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ABSTRACT
We present a novel approach to generate higher order initial conditions (ICs) for cosmological simulations that take into
account the distinct evolution of baryons and dark matter. We focus on the numerical implementation and the validation of
its performance, based on both collisionless N-body simulations and full hydrodynamic Eulerian and Lagrangian simulations.
We improve in various ways over previous approaches that were limited to first-order Lagrangian perturbation theory (LPT).
Specifically, we (1) generalize nth-order LPT to multifluid systems, allowing 2LPT or 3LPT ICs for two-fluid simulations, (2)
employ a novel propagator perturbation theory to set up ICs for Eulerian codes that are fully consistent with 1LPT or 2LPT, (3)
demonstrate that our ICs resolve previous problems of two-fluid simulations by using variations in particle masses that eliminate
spurious deviations from expected perturbative results, (4) show that the improvements achieved by going to higher order PT
are comparable to those seen for single-fluid ICs, and (5) demonstrate the excellent (i.e. few per cent level) agreement between
Eulerian and Lagrangian simulations, once high-quality initial conditions are used. The rigorous development of the underlying
perturbation theory is presented in a companion paper. All presented algorithms are implemented in the MONOFONIC MUSIC-2
package that we make publicly available.

Key words: methods: numerical – (galaxies:) intergalactic medium – (cosmology:) dark matter – (cosmology:) large-scale
structure of Universe – cosmology: theory.

1 IN T RO D U C T I O N

The physics of the cosmic microwave background (e.g. Hu &
Dodelson 2002; Durrer 2008) implies that baryons do not trace the
distribution of dark matter. Since baryons were tightly coupled to
photons prior to recombination, they begin to collapse on subhorizon
scales much later than dark matter. Furthermore, sound waves excited
prior to recombination decay away over some finite time and the
resulting relative streaming motion (Tseliakhovich & Hirata 2010)
leaves an imprint on the formation of the very first cosmic objects
and their spatial distribution (cf. Dalal, Pen & Seljak 2010; Greif
et al. 2011; Yoo, Dalal & Seljak 2011; Fialkov et al. 2012, and
many later studies) on scales correlated with the baryon acoustic
oscillation (BAO) feature of the power spectrum, which is one of
the most sensitive cosmological measures. Such correlations, if they
carry over to the galaxy populations in lower redshift surveys, are
therefore potentially significant biases in BAO measurements of
cosmological parameters (e.g. Slepian & Eisenstein 2015; Ahn 2016;
Blazek, McEwen & Hirata 2016; Slepian et al. 2018; Chen, Castorina
& White 2019).

While the difference in the clustering of baryons and cold dark
matter (CDM) – the baryon bias – is small on large scales today (e.g.
Angulo, Hahn & Abel 2013), this difference is more significant
at earlier times. These epochs are increasingly within reach of

� E-mail: oliver.hahn@univie.ac.at

ever more sensitive observations (e.g. the Square Kilometre Array,
SKA, Weltman et al. 2020). At late times and on small scales,
the finite temperature of baryons, along with energy injection from
supermassive black holes leads to a de-correlation of baryons and
CDM in the mature low-redshift Universe (e.g. Chisari et al. 2019),
complicating access to cosmological information on those scales.
While the cosmological baryon bias is a robust prediction of our
cosmological model, the latest generation of cosmological galaxy
formation simulations in large-scale structure context (e.g. Dubois
et al. 2014; Schaye et al. 2015; Springel et al. 2018; Emberson et al.
2019, for the Horizon-AGN, Eagle, Illustris-TNG, and Borg-Cube
simulations) still do not model it due to multiple reasons that we
discuss below. At the same time, the precision determination of the
matter power spectrum has now reached the level at which baryonic
effects should be incorporated in predictions from collisionless ‘total
matter’ N-body simulations (cf. Schneider & Teyssier 2015; Huang
et al. 2019; Schneider et al. 2019; Aricò et al. 2020).

Accurate numerical studies of the rich dynamics of the two-fluid
system of collisionless dark matter and collisional baryons from the
cosmological perspective have been limited by a range of problems.
This includes the generation of simulation initial conditions (ICs)
based on perturbation theory (PT). For single-fluid simulations, the
Zel’dovich approximation (ZA; Zel’dovich 1970) has been used since
the early days of cosmological N-body methods to set up ICs (Klypin
& Shandarin 1983; Efstathiou et al. 1985), and it is by now standard
to employ second-order Lagrangian perturbation theory (2LPT), e.g.
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Crocce, Pueblas & Scoccimarro (2006). However, to date, higher
order LPT has not been developed for multicomponent systems of
baryons and dark matter. Some findings have been obtained in the
context of Eulerian PT (Somogyi & Smith 2010; Bernardeau, van
de Rijt & Vernizzi 2012), but have had no impact on increasing
the accuracy of simulations so far. At the same time, simulations
studying the baryon streaming predicted by Tseliakhovich & Hirata
(2010) impose an ad hoc relative velocity between baryons and dark
matter but do not self-consistently account for the non-linear coupling
of such a relative velocity in the fluid PT used to set up the simulation
ICs. Such relative motion appears as a decaying mode, not sourced
by gravity, and is particularly difficult to tackle in the setting of a
rigorous PT for simulation ICs.

N-body simulation ICs typically start by considering an initially
(statistically) uniform discrete universe of particles, on to which
the cosmological perturbations are imprinted, namely by perturbing
the particle positions and velocities. The problem of decaying-mode
initial conditions is that they are fundamentally inconsistent with this
boundary condition (in the sense that for earlier times, one would
approach a more inhomogeneous state). In full generality, the dark
matter and baryon perturbations computed by Einstein–Boltzmann
codes of course contain a multitude of effects that are not captured
by standard LPT (due to the absence of physical effects beyond the
Newtonian two-fluid model).

For this reason, simulations attempting to take into account more
realistic two-fluid perturbations so far employ only a first-order
accurate approach, which simply guarantees that density and velocity
power spectra imposed on the N-body particles have amplitudes
that are in accordance with the linear Einstein–Boltzmann system
(e.g. Yoshida, Sugiyama & Hernquist 2003; Hahn & Abel 2011 for
technical details). It has quickly been noted however that simulations
of two fluids (i.e. dark matter and baryons) initialized in this way do
not accurately reproduce the relative growth between baryons and
CDM even on scales where linear PT should apply (O’Leary &
McQuinn 2012; Angulo et al. 2013), unless a much larger force
softening is applied to the baryon particles than would be typical
in usual N-body simulations. This finding has been confirmed in
a later analysis also by Valkenburg & Villaescusa-Navarro (2017).
Very recently, Bird et al. (2020) have claimed that the large softening
can be circumvented by arranging baryon and dark matter N-body
particles in a more refined way than just on two shifted lattices (on
which we will comment later on). In any case, the current state-
of-the-art view is that two-fluid N-body simulations require a more
careful suppression of discreteness effects than single fluid ‘total
matter’ N-body simulations.

In this paper, we show how to numerically implement high-
order ICs for two-fluid cosmological simulations while minimizing
discretization errors. Among other things, we discuss how La-
grangian PT can be used to generate growing-mode initial conditions
for multiple cold fluids. Such ICs preclude decaying modes, and
therefore any relative velocities between the fluids. While we also
provide a numerical procedure that includes the linear effects of
relative velocities in LPT ICs, it is currently unclear how such
decaying modes can be implemented to achieve consistent higher
order ICs. We defer this aspect to future work.

The growing-mode approach that we focus on in this paper allows
for an initially prescribed scale-dependent baryon density bias which,
of course, changes significantly during the non-linear evolution.
The essential idea of the growing-mode approach is that, to leading
order, the local baryon and CDM fractions are constant in time, and
therefore can be absorbed into variations of the masses of Lagrangian
fluid elements (these variations are fairly small and constant in

time). This simple trick guarantees that the particle realizations of
the baryon and CDM fractions are locally compensated to high
precision, meaning that the individual density fractions change
without changing the total matter density. This solution thus strongly
improves over previous simulations of this kind that were plagued
by discreteness errors even on large scales. Furthermore, based on
this approach, it is possible to essentially apply standard nth order
LPT results to generate high-order ICs for two-fluid simulations.

Cosmological hydrodynamical simulations usually come in two
broad limits: Lagrangian methods, such as smooth particle hy-
drodynamics or moving mesh techniques – e.g. the widely used
GADGET-2/3 (Springel 2005), GASOLINE (Wadsley, Keller & Quinn
2017), AREPO (Springel 2010; Weinberger, Springel & Pakmor 2020),
GIZMO (Hopkins 2015), and SWIFT (Schaller et al. 2016) codes –
and Eulerian methods which use a spatially fixed mesh that can be
dynamically refined – e.g. the widely used ART (Kravtsov, Klypin &
Khokhlov 1997), RAMSES (Teyssier 2002), ENZO (Bryan et al. 2014),
or NYX (Almgren et al. 2013) codes (but note that a moving mesh
can be usually used in both Eulerian or quasi-Lagrangian mode).
While the mentioned problems of two-fluid cosmological simulations
apply to some degree to all Lagrangian N-body, smoothed particle
hydrodynamics (SPH), or ‘moving mesh’ simulations, the situation
for Eulerian ‘fixed mesh’ simulations is arguably even more dire.
To achieve comparable accuracy in Eulerian PT, one has to go
to significantly higher order than in LPT. Obtaining Eulerian ICs
by using LPT-evolved fields in combination with local Lagrangian
approximation schemes, as proposed by Hahn & Abel (2011),
introduces gravitational non-Gaussianity in the Eulerian density field
of the baryons, but is not a consistent PT approach.

To tackle the problem of providing accurate Eulerian ICs for
hydrodynamical simulations, we apply in this paper the propagator
perturbation theory (PPT; Uhlemann et al. 2019; Rampf, Uhlemann
& Hahn 2021) for multiple fluids. This field-level approach, which
accurately evaluates LPT-evolved fields at the Eulerian position, has
already been used for forward modelling of the matter distribution
for Ly α forest reconstructions by Porqueres et al. (2020), to first
order in PPT. Using here second-order PPT to initialize Eulerian
hydrodynamical simulations, we are able for the first time to achieve
ICs for both (Eulerian) baryons and (Lagrangian) dark matter that
are on a similar footing regarding their accuracy in fixed-order PT.

The structure of this paper is as follows. First, in Section 2,
we provide a concise summary of the main results from Rampf
et al. (2021), as they apply to initial conditions for cosmological
simulations of baryons and dark matter. We also quantify the error in-
curred by neglecting contributions inconsistent with the IC boundary
conditions compared to the full cosmological Einstein–Boltzmann
solution. In Section 3, we present the numerical simulations we
employ in this work, and describe the summary statistics that we
use to quantify them. In Section 4, we present results for the non-
linear evolution of a collisionless two-fluid N-body system evolving
under self-gravity. We then extend this analysis to full cosmological
hydrodynamics plus N-body simulations in Section 5. We summarize
our main results and conclude in Section 6.

Throughout this paper, we adopt cosmological parameters con-
sistent with the PLANCK2018+LSS results (Planck Collaboration
VI 2020): �m = 0.3111, �� = 0.6889, �b = 0.04897, �r =
9.139 × 10−5, h = 0.6766, σ 8 = 0.8102, and ns = 0.9665. Einstein–
Boltzmann results were computed using the CLASS code1 (Blas,
Lesgourgues & Tram 2011). Our computation of the linear theory

1Available from http://class-code.net/
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growth factor D+ =: D always includes the background contribution
due to relativistic species; see e.g. Fidler et al. (2017) for details. Note
that in this work we use the ‘fixing’ technique of Angulo & Pontzen
(2016) – in which the modulus of the white noise Fourier modes is
set to unity – in order to suppress the impact of cosmic variance on
our results without running large ensembles of simulations, but we
consider only single simulations and do not perform the additional
‘pairing’.

