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Equivalence topologique entre mesures de proximité

Le choix d'une mesure de proximité entre objets a un impact direct sur les résultats de toute opération de classification supervisée ou pas, de comparaison, d'évaluation ou de structuration d'un ensemble d'objets. Pour un problème donné, l'utilisateur est amené à choisir une parmi les nombreuses mesures de proximité existantes. Or, selon la notion d'équivalence topologique choisie, certaines sont plus ou moins équivalentes. Dans cet article, nous proposons une nouvelle approche pour choisir puis comparer les mesures de proximité dans un but de discrimination. A cet effet, nous introduisons un nouveau concept baptisé équivalence topologique. Ce dernier fait appel à la structure de voisinage local. Nous proposons alors de définir l'équivalence topologique entre deux mesures de proximité à travers la structure topologique induite par chaque mesure. Nous illustrons le principe de ce choix et de cette comparaison sur un exemple simple pour une quinzaine de mesures de proximités de la littérature.

Introduction

Comparer des objets, des situations ou des idées sont des tâches essentielles pour identifier quelque chose, évaluer une situation, structurer un ensemble d'éléments matériels ou abstraits etc. En un mot pour comprendre et agir, il faut savoir comparer. Cette comparaison, que le cerveau accomplit naturellement, doit cependant être explicitée si l'on veut la faire accomplir à une machine. Pour cela, on fait appel aux mesures de proximité.

Les mesures de proximité sont caractérisées par des propriétés mathématiques précises. Sont-elles, pour autant, toutes équivalentes ? Peuvent-elles être utilisées dans la pratique de manière indifférenciée ? Autrement dit, est-ce que, par exemple, la mesure de proximité entre individus plongés dans un espace multidimensionnel comme R p , influence ou pas le résultat des opérations comme la classification en groupes ou la recherche des k-plus-proches voisins ?

Cette problématique est importante dans les applications pratiques. Par exemple, pour la recherche d'information dans une base de données ou sur internet. En soumettant une requête à un moteur de recherche, de manière rapide, celui-ci nous retourne une liste de réponses classées selon leur degré de pertinence par rapport à la requête. Ce degré de pertinence peut alors être perçu comme une mesure de dissimilarité/similarité entre la requête et les objets disponibles dans la base. Est-ce que la façon dont on mesure la similarité ou la dissimilarité entre objets affecte le résultat d'une requête ? Si oui, comment décider de quelle mesure de similarité ou de dissimilarité il faut se servir. Il en est de même quand dans de nombreux domaines on souhaite réaliser un regroupement des individus en classes. La manière de mesurer la distance impacte directement la composition des groupes obtenus.

Une mesure de proximité peut être définie de manière intuitive, par exemple, comme le fait [START_REF] Lin | An information-theoretic definition of similarity[END_REF] et selon les hypothèses retenues ou les axiomes requis, cela débouche sur des mesures ayant des propriétés diverses et variées. Le terme proximité recouvre des significations telles que la similarité, la ressemblance, la dissimilarité, la dissemblance, etc. On trouve dans la littérature des dizaines de mesures différentes, notamment si on prend en compte la diversité des types de données (binaires, quantitatifs, qualitatifs, flou...). Dès lors, le choix de la mesure de proximité reste posé. Certes, le contexte d'application, les connaissances a priori, le type de données etc., peuvent aider à identifier les mesures idoines. Par exemple, si les objets à comparer sont décrits par des vecteurs booléens, on peut se limiter à une catégorie de mesures spécifiquement dédiées. Néanmoins, comment faire quand le nombre de mesures candidates reste grand ? Si toutes les mesures étaient équivalentes, il suffirait d'en prendre une au hasard. Pour faire face à ce problème de comparaison et de choix entre mesures de proximités , trois approches sont utilisées.

1. Par agrégation de mesures : il s'agit déviter de choisir une mesure particulière. Par exemple, [START_REF] Richter | Classification and learning of similarity measures[END_REF] utilise, sur un même jeu de données, plusieurs mesures de proximité et agrège ensuite, arithmétiquement, les résultats partiels de chacune en une valeur unique. Le résultat final, peut être perçu comme une synthèse des différents points de vues exprimés par chaque mesure de proximité. Cette approche, évite ainsi de traiter la question de la comparaison qui reste cependant un problème en soi.

