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ABSTRACT
Inaccuracies in the initial conditions for cosmological N-body simulations could easily be the largest source of systematic error
in predicting the non-linear large-scale structure. From the theory side, initial conditions are usually provided by using low-order
truncations of the displacement field from Lagrangian perturbation theory, with the first- and second-order approximations
being the most common ones. Here, we investigate the improvement brought by using initial conditions based on third-order
Lagrangian perturbation theory (3LPT). We show that with 3LPT, truncation errors are vastly suppressed, thereby opening the
portal to initializing simulations accurately as late as z = 12 (for the resolution we consider). We analyse the competing effects
of perturbative truncation and particle discreteness on various summary statistics. Discreteness errors are essentially decaying
modes and thus get strongly amplified for earlier initialization times. We show that late starting times with 3LPT provide the
most accurate configuration, which we find to coincide with the continuum fluid limit within 1 per cent for the power- and
bispectrum at z = 0 up to the particle Nyquist wavenumber of our simulations (k ∼ 3h Mpc−1). In conclusion, to suppress
non-fluid artefacts, we recommend initializing simulations as late as possible with 3LPT. We make our 3LPT initial condition
generator publicly available.

Key words: dark matter – large-scale structure of Universe – cosmology: theory.

1 IN T RO D U C T I O N

Current and upcoming space and ground-based galaxy clustering
and weak gravitational lensing surveys – such as HSC (Aihara et al.
2018), the LSST (Abell et al. 2009), and the Euclid satellite (Laureijs
et al. 2011), but also future instruments probing the gas distribution
across cosmic history, such as the Square Kilometre Array (Weltman
et al. 2020), will test the validity of, and possible deviations from,
the concordance �CDM model with unprecedented precision.

The accuracy of future observational data is expected to be
such that it will require 1 per cent accurate predictions for the
spatial distribution of matter in the late-time Universe to scales of
k ∼ 1 Mpc−1 (e.g. Heitmann et al. 2010; Schneider et al. 2016).
Numerical simulations are, in principle, able solve the relevant
equations with such accuracy over volumes comparable to the
entire visible Universe (e.g. Angulo et al. 2012; Heitmann et al.
2016; Potter, Stadel & Teyssier 2017; Heitmann et al. 2019; Cheng
et al. 2020). However, numerical solutions are computationally
demanding and suffer from numerical artefacts and discretization
errors. On the other hand, perturbative approaches of the underlying
equations are not affected by such effects and deliver computationally
cheap predictions. Yet their validity is limited to certain length and
time-scales, since the gravitational collapse of cosmic structure is
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intimately tied to the development of extreme densities that still pose
a challenge for such approaches.

The worlds of analytic and numerical approaches come together
when the formation of cosmic structures is investigated via cosmo-
logical simulations. Indeed, perturbative approaches essentially solve
for the structure formation at early times, while numerical solutions
are best at evolving later stages. Consequently, perturbation theory is
employed to generate perturbatively truncated initial conditions (ICs)
for cosmological simulations (as pioneered by Klypin & Shandarin
1983; Efstathiou et al. 1985). Since both perturbation theory and
numerical solutions have their strengths and weaknesses (see further
below), it is important to find the optimal window where ICs
can be provided while simultaneously minimizing perturbative and
numerical errors. Quantifying these errors and finding this optimal
cosmic time for ICs are precisely the tasks of this paper.

Observations indicate that cold dark matter (CDM) is extremely
weakly (self-)interacting, implying that it can be treated to be
effectively collisionless with zero temperature on cosmological
scales. The evolution of a continuous and collisionless medium, such
as CDM, is governed by the Vlasov–Poisson equations. Most per-
turbative approaches solve these equations in the single-stream limit
(vanishing velocity dispersion), which appears to be well justified for
sufficiently early times. There exist four exact solutions in the single-
stream limit, namely for one-dimensional ICs called the Zel’dovich
approximation (ZA; Zel’dovich 1970), for quasi-one-dimensional
ICs (Rampf & Frisch 2017), for spherical collapse (Peebles 1967),
and for quasi-spherical ICs (Rampf 2019). Except for the spherical
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case, those solutions are valid until, and including, the instance of
the first shell-crossing, where particle trajectories overlap, leading
to the generation of (effective) vorticity and velocity dispersion
through multistreaming (e.g. Pichon & Bernardeau 1999; Pueblas &
Scoccimarro 2009; Hahn, Angulo & Abel 2015; Buehlmann & Hahn
2019). Most recently, attempts at pushing the theory beyond shell-
crossing have received increasing interest (Colombi 2015; Taruya
& Colombi 2017; McDonald & Vlah 2018; Pietroni 2018; Rampf,
Frisch & Hahn 2019; Valageas 2020). For a broader overview over
cosmological perturbation theory (PT), we refer the reader to the
review by Bernardeau et al. (2002).

In general the non-linear evolution of the post-shell-crossing
regime is currently most accurately modelled with N-body simula-
tions of the Vlasov–Poisson equations. The transition, via ‘initial
conditions’, from perturbation theory to the full non-linear but
discretized simulation is, however, a rather delicate matter since
it involves minimizing the errors in the approaches.

Initial conditions for simulations are usually provided by particle
displacements and velocities from Lagrangian perturbation theory
(LPT), truncated at some low order. This truncation, however,
leads to so-called transients (Scoccimarro 1998; Crocce, Pueblas
& Scoccimarro 2006); effectively this is a spurious decaying mode
due to missing terms relative to the true (infinite-order) solution.
One alternative to ameliorate the impact of transients is to consider
higher order versions of LPT. In fact, LPT has been derived at
increasingly higher order over the last decades; starting from first
order by Zel’dovich (1970), Buchert & Goetz (1987), over second
(Bouchet et al. 1992; Buchert & Ehlers 1993) and third order
(Buchert 1994; Bouchet et al. 1995) in the 1990s, to fourth order
by Rampf & Buchert (2012), Tatekawa (2014), and finally all-
order recursion relations by Rampf (2012), Zheligovsky & Frisch
(2014), and Matsubara (2015). Another alternative could be to
generate initial conditions at earlier times since the linear growth
amplitude of density fluctuations in LPT, D+, is the small perturbative
parameter.

Unfortunately, starting numerical simulations at early times might
add significant sources of numerical error. As is now well known,
the N-body method is prone to discreteness effects due to the self-
interaction of the discrete particle lattice (cf. Joyce et al. 2005; Joyce
& Marcos 2007; Garrison et al. 2016), leading to a deviation from
the fluid characteristics in the continuum limit. New tessellation
methods reduce particle discreteness and thus could overcome these
limitations (Hahn, Abel & Kaehler 2013; Hahn & Angulo 2016;
Sousbie & Colombi 2016; Stücker et al. 2020b), albeit at increased
computational cost. However, this might not be possible when
simulations are optimized to simulate volumes as large as possible
with the least possible computational resources. Recently, Garrison
et al. (2016) have argued for an explicit linear-order correction
during the course of a simulation, but this is not widely used.
Furthermore, popular methods such as tree-based N-body (Barnes
& Hut 1986) can suffer from large force errors at early times (where
the density distribution is only slightly perturbed). In addition, these
errors accumulate the more time-steps are made during the early
(‘linear’) stages of a simulation when the density field is still close
to homogeneous.

These problems would strongly suggest starting a simulation as
late as possible. However, since standard perturbative approaches
break down at shell-crossing, a competition exists between (i) late
starts that reduce discreteness effects and numerical errors, but
require higher-order LPT, and (ii) early starts that allow lower-
order LPT but are more prone to discreteness errors. This dilemma
is our main focus in this paper.

The impact of the order of the LPT, up to second order, and
the starting time on properties of the non-linear density field have
been studied already in quite some detail in the past literature (e.g.
Crocce et al. 2006; Tatekawa & Mizuno 2007; L’Huillier, Park &
Kim 2014; Garrison et al. 2016). Here, we extend these results to
third-order LPT, which has been studied much less (see however
Buchert, Melott & Weiss 1994; Tatekawa 2014, 2019), thereby
allowing us to make for the first time more definite statements about
the convergence radius and thus the perturbative regime accessible
by LPT for cosmological ICs. In our analysis, we pay particular
attention also to the impact of aforementioned discreteness effects
on all results.

This paper is organized as follows. We begin with a brief review of
LPT together with explicit solutions up to third order; see Section 2.
We implement these LPT solutions numerically, which allows us
to perform simple convergence tests, thereby essentially pinning
down until which time-value LPT solutions to any order can be
trusted. Details and results on this are provided in Section 3. Then,
in Section 4, we discuss the details of our numerical simulations and
analysis algorithms, whereas our results are given in Section 5. We
conclude and summarize our results in Section 6.

Notation: Unless otherwise stated, all functions and spatial deriva-
tives are w.r.t. Lagrangian coordinate q. We use i, j, ... for spatial
indices, and summation over repeated indices is assumed. A comma
‘�,i’ denotes a spatial partial derivative w.r.t. component qi on
�, while an overdot denotes a Lagrangian time derivative w.r.t.
the cosmic-scale factor time a, the latter governed by the usual
Friedmann equations.

2 LPT, INI TI AL C ONDI TI ONS, AND I TS
N U M E R I C A L I M P L E M E N TAT I O N

In this section, we will discuss several theoretical and practical
aspects of the creation of initial conditions for cosmological sim-
ulations. Specifically, in Section 2.1, we begin with a review of LPT
solutions up to third order, and describe in Section 2.2 how these
solutions are employed to create a consistent particle representation
at a given starting time. We discuss the technical aspects of higher-
order LPT implementations in Section 2.3. The effects of particle
discreteness and initial arrangement are outlined and validated in
Sections 2.4 and 2.5, respectively.

2.1 LPT results to third order

Let q �→ x(q, t) = q + ψ(q, t) be the Lagrangian map from initial
position q to current (Eulerian) position x at time t. The Lagrangian
representation of the velocity is defined with v ≡ ẋ = ψ̇ . In LPT, the
displacement field, ψ , is expanded as a power series in D+ = D+(t),
the linear growth of matter fluctuations in a �CDM universe, i.e.

ψ(q, t) =
∞∑

n=1

ψ (n)(q) Dn
+. (1)

The truncation of the series at order n is commonly called nLPT,
except for the first-order truncation that is called the Zel’dovich
approximation (ZA; Zel’dovich 1970). Results to third order have
been first derived by Buchert (1994), Catelan (1995), and Bouchet
et al. (1995). Explicitly, the 3LPT solution for the displacement is

ψ3LPT(q, t) = ψ (1)(q) D+ + ψ (2)(q) D2
+ + ψ (3)(q) D3

+, (2)

with

ψ (1) = −∇�(1), (3)
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ψ (2) = −3

7
∇�(2), (4)

ψ (3) = 1

3
∇�(3a) − 10

21
∇�(3b) + 1

7
∇ × A(3c), (5)

which are expressed in terms of the purely spatial functions

� (1) = ϕini, (6)

� (2) = 1

2
∇−2

[
�

(1)
,ii �

(1)
,jj − �

(1)
,ij �

(1)
,ij

]
, (7)

�(3a) = ∇−2
[
det �(1)

,ij

]
, (8)

�(3b) = 1

2
∇−2

[
�

(2)
,ii �

(1)
,jj − �

(2)
,ij �

(1)
,ij

]
, (9)

A(3c) = ∇−2
[
∇�

(2)
,i × ∇�

(1)
,i

]
. (10)

where ϕini is the gravitational potential ϕ at a → 0; explicit
instructions how ϕini can be obtained are given in Section 2.2.
For convenience, in Appendix A, we express these spatial functions
suitably for numerical applications.

There are three simplifications in these LPT solutions worth high-
lighting. First, the LPT solutions have only one degree of freedom
(provided by ϕini), which might be surprising considering that the
underlying equations are of second order in time. Secondly, we
ignore decaying-mode solutions, which is an additional independent
assumption. Thirdly, these LPT solutions assume an irrotational fluid
motion in Eulerian coordinates; indeed only at the third order the
displacement field loses its potential character, exemplified through
the appearance of the vector A(3c), which is actually required to
maintain the zero-vorticity condition in Eulerian space.

Mathematically, these three simplifications arise from the use
of the so-called slaved boundary conditions at a = 0 on the LPT
solutions (cf. Brenier et al. 2003; Rampf, Villone & Frisch 2015).
These conditions impose initial homogeneity δm → 0 where δm

is the density contrast, furthermore guarantee that only one initial
function needs to be provided, as well as select the purely growing-
mode solutions with zero vorticity. In the next subsection we will
argue that these simplifications are seemingly intertwined with the
standard procedure of generating ICs for simulations.

2.2 Standard initial conditions for N-body simulations

Relativistic linear Boltzmann solvers such as CAMB (Lewis, Challinor
& Lasenby 2000) or CLASS (Blas, Lesgourgues & Tram 2011) are
used to evolve the coupled system of relativistic and non-relativistic
species, including CDM, down to the present epoch. Cosmolog-
ical simulations are commonly performed within the Newtonian
approximation and only solve for the matter species; therefore, their
ICs must take into account this change in the underlying physical
problem. Usually, this is handled by taking the present-day linear
matter density from Boltzmann solvers and applying a suitable
rescaling procedure (see below). This rescaling procedure provides a
fictitious universe at initialization time with today’s radiation content,
is however in full agreement with relativistic perturbation theory (cf.
Chisari & Zaldarriaga 2011; Hahn & Paranjape 2016; Fidler et al.
2017).