2 PE RT U R BAT I O N TH E O RY IN A N U T S H E L L

We consider the evolution of two fluids – specifically CDM and
baryons for which we assume a negligible temperature (i.e. a Jeans
scale much smaller than the scales of interest) – interacting through
gravity in an expanding Universe (parametrized by the cosmic scale
factor a(t)). We employ co-moving spatial coordinates x = r/a and
define peculiar velocities with respect to the co-moving expansion
with v = ∂D x, where D is the linear growth time in �CDM which we
also use as the time variable (for simplicity of notation we use D :=
D+ synonymously); we suppress temporal dependencies whenever
there is no confusion. The governing equations of the system of two
fluids for component α ∈ {b, c} in the zero temperature limit are

∂Dvα + vα · ∇vα = − 3g

2D
(vα + ∇ϕ), (1a)

∂Dδα + ∇ · [(1 + δα) vα] = 0, (1b)

∇2ϕ = 1

D
(fbδb + fcδc), (1c)

where fb := �b/�m and fc := 1 − fb are, respectively, the global
baryon and CDM mass fractions (neglecting other inhomogeneous
contributions), and we have defined

g := (D/∂tD)2a−3 = 1 + D3��/(11�m) + O(D6). (2)

For detailed derivations of the following equations and results, we
kindly refer the reader to the companion paper Rampf et al. (2021);
for convenience, we provide a brief summary of the key technical
steps here as well.

In the following, we first report analytical results in Eulerian
coordinates and discuss the validity and limitation of our approach.
Results in Lagrangian coordinates as well as for a semiclassical
field-based approach are given in Sections 2.3 and 2.4, respectively.
Details for the numerical initialization of the involved fields with a
linear Einstein–Boltzmann solver are provided in Section 2.5. Our
method is fairly distinct from others in the literature, with details
given in Section 2.6. Finally, in Section 2.7 we provide ways to
effectively include relative velocity effects at linear order.

2.1 Analytical findings in Eulerian coordinates

It is convenient (e.g. Schmidt 2016) to rewrite the set of equations (1)
in terms of the following ‘sum’ and ‘difference’ variables

δm = fbδb + fc δc, θm = fbθb + fc θc, (3a)

δbc = δb − δc, θbc = θb − θc, (3b)

where θα = ∇ · vα . Formulated in these new variables, the linearized
equations (1) can be combined to

∂Dθm = − 3g

2D

(
θm + δm

D

)
, ∂Dδm + θm = 0, (4a)

∂Dθbc = − 3g

2D
θbc, ∂Dδbc + θbc = 0, (4b)

which have the only non-decaying solutions (Rampf et al. 2021)

δm = D ∇2ϕini, θm = −∇2ϕini, (5a)

δbc = δini
bc , θbc = 0, (5b)

where here and in the following ‘ini’ stands for initial evaluation; see
Section 2.5 for details how we generate those initial fields. Using the
definitions (3), these solutions imply for the components α ∈ {b, c}
at first order in perturbation theory

δα = D∇2ϕini + δini
α , θα = −∇2ϕini, (6)

where we have defined δini
b = fcδ

ini
bc and δini

c = −fbδ
ini
bc which, from

here on, are sometimes called the compensated constant modes (since
fbδ

ini
b + fcδ

ini
c = 0). Here, it is crucial to note that equations (4)

remain regular for arbitrarily short times if and only if δm → 0
and θm → −∇2ϕini for D → 0, which by virtue of the definitions (3)
implies an initially non-vanishing δini

bc as well as non-vanishing δini
α .

Indeed, it can easily be verified that terms such as δm/D or θbc/D
appearing in (4) would otherwise imply quasi-singular behaviour for
D → 0 (which represents the unperturbed initial state). As mentioned
in detail in Section 2.5, being able to initialize the evolution at D = 0
simplifies the boundary analysis tremendously. While only growing
modes are naturally selected at D = 0, the evolution of baryons and
CDM can be effectively decoupled from the full multifluid evolution
which is governed by the relativistic Einstein–Boltzmann system.

We remark that for initializing single-fluid simulations, the de-
scribed procedure is standard and here applied to the two-fluid
case. We must leave for future work how decaying modes can be
consistently incorporated in such schemes (see however Section 2.7),
as they are by definition inconsistent with a homogeneous initial state
on which the perturbations are imposed.

Before concluding this section, we report for completeness the
higher order results in our present model. For this, we begin with the
Ansätze

δm =
∞∑

n=1

δ(n)
m (x) Dn, θm = −

∞∑
n=1

θ (n)
m (x) Dn−1 , (7a)

δbc =
∞∑

n=1

δ
(n)
bc (x) Dn−1, θbc = 0, (7b)

where δ(n)
m and θ (n)

m are coefficients that can easily be determined
from the known recursion relations in perturbation theory (see e.g.
Bernardeau et al. 2002; Taruya, Nishimichi & Jeong 2018), while
the analysis of Rampf et al. (2021) revealed the following recursion
relation for the difference density,

δ
(n)
bc = 1

n − 1

∑
0<s<n

∇ ·
[
δ

(s)
bc ∇−2∇θ (n−s)

m

]
, (7c)

for n > 1, and δ
(1)
bc = δini

bc for n = 1. From these recursive relations,
it is clear that solutions for δb and δc can be easily determined to
arbitrarily high orders; for explicit solutions up to third order (see
appendix B in the companion paper).

2.2 Validation of approximations with CLASS

It is imperative to test the approximations we had to make in
order to obtain consistent perturbative results, which effectively
ignores decaying modes (see however further below), a finite sound
speed of baryons, as well as couplings to relativistic fluid species –
except the zeroth-order coupling through the background evolution
which we do include. To begin with, assuming the validity of

MNRAS 503, 426–445 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/1/426/6031329 by C
N

R
S - ISTO

 user on 05 M
ay 2023



Baryon+CDM initial conditions 429

Figure 1. Residual scale-dependent evolution of the total matter density δm

from redshift 399 to 0 from CLASS, relative to linear growth with D+ and
the total matter density amplitude at the reference redshift z = 2.125. After
z � 100, evolution on small scales (i.e. k � 0.01 h Mpc−1) is consistent with
a purely growing mode δ∝D+(z) at much better than one per cent, while
residual evolution due to relativistic effects remains on larger (i.e. horizon-
scale) scales, and due to finite baron pressure on small scales k� 102hMpc−1.
Note that the evolution of D+ takes a non-zero �r into account.

equations (1) implies focusing on a subset of the full set of equations
solved in linear Einstein–Boltzmann solvers such as cAMB (Lewis,
Challinor & Lasenby 2000) or cLASS (Blas et al. 2011), meaning
that any solution based on these equations is already necessarily
an approximation. While, clearly, neglecting decaying modes is an
important simplification (and one that enables us to carry out the
higher order perturbation theory in the first place), it captures the
leading effect of the two-fluid system in the late Universe, namely a
spatially varying baryon fraction.

To check the validity of the restriction to the growing mode and
the compensated constant mode, we show in Fig. 1 the evolution of
the total matter overdensity amplitude δm from redshift 399 to zero,
scaled by the linear growth factor D+ and divided by the amplitude
at the reference redshift zref = 2.125.

Clearly, inside the cosmological horizon and for scales k �
10−2h Mpc−1 decaying modes have an impact of less than one per
cent at all times of interest for ICs for simulations of the late-time
Universe. On scales of the horizon and larger, one clearly sees the
relativistic effects of horizon growth, as well as at very early times
(z � 199) the effect of radiation drag due to residual ionization on
the position of the BAO feature. Horizon scale relativistic effects are
well understood and can be easily rectified (see e.g. Brandbyge et al.
2017; Fidler et al. 2017; Zennaro et al. 2017). On the smallest scales
one sees the impact of the time-evolution of the baryon temperature-
dependent Jeans scale (which in the D+-scaled solution is fixed to its
co-moving value at the reference redshift).

In Fig. 2, we show similar results for the two-fluid case. The top
panel shows the evolution of the compensated mode δbc between
redshifts z = 399 and zero, while the bottom panel displays
specifically the impact of ignoring decaying modes and baryonic
pressure in its evolution (i.e. assuming δbc to be constant in time).
Evidently, ignoring decaying modes in the evolution of δbc is justified
at fairly late times (z � 10) on almost all scales, while on very
small scales (k � 20 hMpc−1) the impact of the evolution of the
Jeans scale due to the evolution of the baryon temperature becomes
visible. The dominant scale-dependent evolution is again due to a
shift of the BAO feature at high redshift, as well as a weak horizon-
scale evolution. Assuming that δbc is constant in time thus introduces

Figure 2. Scale-dependent evolution of the density difference δbc from
redshift 399 to zero (top panel), and also relative to the density difference at
the reference redshift zref = 2.125 (bottom panel). The evolution is consistent
with a constant mode only at low redshift, roughly � 15 per cent at z � 50.
At higher redshifts, there is a significant contribution due to an additional
decaying mode and evolution of the horizon and Jeans scale. On the smallest
scales, k > 20 h Mpc−1, the impact of Jeans damping is visible.

an almost scale-independent error that is increasingly larger at high
redshift. We consider it thus important to tune the reference redshift
for the IC generation (see Section 2.5) well in order to capture most
accurately the time of interest (i.e. for a Ly α forest simulation, e.g.
it is arguably more accurate to use a reference redshift of zref ∼ 2.5
rather than zero).

In Fig. 3, we show how well the obtained linear baryon and CDM
spectra agree with the full multiphysics evolution. Specifically, we
consider two approaches, the first being a two-mode approximation
(growing+constant) that forms the basis of our higher order PT, and
which obeys equation (6), i.e.

δα = D∇2ϕini + δini
α , (8)

with initial fields obtained as detailed in Section 2.5. The second
approach we consider is based on a three-mode approximation
(growing+constant+decaying), in which the decaying relative ve-
locity mode is also included (cf. Section 2.7 for generating the
additional initial field), i.e. we have then

δα = D∇2ϕini + δini
α + 2(D−1/2 − 1) θ ini

α , (9)

with δini
b = fcδ

ini
bc , θ ini

b = fcδ
ini
bc , and δini

c = −fbδ
ini
bc , θ ini

c = −fbθ
ini
bc . In

the top panel, we compare the evolution of δb(k)/δc(k) from z =
49 to zero as obtained from CLASS (solid lines) including the full
linear physics to the two-mode (dashed) and three-mode (dotted)
approximations. The relative differences are shown in the bottom
panels of the figure. By construction, the solutions coincide at the
reference time zref = 2.125. When neglecting the decaying relative
velocity mode, the relative error is sub-per-cent for all times z � 24
on scales k � 102h Mpc−1, but increases rapidly at earlier times. This
behaviour is improved when the decaying mode is included, leading
to sub-percent agreement over more than four magnitudes in scale at
z � 24. At late times, the largest error clearly arises from the Jeans
scale due to its strong evolution over time, and for simulations aiming
at these scales, a more refined discussion, possibly also including
temperature fluctuations (e.g. Naoz & Barkana 2005; Naoz, Yoshida
& Barkana 2011), might be necessary. Note that the evolution shown
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430 O. Hahn, C. Rampf and C. Uhlemann

Figure 3. Accuracy of the two- and three-mode approximation for the ampli-
tude of baryon and CDM density perturbations. The top panel shows the ratio
of the scale-dependent amplitude of baryon to CDM density perturbations
as obtained from CLASS (solid lines) and using the growing+constant mode
approximation (dashed lines; cf. equation 8), and also including the decaying
relative velocity mode (dotted lines; cf. equation 9). The middle (bottom)
panel shows the scale-dependent fractional difference in each component
between the two-mode (three-mode) approximation and the CLASS amplitude
for CDM (solid lines) and baryons (dashed lines). The shaded grey area
indicates one per cent deviation. The error in each component is sub-per-cent
for redshifts z � 24 on scales smaller than the horizon. The error on large
scales (k � 0.01h Mpc−1) is due to neglecting relativistic effects, the error
on small scales is due to neglecting finite temperature effects.

here does not include the impact of reionization on the Jeans scale,
as this is usually captured in the non-linear simulation directly.
Since reionization raises the baryon temperature significantly, the
exact evolution of these small scales in the IC backscaling process
for simulations that do not explicitly resolve the formation of the
reionizing objects is of limited interest.