2. Par évaluation empirique : de nombreux travaux exposent des méthodologies pour comparer les performances des différentes mesures de proximité. Pour cela il est fait appel soit à des benchmarks comme dans Liu et al. , Strehl et al. (2000) dont les résultats attendus sont connus préalablement, soit à des critères jugés pertinents pour l'utilisateur et qui permettent, in fine, d'identifier la mesure de proximité la plus appropriée. On peut citer quelques travaux dans cette catégorie comme [START_REF] Noreault | A performance evaluation of similarity measures, document term weighting schemes and representations in a boolean environment[END_REF], [START_REF] Malerba | Comparing dissimilarity measures for probabilistic symbolic objects[END_REF], [START_REF] Spertus | Evaluating similarity measures: a largescale study in the orkut social network[END_REF].

3. Par comparaison : l'objectif des travaux qui se situent dans cette catégorie vise à comparer les mesures de proximité entre elles. Par exemple, on vérifie si elles ont des propriétés communes [START_REF] Clarke | On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted bray-curtis coefficient for denuded assemblages[END_REF], [START_REF] Lerman | Indice de similarité et préordonnance associée, Ordres. Travaux du séminaire sur les ordres totaux finis[END_REF] ou si l'une peut s'exprimer en fonction de l'autre [START_REF] Zhang | Properties of binary vector dissimilarity measures[END_REF], [START_REF] Batagelj | [END_REF] ou simplement si elles fournissent le même résultat sur une opération de classification [START_REF] Fagin | Comparing top k lists[END_REF], etc. Dans ce cas précis, les mesures de proximité peuvent alors être catégorisées selon leur degré de ressemblance. L'utilisateur peut ainsi identifier les mesures qui sont équivalentes de celles qui le sont le moins [START_REF] Lesot | Similarity measures for binary and numerical data: a survey[END_REF][START_REF] Bouchon-Meunier | Towards general measures of comparison of objects[END_REF].

Le travail que nous proposons dans ce papier se situe dans la troisième catégorie qui vise à comparer les mesures de proximité entre elles afin de détecter celles qui sont identiques de celles qui le sont moins. Il s'agit en fait de les regrouper en classes selon leurs similitudes. Pour comparer deux mesures de proximité, l'approche consiste, jusque là, à comparer les valeurs des matrices de proximité induites [START_REF] Batagelj | [END_REF], [START_REF] Bouchon-Meunier | Towards general measures of comparison of objects[END_REF], et, le cas échéant, à établir un lien fonctionnel explicite quand les mesures sont équivalentes. Pour comparer deux mesures de proximité, [START_REF] Lerman | Indice de similarité et préordonnance associée, Ordres. Travaux du séminaire sur les ordres totaux finis[END_REF] s'intéresse aux préordres induits par les deux mesures de proximité et évalue leur degré de ressemblance par la concordance entre les préordres induits sur l'ensemble des couples d'objets. D'autres auteurs, [START_REF] Schneider | Matrix comparison, part 2: Measuring the resemblance between proximity measures or ordination results by use of the mantel and procrustes statistics[END_REF] évaluent l'équivalence entre deux mesures par un test statistique entre les matrices de proximité. Les indicateurs numériques issus de ces comparaisons croisées servent alors à catégoriser les mesures. L'idée commune à ces travaux de comparaison s'appuie sur un postulat qui dit que deux mesures de proximité sont d'autant plus proches que les préordres induits sur les couples d'objets ne changent pas. On donnera plus loin des définitions plus précises. Dans ce papier, nous proposons une autre définition. Pour cela, on va s'intéresser à la structure de voisinage des objets que l'on appellera la structure topologique induite par la mesure de proximité. Si la structure de voisinage entre objets, induite par une mesure de proximité u i ne change pas par rapport à celle d'une autre mesure de proximité u j , cela signifie que les ressemblances locales entre individus n'ont pas changées. Dans ce cas, on dira que les mesures de proximité u i et u j sont en équivalence topologique. On pourra ainsi calculer une mesure d'équivalence topologique entre les couples de mesures de proximité et effectuer ensuite une classification sur les mesures de proximité. Nous allons définir cette nouvelle approche et montrer les premiers liens que nous avons identifiés entre elle et celle basée sur la préordonnance. A ce jour, nous n'avons pas trouvé de publications qui abordent le problème sous le même angle que nous. Ce papier est organisé comme suit. Dans la section 2, nous allons décrire de manière plus précise le cadre théorique dans lequel nous nous plaçons et nous rappelons les définitions classiques et notamment l'approche basée sur la préordonnance induite. Dans la section 3, nous introduisons notre approche d'équivalence topologique. Dans la section 4, on effectuera quelques évaluations en comparaison avec les anciennes approches et on tentera de mettre en évidence les liens entre les deux démarches. Les ouvertures qu'offre notre approche seront détaillées en conclusion.