Upon performing numerical simulations, N-body particles are
sampled on an unperturbed lattice representing the initial homo-
geneity (in accordance with the slaving argument from the previous
section). This initial placement of particles can be thought of

happening at time zero, i.e. at a = 0. Growing-mode initial conditions
for simulations are then established by displacing the particles from
a = 0 until the time astart when the simulation is initialized, provided
we have access to the initial gravitational potential ϕini at time
a = 0.

To get that initial gravitational potential, first observe that the
gravitational potential is related to the matter density contrast through
the Poisson equation ∇2ϕ = δm/a, which can be written as

ϕ = ∇−2δm

a
. (11)

From a linear Boltzmann code such as CLASS or CAMB, we can obtain
the linear matter density δcode

m , which for the rescaling procedure is
assumed to be in the growing mode, i.e.

δcode
m (x, a) = C+(x) D+(a). (12)

Evaluating (11) in the limit a → 0 and expressing the matter density
through (12), we find

lim
a→0

ϕ = ∇−2C+ lim
a→0

D+(a)

a
≡ ϕini, (13)

where we note that D+(a) is analytic around a = 0 and can be
represented as D+ ∝ a + O(a4) for a �CDM universe. In a final
step, we express the spatial constant C+ in terms of the matter density
at the present time a0, and thus obtain

ϕini = ∇−2δcode
m (x, a0)

D+(a0)
lim
a→0

D+(a)

a
. (14)

Operationally, to obtain a realization of ϕini, we begin with a
white noise field W (x) which we multiply with the total matter
density transfer function T[δm], an amplitude A that gives the correct
normalization in terms of σ 8, as well as the primordial fluctuations
produced during inflation with amplitude ∼ kns/2. Altogether, in
Fourier space for all ‖k‖ �= 0, one thus has

ϕ̃ini(k) = AW̃ (k) k(ns−4)/2 T [δm](k, a0)

D+(a0)
lim
a→0

D+(a)

a
, (15)

and set ϕ̃ini(k = 0) = 0. Note that this is a random field, determined
by W(x) that creates the so-called cosmic variance whose properties
are not identical to those of the ensemble average. Note that these
deviations could be suppressed by the method proposed by Angulo &
Pontzen (2016). However, since we will compare simulations using
the same noise field, our results are already largely insensitive to
cosmic variance.

2.3 Numerical implementation of LPT

The LPT potentials (6) needed for the 3LPT displacement can be
conveniently computed in Fourier space from ϕ̃ini given in equa-
tion (15) by using the Fast Fourier Transform (FFT). However, some
extra care should be taken for 2LPT and higher-order LPT terms:
those terms contain quadratic and higher-order non-linearities, and
thus will suffer from aliasing if multiplied numerically in real space.

Aliasing leads to non-linear modes appearing at the wrong wave
numbers. For quadratic non-linearities, aliasing can be avoided by
respecting Orszag’s 3/2 rule (Orszag 1971): By temporarily enlarging
the computational domain in Fourier space by a factor of 3/2 per
dimension while carrying out the product, the aliased modes will be
all located in the padding region, which can then simply be discarded.
This of course increases the memory footprint by requiring two fields
of (3/2)3 = 3.375 times the size of the original fields in 3D.

Note that the �(3a) potential contains a cubic non-linearity, which
we treat by two quadratic convolutions. This is strictly speaking only
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Figure 1. Power spectra of ∇2�(2) (top panel), ∇2�(3a) (middle panel), and
∇2�(3b) (bottom panel) for the 1 h−1Gpc (darker colour) and the 250 h−1Mpc
box (lighter colour) with 10243 modes/particles, averaged over 50 different
random realizations. We show results obtained with 3/2 padding for the
de-aliasing of quadratic and cubic non-linearities (blue lines) and without
de-aliasing (orange lines). Below each panel, we show the ratio of the aliased
to the de-aliased spectrum revealing substantial biases with significant box
size/resolution dependence in the 3LPT potentials.

an approximation, since for data with finite lengths, the split of a cubic
convolution into quadratic convolutions is not associative, implying
that some terms in the cubic convolution will be lost (e.g. Roberts
2011). The exact way to deal with the problem would be to evaluate
cubic convolutions without such reductions, which however would
require a zero padding twice as expensive per dimension compared to
the 3/2 rule of the quadratic case, thereby significantly increasing the
memory footprint. We find that the split into quadratic convolutions
causes only a ∼5 per cent error in �(3a), which is already sub-
dominant compared to �(3b). Of course, there are more memory
efficient and potentially faster implementations possible based on
the in-place de-aliased convolution technique of Bowman & Roberts
(2011), than what we consider here.

In Fig. 1, we show the effect of aliasing on the power spectra of
the 2LPT and 3LPT source terms ∇2�(2), ∇2�(3a), and ∇2�(3b). We
show results for two different box sizes, using 10243 modes in all
cases, applying de-aliasing (blue lines) and ignoring it (red lines) for
the power spectra of the ‘densities’ (∇2�) of various terms in the
LPT expansion. We find that while the quadratic term (2LPT) has

aliasing only at the highest wave numbers, with a relative difference
of up to 30–35 per cent near the particle Nyquist wavenumber
kNy ≡ πN1/3

p /Lbox, the cubic terms (3LPT) are affected at all scales.
We also find a very strong aliasing effect on the largest scales for
the (3a) term with a difference of nearly 3 orders of magnitude.
It thus appears critical to perform de-aliasing in order to achieve a
correct implementation of 3LPT. We further corroborate this aspect
in Appendix D, where we demonstrate that only with de-aliasing,
3LPT shows a formal third-order convergence O(D3

+), which is the
expected behaviour from theory grounds.

However, even after de-aliasing, we find a weak dependence of
the 3LPT terms on the chosen box size, indicated by a drop of the
power close to the particle Nyquist wavenumber kNy. This clearly
indicates that at 3LPT we see a dependence on the UV truncation
of the perturbation spectrum due to the finite resolution employed
in computing the terms – computing by de-aliased discrete Fourier
transform truncates at kNy. The coupling of modes with k > kNy

to the modes that can be numerically represented, i.e. k ≤ kNy, is
thus missing. This effect is also present at 2LPT, but is significantly
smaller. Such UV sensitivities are well known in perturbation theory,
especially within the context of loop integrations (Bernardeau et al.
2002), and have been discussed also in the context of the GRIDSPT

method of Taruya, Nishimichi & Jeong (2018). They are not easy
to circumvent in a numerical setting since it is always expensive to
increase kNy.

We found however that, at least up to 3LPT, errors due to aliasing
(and through UV sensitivities) are well below 1 per cent in the
evolved simulations at low redshift. For more details, see the results
in Appendix B. It is thus likely unproblematic to avoid de-aliasing
up to 3LPT and thereby to save memory and computing time if one is
only interested in the low-redshift results of a non-linear simulation.
In this paper, we carry out all simulations with fully de-aliased 2LPT
and 3LPT terms. A more detailed investigation of the impact of
aliasing at higher resolution, and whether including the contribution
of modes k > kNy to the 3LPT terms could improve convergence of
simulations with different mass resolution are interesting questions
for future investigations.

Numerical implementations of 2LPT commonly used in the com-
munity include the 2LPTIC software package1 introduced in Crocce
et al. (2006), which is based on single resolution FFTs. For mul-
tiresolution zoom simulations, we are aware of the implementation
by Jenkins (2010), which uses a Tree-PM approach to evaluate the
2LPT Poisson equation at higher resolution in the zoom region, and
the implementation by Hahn & Abel (2011) in MUSIC,2 which uses
a combined algebraic multigrid and FFT approach. Version 4 of the
PINOCCHIO code (Munari et al. 2017) implements the longitudinal
part of 3LPT to determine the large-scale clustering of haloes in
the rapid mock catalogue PINOCCHIO scheme (Monaco, Theuns &
Taffoni 2002). To our knowledge, there exists no publicly available
implementation of 3LPT N-body initial conditions that includes
transversal modes and performs a correct de-aliasing of higher-order
terms, and which could therefore allow an accurate assessment of
truncation errors and transients.

We make our implementation publicly available as the MUSIC2-
MONOFONIC software package3 that comprises a distributed memory
parallelized (MPI + threads) implementation of all algorithms dis-
cussed here. It is, however, currently restricted to single resolution

1Available from https://cosmo.nyu.edu/roman/2LPT/
2Available from https://bitbucket.org/ohahn/music
3Available from https://bitbucket.org/ohahn/monofonic
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Figure 2. Top (bottom) panel: ratio between power spectra from N-body
simulations and from 3LPT at z = 24 (11.5). The N-body simulations were
evolved from zstart = 49 (24) down to z = 24 (11.5) using initial conditions
based on ZA, 2LPT and 3LPT (blue, green, and orange, respectively) and
initialized from different perturbed lattices. Solid lines show the results of the
SC lattice initial conditions including corrections from PLT (see Section 2.4,
to correct for particle discreteness), and the dotted lines without. Dashed
lines show the result of the particle oversampling using an FCC lattice
without PLT correction. The vertical dotted line indicates the particle Nyquist
wavenumber of the initial conditions. One per cent agreement is represented
as a shaded area and a perfect agreement as a dotted horizontal line. With PLT
the simulations agree at per cent level with 3LPT up to the particle Nyquist
wavenumber when 2LPT or 3LPT is used.

(mono-grid) simulations. MUSIC2 (Hahn et al., in preparation) will
be the next update to the MUSIC software package of Hahn & Abel
(2011), which will at a later stage also support zoom simulations.

2.4 Initial particle placements and particle linear theory

As mentioned earlier, the creation of ICs require as input a homo-
geneous and isotropic particle distribution. In practice, this state is
commonly realized by a simple cubic (SC) lattice, where particles
are arranged on a regular grid. Note that other alternatives for
homogeneous non-regular particle distributions have been proposed
(e.g. White 1996; Hansen et al. 2007; Liao 2018, for ‘glass’,
‘quaquaversal’, and ‘CCVT’ particle distributions, respectively).

The case of an SC lattice is particularly convenient since one can
simply have one particle per Fourier mode so that the SC lattice
coincides with the FFT mesh used to compute the LPT terms. An
important drawback is that Fourier modes on such lattices do not grow
identically as in the continuum fluid limit owing to self-interactions
of the discrete lattice, as has been pointed out in a series of papers
(Joyce et al. 2005; Marcos et al. 2006; Joyce & Marcos 2007).

These discreteness effects are present in all particle distributions
(but harder to quantify in non-regular lattices). This is a consequence
of the gravitational softening length being smaller than the mean inter

particle separation (see also Angulo, Hahn & Abel 2013, where the
effect is much more dramatic in the case of multiple particle species).
The effect is, of course, strongest at early times when the lattice is
still close to regular and physical density fluctuations are still small.
Joyce et al. (2005) and Marcos (2008) have shown how the deviation
from the fluid case can be calculated for early times in ‘particle linear
theory’ (PLT). Recently, this work has been extended by Garrison
et al. (2016) who use the earlier solutions to compensate the initial
particle displacements and velocities by the expected discreteness of
the lattice at linear order and for early times.

To quantify the impact of particle discreteness, we have imple-
mented an optional PLT correction in our initial conditions. Note
that our version is similar, but deviates in some respects from that
of Garrison et al. (2016) (e.g. avoiding their artificial boosting of
the counter-PLT modes). In Appendix C, we provide details on our
implementation. None the less, we remark that the PLT correction is a
decaying mode and thus vanishes over the course of the simulation. In
principle, this can be avoided by artificially boosting PLT corrections,
as proposed by Garrison et al. 2016, or by repeatedly applying it over
time – but note that PLT is only valid at linear order and currently
there is no higher-order theory available, which limits its applicability
at late times.

Our preferred choice for most parts of this paper – instead of PLT
– is to use a face-centred-cubic (FCC) lattice constructed by shifting
four SC lattices,4 and imposing the displacement and velocity using a
corresponding shift of the respective fields using a Fourier shift with
the FFT. The FCC lattice is more isotropic than the SC lattice, with
four times as many particles as our standard simulations. In fact,
Marcos (2008) showed that Bravais lattices other than SC exhibit
weaker deviations from the fluid limit at a fixed particle number, due
to higher symmetries (cf. also Stücker et al. 2020a).

2.5 Validation

In this subsection, we present a validation of our numerical and
analytic tools by comparing perturbative and numerical solutions,
emphasizing the role of particle discreteness.

In Fig. 2, we show the ratios of various numerical predictions
for the non-linear power spectrum to that in LPT. Specifically,
we employ an N-body simulation with Np = 10243 particles in a
Lbox = 1h−1Gpc box, and compute the LPT fields on a grid with 10243

points. Coloured lines display the case where the initial conditions
were computed using third-, second-, or first-order LPT. Solid and
dotted lines indicate cases where PLT corrections have been included
or not, while dashed lines refer to using an FCC lattice instead of
PLT. In the top panel, we start our simulations at z = 49 and evolve
them until z = 24, whereas in the bottom panel we start at z = 24
and evolve until z = 11.5.