Clearly, there is some improvement if the decaying mode is
included in the linear evolution; however, we do not yet know how to
include it self-consistently in a non-linear PT (but see Section 2.7 for
a workaround). This means that the impact of streaming velocities (cf.
Tseliakhovich & Hirata 2010) cannot be self-consistently included
yet. This is arguably the largest drawback and we have to leave the
inclusion of a suppression of baryon perturbations on small scales
due the relative motion (which is a decaying mode coupling to the
baryon density at second order) for future work. Since this effect is
most prominent on the smallest scales (on dimensional grounds it
must be close to the baryon Jeans scale), we can safely assume that
the approach we present here is accurate for large-scale simulations

that do not include the formation of the very first baryonic objects
close to the Jeans scale.

2.3 Lagrangian-coordinates approach

Introducing the Lagrangian map for both fluid components α ∈ {b, c}
with q 	→ xα(q, D) = q + ξα(q, D) with corresponding displace-
ment ξα , equations (1) can be easily transformed into Lagrangian
space. For purely growing-mode flows in perturbation theory, the
Lagrangian equations of motion take the particularly simple form
(Rampf et al. 2021)

∇x ·
(

∂2
D + 3g

2D
∂D

)
ξα(q, D) = − 3g

2D
∇2

x ϕ, (10a)

∇2
x ϕ = δm(q, D)/D, (10b)

where the Poisson source is expressed in terms of

δm(q,D) = 1

det[∇q xm]
− 1, (11a)

where

xm − q ≡ ξm = fbξ
b + fcξ

c (11b)

is the displacement of the combined (or, centre-of-mass) matter fluid.
The perturbative solution of the combined matter displacement is
well known, which is usually formulated in terms of the following
power series

ξm(q, D) =
∞∑

n=1

ξm(n)(q) Dn , (11c)

with the first-order coefficient ξm(1) = −∇ϕini denoting the
Zel’dovich approximation, and with the second-order coefficient
ξm(2) = −∇ϕ2 with ∇2ϕ2 = 3

14 (ϕini
,ll ϕini

,mm − ϕini
,lm ϕini

,lm). Explicit recur-
sions relations for ξm(n) are given by Rampf (2012), Zheligovsky &
Frisch (2014), and Matsubara (2015).

Since the combined matter displacement ξm is known to all
orders, the Poisson equation (10b) can be easily determined by virtue
of (11a). At the same time, having determined the Poisson source
allows us to solve the evolution equation (10a) for the component
displacement; the solution is particularly simple and reads for the
growing modes, for α ∈ {b, c} (Rampf et al. 2021)

ξα(q,D) =
∞∑

n=1

ξm(n)(q) Dn , (12)

which, crucially, must be supplemented with the mass conservation
law (cf. with equation 11a)

δα = 1 + δini
α (q)

det[∇q xα]
− 1 . (13)

To be specific, although the perturbative solutions for ξα formally
agree with the one of ξm, the initial density perturbation δini

α appearing
in (13) must be taken into account since, as mentioned above, only the
inclusion of δini

α guarantees the regularity of solutions for arbitrarily
short times.

Recently it has been mathematically proven by Zheligovsky &
Frisch (2014) and Rampf, Villone & Frisch (2015) that the LPT
series for the single fluid converges for realistic random initial
conditions in the growing mode, at least for sufficiently short times.
Even more recently, numerical convergence studies to very high
perturbation orders revealed that LPT converges until the instance of
first shell-crossing (and even beyond, although LPT then ceases to be
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physically correct; Rampf & Hahn 2021). These findings have direct
relevance for the considered two-fluid model with growing mode
initial conditions. Indeed, since equations (11c) and (12) coincide, it
is clear that the observed convergence behaviour for the single fluid
directly carries over to the two-fluid model. This is not surprising
as the considered model boils down to transporting initial density
perturbations along a shared fluid flow (see the companion paper),
which comes with the benefit that for two-fluid growing-mode initial
conditions, nLPT is guranteed to provide more accurate refinements
at successively higher orders (provided shell-crossing has not yet
occurred).

We remark that when generating initial conditions for the baryon
and CDM fluids, δini

α (q) can be explicitly taken into account by
varying the particle masses. Further details are provided below (see
equation 15).

We also remark that alternatively to the above LPT method for
two fluids, one may also incorporate δini

α (q) by perturbing the initial
positions (see section 5.4 of Rampf et al. 2021 for details). To second
order the resulting displacement takes the form

ξα
pert = D ξm(1) + D2ξm(2) − ∇−2∇δini

α + F(2)(δini
α ) , (14)

where F(2) is a vector-valued function that depends quadratically on
δini
α and can be read off from equation (56) in Rampf et al. (2021).

While the corresponding mass conservation then simplifies to 1 +
δα = 1/ det[1 + ∇qξ

α
pert], we find that spurious discretization errors

are excited (see discussion below and Fig. 6), and thus we do not
recommend this avenue for the present context.

2.3.1 Pre-initial conditions for numerical implementation

Since these LPT results directly translate to initial conditions for
Lagrangian methods, such as N-body, we can simply (pre-)initialize
a set of N particles with the positions and velocities starting from a
discrete set of locations q i=1...N . In this work, we always place the
particles initially on a simple cubic (SC) Bravais lattice, so that initial
particle positions coincide with the uniform 3D grid on which we
computed the velocity and displacement fields using Fourier methods
(cf. Michaux et al. 2020).

For Lagrangian hydrodynamic codes, such as GADGET or AREPO

that we discuss below, also the baryon fluid elements need to be
set up using LPT. A dilemma arises if one wants to construct a
force-free set-up of the initial unperturbed CDM+baryon fluid. In
the δbc = 0 case this is possible, two individual SC lattices, each
carrying N particles, shifted by half a cell diagonal, with particle
masses m̄α = mp�α/�m achieve this (mp is Mbox/N). The result
corresponds to the CsCl crystal structure. One can in principle also
use any other diatomic crystal structure, such as two shifted face-
centred cubic (FCC) lattices corresponding to either a NaCl or a
Zincblende crystal, depending on the relative shift vector. To evaluate
the perturbation fields at the shifted locations, we use a simple Fourier
shift of the field2 in the inverse direction and evaluate at cell centres.

As discussed above, a non-zero δbc can be realized in two ways:
either by using the total mass LPT displacements ξm(q, D) for all
species and perturbing the individual particle masses

mα(q) = m̄α

(
1 + δini

α (q)
)

, m̄α := �α /�m , (15)

or by absorbing this perturbation into a perturbed displacement, i.e.
applying equation (14). Either case leads to discretization errors;

2Using that for a field shifted by x0, i.e. g := f (x − x0), the Fourier
transforms obey ĝ(k) = exp [−ik · x0] f̂ (k).

however, we find that only with a perturbed displacement that this
error has a spurious growing mode, while for the perturbed masses,
the discreteness errors are confined to small scales only. For this
reason, we adopt the perturbed mass approach in most parts of
this paper. We present an analysis of the impact of mass versus
displacement perturbations on the power spectrum in Section 4. Even
in ‘forward’ simulations (see Section 4.1 for details), it would seem
preferable to use perturbed masses instead of displacements to set up
the compensated perturbations.

Note that we do not consider the proposed solution of Bird et al.
(2020) in this article, which uses glass pre-initial conditions (cf.
White 1996) for baryon particles and an SC lattice for DM particles.
While seemingly also solving the spurious growth problem, this
approach appears to introduce significant additional noise on small
scales compared to a Bravais lattice, so that we see no advantage
over our approach.

A potential concern in multimass collisionless simulations is
the evolution towards mass segregation of N-body particles in
equipartitioned systems (Binney & Tremaine 2008) due to spurious
collisional relaxation. We therefore want to emphasize that the mass
perturbations introduced by equation (15) are small, independent
of the starting redshift (in the fastest growing approximation), and
vary on rather large scales. For the set-up we investigate later, i.e.
a 250 h−1Mpc box with 2 × 5123 particles, the relative fractional
variation (1σ ) in particle mass is ∼2.96 × 10−3 for the CDM particles
and ∼1.69 × 10−2 for the baryon fluid elements.3 In addition, this
variation of a few per cent is spatially correlated with a pronounced
peak at the BAO scale (cf. Fig. 2), meaning that smaller scale non-
linear regions will always have less variation among their particle
masses (which can be seen by eye e.g. in the bottom left-hand panel
of Fig. 4, where we show the spatial behaviour of δbc). Note that
furthermore the relative variation in each species is significantly
smaller than the difference in particle masses between baryons
and CDM in these simulations (which is of order �b/�c � 1/5.4).
With mass differences at the sub-per-cent level for CDM particles,
the relaxation time can therefore safely be expected to be much
longer than that due to spurious scattering between ‘stars’ and CDM
particles (cf. Ludlow et al. 2020).

2.4 Propagator perturbation theory

In contrast to Lagrangian methods, cosmological hydrodynamic
codes based on Eulerian hydrodynamics, such as the finite-volume
codes RAMSES (Teyssier 2002), ENZO (Bryan et al. 2014), or NYX

(Almgren et al. 2013), need to start the baryon evolution from
the Eulerian density and momentum fields, given at fixed locations
discretized in Eulerian space. A possibility to obtain such fields
consistent with LPT is by interpolating the fluid elements back to
Eulerian grid cells, incurring however the problem of high-quality
conservative interpolation. Here, we follow an alternative approach
by using propagator perturbation theory (PPT), as proposed by
Uhlemann et al. (2019) and extended to two fluids in Rampf et al.
(2021), which is able to yield Eulerian density and momentum fields

3Note that the mass perturbations have amplitudes of σmb = m̄bfcσbc and

σmc = m̄cfbσbc where σ 2
bc = (2π2)−1

∫ kmax
0 dk k2Pbc(k). If we assume a late-

time baryon Jeans scale of order kJ ∼ 100 hMpc−1 as our kmax, then σ bc ∼
0.026 for our cosmology. So even at higher resolution, the mass perturbation
amounts to at best a few per cent. It would increase of course beyond the
(evolving) baryon Jeans scale, but finite temperature effects are beyond the
scope of our study here.
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432 O. Hahn, C. Rampf and C. Uhlemann

Figure 4. Eulerian fields at z = 8 obtained with 2PPT as described in
Section 2.4: the baryon overdensity δb (top left), x-component of the baryon
peculiar velocity field vb, x (top right), the compensated density difference δbc

(bottom left), and the ratio of baryon to CDM density fluctuations (bottom
right). We show an x–y slice through the highest density point (δb,max �
13, north of the centre of the image) for a box of side-length 250 h−1Mpc
computed using a resolution of 5123.

consistent with LPT without ad hoc interpolation (see also Porqueres
et al. 2020).

In the following, we briefly summarize essential equations together
with relevant results; further technical details are provided in the
companion paper.