Comparaison de mesures de proximité

Une mesure de proximité entre objets peut être définie selon d'une part les propriétés mathématiques requises et, d'autre part, l'espace de description des objets à comparer. Dans cet article, nous allons nous restreindre aux mesures de proximité construite sur R p . Nous verrons dans la partie conclusion et perspectives que notre approche peut être étendue à n'importe quel type de mesure de proximité, qu'elle soit binaire [START_REF] Batagelj | [END_REF], [START_REF] Lerman | Indice de similarité et préordonnance associée, Ordres. Travaux du séminaire sur les ordres totaux finis[END_REF], [START_REF] Warrens | Bounds of resemblance measures for binary (presence/absence) variables[END_REF], [START_REF] Lesot | Similarity measures for binary and numerical data: a survey[END_REF], floue [START_REF] Zwick | Measures of similarity among fuzzy concepts: A comparative analysis[END_REF], [START_REF] Bouchon-Meunier | Towards general measures of comparison of objects[END_REF], symbolique [START_REF] Malerba | Comparing dissimilarity measures for probabilistic symbolic objects[END_REF], [START_REF] Malerba | Comparing dissimilarity measures for symbolic data analysis[END_REF], etc.

Les mesures de proximité et leurs propriétés

On considère un échantillon de n individus x, y, . . . plongés dans un espace à p dimensions. Les individus sont décrits par des variables continues : x = (x 1 , . . . , x p ). Une mesure de proximité u entre deux points-individus x et y de R p est définie comme suit :

u : R p × R p -→ R (x, y) -→ u(x, y) avec les propriétés suivantes, ∀(x, y) ∈ R p × R p : P1 : u(x, y) = u(y, x) P2 : u(x, x) ≥ u(x, y) P3 : ∃α ∈ R u(x, x) = α P2' : u(x, x) ≤ u(x, y)
Une mesure de proximité u vérifiant les propriétés P1 et P2 est une mesure de ressemblance. Si elle vérifie les propriétés P1 et P2' c'est une mesure de dissemblance. Il est facile de montrer que toute mesure de ressemblance r peut être transformée en une mesure de dissemblance d comme suit : r(x, y) = -d(x, y).

On peut également définir une mesure de proximité δ :

δ(x, y) = u(x, y) -α qui vérifie les propriétés suivantes, ∀(x, y) ∈ R p × R p : T1 : δ(x, y) ≥ 0 T2 : δ(x, x) = 0 T3 : δ(x, x) ≤ δ(x, y)
Une mesure de proximité qui vérifie les propriétés T1, T2 et T3 est une mesure de dissimilarité. On peut également citer d'autres propriétés comme :

T4 : δ(x, y) = 0 ⇒ ∀z ∈ R p δ(x, z) = δ(y, z) T5 : δ(x, y) = 0 ⇒ x = y T6 : δ(x, y) ≤ δ(x, z) + δ(z, y) T7 : δ(x, y) ≤ max(δ(x, z), δ(z, y)) T8 : δ(x, y) + δ(z, t) ≤ max((δ(x, z) + δ(y, t)), (δ(x, t) + δ(y, z)))
On trouve dans [START_REF] Batagelj | Comparing resemblance measures[END_REF] quelques relations entre ces inégalités : T7 (Inég. Ultramétrique) ⇒ T6 (Inég. Triangulaire) ⇐ T8 (Inég. de Buneman)

Une mesure de dissimilarité qui vérifie les propriétés T5 et T6 est une distance.

