α4

4
ξ4
0 +

α6

6
ξ6
0

−
(
α4

4
+

5α6

6
ξ2
0

)
ξ2
0k

2 +
α6

12
ξ2
0k

4; (64)

the above equation tells us that an inhomogeneous
ground state with a non-zero wavevector k 6= 0 lowers
the free energy of the system.

The direction of k in the ground state will be chosen
spontaneously by the system as it does not affect the free
energy, while the magnitude of k, namely k0, minimizes
FNH. Explicitly, the length of the ground-state wavevec-
tor is

k0 =

√
3α4 + 10α6ξ2

0

2α6
. (65)

Using this expression for k0 in Eq. (64), we get the free
energy at the minimum:

FNH

∣∣∣∣
ξ=ξ0;k=k0

=
α̃2

2
ξ2
0 +

α̃4

4
ξ4
0 +

α̃6

6
ξ6
0 , (66)

with

α̃2 = α2 −
3α2

4

8α6
, (67)

α̃4 = α4 − 5α4, (68)

α̃6 = α6 −
25α6

2
. (69)

The free energy difference between the states with inho-
mogeneous and homogeneous condensates is

∆F = − 3α2
4

16α6
ξ2
0 −

5α4

4
ξ4
0 −

25α6

12
ξ6
0 . (70)

Notice that the sixth order term in Eq. (70) is negative,
which makes the free energy unbounded from below. It
is likely that in this case a resummation of all orders in
the condensate is necessary. We thus conclude that the
GL analysis alone is not enough to determine completely
the ground state, although Eq. (70) seems to point in the
direction of a free energy is less favorable if the inhomo-
geneous ground state is taken.

Next we turn to the choice γ6 = 0. In this case we
replace

ξ2(∇ξ)2 − ξ4(∇θ)2 → ξ2(∇ξ)2 (71)

in the third line of Eq. (58), and instead of Eq. (64) we
would have

FNH

∣∣∣∣
ξ=ξ0;θ=kx

=
α2

2
ξ2
0 +

α4

4
ξ4
0 +

α6

6
ξ6
0

−α4

4
ξ2
0k

2 +
α6

12
ξ2
0k

4; (72)

this would give

k0 =

√
3α4

2α6
. (73)

instead of Eq. (73), and

α̃2 = α2 −
3α2

4

8α6
, (74)

α̃4 = α4, (75)

α̃6 = α6. (76)
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instead of Eqs. (67)-(69). In this case, the sign of the
sixth order term coincides with that of α6 which is as-
sumed to be positive, therefore the free energy is bounded
from below and the GL analysis can be completed by es-
timating the loss in free energy due to the inhomogeneous
condensate,

∆F = − 3α2
4

16α6
ξ2
0 . (77)

The numerical value of ∆F depends on the details of the
microscopic model; however, regardless of these details
we can conclude that the inhomogeneous condensation
lowers the free energy of the system.

VI. OUTLOOK

The generalization of our approach to a system with
Nf > 1 flavors (species) of fermions is rather straight-
forward. Similarly to the standard Hermitian NJL
model [2], the fermions of different flavors form N2

f −
1 pseudoscalar fields φa5 which couple with the Nf -
multiplet of the fermionic field Ψ = (ψ1, . . . , ψNf

)T via
the non-Hermitian Yukawa coupling:

LNJL =
φ2

5 − (σ −m0)2

2G
+ Ψ̄

(
i/∂ − σ1l− γ5λaφa5

)
Ψ. (78)

Here λa are the generators of the SU(N2
f − 1) flavor

group and σ is the scalar Hermitian field. The integra-
tion of over the fermionic degrees of freedom Ψ produces
the one loop action with the pseudoscalar iso-vector field

φ5 = (φ1
5, . . . φ

N2
f
−1

5 )T . In the uniform vacuum, it is suffi-
cient to replace φ2

5 → φ2
5 in the effective action (44). The

effective bosonic action respects a non-compact symme-
try group U(1, N2

f −1) which generalizes the single-flavor

non-Hermitian group (48) to the multiflavor case. Notice
that while for a single-flavor fermion the non-Hermitian
symmetry breaking leads to the appearance of the non-
Hermitian mass gap given by the last term in Eq. (42),
in the multi-flavor case the non-Hermitian ground state
may be traced to the emergence of the non-Hermitian
Yukawa interaction in the last term of the semi-bosonized
Lagrangian (78).

One of the problems that might require future atten-
tion concerns the possible mitigation of the destabilizing
effect of a finite current mass m0 on the non-Hermitian
ground state of the system as has been noted briefly in
Section IV C. To elucidate this problem, let us follow
the notation of Section V and parametrize, similarly to
Eq. (57), the fields σ + m0 = ξ cosh θ and φ5 = ξ sinh θ.
The partially bosonized theory gets now the following
form:

L = − 1

2G
(ξ2 +m2

0 − 2ξm0 cosh θ) + ψ̄(i/∂ − ξ)ψ. (79)

The first term in the effective theory gives us the tree-
level potential for the bosonic fields ξ and θ:

V0(ξ, θ) = ξ2 +m2
0 − 2m0ξ cosh θ, (80)

which is unbounded from below in the direction of the
field θ if m0 6= 0. The problem is clearly absent in the
chiral limit at m0 = 0.