2.4.1 Analytical findings in PPT

The central aspect of PPT is to solve for the wavefunction ψα of the
fluid components α ∈ {b, c} whose time evolution is given by the
Schrödinger equation

i�∂Dψα = −�
2

2
∇2

xψα + Veff ψα, (16)

where Veff is an ‘effective’ gravitational potential defined in relation
to the fluid equations (1). In PPT, Veff is treated as an external
potential determined by standard perturbation theory. The evolution
is expressed through the propagator K(q, x; D) that propagates the
initial wavefunction (defined at D = 0)

ψ ini
α (q) = √

1 + δini
α (q) exp

[ i

�
ϕini(q)

]
(17)

to the current state at time D and position x, i.e.

ψα(x; D) =
∫

d3q K(q, x; D) ψ ini
α (q). (18)

At leading order Veff ≡ 0, and the solution of the resulting potential-
free Schrödinger equation (16) is readily obtained from the ‘free
propagator’

Kfree(q, x; D) = (2πi�D)−3/2 exp
[
i(x − q)2/(2�D)

]
, (19)

where the pre-factor guarantees that equation (18) returns ψ ini
α for D

→ 0.

At next-to-leading order, dubbed 2PPT, a time-independent Veff

becomes relevant and is given by the expression

∇2Veff = 3

7

(
ϕini

,ll ϕini
,mm − ϕini

,lm ϕini
,lm

)
. (20)

As shown in the companion paper, the 2PPT propagator reads

K(q, x; D) = Kfree(q, x; D) exp

[
− iD

2�
(Veff (q) + Veff (x))

]
. (21)

The semiclassical limits of the free and 2PPT propagators return,
respectively, the classical Zel’dovich approximation and the second-
order improvement 2LPT. Uhlemann et al. (2019) have shown that
the 2PPT results are in fact more accurate than 2LPT since additional
symmetries are preserved due to the underlying Hamiltonian struc-
ture of (16). Notably, no spurious higher order vorticity is excited.

Having obtained numerical solutions for the wavefunction (see the
following paragraph for details), the desired Eulerian fields, e.g. the
density ρα = 1 + δα and the momentum density field πα = ραvα for
each species, are

ρα(x, a) = ψα ψα, and (22a)

πα(x, a) = i�

2
(ψα∇ψα − ψα∇ψα), (22b)

where an overline denotes complex conjugation. In principle, one
could also extract an effective temperature from the next higher
moment, but we will neglect finite temperature effects here altogether
and always assume the cold limit on the PT side.

In Fig. 4, we show the baryon density, velocity vα = πα/ρα , and
the 2PPT density difference δbc for a L = 250 h−1Mpc box with
5123 resolution elements at z = 8 (which is much later than the time
we would initialize a simulation and was just chosen for illustrative
purposes). For further numerical tests of PPT in the single-fluid case,
we refer to Uhlemann et al. (2019).

2.4.2 Numerical implementation of PPT

Numerically, the expression for the free propagator (19) is most
conveniently evaluated using a discrete Fourier transform (DFT),
since the cyclic convolution with the propagator becomes a simple
multiplication in Fourier space. Let us therefore assume without
change of notation that all spatial coordinates, x and q, refer to
positions on a discrete regular grid with spacing �, whenever we
refer to the numerical implementation. Then, the equivalent statement
of (19) at the operational level can be executed using the ‘drift’
operator D̂, defined through

ψα(x, a) = D̂ ψ ini
α

=: DFT
k→x

−1

{
exp

[
−i�D+(a)

k2

2

]
DFT
q→k

{
ψ ini

α (q)
}}

, (23)

where k denotes a discrete wave vector and k its modulus. Similarly,
to incorporate the aforementioned 2PPT correction, one introduces
the ‘kick’ operator

K̂ := exp

[
− i

�

D+(a)

2
Veff

]
(24)

in real space, which corresponds to a half ‘time step’ in D+. The
final 2PPT operator evolution equation is given by the single-step
leap frog

ψα(x; a) = K̂ D̂ K̂ ψ ini
α . (25)

It can be effectively evaluated by performing the drift step in Fourier
space and the kick steps in regular space.
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Figure 5. Evolution of the baryon power spectrum Pb(k, z) in ‘growing
mode’ Eulerian linear theory and in PPT (top panel), and the ratio of the
two (bottom panel) for a 250 h−1Mpc box with 5123 resolution. The finite
�, which is set by numerical resolution (see equation 26), introduces an
evolving scale beyond which power is sharply suppressed due to effectively
coarse grained dynamics.

2.4.3 The �-parameter

Finally, for numerical implementations of PPT, one chooses a
finite � that is as small as possible in order to be closest to the
semiclassical limit. Since we evaluate the propagator using a DFT,
the smallest numerically possible � is determined by the Nyquist–
Shannon sampling theorem, which requires that the phase in adjacent
sampling points changes by at most π. This implies

� ≥ 1

π
max

q,d
|ϕini(q) − ϕini(q + � êd )| , (26)

where êd is the Cartesian basis vector for the dth dimension and � the
grid spacing – the expression thus runs over all points and considers
the (three) neighbours in three dimensions. We determine � once we
have generated the initial field ϕini from the input power spectrum,
and it depends thus explicitly both on the form of the perturbation
spectrum realized in the simulation volume and the grid spacing �.

The numerically finite value of � has of course a consequence,
namely it acts as an effective coarse-graining scale of the LPT dy-
namics over phase space cells of size �. Since � is determined mostly
by the resolution and more weakly by the shape of the perturbation
spectrum, the resolution sets the effective temperature of PPT. This
manifests itself as a ‘Jeans’-like suppression of power on the smallest
scales, similar to what is observed in PT for axion-like particles (cf.
e.g. Guth, Hertzberg & Prescod-Weinstein 2015), but note that the
scale related to �/m has a different time dependence in PPT than
in the axion-like case (here kcut∝a−1/2 = (1 + z)1/2). In Fig. 5, we
show the effect on the baryon power spectrum. In the top panel, we
show the power spectrum from linear Eulerian PT, restricted to our
‘growing mode’ model, in comparison to the first- and second-order
PPT results, measured numerically at different times z = 99, 49, 24,
and 11.5. The effective Jeans smoothing is clearly visible as a sharp
power suppression on small scales that increases for later starting
times. In the bottom panel, the ratio between Eulerian PT and PPT
spectra is shown for a more quantitative comparison. Note that the

power spectrum does however not capture the significant amount of
non-Gaussianity that is already present in the fields at the later times.
As we show below in Section 5.2, since the suppression affects scales
of two to three cells only, and the full non-Gaussian character of LPT
is mapped to the Eulerian grid, baryon simulations initialized with
PPT evolve quite consistently with those initialized with LPT.

2.5 Generating the initial fields – backscaling
Einstein–Boltzmann

Traditionally, to generate first-order initial conditions for two-fluid
numerical studies for baryons and CDM, one takes the respective
fluid variables from a linear Einstein–Boltzmann code at the time
when the simulation is to be initialized (see e.g. Yoshida et al. 2003;
Hahn & Abel 2011; Angulo et al. 2013; Valkenburg & Villaescusa-
Navarro 2017; Bird et al. 2020). By contrast, in simulations for single-
matter fields, it is very common to employ the so-called backscaling
procedure, which effectively takes the Boltzmann code from very late
times, usually around z � 0 (but note that we use z = 2.125 as the
pivot redshift in this work), and rescales the respective gravitational
potential ϕ such that the initialized particle configuration at zini has
the correct density amplitude. It is important to realize that in a
(fictitious) universe with zero radiation content, both approaches
reproduce the same initial matter, baryon, and CDM power spectrum.
However, the two approaches disagree in a realistic Universe due to
the non-trivial evolution of relativistic species that mostly impact the
largest scales.

Here, we adopt the backscaling procedure to allow for the
initialization of two fluids. This has the advantage that the evolved
large-scale power spectra agree, by definition, with the corresponding
predictions in general relativity. In addition, also the finite tem-
perature of the baryons is partially included implicitly through the
baryon transfer function, determined at the reference time, just not
its adiabatic evolution under compression and expansion.

Due to the choice of used boundary conditions (5), which ef-
fectively set the decaying modes for the two fluids to zero, only
two fields need to be specified initially. One of those fields is the
total matter field δm which relates to the associated gravitational
potential according to ∇2ϕ̃(a) = δm(a)/a, where ϕ̃ = D+ϕ/a. Since
growing-mode initial conditions are obtained from the output of
an Einstein–Boltzmann code at sufficiently late times aref, one can
write δcode

m (aref ) = C+(x)D+(aref ). Using these relations, the initial
gravitational potential at a = 0 is (cf. Michaux et al. 2020)

ϕini = ∇−2δcode
m (aref )

D+(aref )
lim
a→0

D+(a)

a
. (27)

In this paper, we choose aref = 0.32 in accordance with our choice
of reference redshift zref = 2.125. The other initial field that should
be prescribed is the linear difference δbc which, in the absence of
decaying modes, is constant in time. Thus, the amplitude δbc does
not need to be rescaled, and can instead be directly extracted from a
Boltzmann code at a = aref

δini
bc = δcode

bc (aref ) . (28)

Of course, having specified both ϕini and δini
bc initially also yields the

initial fields for δb and δc, as well as θb and θ c, by virtue of the
definitions (3) and boundary conditions (5).

2.6 Relation to the forward approach

Previous studies modelling two-fluid dynamics in N-body simula-
tions (e.g. Yoshida et al. 2003; Angulo et al. 2013; Valkenburg &
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434 O. Hahn, C. Rampf and C. Uhlemann

Villaescusa-Navarro 2017; Bird et al. 2020) all (to our knowledge)
rely on the forward approach, where the Lagrangian displacement
and velocity fields are initialized directly with the output of the linear
Einstein–Boltzmann code at time zstart as

xα(q, zstart) = q − ∇−2∇δcode
α (zstart),

vα(q, zstart) = ∇−2∇θ code
α (zstart). (29)

Within the two-fluid picture, the four code input fields δcode
α and θ code

α

may be expressed in terms of the standard growing and decaying
modes. Putting aside the decaying modes for the moment (justified
at sufficiently late times), one can approximate (29) with

xα(q, zstart) ≈ q − D(zstart) ∇ϕini − ∇−2∇δini
α ,

vα(q, zstart) ≈ Ḋ(zstart)∇ϕini. (30)

where we have used equation (6) to express the growing modes
in terms of the input fields in our backscaling approach. Thus, in
the forward approach, the initial perturbations δini

α are effectively
included in equation (30) along with the other modes. Hence,
the forward approach is very close in spirit to the ‘displacement
perturbation’ approach presented in equation (14), and, therefore,
comes with fairly similar numerical challenges as discussed, e.g.,
in detail by Angulo et al. (2013) and Bird et al. (2020). In
Section 4, and in particular in Section 4.1, we present a de-
tailed comparison between ‘displacement perturbed’ and ‘mass
perturbed’ ICs.

2.7 Including the decaying relative velocity mode at first order

The two-fluid perturbation theory presented above neglects all
decaying modes. This leads to small but noticeable differences
between the growing mode PT and the evolution in e.g. CLASS, as
shown in Fig. 3. While it is still unclear how to incorporate these
decaying modes rigorously in higher order LPT/PPT, we note that it
is quite straightforward to include the relative velocity vbc between
baryons and CDM at linear order in LPT. Given the difference
fields δbc(q; aref ) and θbc(q; aref ) from the Einstein–Boltzmann code
at the reference time aref, one can modify the mass perturbation
and initial particle velocity by rescaling the decaying relative ve-
locity mode from aref to the starting time astart of the simulation
as

mα(q; astart) → mα(q; astart)

+ 2m̄α

[(
D+(aref )

D+(astart)

)1/2

− 1

]
θ ini
α (q) (31)

vα(q; astart) → vα(q; astart)

+
(

D+(aref )

D+(astart)

)1/2

∇−2∇θ ini
α (q).