As is evident from the figure, without PLT corrections, there is
a clear discrepancy between perturbative and numerical solutions,
with the latter showing a significant loss of power at the particle
Nyquist wavenumber of the particle lattice, kNy ≡ πN1/3

p /Lbox. The
loss of power is less prominent when using an FCC lattice. Note
that this power suppression is almost insensitive to the order of LPT
used to generate the ICs, which could create the illusion of proper
convergence in simulation results. This is, however, convergence to
the discrete solution and not to the fluid solution.

4We have also considered body-centred-cubic lattices (half the particle load
compared to FCC), leading to results between SC and FCC lattices.
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Figure 3. Same as Fig. 2, but now showing the ratio between the respective
equilateral bispectra at z = 24 (11.5) in the top (bottom) panel. Only the
simulations generated with 3LPT and with PLT corrections lead to ∼1 per cent
agreement between simulations and 3LPT at all k below the particle Nyquist
wavenumber, while 2LPT undershoots already at much smaller k. ZA is not
even present on this figure because it is off at all scales (ratio between 0.8 and
0.5).

In contrast, there is a remarkable agreement between the N-body
and perturbative solutions when PLT is enabled. Specifically, there
is a 1 per cent agreement between 2LPT, 3LPT, and the numerical
simulation up to kNy (indicated by vertical dotted line). Note that only
with PLT corrections, one is able to see the improvement brought by
higher order ICs, but even ZA performs well in this test if initialized
early enough (zstart = 49).

In Fig. 3, we show the same figure as before (Fig. 2) but now for the
equilateral bispectrum [i.e. with k = k1 = k2 = k3; see equation (31)
for the used bispectrum definition]. As for the power spectrum, we
find a systematic power deficit in the numerical solutions when PLT
is not considered, and an apparent convergence to the wrong solution.
Note that also here the loss of power is less pronounced when using
an FCC lattice.

With PLT corrections, a good agreement between numerical and
perturbative bispectra is achieved, but only for the higher-order
version of the ICs. Unlike for the power spectrum, ZA ICs perform
very poorly in this test. On large scales, they underestimate the
bispectrum at about 20 per cent, and up to 50 per cent on small
scales, regardless of PLT corrections. Thus, it is not shown in the
figure. This suggests that ZA ICs have a leading-order transient in
the bispectrum and should not be used to set up simulations if high
precision is required.

Note that for 3LPT with PLT correction, the error between our
two redshift ranges changes sign, overshooting in the redshift range
z = 24 → 11.1 (lower panel in Fig. 2) while undershooting for
z = 49 → 24 (upper panel in Fig. 2). From a theoretical point
of view, the next-to-leading (one-loop) correction to the bispectrum
involves density correlators up to fourth order (the ‘411’ contribution)

which should be of the same magnitude as those that we implicitly
determine on the grid points using 3LPT ICs. Thus, 3LPT might not
be sufficiently converged for predicting the non-linear bispectrum at
the few per cent level, and it is likely that 4LPT might be required
for an accurate comparison with simulations.5 We can then speculate
that this overshooting might imply that a starting redshift of 11.5 is
already too late for 3LPT. We remark that 2LPT at lower redshift
becomes worse than 3LPT without PLT correction or with FCC
oversampling, even if the sign does not change, thus suggesting that
2LPT suffers more from the lack of some higher-order correction for
the bispectrum. The impact of 4LPT ICs on the bispectrum will be
investigated in future works.

From the previous plots, the impact of particle discreteness
is obvious. Unfortunately, PLT corrections work for a relatively
short period if not artificially boosted (as Garrison et al. 2016
propose) and/or multiply applied at various stages. Furthermore, the
perturbative estimates to the discrete lattice effects have only been
computed to first order. For this reason, our reference simulation will
not be with the PLT corrections switched on. Instead, we use an FCC
lattice as described at the end of Section 2.4.

Since the Fourier perturbation modes are initially specified on the
SC lattice, we oversample the Fourier modes and phase-shift (in
Fourier space) the nLPT displacements to obtain them in the FCC
case. This enables us to compare how the exact same mode spectrum
converges on various statistics as we change the particle number
and degree of isotropy of the underlying particle lattice on to which
these modes are imposed. In particular, the SC lattice samples 1:1 the
Fourier modes, meaning that we have one particle per mode in an SC
simulation, and perturbations at the particle Nyquist wavenumber
are basically represented by two particles. By oversampling, no
new perturbation modes are added, which is in contrast to usual
convergence studies carried out for cosmological simulations, where
with an increase in the particle number also new perturbations are
added. When we compare an SC against an FCC simulation, we
thus test convergence at fixed initial modes, investigating only the
impact of particle sampling. Keeping the modes fixed is especially
important since, as we will show in Section 3, increasing the particle
Nyquist mode of sampled fluctuations increases the variance of the
fluctuations realized in the box, and in turn influences the degree
of non-linearity at the starting time. In contrast, allowing the ICs to
change would render an accurate comparison of starting redshifts
impossible. A somewhat orthogonal test of the impact of particle
discreteness comparing the different lattices, as well as also ‘glass’
(White 1996) and other (e.g. Hansen et al. 2007; Liao 2018) pre-
initial conditions, at fixed particle number would be a very interesting
project for a future study. We found however that glass pre-initial
conditions (results not shown in this paper) did not improve the
convergence of power and bispectrum over those presented for the
perturbed SC lattice below in Section 5. This shows that indeed the
small-scale interactions between N-body particles are responsible
for the discreteness errors, rather than the particular anisotropies of
a given pre-initial conditions particle distribution.

In summary, the results presented above clearly indicate that, with-
out discreteness corrections, N-body simulations deviate strongly
from the fluid limit during the perturbative phase. This effect is larger,
the earlier the simulation is initialized. Therefore, to minimize these
errors, one should delay the initialization time to the latest possible

5This should be contrasted to the convergence studies related to the power
spectrum (Fig. 2) where 4LPT becomes relevant only at 2-loop and beyond.
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moment. In the following section, we will formally investigate what
this ‘latest possible moment’ is in the context of LPT.

3 C O N V E R G E N C E R A D I U S O F L P T A N D
STARTING TIME FOR SIMULATIONS

In the previous section, we argued that early starting redshifts for
simulations are accompanied by significant discreteness effects.
These effects decrease in magnitude at lower redshifts, thus the latest
possible starting redshift is desirable. On the other hand, LPT ICs
are based on a single-stream fluid description implying that once
particle trajectories cross for the first time (‘shell-crossing’), the
single-stream fluid equations and thus LPT become invalid.

In this section, we will discuss several aspects regarding determin-
ing the point at which LPT breaks down, which assist clarifying the
appropriate redshift-window for generating initial conditions. Neces-
sary definitions related to the LPT series are provided in Section 3.1,
while we outline numerical tests for estimating the convergence
radius in Section 3.2. Fairly complementary to those numerical tests,
there are also ways to estimate the convergence radius directly from
theory; the main ideas are sketched in Section 3.3 while further
technical details are provided in Appendix E.

3.1 LPT series and its convergence radius

The breakdown of LPT is intimately linked to finding the radius of
convergence of the Taylor series of the displacement

ψ =
∞∑

n=1

ψ (n) (q) Dn
+. (16)

Indeed, as it is known from complex analysis, the radius of conver-
gence, Rconv, of any Taylor series is limited by the nearest singularity
in the complex domain of its argument. For the LPT series, which
is a time-Taylor series with time variable D+, the nearest singularity
could be in the real domain of D+ but could also take complex
values.6 For example, a real singularity could appear at shell-crossing
– where the density becomes formally infinite – which in any case
marks the breakdown of LPT.

Regardless of the precise nature of the singularities, a single-time
push-forward displacement of particles (as done for the IC creation)
is only meaningful mathematically as long as the chosen time-step
is within the disc of convergence spanned by Rconv (cf. Rampf et al.
2015):

|D+(amax)| < Rconv. (17)

Hence, amax sets formally the maximal scale factor for using LPT
initial conditions for a simulation. Note that typically, N-body sim-
ulations adopt an heuristic criterion requiring the average amplitude

6To illustrate the argument of singularities, let us consider a toy example. Let
us assume that the exact, non-perturbative displacement is ψ(D+) = 1/(1 +
D2+), which has complex singularities at D+ = ±i. In LPT, we represent
this displacement by a Taylor series, i.e. ψ = ∑

n cnD
n+, but because of the

appearance of these two complex singularities, we can evolve particles only
for 0 < |D+| < 1, i.e. within the disc of convergence. If shell-crossing has
not occurred until |D+| = 1, then we should seek for an analytic continuation
technique, like the one of Weierstraß, that in our case amounts to evolve
particles until |D+| = D< < 1, then re-expand and determine the new Taylor
coefficients around D<. The series around D< will generally have a new radius
of convergence that allow us to continue and follow the particles for |D+|
> D<, possibly involving repetitive re-expansions, until a real singularity in
time and/or shell-crossing, occurs.

of fluctuations σ at the resolution scale to be small, i.e. σ 
 1. While
such empirical criteria are certainly useful, we suggest here to take
also the breakdown of LPT into account.

In the following subsection, we provide two complementary
methods to estimate Rconv: the numerical ratio test, see Section 3.2,
and a fully analytical method that exploits a theoretical lower bound
on Rconv, as outlined in Section 3.3. These estimates translate into
threshold for the latest possible initialization time of the simulation
(based on theory grounds), which is discussed in Section 3.4.

3.2 Numerical estimation of the radius of convergence

A particularly simple method for estimating Rconv is to consider the L2

norm of the displacement (16), i.e.

	 ≡
∞∑

n=1

∥∥ψ (n) (q)
∥∥ Dn

+, (18)

and perform the convergence tests for that series (cf. Podvigina,
Zheligovsky & Frisch 2016). For this, we use the ratio test which
states that the radius of convergence Rconv of the series is

1

Rconv
= lim

n→∞
∥∥ψ (n)

∥∥ / ∥∥ψ (n−1)
∥∥ (19)

(if that limit exists). In all generality, it is thus the large-n limit
of Taylor coefficients that decides questions about convergence. Of
course, in numerical implementations of the ratio test, the actual limit
n → ∞ can only be reached by employing numerical extrapolation
methods (see next paragraph), which in principle can be performed to
very high accuracy. None the less, we remark that in the present case
where we have numerically implemented perturbative solutions only
up to third order, the resulting numerical extrapolation is fairly crude
(see the following section for a more rigorous yet more restrictive
method).

Domb & Sykes (1957) introduced a numerical extrapolation
method in a non-cosmological context. There, one draws the plot
‖ψ (n)‖/‖ψ (n−1)‖ versus 1/n, and takes the y-intercept (‘n → ∞’) as
the estimate for 1/Rconv. For solutions until third order, we have two
such ratios, leading to the two tuples(

1
/

2,
∥∥ψ (2)

∥∥/∥∥ψ (1)
∥∥)

and
(

1
/

3,
∥∥ψ (3)

∥∥/∥∥ψ (2)
∥∥)

, (20)

from which we can perform a simple linear extrapolation to the y-
intercept. This argument leads to the following estimate for the radius
of convergence of the LPT series,

1

Rconv (q)
≈ 3

∥∥ψ (3)
∥∥/∥∥ψ (2)

∥∥ − 2
∥∥ψ (2)

∥∥/∥∥ψ (1)
∥∥. (21)

Note the somewhat artificial dependence of q in Rconv which we have
included here by hand; the actual radius of convergence of LPT is ob-
tained by searching for the global minimum Ractual = minq Rconv(q),
which is, so to say, the worst-case scenario over the whole spatial
domain (in the present case: in the simulation box). However, since
we employ random initial conditions, we expect some points in the
realization of this probability distribution to have extreme values. For
example, if ‖ψ (2)‖ � 0 locally (indicating local pancake formation)
but then with ‖ψ (3)‖ = O(1) (non-negligible gravitational couplings
from small spatial scales), then our low-order convergence test will
predict a tiny radius of convergence. We stress however, that in
such collapse scenarios higher-order ratios are likely to change the
outcome of the convergence test significantly. We will come back to
this issue in a forthcoming paper.

Therefore, we expect to observe outlier values that should be
disregarded. For that reason, we choose for the ratio test a statistical

MNRAS 500, 663–683 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/1/663/5974291 by guest on 28 M
ay 2024



670 M. Michaux et al.

Figure 4. Maximum scale factor amax ,p for which various methods predict
convergence of LPT, thereby pinning down the latest possible time when
simulations should be initialized. Specifically, we show amax ,p as a function
of the fluctuation scale σ for different box sizes Lbox (colors), averaged
over 10 random realizations. The solid lines are the result of the numerical
ratio test using our implementation of 3LPT, the dashed and dotted lines
are analytical bounds on the radius of convergence computed using (23) for
T = Tcons = 0.022 (dotted) and T = Tcross = 0.107 (dashed). The values
of p denote the percentage of particle displacements in the simulation that
satisfy the LPT convergence condition (17). We chose here the percentiles
corresponding to the 1σ , 2σ , and 3σ (light to bright) standard deviation of
the normal distribution. For the theoretical bounds, we use p = 99.9 per cent.
Our simulations (box length 1h−1Gpc) are indicated in the figure with a square
symbol for zstart = 49, a diamond for zstart = 24 and a triangle for zstart =
11.5.

approach as outlined next. See the following section for a method
that is only sensitive to the deterministic radius of convergence.