Il faut souligner le fait que ces propriétés ne sont pas spécifiques aux mesures de proximité construites sur R p . Nous donnons en annexe Tableau 1 quelques mesures de proximité classiques définies sur R p . Il convient de noter, que certaines mesures supposent que les valeurs x i soient toutes positives. C'est ce que nous gardons pour nos expérimentations.

Comparaison de deux indices de proximité

Il est facile de constater que sur un même jeu de données, deux mesures de proximité u i et u j conduisent généralement à des matrices de proximité différentes. Peut-on dire que ces deux mesures de proximité sont différentes ? De nombreux articles ont été consacré à cette question. On peut trouver dans [START_REF] Lerman | Indice de similarité et préordonnance associée, Ordres. Travaux du séminaire sur les ordres totaux finis[END_REF] une proposition qui consiste à dire que deux mesures de promiximité u i et u j sont équivalentes dès lors que le préordre induit par chacune des mesures sur tous les couples d'objets sont identiques. d'où la définition suivante.

Equivalence en préordonnance Soient n objets x, y, z... de R p quelconques et deux mesures de proximité u i et u j sur ces objets. Si pour tout quadruplé (x, y, z, t), on a :

u i (x, y) ≤ u i (z, t) ⇒ u j (x, y) ≤ u j (z, t) alors les deux mesures u i et u j sont consi- dérées comme équivalentes.
Cette définition a été ensuite reprise dans de nombreux papiers [START_REF] Batagelj | [END_REF], [START_REF] Bouchon-Meunier | Towards general measures of comparison of objects[END_REF], [START_REF] Lesot | Similarity measures for binary and numerical data: a survey[END_REF]) et Schneider et Borlund (2007a) mais ce dernier, ne cite pas [START_REF] Lerman | Indice de similarité et préordonnance associée, Ordres. Travaux du séminaire sur les ordres totaux finis[END_REF]. Cette définition débouche sur un théorème intéressant dont on peut trouver la démonstration dans [START_REF] Batagelj | [END_REF].

Théorème 1 Soient deux mesures de proximité u i et u j , s'il existe une fonction f strictement monotone telle que pour tout couple d'objets (x, y) on a u i (x, y) = f (u j (x, y)) alors u i et u j induisent des préordres identiques et par conséquent, elles sont équivalentes : u i ≡ u j . La réciproque étant également vraie, i.e. deux mesures de proximité dont l'une est fonction de l'autre induisent le même préordre et sont, par conséquent, équivalentes.

On peut alors proposer d'utiliser un indice de discordance entre préordres induits comme mesure de proximité entre deux mesures u i et u j . A cet effet, on peut, à l'instar de Rifqi et al. (2003) utiliser le tau de Kendall généralisé qui repose sur la mesure de concordance des rangs. Les rangs des n(n -1) paires de valeurs de proximité entre x et y selon u i sont comparés à ceux selon u j . On note R i (x, y) et R j (x, y) les rangs respectifs de u i (x, y) et u j (x, y).

K ui,uj = 2 n(n-1) ∑ x ∑ y̸ =x δ ij (x, y) avec δ ij = { 0 si R i (x, y) = R j (x, y) 1 sinon
Cette définition montre ainsi que l'équivalence ne repose pas sur les valeurs numériques des deux matrices mais sur les préordres induits sur les couples de points. La comparaison entre indices de proximité a été étudiée par Schneider et Borlund (2007a,b) sous un angle statistique. Les auteurs proposent une approche empirique qui vise à comparer les matrices de proximité obtenues par chaque mesure de proximité sur les couples d'objets. Ils proposent ensuite de tester si les matrices sont statistiquement différentes ou pas en utilisant le test de Mantel, Mantel (1967). Le critère utilisé par ces auteurs est le coefficient des rangs de Spearman :