This allows for a first-order correction to the nLPT two-fluid ICs
that restores the agreement between CLASS and LPT ICs. We note
however that it is not part of a rigorous perturbative framework,
and it is yet unclear how to incorporate a similar fix in PPT. We
demonstrate below in Section 4.3 that the inclusion improves, as
expected, the agreement with the linear CLASS calculation at high
redshift. It appears therefore that, whenever possible, this mode
should be included, even though a self-consistent higher order PT is
not known to include its non-linear coupling.

3 EMPLOYED SI MULATI ON SET-UP AND
SUMMARY STATISTICS

In this section, we briefly summarize the simulation codes as well as
the simulations we use in this work. We also discuss the technicalities
of the analyses we perform on the simulations.

3.1 Simulation methods

In order to compare the performance of Lagrangian and Eulerian
cosmological hydrodynamics codes as well as the impact of the
collisional nature of baryons versus the effect of gravity alone,
we use a multitude of cosmological simulation codes in this work.
Specifically, we use the Tree-SPH code GADGET-2 (Springel 2005)
for all gravity-only simulations, in which we do not use the SPH part
but evolve both species as collisionless zero-temperature fluids.

For more realistic baryon+CDM simulations that evolve baryons
hydrodynamically, we use the finite-volume code RAMSES (Teyssier
2002), as well as the moving mesh code AREPO (Springel 2010;
Weinberger et al. 2020), respectively, to evolve our initial conditions.
Note that this present choice of simulation codes is fairly arbitrary,
and an increasingly larger set of codes is becoming freely available
to the community. A more stringent code comparison of the results
that we sketch in the following sections, which includes other codes,
is certainly desirable at some point in the future. Any details of the
two codes we use beyond the Lagrangian–Eulerian distinction of the
hydrodynamic scheme are not very important for this paper.

At early times, we are in a regime where the finite temperature
of the baryons is negligibly small, and pressure effects become im-
portant only after shell-crossing and the related formation of shocks
and caustics (e.g. Shandarin & Zeldovich 1989). We decidedly do
not include additional physics such as radiative cooling or even
astrophysical processes such as star formation or energy injection,
and switch off UV and other backgrounds. A Lagrangian method
therefore has the trivial advantage of (in principle) solving the cold
non-linear advection problem with self-gravity more accurately than
a Eulerian method prior to shell crossing.4 We list all simulations
employed in this work in Table 1. Our motivation to consider both a
Eulerian and a Lagrangian code was to validate the performance of
nPPT against nLPT, differences between RAMSES and AREPO are of
secondary interest to us here.

3.1.1 Collisionless fluids with GADGET-2

Before considering collisional simulations of the baryons (i.e. in
the hydrodynamic limit), we will study the purely gravitational,
collisionless evolution using a two component N-body simulation.
For these simulations we use GADGET-2 and treat both baryons and
CDM as N-body particles (i.e. we do not use the SPH part of the
code). GADGET-2 uses a tree-PM approach to solve for self-gravity
and we employ the code specific parameters listed in Table A2.

3.1.2 Eulerian baryons with RAMSES

RAMSES is based on a second order MUSCL (van Leer 1979) finite-
volume scheme to solve the equations of ideal hydrodynamics. For

4This statement is strictly speaking not correct since pseudo-spectral Eulerian
would have also negligible (possibly even superior) advection errors. Pseudo-
spectral methods are however not used in cosmological simulations due to
their lack of adaptivity and poor convergence at singularities.
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Table 1. Simulations marked with superscript ‘1’ are used in Section 4 for
the study of the purely gravitational, cold, and collisionless evolution of our
two-fluid ICs, those with ‘2’ in Section 5 for full N-body plus collisional
hydrodynamic simulations. For the run marked with ‘∗’, we ran also with ICs
with perturbed initial positions (using equation 14 to first order); all others
ICs use perturbed masses (see equation 15) which is our preferred method;
and for those marked with ‘�’, we also ran ICs with the decaying relative
velocity mode included at linear order (using equation 31). We also refer to the
1LPT/PPT hydro runs ‘†’ as ‘leading order’ (LO) and the 2LPT/PPT runs ‘‡’
as ‘next-to-leading-order’ (NLO). All simulations represent a cosmological
volume of side length 250 h−1Mpc.

PT zstart Npart code

1LPT 49 2 × 5123 GADGET-21, ∗, �
2LPT 49 2 × 5123 GADGET-21

2LPT 24 2 × 5123 GADGET-21, �
3LPT 24 2 × 2563 GADGET-21

3LPT 24 2 × 5123 GADGET-21

3LPT 24 2 × 10243 GADGET-21

1LPT + 1PPT 49 2 × 5123 RAMSES2, †

2LPT + 2PPT 24 2 × 5123 RAMSES2, ‡

1LPT 49 2 × 5123 AREPO2, †

2LPT 24 2 × 5123 AREPO2, ‡

the evolution of the collisionless dark matter, RAMSES employs an
adaptive particle mesh scheme. We adopt the usual quasi-Lagrangian
refinement strategy in which refinements are triggered by the number
of N-body particles and a gas mass threshold based on the initial
average baryon mass per cell. In order to achieve a more accurate
large-scale integration, we refine the base grid level already when
a cell exceeds 4 times its initial (cosmic average) mass, all higher
levels at the default threshold of 8 times. All accuracy-related code
specific parameters are listed in Table A1.

3.1.3 Lagrangian baryons with AREPO

The moving mesh code AREPO is strictly speaking not a fully
Lagrangian method, since the mesh does not strictly follow the
Lagrangian tracers, and fluxes between cells are taken into account.
Prior to shell crossing we are in the advection dominated regime, and
we preferentially probe here the Lagrangian aspect of this approach,
while arguably the late time deeply non-linear evolution might be
more similar to a Eulerian finite-volume method. We list all accuracy-
related code specific parameters in Table A2.

3.2 Analysis of simulations – power spectra

In this article, we analyse the density statistics of the baryon-CDM
two-fluid system mainly through the isotropic (auto) power spectrum
PX(k) defined as

〈δX(k) δX(k′)〉 = (2π)3δ
(3)
D (k + k′) PX(k), (32)

where X ∈ {b, c, bc, m}, we have k := ‖k‖, and δ
(3)
D is the three-

dimensional Dirac delta. Numerically, we compute all power spectra
using DFTs based on the mass distribution on a regular mesh.

3.2.1 Density fields for particles

If the density field is represented by Lagrangian elements (i.e.
particles or moving cells), we employ a ‘cloud-in-cell’ (CIC, cf.
Hockney & Eastwood 1981) interpolation to a regular grid. To accu-
rately estimate the power spectrum, we use the interlacing technique

proposed by Sefusatti et al. (2016) along with deconvolution with the
CIC assignment kernel. We always employ twice the resolution in the
DFT mesh compared to the particle resolution, i.e. for N3 particles,
we compute DFTs of size (2N)3, to resolve the particle grid itself.
Note that we do not correct for shot noise.

3.2.2 Density fields for finite-volume cells

For the finite-volume RAMSES simulations, the baryon density is
given as a volume average on the adaptively refined oct-tree mesh.
In order to evaluate the density field on a regular grid at the same
resolution as the particles, it is necessary to deal with cells that are
larger than the grid on which one desires to compute the power
spectrum. For those cells, that are at a coarser resolution, we use
the slope-limited piecewise linear reconstruction used also during
the actual RAMSES simulation to ‘refine’ coarse cells to the target
resolution. We found that a deconvolution with the cell volume
average is necessary to achieve an estimate of the power spectrum
that is relatively independent of the resolution used for its estimation
(just as with the interlacing and deconvolution in the case of the
particles). The volume average is represented by the convolution
with the ‘nearest-grid-point’ (NGP, cf. Hockney & Eastwood 1981)
kernel

WNGP = (2π)3/2
∏

i∈{x,y,z}

sin
(
π
2 ki / kNy

)
ki / kNy

, (33)

where kNy is the grid Nyquist wavenumber. Note also that WCIC =
W 2

NGP for the kernel used to deconvolve the CIC particle projection.

3.3 Analysis of simulations – bispectra

To capture the growth of non-Gaussianity in the baryon-CDM two-
fluid system, we also consider the (isotropic) component bispectrum
BX(k1, k2, k3), defined by

〈δX(k1)δX(k2)δX(k3)〉 = (2π)3δ
(3)
D (k1 + k2 + k3) BX(k1, k2, k3),

(34)

with X ∈ {b, c} (but one could also consider {bc, m} as well, of
course). To simplify the discussion, we only focus on equilateral
bispectra here, i.e. where k := k1 = k2 = k3. We use the PYTHON

package BSKIT (Foreman et al. 2020), to numerically compute the
bispectrum from the same three-dimensional component density
fields as the power spectra described in the previous subsection
(i.e. we perform our own CIC deconvolution for the particle density
fields and NGP deconvolution for the finite-volume density field).
BSKIT is based on the ‘Scoccimarro estimator’ for the bispectrum
(cf. Scoccimarro 2000; Sefusatti et al. 2016; Tomlinson, Jeong &
Kim 2019).

3.4 Analysis of simulations – cumulants

In addition to the bispectra, to quantify the amount of non-
Gaussianity present in the simulation, we also consider directly the
third and fourth cumulants (i.e. skewness and kurtosis) of the density
field, which we define as the dimensionless quantities

Cα
3 := 〈

δ3
α

〉
s

/ 〈
δ2
α

〉3/2

s
(35a)

Cα
4 := 〈

δ4
α

〉
s

/ 〈
δ2
α

〉2

s
− 3, (35b)
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436 O. Hahn, C. Rampf and C. Uhlemann

where 〈 · 〉s is the volume average of the respective field, filtered with
a top hat filter of scale Rs. The skewness is related to the bispectrum
through〈
δ3
α

〉
s
=

∫
d3k1d3k2d3k3 Bα(k1, k2, k3) δ

(3)
D (k1 + k2 + k3)

×W (k1Rs) W (k2Rs) W (k3Rs), (36)

where W is the Fourier kernel of the spherical top-hat smoothing
window. Note that we have by definition 〈δ〉s = 0. The smoothed
density fields are obtained from the same mesh of size (2N)3 as the
power and bispectra, and we also perform the deconvolution with the
CIC or NGP filter, as described in Section 3.2, prior to applying the
top hat filter.

4 R E SULTS I : P URELY GRAV ITATIONA L
E VO L U T I O N IN LAG R A N G I A N SI M U L AT I O N S

Before we discuss the performance of our initial conditions evolving
the baryons as collisional, it is worth to investigate first the purely
gravitational collisionless evolution as a first generalization step
of a single fluid cold N-body simulation to two fluids. We focus
exclusively on the evolution of the power spectrum in this section. In
these 2N-body simulations, we use identical numbers of baryon and
CDM particles with a softening of gravitational forces of 1/20th
of the spacing of the initial unperturbed particle lattice, which
corresponds to a typical, even slightly conservative, choice in single
fluid collisionless N-body simulations. The simulations that we use
for the analysis in this section are listed in Table 1.