Inverting |D+(amax )| � Rconv gives the upper limit amax (or the
lower limit zmin ) on the starting time of the simulation, i.e.
astart � amax . We can compute amax (q) for all q in the simulation
box and get the value of amax ,p at some chosen percentile p. This
means that by taking astart = amax ,p, p per cent of the points will fulfil
the condition |D+(amax )| � Rconv. Results of the ratio test are shown
in Fig. 4 and discussed in Section 3.4.

3.3 Analytical bound on the radius of convergence

Complementary to the above numerical method, Zheligovsky &
Frisch (2014) and Rampf et al. (2015) have shown that, being
equipped with explicit all-order recursion relations for LPT, it is
also possible to obtain an analytical bound D

theory
+ on the radius of

convergence Rconv, i.e.∣∣Dtheory
+

∣∣ < Rconv. (22)

This bound comes actually from ‘order ∞’ in LPT (see Appendix E),
but at the same time, since only very weak assumptions on the
initial conditions are imposed, leads to a bound that is (much)
smaller than Rconv. None the less, this analytical bound is to some
extent complementary to the low-order estimate as employed in the
previous section, and therefore included in our studies. The numerical

exploitation of all this and the ratio test will be done in the following
section.

In Appendix E, we outline three ways how theoretical bounds on
the radius of convergence can be estimated. For this work, we use
the two methods that lead to the best bounds, namely case (a) where
the employed bounds are conservative (‘cons’) but already slightly
improved in comparison to those of Rampf et al. (2015), and (b) a
new – however very optimistic – method where we ignore complex
time singularities and, possibly, can increase the bound until shell-
crossing (‘cross’). We find

D
theory
+ = T

‖∇i∇j ϕini‖ , (23)

where in case (a) we have T = Tcons = 0.022 and in case (b) we have
T = Tcross = 0.107. In Fig. 4, we show how these theoretical bounds
relate to constraints for the allowed scale factor where simulations
can be initialized. As expected, these theoretical bounds are much
weaker than the one coming from the ratio test. We note that for
the theoretical bounds we have fixed p = 99.9 per cent in Fig. 4 to
minimize an unwanted dependence on the box size.

3.4 Upper limits on initialization time for simulations

The analytical bound as well as the complementary numerical ratio
test translate into upper limits on the initialization time astart � amax

for the simulations. In Fig. 4, we summarize the resulting upper limits
as a function of the fluctuation scale σ . Evidently, the numerical tests
provide much stronger bounds on amax than the analytical method,
however we remark again that the employed numerical tests only
go to third order in PT – which only provides two data points
for the numerical extrapolation. Thus, these stronger bounds, which
could change at higher orders, should still be read with caution. The
analytical method, by contrast, provides bounds that are rock-solid.

For sufficiently small σ , the results from the numerical ratio test
are approximately straight lines using log–log scaling. Using this as
a working assumption, we can give some simple formula that could
help determine quickly whether a given starting time is inside or
outside the radius of convergence, and to choose the optimal one for
a simulation.

For the ratio test, the maximum starting time is well approximated
by

amax,n ≈ 0.2

n
σ−0.8, (24)

where σ is the standard deviation, and n is the number of standard
deviations required to be inside the convergence radius (since the
distribution is not Gaussian, we map this to the corresponding
percentiles, i.e. p = 68, 95, and 99.7 for n = 1, 2, and 3, respectively).
We remark that the value of σ can be calculated on the random
realization prior to the back-scaling step and thus, the initialization
time for the simulation can be chosen at the last moment from
equation (24) by specifying the number of standard deviations n.

In contrast, the theoretical bounds from the previous section are
much closer to

amax ≈ T

12.2σ
, (25)

where T is either Tcons or Tcross as defined in the previous section.
The scaling ∝σ−1 corresponds to what one would expect from linear
theory structure growth in an Einstein–de Sitter (EdS) universe, such
that these bounds basically require that the fluctuations do not exceed
a fixed amplitude at the starting time.
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Table 1. Force and time integration accuracy parameters of L-GADGET3
employed for the simulations.

Softening 0.016 276
ErrTolForceAcc 0.002
ErrTolIntAccuracy 0.025
ErrTolTheta 0.5
MaxRMSDisplacementFac 0.25
MaxSizeTimestep 0.01
TypeOfOpeningCriterion 1

The theoretical bounds are thus much more conservative than
the numerical estimates we obtained from the ratio test: the former
suggest starting times zstart � 100, while the latter suggest this could
be a factor �5 lower, provided that we exclude certain outliers (due
to the employed low-order numerical test and the nature of random
ICs). How these numbers translate into a given precision for the
summary statistics at late times is a non-trivial question due to the
increased impact of discreteness errors for early starts that we have
discussed before. We will attempt to disentangle the two in the next
sections.

4 N O N - L I N E A R SI M U L AT I O N S A N D A NA LY S I S

Here, we first describe our cosmological numerical simulations
(Section 4.1) and then the methods we employ to quantify the
properties of the respective non-linear density fields (Section 4.2).

4.1 Numerical evolution

For all numerical results, we use the L-GADGET3 code (Angulo
et al. 2012) which is a heavily modified and optimized version
of the GADGET-2 N-body code (Springel 2005). It implements a
parallel tree-PM method with periodic boundary conditions. For
all simulations, we employ a 20483 PM grid, with the force and
time integration parameters listed in Table 1. The values of those
parameters are expected to yield sub-per cent convergence in the
low-redshift power spectrum on scales k � 2h Mpc−1 (see fig. 2 of
Angulo et al. 2020).

We use the following cosmological parameters, consistent with
the PLANCK2018+LSS results (Planck Collaboration 2020): 
m =
0.3111, 
� = 0.6889, 
b = 0.04897, h = 0.6766, σ 8 = 0.8102,
and ns = 0.9665. The transfer function has been calculated using the
CLASS code7 (Blas et al. 2011) at z = 0, and then scaled back using
the linear theory growth factor D+(z) to the various starting redshifts
we use (see discussion in Section 2.2).

For the simulations in this study, we use a box of linear size Lbox =
1h−1 Gpc, and use Npart = 10243 whenever we initialize particles on
a simple cubic (SC) lattice. This yields an N-body particle mass of
mpart = 8.04 × 1010 h−1M�. In some cases, we oversample the white
noise fields with different lattices (see discussion in Section 2.4).
When an FCC lattice is used, the number of particles is 4 × 10243

and the mass 2.01 × 1010 h−1M�. For each of these simulations,
we have carried out versions employing de-aliased (c.f. Section 2.3)
ZA, 2LPT, and 3LPT initial conditions. For testing, we have also
run versions with 2LPT and 3LPT ICs without dealiasing (see
Appendix B). In Table 2, we list all simulations we use in our paper.

7Available from http://class-code.net/

Table 2. List of the simulations we use in this paper, differing in the order
of the LPT used to initialize them as well as the starting time. All simulate
the same Lbox = 1 h−1Gpc box with the cosmology described in Section 4.1.
The ‘SC’ runs have 10243 particles in an SC lattice, the ‘FCC’ runs 4 × 10243

particles in an FCC lattice. All simulations sample the same 10243 modes.

PT zstart Lattice mp/1010 h−1 M�

ZA 49 SC 8.04
ZA 99 SC 8.04
ZA 199 SC 8.04

2LPT 11.5 SC 8.04
2LPT 24 SC 8.04
2LPT 49 SC 8.04
2LPT 99 SC 8.04
2LPT 199 SC 8.04

3LPT 11.5 SC 8.04
3LPT 11.5 FCC 2.01
3LPT 24 SC 8.04
3LPT 24 FCC 2.01
3LPT 49 SC 8.04
3LPT 49 FCC 2.01

4.2 Statistical analysis of density field data

We briefly summarize below the various quantities that we will
investigate in Section 5 along with their respective definitions and
the way we computed/evaluated them. Throughout, we use cloud-in-
cell interpolation (CIC; cf. Hockney & Eastwood 1981) to deposit
the N-body particles to a regular grid. From this density field, we
compute one-, two-, and three-point statistics.

4.2.1 Density field and one-point statistics

To study the distribution function of densities, we use a grid of 10243

cells and consider smoothed versions of this CIC (over)density field,
δRs

, by multiplying it with the Fourier transform of the spherical top-
hat filter of radius Rs in Fourier space. From this smoothed density
field we compute the third and fourth cumulant statistics, also called
skewness S3 and kurtosis S4, and defined by Bernardeau et al. (2002),
e.g. as

S3(Rs) = 〈
δ3
Rs

〉
c

/ 〈
δ2
Rs

〉2
, S4(Rs) = 〈

δ4
Rs

〉
c

/ 〈
δ2
Rs

〉3
, (26)

where the angle brackets indicate volume averages, and the connected
part of the third and fourth moments are defined by:〈
δ3
Rs

〉
c
= 〈

δ3
Rs

〉 − 3
〈
δ2
Rs

〉 〈
δRs

〉 + 2
〈
δRs

〉3
, (27)

〈
δ4
Rs

〉
c

= 〈
δ4
Rs

〉 − 4
〈
δ3
Rs

〉 〈
δRs

〉
− 3

〈
δ2
Rs

〉2 + 12
〈
δ2
Rs

〉 〈
δRs

〉2 − 6
〈
δRs

〉4
. (28)

Since we only use one realization for each simulation, a bootstrap-
ping method was used to estimate the mean and variance of these
quantities. Specifically, from the density fields δRs ,num and δRs ,den

appearing in the numerator and the denominator of the ratios in
equation (26), we created an ensemble of new fields δi

Rs ,num and
δi
Rs ,den with the same number of elements as the original. These

elements were chosen randomly with replacement, meaning that
a particular element on the original sample might not be present
in the resampling, and that other elements can appear more than
once. For each i, the random resampling employed the same pseudo-
random generator seed for the numerator and denominator of the
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ratio. The ratios are then estimated using the means of the one point
statistics on this ensemble of resamplings. We used an ensemble of
20 resamplings.

4.2.2 Power spectra and bispectra

We define the power spectrum P(k) as〈
δ(k) δ(k′)

〉 = (2π)3 δ
(3)
D

(
k + k′) P (k) , (29)

where k = ‖k‖ and δ
(3)
D is the Dirac delta, itself defined by

δ
(3)
D (x) =

∫
d3k

(2π)3
e−ik·x . (30)

The power spectra are computed on-the-fly during the simulation
based on an FFT of the PM grid of 20483 cells with CIC assigned
particles. To reduce the effect of the mass assignment, we then divide
our measurements by the Fourier transform of a real-space CIC kernel
(Jing 2005). We have compared our results with a measurement
performed after folding the density field 64 times in each direction.
This folding procedure allows to shift the range of sampled wave
numbers to smaller scales (see Jenkins et al. 1998, who first proposed
this method). From this, we verified that our power spectra results are
not influenced by the FFT grid resolution at any scale considered here.

Analogously, the bispectrum B(k1, k2, k3) is defined by

〈δ(k1) δ(k2) δ(k3)〉c = (2π)3δ
(3)
D (k1 + k2 + k3) B(k1, k2, k3). (31)

We use the PYTHON package BSKIT8 (Foreman et al. 2020) to compute
the bispectra presented in this paper. This software package is based
on the NBODYKIT9 toolkit of Hand et al. (2018) and implements
a parallel version of the ‘Scoccimarro estimator’ (cf. Scoccimarro
2000; Sefusatti et al. 2016; Tomlinson, Jeong & Kim 2019).

We recall here the basic ideas behind this bispectrum es-
timator. The brute-force method integrates the triple-product
δ(q1) δ(q2) δ(q3) over spherical shells of width �k around k1, k2,
and k3:

B̂(k1, k2, k3) = 1

(2π)3V�

∫
k1

d3q1

∫
k2

d3q2

∫
k3

d3q3

× δ(q1) δ(q2) δ(q3) δ
(3)
D (q1 + q2 + q3), (32)

where

V� =
∫

k1

d3q1

∫
k2

d3q2

∫
k3

d3q3 δ
(3)
D (q1 + q2 + q3), (33)

where the short-hand notation
∫

ki
d3qi denotes integration while

applying a filter with a window function W (qi) that is 1 inside
the spherical shell around k and 0 elsewhere. Inserting equation (30)
in (32) and using Fubini’s theorem to reorder the terms, we get

B̂(k1, k2, k3) = 1

(2π)3V�

∫
d3x

(2π)3
Ik1 (x) Ik2 (x) Ik3 (x), (34)

where

Ikj
(x) =

∫
d3qj Wj (q j ) δ(qj ) e−ix·qj . (35)

Written as in equation (34), the bispectrum calculation involves three
inverse Fourier transforms, their product and an integration over the
real spatial domain. While the complexity is the same as a brute-
force averaging over every triangle, the calculations are much more

8Available from https://github.com/sjforeman/bskit
9Available from https://github.com/bccp/nbodykit

optimizable using cache efficient and parallel computations, and
exploit advantages of FFT algorithms. The volume factor (33) is
calculated using the same method, with a density field of value 1,
and can be precomputed and reused if multiple bispectra estimations
are done with the same binning.