ρ s = 1 - 6 ∑ x ∑ y̸ =x (R i (x, y) -R j (x, y)) 2 n(n 2 -1)
Les mêmes auteurs proposent de traiter la comparaison des préordre induits par les mesures de proximité dans le cadre de l'analyse de Procruste. Ces techniques visant à comparer directement des matrices de proximité ont été développées pour des domaines appliqués comme l'écologie, les sciences sociales, la géographie, la psychologie et l'anthropologie. Dans ce travail, nous ne discutons pas du choix de la mesure de comparaison des matrices de proximité. Nous nous contentons d'utiliser l'expression présentée plus haut. Nous re-précisons que notre objectif n'est pas de comparer des matrices de proximité ni les préordres induits mais de proposer une autre notion qui est l'équivalence topologique que nous comparons à l'équivalence préordinale en essayant d'identifier les liens entre les deux approches.

Equivalence topologique

L'équivalence topologique repose en fait sur la notion de graphe topologique que l'on désigne également sous le nom de graphe de voisinage. L'idée de base est en fait assez simple : deux mesures de proximité sont équivalentes si les graphes topologiques induits sur l'ensemble des objets restent identiques. Mesurer la ressemblance entre mesures de proximité revient à comparer les graphes de voisinage et à mesurer leur ressemblance. Nous allons tout d'abord définir de manière plus précise ce qu'est un graphe topologique et comment le construire. Nous proposons ensuite une mesure de proximité entre graphes topologiques qui servira à comparer les mesures de proximité dans la section d'après.

Graphe topologique

Sur un ensemble de point x, y, z, . . . de R p , on peut, au moyen d'une mesure de proximité u i définir une relation de voisinage V u qui sera une relation binaire sur E × E. Pour simplifier la compréhension mais sans nuire à la généralité du propos, considérons un ensemble d'objet E = {x, y, z, . . .} de n = |E| objets plongés dans R p . Il existe de nombreuses possibilités pour construire une relation binaire de voisinage.

Par exemple, on peut construire l'arbre de longueur minimale sur (E × E) et dire que deux objets x et y vérifient la propriété de voisinage selon l'Arbre de Longueur Minimale (ALM), [START_REF] Kim | Tail bound for the minimal spanning tree of a complete graph[END_REF], s'ils sont reliés par une arête directe. Dans ce cas, V u (x, y) = 1 sinon V u (x, y) = 0. Où V u est la matrice d'adjacence associée au graphe ALM, formée de 0 et de 1.

On peut utiliser de nombreuses définitions pour construire la relation binaire de voisinage. Par exemple, on peut recourir aux Graphes des Voisins Relatifs (GVR), [START_REF] Toussaint | The relative neighbourhood graph of a finite planar set[END_REF]; [START_REF] Preparata | Computational geometry: an introduction[END_REF], dont tous les couples de points voisins vérifient la propriété suivante :

u E (x, y) ≤ max(u E (x, z), u E (y, z)) ; ∀z ∈ E -{x, y}
ce qui signifie, sur le plan géométrique, que l'hyper-Lunule (intersection des deux hypersphères centrées sur les deux points) est vide. La figure 1 De manière analogue, on peut utiliser le Graphe de Gabriel (GG), [START_REF] Park | Elliptic gabriel graph for finding neighbors in a point set and its application to normal vector estimation[END_REF], dont tous les couples de points vérifient :

montre un résultat dans R 2 . Dans ce cas, u E (x, y) = √ ∑ p i=1 (x i -y i ) 2 est la distance euclidienne.               . . . x
u E (x, y) ≤ min( √ u 2 E (x, z) + u 2 E (y, z)) ; ∀z ∈ E -{x, y}
Autrement dit, l'hypersphère de diamètre u E (x, y) est vide. Ce qui donnerait, sur l'exemple dans R 2 , le graphe de voisinage de la figure 2. 