4.1 Preservation of the compensated mode at linear scales

A first test is the preservation of the compensated mode, which we
assume to be constant in time at linear order and thus, it must be
preserved in the absence of numerical errors in the linear regime (i.e.
early times and/or large scales). It is well known by now that this
is not easy to achieve due to discreteness errors. Previous studies
have not used our restriction to just two modes, but have instead
followed the ‘forward approach’ where the output of the Einstein–
Boltzmann code is directly taken at the starting redshift (cf. the
discussion in Section 2.6). Without either a gravitational softening
of the order of the mean particle separation, or an adaptive softening
that arguably achieves this more optimally (O’Leary & McQuinn
2012; Angulo et al. 2013), the relative amplitudes between baryons
and CDM do not evolve correctly on any scale, even in the linear
regime (cf. also Valkenburg & Villaescusa-Navarro 2017). This is
because, effectively, δbc is not compensated at the particle level
leading to a slowly growing discrete mode. The low particle-per-
force resolution of single-fluid cosmological simulations is usually
only possible due to the cold initial conditions, but is known to
deviate from the fluid limit on small scales (cf. Joyce et al. 2005;
Marcos et al. 2006; Joyce & Marcos 2007). Alternatively, Bird et al.
(2020) report that using a mix of grid and glass pre-initial conditions
can also suppress the spurious growth of the compensated mode. To
our knowledge, there is no theoretical understanding what exactly
causes the spurious growing mode, and the exact influence of particle
pre-initial conditions on it.

In Fig. 6, we demonstrate the evolution of discreteness effects
in the δbc power spectrum for the two ways of setting up ICs. In
the top panel, we show Pbc(k) between z = 49 and z = 0 for a
simulation with 2 × 5123 particles initialized with two-fluid 1LPT,
where the initial density perturbation δ(ini)

α was incorporated into
initial particle displacements; as mentioned above and in Section 2.6,

Figure 6. Evolution of the baryon–CDM density difference power spectrum
Pbc in a gravity-only N-body simulations, where both baryon and CDM are
simulated with N-body particles with small softening. Simulation results
in solid lines (faint dashed lines) with 2 × 5123 (2 × 10243) particles
initialized at zstart = 49 (zstart = 24) using 1LPT (3LPT) ICs, by suitably
backscaling the amplitudes from CLASS at the reference redshift zref =
2.125. Those backscaled power spectra are shown as black dashed lines,
before applying the particle realization. The vertical dotted line indicates
the particle Nyquist wavenumber. Top panel: Simulation results where δini

bc
is absorbed into particle displacements (using equation 14). We observe
the well-known spurious growing mode due to discreteness errors in the
particle discretization of the fluids (the discrete δbc is not compensated at the
discretization scale, if not sufficiently smoothed by gravitational softening,
and therefore grows). Bottom panel: Same as above but now δini

bc is absorbed
into perturbed particle masses (using equation 15). Here, discretization errors
are strongly suppressed, and the late-time power asymptotes to a constant
noise spectrum beyond kNy. These errors are furthermore vastly reduced
when 2 × 10243 particles and 3LPT ICs are used.

this approach is implicitly followed in previous two-fluid studies. We
see that Pbc evolves on all scales due to numerical errors – with the
strongest deviations growing at the particle Nyquist wavenumber
kNy (indicated by a dotted vertical line) – and linear perturbation
theory is not recovered even on the largest scales. While we show
results only for 1LPT and at starting time zstart = 49, this result is
almost independent of the used LPT order. Since the error is driven
by a spurious growing mode, its amplitude is to first order simply
determined by the starting time – with earlier starts leading to a larger
error. It is also insensitive to the specific choice of softening length,
as long as it is appreciably smaller than the mean particle separations.
Once the small scales have shell-crossed and collapsed, at z � 2.5,
the spurious growth is slowed.

In stark contrast, the situation improves dramatically when the
initial density perturbation δ(ini)

α is incorporated by perturbing the
initial particle masses (using equation 15), instead of adding initial
displacements. This result is shown in the lower panel of Fig. 6
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Baryon+CDM initial conditions 437

in solid lines with the same particle load and resolution as above,
while the results from the higher resolution simulation (2 × 10243

particles, 3LPT with zstart = 24) are shown as faint dashed lines. In this
case, Pbc is exactly constant on large scales and exhibits non-linear
growth at intermediate scales, as expected. On the smallest scales,
we observe that in all cases the solution asymptotes to a constant
power spectrum for k � kNy with a scaling inversely proportional
to the particle number (as is expected for shot noise in the power
spectrum, e.g. Colombi et al. 2009). We expect that this behaviour
close to the particle Nyquist wavenumber is thus a combination
of residual discreteness errors and shot noise contributions to the
measured power spectrum. Note that we have not corrected in any
way for shot noise.

Our results compare favourably with those of Bird et al. (2020),
who appear to find a stronger discrete evolution on small scales in
their mixed glass+SC approach (cf. their fig. 5). Similarly, agreement
on large scales can also be achieved using adaptive softening for
baryons (e.g. Angulo et al. 2013), which however leads to an artificial
suppression of non-linear growth on small scales.

4.2 Impact of the order of perturbation theory

In a next step, we test the impact of the order of nLPT employed
in setting up the ICs on each of the fluid components and on the
combined total matter field. To this end, we ran simulations initialized
with 1LPT and 2LPT at zstart = 49, and using 2LPT and 3LPT at
zstart = 24 using perturbed masses. In addition, we also use one
run with perturbed displacements instead of masses, initialized with
1LPT at zstart = 49. We show the results at z = 2.125, a time of
relevance for Ly α studies. At our resolution, this also coincides with
the onset of stronger non-linear features in the power spectrum, so
that one is still probing also the perturbative regime here. The results
of this study are shown in Fig. 7 for the power spectrum Pc of CDM,
Pb of baryon, and Pm of the total matter perturbations (top to bottom
panels). Each panel is subdivided in two, showing the respective
power-spectrum amplitude relative to the linear CLASS prediction,
and relative to a reference N-body simulation. We use the 3LPT,
zstart = 24 run as the reference here.

As already discussed in the previous section, without large
softening, the run that uses perturbed displacements to absorb the
compensated density perturbation (grey lines) shows the wrong
growth in each fluid component. The deviation is larger in the baryons
than in CDM (arguably due to the particle mass difference); however,
there is no error in the total matter spectrum. In the case of perturbed
masses, for each component, essentially the same discreteness errors
arise as in the single fluid case. The results we find for the runs with
perturbed masses are consistent with those of Michaux et al. (2020)
for the single fluid case. Essentially, starting later with higher order
LPT is preferable, but for our set-up all runs that use at least 2LPT
show errors at less than two per cent level at all wave numbers up
to the particle Nyquist wavenumber. In contrast, 1LPT is, as already
shown 15 yr ago by e.g. Crocce et al. (2006), not particularly accurate.
As Michaux et al. (2020) have argued, in principle lower order
LPT can be rectified by earlier starts, but then quickly discreteness
errors become dominant over LPT-truncation errors, so that this is
practically not an option when the goal is to be economic, i.e. to
push to the highest wave numbers with the lowest possible number
of particles. These discreteness errors can, of course, be suppressed
by resorting to a larger force softening, which however also comes at
the price of suppressing power on small scales since the force there
is no longer Newtonian.

Figure 7. CDM, baryon, and total matter power spectra at z = 2.125 for
different orders of LPT and starting redshifts in gravity-only simulations. The
panels show the CDM power spectrum relative to the linear CLASS solution
(top) and relative to a reference run using 3LPT and zstart = 24 (second from
top), as well as the same for the baryon power spectrum (third and fourth from
top), and for the total matter power spectrum (bottom two panels). Line styles
represent different combinations of LPT and starting time: 1LPT (orange),
2LPT (green), 3LPT (blue), zstart = 24 (solid), and zstart = 49 (dashed). All
simulations use perturbed masses. For comparison we also show the result
of a simulation using displacement perturbations in grey dashed. The vertical
dotted line indicates the particle Nyquist wavenumber, and the shaded area
indicates a one per cent deviation.

4.3 Convergence of the baryon–CDM ratio and impact of the
decaying relative velocity mode

Finally, we also study the ratio of CDM to baryon power spectra,
Pb/Pc, as a function of the order of LPT, starting time, and numerical
resolution. We present the results in Fig. 8 at redshifts z = 0.5625,
z = 2.125, and z = 5.25 (top to bottom panels). Each panel is again
sub-divided in two, the upper one showing the effect of variations
of the order of LPT and starting time zstart of the simulation, the
lower showing the effect of varying the number of particles used
in the simulation. Starting our discussion with the earliest time
z = 5.25, one notices a pronounced peak at the particle Nyquist
wavenumber whose amplitude strongly depends on the starting time
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438 O. Hahn, C. Rampf and C. Uhlemann

Figure 8. Purely gravitational evolution of the relative baryon-CDM power
Pb(k)/Pc(k) from z = 5.25 (bottom two panels) to z = 2.125 (middle panels)
to z = 0.5625 (top panels). For each redshift, we show the dependence on
the order of LPT and starting redshift in the upper panels (colour and line
styles have same meaning as in Fig. 7, and the dependence on the particle
resolution in the lower panels (light blue corresponding to 2 × 2563, blue to
2 × 5123, purple to 2 × 10243). The dark grey dashed line indicates the CLASS

prediction. The dotted vertical lines indicate the particle Nyquist wavenumber.

of the simulation, and the resolution, but also to a much lesser degree
on the order of LPT used. It is clear that this peak arises as a
consequence of discreteness errors during the early phases of the
simulation. Notably, starting the simulation at z = 24 instead of z =
49 reduces this discrete error by almost a factor of two at fixed order
of LPT (2LPT in this case). The improvement of 3LPT over 2LPT is
minor compared to the discreteness error, but it would be expected
that one could push for a later start of the simulation with 3LPT, thus
further reducing this specific error (cf. also Michaux et al. 2020).

At intermediate redshift, z = 2.125, and the resolution we consider
here, the pronounced peak at the particle Nyquist wavenumber
has disappeared and a physical suppression of Pb/Pc due to non-
linearities becomes visible at small scales. This non-linear sup-
pression is slightly, but visibly, stronger for higher order LPT, for
which one expects more accurate non-linear growth. The difference
between the different resolutions at fixed order of LPT is much
less pronounced than at higher redshift, but it is clear that the low
resolution run does not capture the non-linear suppression yet at this
redshift. Note that this suppression has been predicted in perturbation
theory by Somogyi & Smith (2010) and has also previously been
measured in exactly this type of collisionless two-fluid simulations
by Angulo et al. (2013) (who however used the ‘forward’ approach to
set up their ICs). The suppression essentially means that fluctuations
in the baryon fraction become locked once a given scale collapses.

Finally, at the lowest redshift we consider, z = 0.5625, the situation
is similar as at z ∼ 2. The differences due to the order of LPT have
further decreased, as was already reported by Michaux et al. (2020)
– essentially non-linearities transport power from larger to smaller
scales, and differences in LPT are always smaller at larger scales. The
resolution of the simulation still plays an important role in setting the
suppression of the power spectrum ratio on small scales. It appears
as if at this late time, the suppression is converged at scales � kNy/3.

Last but not least, we also investigate the impact of including the
linear decaying relative-velocity mode, as discussed in Section 2.7.
The impact on the ratio of baryon to CDM power spectra between
redshifts 11.5 and 2.125 is shown in Fig. 9. We show the ratio of
baryon to CDM power spectra with and without the inclusion of the
relative velocity mode at linear order. It is obvious that the inclusion
of the mode clearly improves the agreement at high redshift (z �
5). At late times (z � 5), the effect is however sub-per-cent on the
scales we investigate here. Naturally, the relative velocity mode will
have a much stronger effect if scales smaller than those probed here
are investigated, where the baryon streaming can have a significant
effect on the growth of structures. Since the inclusion of the decaying
mode is only carried along at first order, one expects however a strong
dependence on the starting redshift since non-linear effects due to
the relative velocity mode are not captured in the ICs. In order to
improve agreement with the linear evolution, it should however be
included when possible (i.e. for particle simulations, since it is not
clear yet how to include this mode in the PPT framework).