4.2.3 Halo finding and mass functions

We use an inlined, on-the-fly version of the SUBFIND algorithm
(Springel et al. 2001) to identify gravitationally bound structures
in the simulations. The underlying friend-of-friends (FoF) haloes
(Davis et al. 1985), defined with a linking length of b = 0.2, must
contain a minimum number of 32 particles. When we discuss mass
function results, we present results for these FoF haloes. We did
not find a significant difference in our results if instead spherical
overdensity masses obtained at 200 times the critical density were
used, once the FoF masses are corrected for discreteness effects
(see discussion in Section 5.4.1). To compute the mass function,
we use 20 mass bins with uniform logarithmic spacing in the range[
32; 5 × 105

] × msc
part, where msc

part is the particle mass in the runs
with initial SC lattice. The ratios and error bars are estimated using
bootstrap resampling of the catalogue of halo masses, similar to the
method described in Section 4.2.1.

5 R ESULTS

In this section, we present our study of the impact of the starting time
zstart and of the order of the LPT used to initialize the simulations.
We consider various summary statistics that are commonly extracted
from cosmological N-body simulations: one-point cumulants, power
spectra, and bispectra of the matter density field, and halo mass
functions. To assess the impact of discreteness errors, we compare
each case to the results from a simulation that oversamples the same
initial perturbation field with four times more particles.

5.1 One-point statistics

We start by considering cumulants, Sn, of the matter density field.
The non-linear gravitational collapse introduces non-Gaussianity in
the originally purely Gaussian density field, which can be captured
in these cumulants. In addition, high-order cumulants of the matter
density field are sensitive to the order of the LPT used to set up the
simulation and the starting redshift (e.g. Crocce et al. 2006).

Our measurements of the skewness and kurtosis of the density
distribution function of the matter density field smoothed on different
scales Rs are presented in Fig. 5. Specifically, we show ratios of S3(Rs)
(left column), and S4(Rs) (right column) at redshifts z = 0, 1, and 3
(first to third row) initialized at different times (represented by the
line styles) and with different LPT orders (represented by the line
colours) with respect to the 3LPT reference run initialized with an
oversampled FCC lattice at zstart = 24.

For a large enough smoothing radius, the filtered density field
approaches a Gaussian field, and the agreement between simulations
should be perfect. This is what we see indeed for S3 with both 2
and 3LPT. For S4 however, while 3LPT converges correctly, 2LPT
does not agree with our reference simulation even on large scales
Rs � 10 h−1Mpc. At the latest starting time we consider, zstart =
11.5, the disagreement for 2LPT is larger than 1 per cent at z = 3,
reducing to 0.2 per cent at z = 0 for Rs = 25h−1 Mpc. For zstart =
24, the difference stays within 1 per cent at all scales for z ≤ 3 but
the transients are still visible in S4 with 2LPT. Munshi, Sahni &
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Cosmic initial conditions: 3LPT 673

Figure 5. Dependence of one-point density field statistics on LPT order and
starting redshifts. The panels show the ratios of the skewness S3 (right-hand
column) and kurtosis S4 (left-hand column) as a function of smoothing scale
Rs of simulations started at different redshifts (line styles), with different
orders of LPT (line colors), with respect to the FCC run started at zstart = 24
and 3LPT initial conditions. We find these to be well converged in all cases,
except the kurtosis when 2LPT is initialized too late, while 3LPT still yields
about 1 per cent accuracy on S3 and S4 even when initialized as late as zstart =
11.5.

Starobinsky (1994) have shown in the case of spherical collapse that
nLPT reproduces the one-point statistics up to Sn+1. We confirm here
that indeed 2LPT correctly predicts S3 but not S4 in the large-Rs limit,
while 3LPT is correct for both. Likewise, we expect all cumulants
higher than 4 to be incorrect even with 3LPT. A similar result for
2LPT was presented by Crocce et al. (2006).

The deviations from Gaussianity that are produced by the gravi-
tational collapse of overdensities affect the smallest scales first. The
differences with respect to the reference simulation in Fig. 5 can
be interpreted as the presence of small-scale transients due to the
truncation of the LPT series. For the higher starting redshift (zstart =
24), they are all under 1 per cent even for the smallest shown scale
of 2.5h−1 Mpc (since the mean particle separation is ∼1 h−1 Mpc,
we did not probe smaller scales). For the lower starting redshift
zstart = 11.5, the disagreement with 2LPT for S3 is under 2 per cent
at z = 3 and goes under 1 per cent for z ≤ 1. For S4, the relative
difference is > 3 per cent at z = 3, 2 per cent at z = 1, and under
0.5 per cent at z = 0. This is roughly consistent with the earlier results
of Tatekawa & Mizuno (2007) for 3LPT including only longitudinal

modes, who however were not studying per cent level agreements,
so that a detailed comparison is not possible.

Of course, the lower starting redshift (zstart = 11.5) is extremely
late by traditional wisdom of when to start a simulation, and based on
our analysis of the convergence radius of LPT in Section 3, it is also
dangerously close to the time when we expect LPT to break down
(for the considered resolutions). It is thus no surprise that 2LPT does
not fare well in this case. In contrast, however, 3LPT performs at
the per cent accuracy level even for such extremely late starts. For
example, in the case of S4, the difference is already under 2 per cent
at z = 3, and for S3 it is always below 1 per cent.

5.2 Two-point statistics

We next investigate the impact of the initial conditions and starting
time on the late-time two-point statistics, as quantified by the
matter density power spectrum. First, we quantify the magnitude
of discreteness errors as a function of starting time, then the impact
of LPT order and starting time on the accuracy of matter power
spectra. We will consider a one per cent agreement with a reference
solution to the largest possible wavenumber k as the benchmark of
accuracy for all spectra.

5.2.1 Discreteness errors on power spectra

In order to investigate the impact of particle discreteness on the
power spectrum, we ran the same initial perturbation spectrum with
particles initially placed on an SC lattice, as well as on a four times
oversampled FCC lattice (see our discussion in Section 2.4 for more
details). The initial conditions were generated using 3LPT at starting
redshifts zstart = 49, 24, and 11.5. In Fig. 6, we show the ratio of
the SC to the FCC runs at redshifts z = 3, 1, and 0. At z = 0, all
power spectra agree to better than one per cent up to the particle
Nyquist wavenumber, irrespective of the starting time. However, at
higher redshifts, the SC lattice shows an important suppression of
the small scale structures near the particle Nyquist wavenumber due
to discreteness errors. At z = 3 for zstart = 49, the underestimation of
the SC compared to FCC is about 8 per cent, down to ∼ 3 per cent at
z = 1. For the late start zstart = 11.5, we find a maximum suppression
of ∼ 2 per cent, ∼ 1 per cent and ∼ 0.4 per cent at z = 3, 1, and 0,
respectively. As a consequence, the power spectra agree to better than
one per cent for k � kNy/3 at z = 3 and for all k � kNy at z = 1 and
0. While not shown in the figure, we found that for a fixed starting
redshift, the suppression does not depend on the order of LPT used.
The independence from the LPT order clearly indicates an origin in
discreteness errors, and the shape of the power suppression is indeed
very similar to the scale-dependent PLT growth factors (cf. fig. 1 of
Joyce et al. 2005) indicating that the fluid ICs relax to the discrete
evolution in the quasi linear regime, and increasingly so, the earlier
the starting time.

We thus find that the higher the starting redshift is, the greater is
the suppression of the high k modes, irrespective of the order of LPT.
The effect peaks at intermediate redshifts, before the high-k part of
the resolved power spectrum becomes fully dominated by collapsed
haloes. A similar suppression of high-k power that improves the better
the non-linear scale is resolved has also been reported by Schneider
et al. (2016), who also investigated the additional dependence on the
gravity solver employed in the simulations. We leave an assessment
of whether/how much our results depend on the choice of N-body
gravity solvers for future work.
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Figure 6. Impact of particle discreteness on the matter power spectrum
evolution: ratios between the power spectra of the SC and oversampled FCC
runs for different starting redshifts (different line styles) at z = 0, 1, and 3 (top
to bottom panels). All simulations shown use 3LPT ICs, but the results do
not depend on the LPT order. The grey shaded area indicates per-cent-level
agreement with the reference. The vertical dashed line indicates the particle
Nyquist wavenumber of the initial perturbation field. Discreteness effects lead
to a time-dependent suppression close to the particle Nyquist wavenumber.

5.2.2 Dependence of power spectra on LPT order and starting time

Fig. 7 shows ratios of power spectra at redshifts z = 0, 1, and 3
(panels top to bottom) of simulations starting from different initial
conditions with respect to a reference simulation. Specifically, we
vary the order of the LPT from the ZA (orange) to 2LPT (green)
to 3LPT (blue lines), and the starting time between zstart = 199, 99,
49, 24, and 11.5 (as indicated by the different line styles). Note that
we have not run all combinations of LPT order and zstart. We use
a simulation initialized with 3LPT at zstart = 24 and using an FCC
lattice (i.e. four times more particles) as our reference simulation.
This reference solution should suffer from much reduced discreteness
effects due to the significantly higher particle number and increased
symmetry of the lattice.

The results shown in Fig. 7 indicate clearly that for a simulation
with our resolution, 3LPT performs best at z = 3 and is accurate for
k � kNy/2 if started at zstart = 11.5, while performing increasingly
similar to 2LPT for earlier starts, with both being accurate roughly for
k � kNy/4 and �kNy/5 when started at z = 24 and z = 49, respectively.
Note that 2LPT, in stark contrast to 3LPT, performs very poorly for
the latest start zstart = 11.5, which just reflects that this is indeed a
too late start for second order LPT. The ZA runs, for which we only
considered much earlier starting times zstart = 49, 99, and 199, are
all accurate only to ∼kNy/10, and have the largest errors overall.

As structures collapse into haloes over time, the power spectra be-
come significantly less sensitive to the initial conditions as evidenced
by our results at z = 1 and z = 0. The 3LPT run with the latest starting
time zstart = 11.5 is now accurate up to the particle Nyquist wave

Figure 7. Impact of starting time and LPT order on the matter power
spectrum evolution: ratios of power spectra for different orders of LPT (line
colours) and starting redshifts (line styles) at z = 0, 1, and 3 (top to bottom
panels), w.r.t. the FCC 3LPT zstart = 24 reference simulation. The grey
shaded area indicates per-cent-level agreement with the reference, and the
dashed vertical line indicates the particle Nyquist wavenumber. Higher order
LPT and later starting times improve agreement with the reference run.

numbers (z = 1) or even beyond (z = 0). This is also true for 2LPT
and 3LPT at z = 0 if started at 24. All other runs are less accurate, to
varying degrees. Most notably, and as expected from our discussion
of discreteness effects, the ZA runs converge only extremely slowly
with increasingly earlier starting time, and arguably converge to the
discrete solution rather than the fluid solution. Even for the earliest
start we considered, zstart = 199, the ZA run is only accurate for
k � kNy/8 (�kNy/9) at z = 0 (z = 1). We note that for early starts,
of course, ZA and 2LPT are consistent at z = 0 within about one
per cent of each other (cf. the dash-dotted orange and green lines),
which is what has also been found by Schneider et al. (2016) (see
their fig. 3), and the general picture for the poor performance of ZA
versus 2LPT has already been outlined by Crocce et al. (2006).

For 2LPT, as for 3LPT, a later start gives the best results with
zstart = 24 among the runs we considered, but the latest possible start
is of course earlier for 2LPT than for 3LPT. This is in fact perfectly
consistent with the analysis for 2LPT of Nishimichi et al. (2019) who
followed a different approach to find the optimal starting redshift, by
finding that zstart for which the small-scale power spectrum has the
highest amplitude, thereby finding the ‘sweet spot’ between particle
discreteness and LPT truncation transients. Their 250 h−1Mpc box
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Figure 8. Same as Fig. 6 but showing the impact of particle discreteness on
the equilateral bispectrum B(k) ≡ B(k, k, k).

with 2563 particles has the same Nyquist mode as our runs, and they
find the optimal start to be around zstart � 30. For comparison, we
note that the so-called Euclid Flagship simulation (Potter et al. 2017)
and those used in the EuclidEmulator (Euclid Collaboration et al.
2019) were initialized at z = 200 with ZA. Our results indicate that
their results could be systematically biased low by about 4 per cent at
k ∼ 4 hMpc−1. In addition, the simulations of (Angulo et al. 2020),
were initialized at z = 49 with 2LPT, which should be biased low by
1.5 per cent on the same scales.

Overall, we thus find that a picture emerges that fits nicely with our
analysis of the convergence radius of LPT presented in Section 3.4.
The best results are obtained with the latest start at the highest
order of LPT. These results should be compared against the ones
displayed in Fig. 4. The starting redshifts of 49, 24, and 11.5 are
placed respectively just below the 99.7th, just above the 95th, and
just above the 68th percentile of the convergence radius plot for the
box size and resolution considered here (cf. symbols in Fig. 4). It thus
appears that for the best accuracy on the power spectrum, pushing
the starting time as low as the 68th percentile yields the best results.
We did not consider even later starting times, but they might yield
a small further improvement for 3LPT. One has to caution against
pushing this too far however, as beyond the radius of convergence,
higher orders of LPT introduce higher errors.