The absence of a finite minimum of the tree-level po-
tential V0 at m0 6= 0 cannot be compensated by the
fermionic determinant because the determinant may only
add the one-loop term v(ξ/Λ) to the potential (80). The
one-loop correction, computed in Eq.(35), gives a contri-
bution depending on ξ, and, consequently, it cannot lift
out the instability of the classical potential (80) in the di-
rection of the field θ. Therefore the quantum corrections
can not solve the problem of the absence of the ground
state in the minimal NJL model (18) in the presence of
the explicit chiral symmetry breaking, m0 6= 0.

VII. CONCLUSIONS

We elaborated the physical consequences of a sce-
nario in which the standard Hermitian Nambu–Jona-
Lasinio model spontaneously develops a non-Hermitian
PT -symmetric ground state. In the semi-bosonized
model, the non-Hermitian ground state is catalyzed by
the presence of a dynamically generated non-Hermitian
Yukawa coupling. The unbroken PT symmetry of the
system guarantees that the spectrum is real. In the ex-
act chiral limit, i.e. in the absence of the explicit chiral
symmetry breaking in the NJL model, the uniform non-
Hermitian ground state has the same (finite) free energy
density as the usual Hermitian ground state.

The known Hermitian and new non-Hermitian ground
states are related to each other by a non-Unitary non-
compact global symmetry which is spontaneously bro-
ken both in weak- and strong-coupling regimes of the
model. In the chiral limit at strong coupling, the non-
Hermitian ground state develops inhomogeneity, which
breaks the translational symmetry of the state. At weak
coupling, the ground state is a spatially uniform state,
which lies at the boundary between the PT -symmetric
and PT -broken phases. Outside the chiral limit, at a
nonzero current mass m0 6= 0, the minimal NJL model
does not possess a stable ground state because the free
energy of the state is unbounded from below. Them0 6= 0
ground state may perhaps be stabilized in non-minimal
NJL models with higher-order fermionic vertices.
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Appendix A: Gradient expansion in the effective
action

The bosonized NJL model after integrating out
fermions gets the following form:

LNJL = − 1

2G
(σ2(x)− φ2

5(x)) +

+ iTr log(G−1
0 − (σ + γ5φ5)), (A1)

where G−1
0 = i/∂. The trace operator, “Tr”, includes for

the matrix trace “tr” as well as an integral over spatial
coordinates.

Factorizing G−1
0 and expanding the logarithm in the

above expression gives us:

LNJL = − 1

2G
(σ2(x)− φ2

5(x)) + Tr[G−1
0 ]−

− i
∞∑
n=1

1

n
Tr[G0(σ + γ5φ5)]n. (A2)

Let us consider the case n = 2:

Γn=2 =
i

2

∫
dxdx′tr(G0(x, x′)(σ(x′) + γ5φ5(x′))

G0(x′, x)(σ(x) + γ5φ5(x))) =

=
i

2

∫
dxdx′tr[G0(x, x′)G0(x′, x)](σ(x′)σ(x)−

− φ5(x′)φ5(x)). (A3)

In order to perform the derivative expansion, it is
mandatory to go to momentum representation, where the
functional Γn=2 reads as follows:

Γn=2 =

∫
dDq

(2π)D
Π2(q)(σ(−q)σ(q)− φ5(−q)φ5(q)),(A4)

where

Π2(q) =
i

2

∫
dDk

(2π)D
tr[G0(k)G0(k − q)], (A5)

and G0(k) = 1/γaka. With this, we can do the following:

tr[G0(k)G0(k − q)] ' tr[G0(k)G0(k)] +

+ tr[G0(k)G0(k)
∂G−1

0

∂qa
G0(k)]qa +

+ tr[G0(k)G0(k)
∂G−1

0

∂ka
G0(k)

∂G−1
0

∂kb
G0(k)]qaqb, (A6)

where we have used the fact that G−1
0 is a linear poly-

nomial in the momenta. We plug the above expansion,
G0 = γaka/k

2, and ∂G−1
0 /∂ka = γa into Eq. (A5). This

trick corresponds to the derivative expansion of the effec-
tive action Γn=2. It is easy to see that the second term
in (A6) will be odd in the integration momentum, so it
will not contribute to this expansion.