5 R ESULTS I I : MI XED CDM+BA RYO N
SI MULATI ONS

After having considered the collisionless, purely gravitational evolu-
tion in the previous section, we now turn to fully hydrodynamic simu-
lations using the Eulerian code RAMSES and the moving mesh AREPO

codes. The simulations analysed in this section are listed in Table 1.
We first present the evolution of density power spectra and compare
the results between the two codes and with the purely gravitational
evolution. We then analyse in detail the improvements brought about
by higher order PT, which is known to be more prominent in higher
order correlations (e.g. Munshi, Sahni & Starobinsky 1994).

5.1 Power spectrum evolution

5.1.1 Evolution of component spectra

In Fig. 10, we show the evolution of various density power spectra
obtained with the RAMSES (left-hand panels) and AREPO (right-hand
panels) codes for initial conditions for the same 250 h−1Mpc box as
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Baryon+CDM initial conditions 439

Figure 9. Effect of the decaying relative velocity mode on the purely
gravitational evolution of the relative baryon–CDM power Pb(k)/Pc(k) from
z = 11.5 (bottom panel) to z = 5.25 (middle panel) to z = 2.125 (top
panel). For each redshift, we show lines obtained with 1LPT and zstart = 49
(orange) and with 2LPT and zstart = 24 (green) for ICs that include growing
modes only (dashed, brighter hues) and that also include the relative velocity
decaying mode (solid, darker hues). The grey dashed line indicates the CLASS

prediction. The dotted vertical lines indicate the particle Nyquist wavenumber.
Including the relative velocity mode improves the agreement at high redshift
but has only sub-per-cent effect on the power spectrum on these scales at low z.

in the previous section. Both simulations use the same initial number
of resolution elements. The top-most panels show the evolution of
the component, i.e. baryon and CDM, power spectra Pα(k) between
the initial time z = 24 and the final output we considered at z �
0.56, followed by the evolution of the ratio Pb/Pc in the second panel
from top. We observe that at the initial time z = 24, the 2PPT initial
conditions used for the baryons with RAMSES are slightly smoother
than the Lagrangian field used for AREPO, with a suppression of
baryon power on scales of about two to three top grid cells (see
also Fig. 5 and the related discussion, where we showed how this
depends on starting time and resolution). This suppression persists
during the quasi-linear stages of the evolution, but we find that
once non-linear structure has formed at z � 2.5, the non-linear
spectra obtained with RAMSES and AREPO agree very well. In the
power ratio Pb/Pc, we observe about 1 per cent deviation of the
RAMSES results from linear theory on large scales, while AREPO

follows the linear theory perfectly on large scales. This is arguably
due to advection errors in RAMSES causing a slight diffusion that
affects even large scales, but note that this error is at the per cent
level only.

5.1.2 Evolution of the difference spectrum

As expected in the presence of collisional processes, the power
spectrum of the baryon–CDM density difference Pbc, which is shown
in the third panel from the top in Fig. 10, shows a larger amplitude
on small scales compared to the evolution in the collisionless
simulation shown in Fig. 6. Collisional processes, leading to an
isotropic pressure rather than anisotropic stress after shell-crossing
(cf. Buehlmann & Hahn 2019), as well as entropy production act to
decouple the baryon evolution from the collisionless CDM evolution.
Similarly to the collisionless simulations, numerical errors are also
particularly pronounced in Pbc, the initial two to three grid-scale
power suppression in PPT/RAMSES at z = 24 is visible as a deviation
from linear theory peaking at the root-grid Nyquist wavenumber.
During quasi-linear evolution, the overall level of error very close to
the Nyquist scale is similar for both codes, but extending to larger
scales in RAMSES. Also, the per cent level growth error at late times
compared to linear theory visible for RAMSES in the Pb/Pc ratio is
visible here as a late time spurious growth.

5.1.3 Total matter spectrum and baryon response

Finally, in the second panel from the bottom of Fig. 10, we show
the evolution of the total matter spectrum together with its relative
deviation from the total matter power spectrum obtained from the
purely collisionless two-fluid evolution. While on large scales, an
effective pressure arising from shell-crossed shocks plays no role,
and the collisional simulations agree perfectly with the collisionless
simulation (i.e. within expected numerical errors), we see that at
late times z � 2.5, both collisional codes predict a fairly rapid
suppression in the total matter spectrum at scales k � 1 hMpc−1. To
compare the collisionless and collisional power spectra, which were
output by the respective codes at slightly different snapshot times,
we simply rescaled to the output times of RAMSES and AREPO using
the linear theory growth factor D+. We note that, at this resolution
(which is fairly low compared to state-of-the-art galaxy formation
simulations), RAMSES predicts a slightly larger suppression ∼15 per
cent at kNy at z = 0.56 compared to AREPO with ∼10 per cent at
kNy, which is possibly due to the smoother ICs and/or advection
errors. The suppression shape predicted by the AREPO simulation
has a nearly universal shape across all redshifts. We caution that we
expect that the precise evolution of the power suppression depends
crucially on additional physics such as cooling, UV backgrounds and
AGN feedback in more realistic simulations that attempt to model
also astrophysical processes. In that sense it is somewhat surprising
that the suppression we observe here is quantitatively not all too
different at low z from the range found across state-of-the-art galaxy
formation simulations (cf. Chisari et al. 2019, in particular their fig.
3). A suppression that is stronger or affects larger scales, as has
been observed in some simulations and is included in recent baryon
response models applied to collisionless simulations (cf. e.g. Huang
et al. 2019; Schneider et al. 2019; Aricò et al. 2020) clearly requires
substantial injection of energy into the baryons beyond just offsetting
radiative cooling losses. Due to the absence of additional physics,
the physical suppression scale in our simulations is set by gravity
alone.

5.2 Evolution of non-Gaussianity – cumulants and bispectrum

Finally, we quantify the evolution of non-Gaussianity due to grav-
itational instability in the density fields. It is well known that
convergence in higher order statistics depends sensitively on both
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Figure 10. Comparison of the evolution of a mixed CDM+baryon fluid in two commonly used cosmological hydrodynamical codes: RAMSES (left-hand panels)
and AREPO (right-hand panels). From top to bottom, the figure shows the evolution of the individual baryon and CDM matter power spectra, Pb and Pc, the ratio
of these two spectra, Pb/Pc, the spectrum of the difference, Pbc, the total matter power spectrum Pm, and the ratio of the simulation matter power spectrum to
that from a two-fluid collisionless N-body run. Light lines indicate the linear ‘growing-mode’ PT results at the precise output times of the snapshots. The vertical
dotted line indicates the particle Nyquist wavenumber. Note that the initial suppression of baryon power on small scales in the RAMSES simulation is due to the
PPT approach (cf. Fig. 5).
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Figure 11. Dependence of the third and fourth cumulants, C3 (top panel)
and C4 (bottom panel) of the baryon density field of the order of the PT
used to set-up the initial conditions. We show the ratio of the cumulants
obtained from LO simulations (i.e. 1LPT/1PPT, initialized at zstart = 49) to
those obtained from NLO simulations (i.e. 2LPT/2PPT, initialized at zstart =
24) as a function of the scale of the applied top hat filter RTH. The results
show the transient behaviour well known for collisionless simulations also
for hydrodynamic simulations: lower order PT leads to an underestimation
of non-Gaussianity, particularly at higher redshift. The improvement brought
about by going from LO to NLO is similar at all scales for Lagrangian and
Eulerian simulations.

the starting time of simulation and the truncation order in the PT
expansion (e.g. Munshi et al. 1994; Scoccimarro 1998; Crocce et al.
2006; Michaux et al. 2020). Due to the absence of higher order
PT schemes for baryon–CDM simulations, such tests have not been
made in the two-fluid case to our knowledge. Here, we specifically
consider two summary statistics: (1) the third and fourth cumulants
(i.e. skewness and kurtosis) of the baryon density field as a function
of filtering scale covering the range between the non-linear and the
linear scales of our simulations, and (2) the equilateral bispectrum,
i.e. the harmonic version of the three-point correlation function, of
the baryon and the CDM density field.

5.2.1 Cumulant statistics of the baryon density field

To quantify the improvement brought about by going to higher order
PT when generating initial conditions, we first study the influence
of first versus second order PT on the one-point statistics of the
smoothed baryon density field. Specifically, we investigate ratios of
the C3 and C4 cumulants, as defined in equation (35), between the LO
runs (i.e. using either 1LPT or 1PPT with a starting time of zstart =
49) and the NLO runs (which use 2LPT/2PPT with a starting time
of zstart = 24). Note that we vary both the starting time and the order
since the NLO start is too late for first-order PT. An even earlier start
might improve agreement, but usually comes at the cost of larger
numerical errors in the solution (see e.g. Michaux et al. 2020).

The results are shown for C3 in the top panel, and for C4 in
the bottom panel of Fig. 11 for simulations run with both RAMSES

(solid lines) and AREPO (dashed lines). In agreement with previous
studies for the total matter density field (e.g. Crocce et al. 2006, see
in particular their fig. 5), we find that first-order ICs underestimate

Figure 12. Ratio of the third and fourth cumulants C3 (top panel) and C4

(bottom panel) of the baryon density field between the RAMSES and the AREPO

simulations as a function of the scale of the applied top hat filter RTH. Results
from the LO runs (1LPT/1PPT, zstart = 49) are shown as solid lines, those
from the NLO runs (2LPT/2PPT, zstart = 24) are shown as dashed lines for
three output times indicated by the different colours. Agreement between the
two codes is at the few per cent level.

the degree of non-Gaussianity also in the baryon field. Errors are
systematically larger at higher redshift (z � 2), approaching more
than 10 per cent on all scales at z � 5 for our simulation set-up. The
overall improvement brought about by going from LO to NLO is
virtually identical (within better than one per cent) for both RAMSES

and AREPO, which is a clear validation of our PPT approach for Eu-
lerian finite-volume methods. It is particularly interesting to see that
advection errors of the Eulerian code, which are relatively prominent
in the power spectrum on small scales, are not reflected here.

To compare more accurately the results obtained with the two
codes, we show in Fig. 12 explicitly the ratio of the cumulants
measured in the RAMSES and the AREPO simulations. While we
find that both C3 and C4 agree when smoothed on large scales to
about one per cent, RAMSES shows a consistently larger amount of
non-Gaussianity on small scales R � 2h−1Mpc. One can speculate
that on small scales particle noise or poor sampling in underdense
regions in the Lagrangian code could impact these results, and/or
that advection errors in the Eulerian code could lead to decreased
variance, while possibly higher order cumulants are better retained,
so that these normalized cumulants appear boosted. While we only
note this systematic discrepancy here, it is certainly worthwhile to
investigate its origin and detailed dependence on resolution and/or
code parameters in future work in light of precision predictions of
the Ly α forest.

5.2.2 Bispectrum evolution in the two-fluid system

Finally, we analyse the evolution of the baryon and CDM density
bispectrum, and its dependence on PT order and simulation code.
We focus here for simplicity only on the equilateral bispectrum.
Our main results are shown in Fig. 13, which presents results for
the NLO simulations obtained with RAMSES in the left-hand panels,
and for AREPO in the right-hand panels. The CDM (solid line)
and baryon (dashed line) bispectra are shown for our usual three
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442 O. Hahn, C. Rampf and C. Uhlemann

Figure 13. Equilateral bispectra of the baryon and CDM density fields for the RAMSES (left-hand panels) and AREPO (right-hand panels) simulations. Top panels:
The bispectra at z = 5.25, 2.125, and 0.5625 for the CDM (solid lines) and baryon (dashed lines) density fields. Middle panels: Ratio between the baryon and
CDM bispectra for the three different redshifts for the LO (i.e. 1LPT/1PPT, zstart = 49) and NLO (i.e. 2LPT/2PPT, zstart = 24) simulations. Bottom panels:
Ratio of the LO and NLO bispectra for CDM (solid) and baryons (dashed) for the three redshifts.

redshifts in the top most panel. Similarly as for the baryon and
CDM power spectra, one observes that the baryon bispectrum is
suppressed relative to the CDM one, particularly so on small scales.
To make this more explicit, the middle panels of the figure show
the ratio of the baryon to CDM bispectra, Bb(k)/Bc(k) revealing a
relatively time independent suppression comparable in amplitude to
the suppression in the power spectrum (cf. second panels from top
in Fig. 10). Note that for the power ratio Pb(k)/Pc(k), we observed
a significant evolution of the suppression in the AREPO run, growing
from smaller to larger scales over time.