5.3 Three-point statistics

In this section, we repeat the analysis of the previous section for
bispectra. In order to simplify the analysis, we exclusively focus on
equilateral bispectra k = k1 = k2 = k3, which are one-dimensional in
that they depend only on a single scalar k, and not on the direction k
(due to the assumed statistical isotropy), and thus allow us to probe
the scale-dependence up to the particle Nyquist wavenumber most
conveniently. We analyse the bispectra for the same simulations

as those in Section 5.2. Again, we first quantify the magnitude of
discreteness errors as a function of starting time, then the impact
of LPT order and starting time on the accuracy of the bispectra. As
before, we will consider a one per cent agreement with a reference
solution in order to quantify accuracy.

5.3.1 Discreteness errors on bispectra

We again quantify the impact of particle discreteness on bispectra by
taking ratios of bispectra measured from simulations that sample the
same perturbations using an SC and a four times oversampled FCC
lattice (cf. Section 2.4). As before, we vary the starting redshift of the
3LPT initial conditions between zstart = 49, 24, and 11.5. The results
of this study are shown in Fig. 8, and are in broad agreement with
our previous analysis of discreteness effects on the power spectrum.
Again, we see a time and scale dependent suppression which is the
strongest close to the particle Nyquist wavenumber. For the latest
starting time, zstart = 11.5, agreement with the reference run is at
the sub-per cent level at z = 0 and 1 up to kNy, with increasing
errors for the earlier starts. At z = 3 errors are significantly larger,
but still with later starts faring better. These results are in tension
with the interpretation given by McCullagh, Jeong & Szalay (2015)
who report a convergence of bispectra only for early enough starting
times. We will discuss this more below.

5.3.2 Dependence of bispectra on LPT order and starting time

We next investigate the dependence of the accuracy of bispectra on
the initial conditions varying LPT order and starting time. Fig. 9
shows the ratios of equilateral bispectra w.r.t. the reference run
(3LPT, oversampled FCC lattice, zstart = 24). We vary the orders
of LPT (line colour) and starting redshift (line style), and present
measurements at z = 0, 1 and 3. One notes immediately that
for bispectra, the impact of the order of LPT used to set up the
simulations is much more pronounced than for the power spectra
presented in the previous Section 5.2.2. At all times and all scales,
and irrespective of the starting time, the bispectrum obtained from ZA
initial conditions disagrees with the reference run, with differences
dramatically increasing at earlier times. Changing to 2LPT ICs
improves the situation dramatically, as has been reported before (e.g.
McCullagh et al. 2015; Baldauf et al. 2015). However, even for
2LPT, the bispectra agree at z = 1 with the reference solution only
for k � kNy/15 (if we disregard the latest starting time zstart = 11.5).
The dependence on starting time is however non-trivial for 2LPT:
there is clearly a sweet spot for the runs starting at z ≈ 24−49, with
worse agreement with the reference run for both earlier and later
starts. While disagreeing with the reference run, the results appear to
converge for increasingly earlier starting times (zstart = 99 and 199),
which are however strongly suppressed w.r.t. the reference run at
k ∼ 1 h Mpc−1. Generally, the situation improves with the growth of
non-linear structure on increasingly larger scales at z = 0. Now the
later starting times zstart = 49 and 24 agree with the reference run at
k � kNy/4, while the early starts agree perfectly with one another, but
not with the reference run for k � kNy/8. We are arguably witnessing
the convergence to the discrete solution with the increasingly higher
starting times here. The best results are obtained with 3LPT and again
the latest possible starts, which agree with the reference at z = 0 at
all scales we investigated. At z = 1, the agreement is still excellent
for the zstart = 24 run (k � kNy/2). It is slightly less good for the latest
start (zstart = 11.5), indicating that this is a slightly too late start even
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Figure 9. Same as Fig. 7 but showing the impact of starting time and LPT
order on the equilateral bispectrum. The impact of 3LPT on the bispectrum is
more dramatic: At z = 1, we were not able to achieve per cent level agreement
at this resolution with 2LPT to small scales, and ZA is so off that it should
not be used for precision studies. 3LPT allows sub-per cent errors on the
bispectrum at z = 0 up to the Nyquist mode.

for 3LPT. At z = 3 the 3LPT runs are accurate only for k � kNy/15
but have overall the smallest errors.

In contrast to the results of McCullagh et al. (2015), who suggest
using very early starting times, our results appear to indicate quite the
opposite. Since bispectra are impacted by particle discreteness just
like power spectra, discreteness errors leading to a deviation from
the fluid limit accumulate more, the higher the starting redshift and
the smaller the perturbations.

In summary, we find that, as for the power spectra, the bispectrum
accuracy is best when high-order LPT is combined with a very late
start. N-body simulations starting from 3LPT at our relatively low
resolution certainly can be accurate to predict the bispectrum at z =
0 to better than one per cent up the particle Nyquist wavenumber.

Note that there have been concerns in the literature about the ac-
curacy with which N-body simulations predict the matter bispectrum
(e.g. Schmittfull, Regan & Shellard 2013; Baldauf et al. 2015; Hung,
Fergusson & Shellard 2019). For instance, Baldauf et al. (2015)
assumes a systematic error in their simulated results to account for
lack of convergence when ZA or 2LPT is used. In contrast, our results
indicate that once discreteness and truncation are taken into account,
N-body simulations can provide very reliable and accurate results.

Figure 10. Same as Fig. 6 but for the halo mass function. We indicate halo
mass in the bottom x-axis, and corresponding particle number in the SC run
in the top x-axis. The FoF-halo masses have been corrected using the Warren
et al. (2006) correction (see text for details).

5.4 Halo mass functions

Finally, we also consider the abundance of collapsed structures –
as quantified by the halo mass function – as a benchmark for the
dependence of simulation results on the initial conditions. To this
end, we essentially repeat once again the analysis performed already
in the sections before. We first quantify the impact of discreteness on
the mass function, and in a second step the dependence on starting
time and order of LPT on the abundance of haloes.

5.4.1 Discreteness errors in the mass function

In Fig. 10, we show the ratio of mass functions obtained from 3LPT
IC runs (starting from an SC lattice) with varying starting time to our
usual reference run (3LPT, oversampled FCC lattice, zstart = 24). The
FCC reference has four times more particles, meaning that haloes of a
given mass are much better resolved in that run, but does not introduce
further small-scale modes (see discussion in Section 2.4). In this
sense, our convergence test is different from the usual convergence
tests of halo mass functions (e.g. Jenkins et al. 2001; Tinker et al.
2008), where simply different ranges of scales of the full �CDM
spectrum are resolved. In our results, we show mass functions for
FoF haloes. The FoF algorithm is known to be biased at low particle
numbers due to percolation noise. Warren et al. (2006) have proposed
to correct the mass of an FoF group due to discreteness errors at a
finite number of particles Npart as

MFoF = MFoF,raw

(
1 − N−0.6

part

)
, (36)

which we have applied before computing the mass functions (note
that this is an ad hoc correction that might take a different form
depending on the mass resolution or even starting redshift). It is also
entirely possible that an SC and an FCC lattice lead to somewhat
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different discreteness errors in FoF haloes, which we have not
investigated but do not believe to strongly impact our conclusions.

After applying this correction, our ratio plots are very similar to
those obtained when using spherical overdensity haloes (not shown)
for an overdensity of 200 times the critical density, which also
underpredicts the number of haloes at the low mass end compared to
the higher resolution simulation. Arguably, a more optimal correction
can be performed to push up the low-mass end of the FoF-mass
function (cf. e.g. Nishimichi et al. 2019), but such avenues shall
not be our concern here. We also found that without the correction,
the FoF mass function ratio is biased high at the per cent level at all
masses due to ‘Eddington bias’ (Eddington 1913), which is implicitly
corrected by the ‘Warren’ correction.

Looking at our simulation results, we first notice in Fig. 10 a
systematic drop below ∼300 particles at late times z = 0, 1 which
is more severe for the earlier start zstart = 49 than the later starts.
This undershooting is of the order of �5 per cent for haloes of ∼100
particles. Finally, at the earliest time z = 3, we see a systematic (mass-
independent) bias in the mass function that depends only weakly on
the starting time of the simulation. While at this early time, the haloes
in our simulations are not well resolved (all below 1000 particles),
the mass function is low by 10 per cent, which is much more than at
the later times. From our previous analysis of power- and bispectra,
we know that simulation results are particularly sensitive to the ICs
at this early time.

5.4.2 Impact of LPT order and starting time on the mass function

Finally, we show in Fig. 11 ratios of mass functions of dark matter
haloes relative to the reference run (3LPT, oversampled FCC lattice,
zstart = 24) for different orders of LPT and starting redshifts. In
general, we find a strong dependence on both the order and starting
time.

Let us first focus on the latest time, z = 0, when structures are
more developed, and we have many well resolved haloes. We find
that at the high mass end, all ICs converge to the same mass function,
in per cent level agreement with the reference run. At the low-mass
end, we find however a very strong dependence on the starting time
of the simulation, but not the LPT order used. The earliest starts are
low by more than 5 per cent at the ∼100 particle scale. In addition,
the ZA runs for the latest time we ran with ZA, zstart = 49 are low
at 2–3 per cent even at high masses. This picture is consistent with
earlier studies that also did not find a strong dependence of the late-
time mass function on starting time (e.g. Jenkins et al. 2001; Tinker
et al. 2008; Knebe et al. 2009, in the pre-precision cosmology era),
and Reed et al. (2013) and Nishimichi et al. (2019) who find per cent
level convergence for moderately early starts with 2LPT.

At the intermediate time, z = 1, a more mixed picture appears in
that the ZA runs are low by at least 5 per cent at all masses, and we
see a weak additional dependence on the LPT order used, with 3LPT
ever so slightly better converged than 2LPT.

Finally, at early times, z = 3, we find a very strong dependence
on the order of LPT used. ZA predicts significantly (by more than
20 per cent) fewer haloes at fixed mass than the reference run, even
when started early (zstart = 99 and 199). This is improved by 2LPT to
about 10–15 per cent if started at zstart = 24 or 49. The 3LPT runs are
closer to the reference, and show a weaker dependence on starting
time than 2LPT, but are still ∼10 per cent low.

At all times, the very early starts, zstart = 99 and 199, show a
significantly lower abundance of low-mass haloes w.r.t. the later
started runs when 2LPT and 3LPT are used. At the later times z =
0 and 1, both 2LPT and 3LPT give results that are within about

Figure 11. Same as Fig. 7 but for the halo mass function, showing a strong
dependence on starting time and LPT order, especially at high redshift.

2 per cent of one another for starting times of zstart = 24 or even 11.5.
The 2LPT run with zstart = 11.5 however is clearly off at early times,
z = 3. Again, consistent with the power- and bispectrum results, we
find that discreteness effects impact most strongly the early starts,
while late starts with high-order LPT give the most converged results.
Only for the ZA runs did we actually observe an improvement when
starting earlier.

As has been demonstrated by Reed et al. (2013) and the recent
study of Ludlow, Schaye & Bower (2019), the absolute convergence
of the halo mass function at the low-mass end also depends on
further variables, such as force resolution and time-stepping. Our
results should therefore ultimately be subjected to further studies
that include also variations of time and force integration parameters
to determine the ultimate errors on the mass function at the few-
particle, low-mass end.

6 SU M M A RY A N D C O N C L U S I O N S

In this paper, we have presented a rigorous analysis of the interplay
of discreteness effects and the order truncation in LPT used to set up
initial conditions for cosmological N-body simulations. Our findings
strongly suggest, contrary to common wisdom, that in order to be
most economical (i.e. the most accurate to the smallest possible scales
with the least computational resources), N-body simulations should
be initialized with the highest possible order of LPT at the latest
possible time. In that case, we are able to achieve the, admittedly,
ambitious goal of sub-per cent level convergence in the matter power
and bispectrum all the way to the particle Nyquist wavenumber. We
shall summarize the arguments leading up to this conclusion next.
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We have considered simulations based on initial conditions that
use up to third order in Lagrangian perturbation theory (3LPT). The
numerical implementation and proofs of correctness of the numerical
implementation are somewhat more involved than for low-order
LPT (see Section 2.3). In particular, high-order LPT involves the
convolution of non-linear fields and thus, numerical implementations
should be de-aliased. We demonstrate that for efficiency, at least up
to 3LPT, this can however be disrespected in IC generation, since
errors decay away quickly for simulations evaluated at low redshift.

The particle discretization used in an N-body simulation only
approximates the underlying dark matter fluid, which manifests itself
in a deviation from the evolution expected in the continuum limit.
We have shown in Section 2.4 that this results in an amplitude
suppression close to the particle Nyquist wavenumber of the initial
particle grid in both power- and bispectra. When correcting for the
linear discreteness error (using PLT, cf. e.g. Joyce et al. 2005), we
found that the N-body simulation agrees with 3LPT to about 1–
2 per cent up to the particle Nyquist wavenumber at much later
times than are typically used to initialize N-body simulations. At
the same time, the N-body system, initialized as a fluid, quickly
relaxes to the evolution of the discrete system (cf. also Garrison et al.
2016), particularly so while perturbations are still relatively small
during the quasi-linear stage of the evolution. As a consequence, it
follows that the earlier the starting time, the more closely will the
evolution follow the discrete and not the fluid solution. It is thus
obvious that a late starting time is preferable, since it initializes the
simulation using fluid perturbations that are already relatively large.
Subsequent nonlinear evolution, and the transfer of power from large
to small scales, will reduce the importance of initial discreteness
errors, yielding progressively better convergence.