Now we can make the connection with the GL expan-
sion with local terms as all the integrals are formally
done at q = 0. Then we have just to care of performing
divergent integrals in the infrared (connection to non-
renormalizable theories). Also, we need the following
traces in D = 4 (q2 = q · q = qµqµ):

tr[γaγb] = 4ηab, (A7)

Iabcd = tr[γaγbγcγd] = 4(ηabηcd−ηacηbd+ηadηbc), (A8)

F abcdef = tr[γaγbγcγdγeγf ] = ηabIcdef − ηacIbdef

+ ηadIbcef − ηaeIbcdf + ηafIbcde. (A9)

After a bit of algebra, we find

tr[G0(k)G0(k − q)] = 4
1

k2
+ 8

(k · q)2

(k2)3
− 4

q2

(k2)2
.(A10)

Next, we rotate the integral in (A5) to the Euclidean
space (there appears an extra −i factor):

Π2(q) =
4

2

∫
d4k

(2π)4

1

k2
+

8

2

∫
d4k

(2π)4

(k · q)2

k6
− 4

2

q2

k4
.

(A11)
Performing the angular integration in four dimensions,
and putting both UV and IR cutoffs (Λ and l respec-
tively), we finally obtain:

Π2(q) =
Λ2

8π2
− q2

8π2
log

(
Λ

l

)
. (A12)

From here we can read off α2 and α4 coefficients:

S0+2 =

∫
dx

1

2
(− 1

G
+

Λ2

4π2
)︸ ︷︷ ︸

α2

(σ2 − φ2
5)−

− 1

2

1

4π2
log

(
Λ

l

)
︸ ︷︷ ︸

α4

((∇σ)2 − (∇φ2
5)) (A13)
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Let us consider the n = 4 contribution to the effective action (this time with the right sign), Γn=4:

Γ4 = − i
4

∫
Π4
i=1dxitr[(σ(x1)− γ5φ5(x1))G0(x1 − x2)(σ(x2)− γ5φ5(x2))G0(x2 − x3) ·

· (σ(x3)− γ5φ5(x3))G0(x3 − x4)(σ(x4)− γ5φ5(x4))G0(x4 − x1)]. (A14)

Out of the 16 terms in the expression (A14) only 8 will contribute to the expression, as they have an even number
of γ5 matrices in the product of propagators. Taking into account that the γ5 matrices anticommute with the Dirac
matrices γµ, the effective action Γ4 can be written as

Γ4 = − i
4

∫
Π4
i=1dxitr[G0(x1 − x2)G0(x2 − x3)G0(x3 − x4)G0(x4 − x1)] ·

· (σ(x1)σ(x2)σ(x3)σ(x4)− σ(x1)σ(x2)φ5(x3)φ5(x4) + σ(x1)φ5(x2)σ(x3)φ5(x4)−
− σ(x1)φ5(x2)φ5(x3)σ(x4) + φ5(x1)σ(x2)φ5(x3)σ(x4)− φ5(x1)σ(x2)σ(x3)φ5(x4)−
− φ5(x1)φ5(x2)σ(x3)σ(x4) + φ5(x1)φ5(x2)φ5(x3)φ5(x4)). (A15)

It will be convenient to write the expression (A15) in momentum space. To avoid too long expressions, we will write

up the first term in Eq.(A15)((dq) ≡ dDq
(2π)D

):

Γ
(1)
4 =

1

4

∫
(dq)(dp)(dr)Π4(q, p, r)σ(q)σ(p)σ(r)σ(−q − p− r), (A16)

with

Π4(q, p, r) = −i
∫

(dk)tr[G0(k)G0(k − p)G0(k − p− r)G0(k + q)], (A17)

being the fourth order susceptibility. The remaining terms in Eq.(A15) are similar, just substituting the corresponding
σ fields by φ5 fields.

One can make the connection with the Ginzburg-Landau effective theory by approximating the function Π4(q, p, r)
by its value at q = p = r = 0, Π4(0, 0, 0) ≡ α4, and then go back to real space. Again, using the term with four σ
fields we get:

Γ
(1)
4 =

α4

4

∫
(dq)(dp)(dr)σ(q)σ(p)σ(r)σ(−q − p− r) =

=
α4

4

∫
(dp)(dq)(dr)

∫
Π4
i=1e

ix1qeix2peix3reix4(−p−q−r)σ(x1)σ(x2)σ(x3)σ(x4) =

=
α4

4

∫
Π4
i=1dxiδ(x1 − x4)δ(x2 − x4)δ(x3 − x4)σ(x1)σ(x2)σ(x3)σ(x4) =

=
α4

4

∫
dxσ4(x). (A18)

Doing the same for the rest of the terms, and collecting all them in (A15) under this approximation, we have

Γ4 =
α4

4

∫
dx(σ4(x)− σ2(x)φ2

5(x) + σ2(x)φ2
5(x)− σ2(x)φ2

5(x) + σ2(x)φ2
5(x)−

− σ2(x)φ2
5(x)− σ2(x)φ2

5(x) + φ4
5(x)) =

α4

4

∫
dx(σ2(x)− φ2

5(x))2 =

=
α4

4

∫
dx(~χ · ~χ)2. (A19)

This expression coincides with the free energy FNH(~χ) of Eq. (50) when the latter is written in terms of ~χ. Also,
the expression (A17) is the starting point to start the derivative expansion to get the terms proportional to α6.
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