We also compare the bispectra obtained from the NLO IC runs
against those with only LO (first-order) initial conditions in the
bottom panels of Fig. 13. The impact on the component bispectra
is as one would expect similar to the single fluid case, where one
observes also a strongly suppressed bispectrum at high redshifts
for first order ICs except when very early starting times are used
to initialize the simulations (e.g. Crocce et al. 2006; McCullagh,
Jeong & Szalay 2015) – the well-known transient. The bispectra
from early start and with low-order ICs are however more impacted
by the accumulation of discreteness errors (Michaux et al. 2020),
which one would expect to be even more dramatic in the baryon
component if a diffusive Eulerian scheme is used. Since we do not
disentangle starting redshift and PT order, discreteness and truncation
errors are somewhat convoluted here. Comparing the AREPO and
RAMSES results for NLO versus LO ICs, one can still draw a few
interesting conclusions (and we leave more thorough investigations

to future work): The LO/NLO bispectrum ratios for baryons are
very similar for AREPO and RAMSES, on all scales, showing that
numerical diffusion due to the longer integration time in LO versus
NLO is not important. In the particle component, we see however
a stronger suppression in RAMSES, which could be a consequence
of the effectively lower force resolution at early times due to the
AMR scheme. At the same time, particle noise might induce spurious
effects. Note that in the absence of exact solutions or at least a full
convergence study, all such conclusions are speculative.

In summary, the excellent agreement between the improvement
between LO and NLO for both 2LPT and 2PPT ICs clearly validates
the PPT approach for higher order ICs for baryons for Eulerian codes.
Foreman et al. (2020) have previously studied the baryon bispectrum
in a full ‘physics’ galaxy formation simulation including cooling
and AGN feedback, however starting from ICs where baryons trace
CDM perfectly. It will be interesting to compare these results with
our adiabatic runs as well as with a more realistic astrophysical
simulation that takes our new ICs into account.

As a last comparison, we show the explicit ratios of bispectra
between the NLO IC simulations performed with RAMSES and with
AREPO. Due to the slight difference in snapshot times, we divide
all bispectra by the value in the first k-bin. The result is shown
in Fig. 14. We caution that in order to establish which results are
converged, one would have to conduct a rigorous resolution test.
Here, we are more interested at the level of typical differences due
to the different methods. We find for the earliest snapshot, at z =
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Figure 14. Ratio of the equilateral bispectra of the baryon and CDM
density fields between the RAMSES and AREPO simulations as a function
of the triangle scale k. We show only results from the NLO simulations,
indicating a significantly boosted bispectrum amplitude on small scales in
RAMSES compared to AREPO. Note that in this plot, we have re-normalized
the respective amplitudes so that the ratio is unity in the smallest k-bin to
suppress contribution from slightly different output times and growth in the
two codes (cf. Fig. 12).

5.25, a ∼2 per cent suppression of the CDM bispectrum close to
the Nyquist wavenumber in the RAMSES run compared to AREPO,
and a much larger suppression of the baryon bispectrum by up to 10
per cent close to the Nyquist wavenumber in the baryon bispectrum.
This difference is consistent with a similar suppression visible also
in the power spectrum and owed to an effectively smoother IC in the
baryons and arguably also additional advection errors. What is more
curious is that at late times, this is reversed, and we observe a higher
amplitude in the bispectrum in the RAMSES run, particularly so for
baryons, where the effect is very significant at intermediate redshifts
z ∼ 2. This behaviour is consistent with a similar difference in the
cumulants when the baryon density field is smoothed on relatively
small scales reported above (cf. Fig. 12) – and we have already
speculated about possible reasons there. Still, the results for the
RAMSES and AREPO appear consistent at the few per cent level, which
is remarkable in light of the very different approaches to evolving
baryons that these codes adopt. The often mentioned advection errors
incurred by Eulerian schemes seem to have much less influence on
higher order statistics.

6 SU M M A RY A N D C O N C L U S I O N S

With the increasing precision of current and upcoming cosmological
observations, the long-standing problem of how to generate accurate
initial conditions for cosmological simulations that model the distinct
non-linear evolution of both CDM and baryons has become more
pressing. In this paper, we present the numerical implementation of a
novel approach to set up initial conditions for two-fluid cosmological
simulations, and validate our implementation and its performance
based on various summary statistics. In brief, our new approach

(i) provides higher order Lagrangian (‘nLPT’) ICs for two grav-
itationally coupled fluids in the cold limit, by restricting to a
generalization of the ‘growing-mode’ solutions of standard LPT;

(ii) applies a field-theoretic approach to LPT to initialize Eulerian
simulations using PPT (Uhlemann et al. 2019; Rampf et al. 2021);

(iii) relies on backscaling the late-times input fields to initial-
ization time (instead of a forward approach), thereby improving

accuracy at low z, and having sub-per-cent errors at z � 24 on
most scales of interest; and

(iv) prevents the typical problematic excitation of spurious growth
well known for two-fluid N-body systems, even when very small
gravitational softening is used.

The theoretical foundations are presented in the companion paper
Rampf et al. (2021), and summarized in Sections 2.1–2.4 in this
article. All methods are implemented in the IC generator MONOFONIC

MUSIC-2 (i.e. the single resolution, non-‘zoom’ version of MUSIC-2),
which we make publicly available.5

We validate the quality of our initial conditions in two steps, first
by considering the purely gravitational collisionless evolution of the
two-fluid system using the N-body method (specifically GADGET-2,
Section 4), and in a second step using two commonly used cosmo-
logical N-body+collisional hydrodynamics codes, specifically the
Eulerian RAMSES code and the AREPO moving mesh code (Section 5).
The respective main results are as follows.

6.1.1 Collisionless simulations

Using a suite of collisionless two-fluid simulations, including up to
3LPT ICs, our conclusions based on an extensive analysis of power
spectra are that

(i) Erroneous growth due to discreteness, previously observed in
two-fluid simulations, is absent when initial mass variations instead
of displacement perturbations are used (see Fig. 6). These mass
variations are small (per cent level), vary mostly on large scales, and
are independent of the starting redshift.

(ii) Residual discreteness and truncation (LPT transient) errors in
two-fluid systems are similar to those in single-fluid systems and
confined to scales close to the particle Nyquist wavenumber (cf.
Michaux et al. 2020).

(iii) Therefore, late starting times with high-order LPT yield the
best accuracy (before shell-crossing), by optimizing the impact of
perturbative truncation errors versus discreteness errors.

Furthermore, we confirm a previously reported non-linear suppres-
sion in the baryon to CDM power ratio in collisionless simulations
(Somogyi & Smith 2010; Angulo et al. 2013) also in the absence of
different gravitational softening for baryons and CDM.

6.1.2 Hydrodynamic simulations

For the fully hydrodynamic simulations, we use our novel PPT
approach up to second order to set up the baryon initial conditions
on a regular mesh for the Eulerian finite-volume code RAMSES, while
AREPO is initialized with our novel two-fluid LPT, identical to the
collisionless simulations. The CDM N-body particles in RAMSES are
of course also initialized using LPT. Using an analysis of CDM,
baryon and total matter density power spectra, cumulants of the
baryon density field, and CDM and baryon density bispectra, we
validate the performance of both the nLPT and nPPT ICs between
z ∼ 5 and 0.5. Since the main purpose of this paper is to present and
validate the numerical implementation of our novel PT approaches,
our conclusions based on hydrodynamic simulations do not include a
rigorous resolution study. Also a study of the impact of the numerous

5Available from https://bitbucket.org/ohahn/monofonic.
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parameters of each code on the results is beyond the scope of this
work. Several of the conclusions below should therefore be followed
up with more rigorous convergence tests in future work. Our main
findings based on the hydrodynamic simulations are as follows:

(i) The PPT approach to set up Eulerian baryon ICs leads to a
natural suppression of power on the smallest scales due to the finite
effective ‘Jeans’-scale associated with the�-parameter of this method
(which is set mostly by resolution). In contrast, two-fluid LPT is
perfectly cold and has no such scale.

(ii) Despite this initial suppression, the late time (z � 2.5) baryon
evolution and all power spectra agree well (i.e. within a few per cent)
between the Eulerian and the moving mesh runs.

(iii) The improvement brought about by second-order over first-
order PT in setting up ICs is virtually identical for the LPT and the
PPT initial conditions, as demonstrated by our study of higher order
cumulants and bispectra. The impact is similar to the improvements
seen for single-fluid total-matter PT (Crocce et al. 2006), and most
important for higher order statistics.

(iv) Finite pressure in our non-radiative two fluid simulations leads
to a very similar suppression of the total matter spectrum compared
to the collisionless simulations at late times, independent of the
simulation code, and in broad agreement with previous results based
on ‘full-physics’ simulations (Chisari et al. 2019).

(v) We find some interesting differences in the amount of small-
scale non-Gaussianity between the RAMSES and AREPO simulations
that possibly warrant further investigation.

In conclusion, we presented the numerical implementation of the
‘growing mode’ two-fluid LPT/PPT approach discussed in detail
in the companion paper Rampf et al. (2021), and validated its
performance for both Eulerian and Lagrangian hydrodynamic codes.
We believe that the presented improvements are on par with the
necessary increase in the precision of cosmological simulations, in
particular when probing baryons at increasingly higher redshifts.
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A P P E N D I X : C O D E AC C U R AC Y PA R A M E T E R S

We carried out all simulations with the parameter settings listed in
Table A1 for RAMSES, and in Table A2 for AREPO (and GADGET-2
where applicable).

Table A1. RAMSES code parameter values used in this paper.

RUN PARAMS
nsubcycle 1, 2

AMR PARAMS
levelmin 9
levelmax 17

HYDRO PARAMS
courant factor 0.8
slope type 2
pressure fix .true.
scheme ’muscl’
riemann hllc

REFINE PARAMS
m refine 4.,10∗8.
interpol var 1
interpol type 0

Table A2. AREPO code parameter values used in this paper. The time-step and
force accuracy/softening parameters also apply to the collisionless GADGET-
2 runs, where baryons are however treated as Type2 particles instead of
Type0. Also for the 2 × 2563 GADGET-2 run, the softening used was twice
larger.

TypeOfTimestepCriterion 0
ErrTolIntAccuracy 0.025
CourantFac 0.8
MaxSizeTimestep 0.01
TypeOfOpeningCriterion 1
ErrTolTheta 0.7
ErrTolForceAcc 0.0025
SofteningComovingType0 0.025
SofteningComovingType1 0.025
SofteningMaxPhysType0 0.25
SofteningMaxPhysType1 0.25
GasSoftFactor 2.5
SofteningTypeOfPartType0 0
SofteningTypeOfPartType1 1
MinimumComovingHydroSoftening 0.025
CellShapingSpeed 0.5
CellMaxAngleFactor 2.25
ReferenceGasPartMass 0
TargetGasMassFactor 1
RefinementCriterion 1
DerefinementCriterion 1

This paper has been typeset from a TEX/LATEX file prepared by the author.
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