Our conclusions are in contrast with traditional wisdom (see
however Nishimichi et al. 2019), that would tell us that perturbation
theory is increasingly more accurate at early times, and so that
cosmological N-body simulations should be initialized early. For
instance, the Euclid Flagship simulation follows this guideline and
starts at z = 200.

A late start of a cosmological N-body simulation then leads to
the question of how late one could start. The answer depends, of
course, on the convergence radius of LPT with �CDM random initial
conditions, as well as on the truncation error introduced by fixed-
order LPT. As regards to the former, while theoretical predictions
by Zheligovsky & Frisch (2014) and Rampf et al. (2015) revealed a
finite but lower bound on the convergence radius of LPT, here we have
performed provided a novel quantitative analysis that demonstrates
the validity of LPT at much later times; see Section 3.2. We found that
the convergence radius follows relatively simple scaling laws with
the RMS amplitude of density fluctuations at the resolution scale
(see Fig. 4). We then assessed the impact of the LPT truncation error
using standard convergence tests based on various summary statis-
tics. In particular, we demonstrated that with 3LPT, the truncation er-
ror is so much reduced that it could be ignored even for very late starts.

In all cases, we tested convergence against a simulation with four
times better mass resolution, while using the same perturbation
modes. This is in contrast to previous convergence studies that
usually alter the ICs by adding more perturbations when resolution
is increased. In �CDM, adding new modes implies adding more
non-linearities at a given time. This, in our reasoning, impacts the
starting time and truncation errors, and thus makes any rigorous tests
of LPT truncation errors and assessment of transients questionable.
For production runs, the increase in particles is likely better invested
in sampling also additional modes – which should however be
investigated in future work.

After investigating in Section 5, the dependence on starting time
and LPT truncation of one-point statistics of the density field,
density power- and bispectra, as well as halo mass functions, we
can summarize our main findings as follows.

(i) 3LPT initial conditions with the latest starting redshift we
considered, namely zstart = 11.5, generally yielded the most accurate
results in all summary statistics w.r.t. our better resolved reference
simulation. Furthermore, memory-intensive de-aliasing procedures
may be safely ignored as the evolved aliasing errors are of order per
mille for all considered observables for z � 3. Note however that this
optimal starting time is for the mass resolution we consider here, and
increases at higher mass resolution (cf. Fig. 4 for the scaling).

(ii) In contrast, the ZA is almost never accurate enough for initial
conditions for precision cosmology, especially if one is interested in
higher-order statistics such as the matter bispectrum.

(iii) Lower-order LPT with much higher starting redshift, e.g.
zstart = 199, leads to much worse agreement with the reference
solution. Instead, it indicates a ‘spurious’ convergence to the discrete
(lattice) solution, as opposed to the continuous fluid solution. It is also
possible that early starts are further impacted by additional numerical
force errors due to the smallness of perturbations.

(iv) The impact of the truncation error increases with the order of
the statistics considered: kurtosis is more affected than skewness, and
bispectra are more affected than power spectra. One can conjecture
that this continues to be even more severe for higher orders.

(v) On scales smaller than the quasi-linear scales, i.e. those which
are dominated by halo profiles, we find a very weak dependence on
initial conditions. As a consequence, the accuracy always improves
at late times, while errors are largest at high redshift.

Therefore, we deem it quite possible that the very high particle
count per simulation volume size typically advocated for precision
era simulations, is to some significant degree driven by discreteness
errors due to early starts. Specifically, to reach one per cent accurate
predictions for the power spectrum at k ∼ 1 h Mpc−1 over z ∈
[0, 1], it is required to employ LPT at second order or higher with
starting redshift z ∼ 50 or less. At k ∼ 3 h Mpc−1 the requirement is
stronger, and only 3LPT is suitable for such accuracy. These numbers
are however specific to the relatively low-mass resolution that we
employed in this paper, and at higher mass resolution one can expect
altered requirements. We leave it for future work to establish the
precise requirements for a given mass resolution.

In conclusion, our results thus suggest that late-start ICs based
on higher-order LPT might allow for more economic simulations
to achieve a given accuracy – a conjecture that should however
be backed up with further convergence and resolution studies, and
in particular also beyond 3LPT. Nevertheless, we expect that the
increasing computational footprint at successively higher orders
in LPT should eventually become too expensive compared to the
improvement (cf. Rampf & Hahn 2020).

While our current results only concern simulations of the total
matter flow in terms of a single collisionless fluid, the real Universe is
composed of various distinct components, in particular baryons. Such
multicomponent simulations are however prone to more theoretical
uncertainties. Simulations that model baryons with Lagrangian
methods (SPH or moving mesh, when coupling to gravity using
N-body techniques) suffer from particle discreteness errors which
appear to be even more severe than in the single-fluid case (cf. Angulo
et al. 2013; Valkenburg & Villaescusa-Navarro 2017; Bird et al.
2020). While not suffering from particle discreteness errors, Eulerian
hydrodynamical simulations are impacted by advection errors and
intrinsic smoothing due to the order of the finite volume method that
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also leave an imprint on the power spectrum (Hahn & Abel 2011, see
their fig. 23). Extrapolating the logic of this paper, one way out of the
situation for both Lagrangian and Eulerian hydrodynamics would be
to initialize multifluid simulations also as late as possible to minimize
discretization effects. This, however, requires the development of
higher-order multifluid initial conditions to begin with, and will
be accompanied by further hurdles that arise when incorporating
baryonic physics. Such avenues will be assessed in Rampf, Uhlemann
& Hahn (2020) and Hahn, Rampf & Uhlemann (2020).
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APPENDIX A : EXPLICIT FORMULAE FOR
2 L P T A N D 3 L P T S C A L A R A N D V E C TO R
POTENTIALS

For convenience and reference, we give here the explicitly spelled
out expressions for the nLPT potentials up to n = 3:

∇2�(2) = �(1)
,xx

(
�(1)

,yy + �(1)
,zz

) + �(1)
,yy�

(1)
,zz

−�(1)
,xy�

(1)
,xy − �(1)

,xz�
(1)
,xz − �(1)

,yz�
(1)
,yz, (A1)

∇2�(3a) = �(1)
,xx�

(1)
,yy�

(1)
,zz + 2�(1)

,xy�
(1)
,xz�

(1)
,yz

− (
�(1)

,yz

)2
�(1)

,xx − (
�(1)

,xz

)2
�(1)

,yy − (
�(1)

,xy

)2
�(1)

,zz, (A2)

∇2�(3b) = 1

2
�(1)

,xx

(
�(2)

,yy + �(2)
,zz

)

+ 1

2
�(1)

,yy

(
�(2)

,zz + �(2)
,xx

) + 1

2
�(1)

,zz

(
�(2)

,xx + �(2)
,yy

)
−�(1)

,xy�
(2)
,xy − �(1)

,xz�
(2)
,xz − �(1)

,yz�
(2)
,yz, (A3)

∇2A(3c)
x = �(2)

,xy�
(1)
,xz − �(2)

,xz�
(1)
,xy

+�(1)
,yz

(
�(2)

,yy − �(2)
,zz

) − �(2)
,yz

(
�(1)

,yy − �(1)
,zz

)
(A4)

∇2A(3c)
y = �(2)

,yz�
(1)
,yx − �(2)

,yx�
(1)
,yz

+�(1)
,zx

(
�(2)

,zz − �(2)
,xx

) − �(2)
,zx

(
�(1)

,zz − �(1)
,xx

)
(A5)

∇2A(3c)
z = �(2)

,zx�
(1)
,zy − �(2)

,zy�
(1)
,zx

+�(1)
,xy

(
�(2)

,xx − �(2)
,yy

) − �(2)
,xy

(
�(1)

,xx − �(1)
,yy

)
. (A6)

These expressions are equivalent to those in equation (6).

APPENDI X B: IMPAC T O F A LI ASI NG ERRO RS
ON LATE-TI ME R ESULTS

In Fig. B1, we show the impact of aliasing errors in the non-linear
2LPT and 3LPT terms on the power spectrum at late times. Generally
and as expected, aliasing errors become increasingly more relevant
with higher order non-linearities, so the errors are larger in 3LPT than
in 2LPT. Since they only appear in those higher order LPT terms,
but not in the ZA, and since these terms are always subdominant on
larger scales, we expect the impact to be weakened by non-linear

Figure B1. Comparison of low-redshift power spectra starting from initial
conditions whose non-linearities have been properly de-aliased and those
with aliasing errors for 2LPT and 3LPT starting at zstart = 11.5 to maximize
the error. Aliasing errors appear as decaying mode transients and thus, up to
3LPT, impact the power spectrum at the sub per-cent level at redshifts below
3. As before, the shaded grey area indicates a 1 per cent error.
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evolution and not amplified. This is indeed what the simulations
show: We find that at z = 0, the error is only ∼0.1 per cent in the
power spectrum, while at z = 3 the error is just under 1 per cent,
sharply peaking at the Nyquist mode. For the bispectrum, we arrive
at fairly similar conclusions (not shown). It is thus most likely safe to
work with an aliased version of 2LPT and 3LPT as long as one uses
it as input for a fully non-linear simulation. Instead, if the output
of nLPT was directly used, then the aliasing errors can be more
significant, especially close to shell crossing.

APP ENDIX C : D ISCRETENESS EFFECTS AND
LAT TIC E EVO LUTION

Following Joyce et al. (2005), Joyce & Marcos (2007), and Garrison
et al. (2016), we consider the PLT of a perturbed simple cubic
(SC) lattice. Since our methodology for correcting the spurious PLT
excitations differs slightly from Garrison et al. (2016), we begin with
a review of the PLT approach which allows us to discuss the subtleties
of the numerical implementations.

For simplicity, let us assume an EdS universe and consider a simple
cubic lattice of N particles, with identical mass, in a box with periodic
boundary conditions. The resulting equation of motion can be written
as

∂2
a xi = − 3

2a
(∂a xi + ∇xϕN ) , (C1)

with xi being the current comoving position of particle i with
initial position q i , and ϕN is the peculiar gravitational potential, i.e.
involving the usual subtraction of the overall background density;
see e.g. section 4 in Marcos et al. (2006) for details. In PLT, we are
primarily interested to investigate the linear effects that stem from the
particles discretization of the Poisson source. Expanding the Poisson
source to linear order one gets

∇xϕN (x(qi)) = − 1

a

∑
qj

D(qi − qj ) ψ (1)(qj , a) + O(ψ (1)2
), (C2)

where D is the so-called dynamical matrix known in solid state
physics (cf. Marcos et al. 2006 and references therein).

In Fourier space, the evolution equation for the linear displacement
can then be written as (suppressing the particle index)

a2∂2
a ψ̃

(1)
(k) + (3a/2) ∂aψ̃

(1)
(k) − (3/2) D̃(k) ψ̃

(1)
(k) = 0. (C3)

To make progress, we follow Marcos et al. (2006) and solve the
above equation with the Ansatz

ψ̃
(1)

(k, a) =
3∑

n=1

ên(k) ψ̃n(k, a), (C4)

leading to an eigenvalue problem as well as an ODE for ψ̃n, which
respectively read

D̃(k) ên(k) = εn(k) ên(k),

a2∂2
a ψ̃n + (3a/2) ∂aψ̃n − (3/2) εn(k) ψ̃n = 0, (C5)

where the eigenvalues εn can be determined using standard linear
algebra programmes (see further below for details). The ODE has
the general solution

ψ̃n = C+
n aα+

n (k) + C−
n aα−

n (k), (C6)

where C+/−
n are integration constants, and α±

n (k) = (1/4)[−1 ±√
1 + 24εn(k)]. In the following two paragraphs, we shall enforce

that the PLT solution is compatible with purely growing mode and

curl-free solutions. After that, we outline some technical details about
the numerical computation of the dynamical matrix.

C1 Demanding curl-free solutions

One of the eigenmodes called ê‖ is exactly parallel to k̂ in the fluid
limit, and thus, ê‖ is associated with gravity induced modes. The
other two eigenmodes are orthonormal to ê‖, and, in the fluid limit,
are associated with transverse modes that are vectorial transients and
fictitious in the fluid sense, due to the assumed irrotational character
of CDM. Thus, to initialize N-body simulations, we need to make
sure that only the lattice modes along ê‖ are excited; to achieve
this, we rescale the k vectors appearing in the LPT fluid solution
ψ̃fluid = ikφ̃ + ik × Ã according to (cf. Garrison et al. 2016)

k → ê‖/(ê‖ · k̂), (C7)

where the division of the scalar product is included to ensure that the
matter power spectrum has unchanged amplitudes. This procedure,
applied to ZA, has been first outlined by Garrison et al. (2016),
although we note that we apply this rescaling also beyond ZA.

C2 Demanding purely growing-mode solutions

In the fluid limit, it can be shown that α+
‖ → 1 and α−

‖ → −3/2
and thus, the solution of the ODE that is proportional to C− is
a decaying one, and thereby not compatible with growing-mode
solutions. To enforce growing-mode solutions, we first evaluate ψ̃‖ =
C+

‖ a
α+

‖ + C−
‖ a

α−
‖ and its first time derivative at initial time aini, and

express the integration constants C
+/−
‖ in terms of ψ̃‖(aini) ≡ ψ̃ini

and ˙̃ψ‖(aini) ≡ ṽini. We find that

C−
‖ ∝ ṽini

α+
‖

− ψ̃ini

aini
, (C8)

and thus, decaying modes in PLT are zero provided that the initial PLT
velocity and displacement satisfy ṽini/α

+
‖ = ψ̃ini/aini. This relation

implies that only a single initial potential (e.g. vini, ψ ini, or the
initial gravitational potential) needs to be specified; this is precisely
expected for slaved initial conditions. Comparing this with the fluid
case for which the slaved initial conditions imply

C−
fluid ∝ ṽfluid

ini − ψ̃fluid
ini

aini
→ 0, (C9)

where vfluid = ∇vfluid and ψfluid = ∇ψfluid, we realize that growing-
mode PLT initial solutions in the N-body simulation are established
provided we rescale the fluid velocity according to

ṽfluid
ini → ṽfluid

ini /α+
‖ . (C10)

We found that this somewhat ad hoc modification, demonstrated to be
strictly correct at leading order, works very well also in combination
with higher-order LPT, as demonstrated by our results shown in
Figs 2 and 3.

C3 Numerical evaluation of dynamical matrix

Following Marcos et al. (2006), we compute the dynamical matrix
Dij using Ewald summation, i.e. we split D into a short-range and
a long-range contribution, Dij = Dsr

ij + Dlr
ij with splitting parameter

κ . Specifically for an SC lattice, we compute on a grid of coordinates
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in real space, with r := ‖x‖

Dsr
ij (x �= 0) = − κ3

π3/2

xi xj

r2
e−κ2r2 + 1

4π

(
δij

r3
− 3

xi xj

r5

)

×
[

erfc (κr) + 2κ√
π

e−κ2r2
]

(C11)

and we set Dsr
ij (x = 0) = 0. We then Fourier-transform this short-

range response function using the FFT. The respective long-range
component is given in Fourier space as

D̃lr
ij (k �= 0) = δij

3
+ kikj

‖k‖2 e−‖k‖2/(4κ2), D̃lr
ij (k = 0) = δij

3
. (C12)

We use a cut-off scale corresponding to four cells, i.e. κ =
(
√

2 4�x)−1. We sum short and long-range components to obtain
the full dynamical matrix Dij (k) in Fourier space, then diagonalize
it to obtain the lattice growing mode eigenvectors e‖ with associated
eigenvalue ε�. Since the dynamical matrix is very smooth, and its
computation for the actual full-resolution lattice relatively costly, we
compute a relatively low resolution version of it (in fact 643) and
then interpolate to a higher resolution lattice (as also Garrison et al.
2016 are suggesting).

A P P E N D I X D : IN VA R I A N C E C O N S E RVAT I O N
A S C O N V E R G E N C E A N D C O R R E C T N E S S T E S T

Testing numerical implementations of LPT in a realistic cosmologi-
cal set-up (i.e. with a wide spectrum of modes) is inherently difficult.
Here we propose a new approach: we know that LPT violates certain
symmetries of the fluid equations perturbatively beyond the ZA.
Specifically, Uhlemann et al. (2019) have shown that beyond ZA,
fixed-order LPT at order n excites artificial vortical modes at order
n + 1. The relevant equations for this are the Cauchy invariants,
which are the local form of Kelvin’s circulation theorem. In the
cosmological context the Cauchy invariants state the conservation of
the zero vorticity, which is satisfied at all times for individual fluid
particles. The three invariants are (p = 1, 2, 3)

Cp = εplnvk,lxk,n = 0. (D1)

These vectorial relations can be written in tensor form (thereby
making contact with similar theorems in Hamiltonian mechanics).
Contracting Cp with the Levi-Civita symbol εpij yields the antisym-
metric tensor

Iij := εpijCp = vk,i xk,j − vk,j xk,i

= vj,i − vi,j + vk,i ψk,j − vk,j ψk,i = 0, (D2)

where we used that xk,j = δkj + ψk,j. Equation (D2) vanishes
non-perturbatively. However, only in the case of the Zel’dovich
approximation, Iij is exactly zero, when vi and ψ i are truncated
at the perturbative order. As mentioned before, for nth order LPT
with n > 1, the truncation error is of order n + 1 (cf. Uhlemann
et al. 2019). Since the Cauchy invariants contain a time derivative
through vk = ẋk , however, the resulting truncation error grows
with Dn

+ (and not as Dn+1
+ ). We show the RMS amplitude of Ixy

for our implementation as a function of the starting time D+ in
equation (D1). We see that only when de-aliasing the non-linearities,
we get the expected scaling of Iij with D3

+ in 3LPT demonstrating
the correctness of our implementation.

On a technical note, numerically, in both cases, we applied 3/2
padding when evaluating equation (D2), but compute vi and ψ i with
and without padding for second and higher order non-linearities to
test the effect of aliasing on velocities and displacements.

Figure D1. RMS amplitude of the violation of the Cauchy invariants (D2)
as a function of starting time D+ for 2LPT and 3LPT. We plot the standard
deviation of the Ixy field for a cosmological 1 h−1Gpc box with 10243 modes
and particles. The amplitudes for Iyz and Ixz are identical. We generated the
LPT fields using both Orszag’s 3/2 rule for de-aliasing (solid lines), and also
not applying any de-aliasing procedure (dashed lines). Clearly only the de-
aliased results scale O(D3+) for 3LPT, in all other cases we find behaviour
O(D2+) that is expected for 2LPT. Note that Iij vanishes exactly for the
Zel’dovich approximation.

Note that the lines for 2LPT and 3LPT in Fig. D1 intersect close
to a ∼ 0.1 which is further evidence that this is the point where LPT
breaks down, consistent with our results in Section 3.

APPENDI X E: D ETAI LS TO OBTA I NI NG TH E
T H E O R E T I C A L B O U N D O N TH E R A D I U S O F
C O N V E R G E N C E

Here, we outline the derivation of the bounds on the theoretical radius
of convergence of LPT, Section 3.3.

E1 Most conservative estimate

Details in this subsection are based on Zheligovsky & Frisch (2014)
and Rampf et al. (2015). Beyond first order, the LPT recursion rela-
tions express the (to be determined) nth-order displacement gradients
coefficients ψ

(n)
i,j (q) in terms of quadratic and cubic combinations of

(known) displacement gradients from lower orders. These quadratic
and cubic combinations of displacements contain numerical coeffi-
cients that are all bounded by unity from below. Furthermore, these
quadratic and cubic displacement terms contain operators of the kind
∇−2∂ i∂ j; applying suitable norms on the recursion relation of the
displacement gradients, i.e. by considering the recursion relation for
‖ψ (n)

i,j ‖, it can be shown that also such operators are bounded by unity.
Exploiting those two bounds by setting the coefficients and operators
effectively to unity, the recursion relation for the coefficient ‖ψ (n)

i,j ‖
turns into a cubic polynomial inequality. Upon reintroducing the time
variable D+ by using the generating function 	 ≡ ∑

n ‖ψ (n)
i,j ‖Dn

+,
this polynomial inequality turns into10

plow(D+, 	) := 6	3 + 12	2 − 	 + D+‖∇i∇j ϕini‖ ≥ 0, (E1)

10For simplicity we assume here an Einstein–de Sitter universe which is a
sufficient approximation for our purpose. Rampf et al. (2015) generalized
the presented results to the �CDM universe, however found only a weak
dependence of � on the lower bound of convergence.
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where ϕini is given by equation (14). For small 	’s, the polynomial
plow(0, 	) behaves as −	 while asymptotically it behaves like 	3.
Furthermore, for D+ > 0, the cubic polynomial is shifted upwards
linearly in D+ along the y-axis, and has first three roots and later on a
single root. To investigate the physical branch, let us begin at D+ = 0
for which there is a root crossing the origin, in accordance with a zero
displacement initially and thus this root denotes the physical branch.
For times shortly after, this root moves from zero to a small positive
value, and furthermore the whole branch between 0 and that root is
positive, thereby satisfying the positivity condition of (E1) and thus
marking the physical branch. At some critical time later, denoted
Dcrit

+ , this root will merge with another one. Just shortly after Dcrit
+ ,

these two roots disappear (i.e. by becoming complex), implying that
p loses its boundedness and so does the displacement field.11 Thus,
Dcrit

+ marks the last possible time for which the displacement is
bounded, and thus is the maximal time for which convergence is still
guaranteed, Dcrit

+ = D
theory
+ . That maximal time can be determined by

setting the discriminant of plow(	) to zero. This leads to the positive
critical time

D
theory
+ = T

‖∇i∇j ϕini‖ , (E2)

with T = 0.0204 which, as promised, is a lower bound on the radius of
convergence D

theory
+ < R. In the following, we show how this bound

can be improved.

E2 Conservative, third-order estimate

As outlined above, before obtaining the polynomial inequality (E1)
from which the lower bound on the convergence is retrieved, we set all
numerical coefficients in front of the nth-order displacement to unity,
simply since those coefficients are bounded by unity. However, we
do have explicit numerical coefficients up to 3LPT (cf. equation 3). A
refinement for the theoretical bound is therefore obtained by keeping
some of these coefficients as they really are, and only ‘set’ the higher-
order coefficients to unity. Doing so leads after some straightforward
calculations to the modified polynomial inequality

p3LPT(D+, 	) := 6	3 + 12	2 − 	 + T − 24

7
T 2 − 86

7
T 3 ≥ 0,

(E3)

where T := D+‖∇ i∇ jϕini‖, which, by identification of the re-
sult from the previous section leads to the equation T −
24T2/7 − 86T3/7 = 0.0204, leading to

T =: Tcons = 0.022 (E4)

for equation (E2), a 9 per cent improvement regarding the previous
section.

E3 Optimistic (shell-crossing) estimate

Observe that shell-crossing occurs when the Jacobian J = det[δij +
ψi,j ] = 1 + ∇ · ψ + (1/2)[ψi,iψj,j − ψi,jψi,j ] + det[ψi,j ]
vanishes for the first time. As it was shown by Rampf et al.
(2015), by the same methods as explained in Appendix E1, we
can obtain a bound on the vanishing Jacobian by introducing the

11The unboundness of the polynomial plow essentially implies that the higher-
order displacement coefficients do not decrease at subsequent orders – which
is a clear indication that the series lost its convergence property.

generating function 	 = ∑
n ‖ψ (n)

i,j ‖Dn
+. One finds

|J − 1| ≤ 6	3 + 6	2 + 3	 ≡ Q(	). (E5)

Now, from the bound as obtained in Appendix E1, one can easily
determine the corresponding critical value 	crit � 0.0404 for which
the bound (E2) holds. Plugging this value in equation (E5), one finds
|J − 1| ≤ 0.132, which is well below unity for which shell-crossing
occurs. Thus, for the conservative bound D

theory
+ , shell-crossing is not

reached. Therefore, we seek here in this section to obtain stronger
bounds, thereby allowing us to reach shell-crossing closely from
below.

In the main text, we have mentioned that the first singularity in
LPT could be in the complex time-domain; however, recently Saga,
Taruya & Colombi (2018) provided solid numerical evidence that
LPT converges until shell-crossing. Specifically, they estimated the
radius of convergence for sine-wave initial conditions in 3D, by
using LPT to 10th order. Comparison to Vlasov–Poisson simulations
revealed indeed that LPT appears to converge until shell-crossing,
excluding the spherical (or symmetric sine-wave) collapse that is
degenerate in a universe with random initial conditions.

Thus, in our language, a complex singularity is unlikely to be
decisive for determining the radius of convergence for sine-wave
ICs, and the same should also be true for generic, Gaussian initial
conditions.

Therefore, in this appendix we assume that complex singularities
are ruled out, and that the convergence-determining factor is indeed
shell-crossing. One reason why the methods in Appendix E1 did
not allow us to come closer to the first shell-crossing, is the failure
to provide better estimates for the all-order coefficients and spatial
derivatives, that in particular sensitively influence some prefactors
within the polynomial inequality, equation (E1). Specifically, the
following altered polynomial inequality – which is not based on a
theory but rather on intuition – would be in principle closer to the
true inequality for the generating function,

pcross(D+, 	) := 6a	3 + 12b	2 − 	 + Tcross ≥ 0, (E6)

where a, b are positive but a priori unknown coefficients, whereas
Tcross is the critical coefficient to be determined, since it sets the
(possibly strongest) bound on the time of shell-crossing.

Now, we first search for the maximal value of 	max for which
the bound on the Jacobian just begins to touch the unity bound, i.e.
Q(	max) = 1. We find 	max = 0.2178. If the pcross has its critical
value 	crit for which its discriminant vanishes at precisely 	max, then
Tcross would be maximized. Thus, solving for pcross(	max) = 0 =
p′

cross(	max) leads to updated constraints. Unfortunately, the system
of equations is still under determined – in fact there is a redundant
free parameter (e.g. either a or b), thereby seemingly rendering the
considered task as unsolvable.

Instead of solving explicitly for the two coefficients a and b,
however, we could simply scan through the allowed parameter space
where shell-crossing is ruled out, as well the two constrains a > 0
and b > 0 are satisfied. Scanning through the parameter space, we
arrive at the (optimistic) theoretical shell-crossing constraint

Dcross
+ = Tcross

‖∇i∇j ϕini‖ , (E7)

with the worst-case coefficient in the allowed regime to be Tcross =
0.107.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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