              . . . x

Proximité entre graphes topologiques

Pour fixer les idées, considérons deux mesures de proximité u i et u j prises parmi celles que nous avons recensées en annexe tableau 1. Prenons par exemple, la distance euclidienne

u E (x, y) et la distance de Mahalanobis u M ah (x, y), et soient D E (E × E) et D M ah (E × E) les tableaux des distances associés.
Pour une propriété de voisinage donnée, chacune de ces deux distances engendre une structure topologique sur les objets E. Une telle structure est parfaitement décrite par sa matrice d'adjacence. On notera V E et V M ah les deux matrices d'adjacence associées aux deux structures toplogiques. Pour mesurer le degré de ressemblance entre graphes, il suffit de compter le nombre de discordances entre les deux matrices d'adjacence. La matrice étant symétrique, on peut alors calculer cette quantité par :

D(V E , V M ah ) = ∑ n i=1 ∑ n j=1 δij N 2 avec δ ij = { 0 si V E (i, j) = V M ah (i, j)
1 sinon D est la mesure de disimilarité qui varie dans l'intervalle [0, 1]. La valeur 0 signifie que les deux matrices d'adjacence sont identiques et par conséquent, la structure topologique induite par les deux mesures de proximité est la même. Dans ce cas, on parle d'équivalence topologique entre les deux mesures de proximité. La valeur 1 signifie que la topologie a totalement changé, autrement dit, aucun couple de voisins dans la structure topologique induite par la première mesure de proximité, n'est resté voisin dans la structure topologique induite par la seconde mesure et vice versa. D s'interprète également comme le pourcentage de désaccord entre des tableaux d'adjacence.

Grâce à cette mesure de proximité, nous allons enfin pouvoir comparer les mesures de proximité et les classer selon leur degré de ressemblance. Nous verrons que les résultats obtenus sur ces classifications sont différents. En effet, une équivalence topologique n'implique pas une équivalence en préordonance. En revanche, une équivalence en préordonance entraîne une équivalence topologique.

Classification des mesures de proximité

Nous nous limitons dans ce travail à la classification des mesures de proximité dans R p . Ce travail peut être étendu à toutes les autres mesures dès lors qu'on est capable de construire une structure topologique sur les objets. Nous considérons un jeu de données relativement simple, celui des Iris de Fisher. Pour construire la structure topologique, nous utilisons la propriété du graphe des voisins relatifs [START_REF] Toussaint | The relative neighbourhood graph of a finite planar set[END_REF].

Le tableau de dissimilarité entre les 13 mesures de proximité est donné en annexe tableau 2. L'application d'un algorithme de construction d'une hiérarchie de partition selon le critère de [START_REF] Ward | Hierarchical grouping to optimize an objective function[END_REF] 

Comparaison

Si nous comparons les mêmes mesures selon le critère de préordonnance, nous obtenons la matrice de dissimilarité donnée en annexe tableau 2 et le dendogramme suivant. 

Annexe

Mesure Formule Les éléments situés au-dessus de la diagonale principale correspondent aux dissimilarités en préordonnance et ceux au-dessous correspondent aux dissimilarités en topologie.

u1 : Euclidean uE (x, y) = √∑ p i=1 (xi -yi) 2 u2 : Mahalanobis u M ah (x, y) = √ (x -y) t ∑ -1 (x -y) u3 : Manhattan (City-block) uMan(x, y) = ∑ p i=1 |xi -yi| u4 : Minkowski uMin γ (x, y) = ( ∑ p i=1 |xi -yi| γ ) 1 γ u5 : Tchebytchev u T ch (x, y) = max 1≤i≤p |xi -yi| u6 : Cosine Dissimilarity uCos(x, y) = 1 -<x,y> ∥x∥∥y∥ u7 : Canberra uCan(x, y) = ∑ p i=1 |x i -y i | |x i |+|y i | u8 : Squared Chord uSC (x, y) = ∑ p i=1 ( √ xi - √ yi) 2 u9 : Weighted Euclidean uE w (x, y) = √∑ p i=1 αi(xi -yi) 2 u10 : Chi-square u χ 2 (x, y) = ∑ p i=1 (x i -m i ) 2 m i u11 : Jeffrey Divergence uJD(x, y) = ∑ p i=1 (xi log x i m i + yi log y i m i ) u12 : Histogram Intersection Measure uHIM (x, y) = 1 - ∑ p i=1 (min (x i ,y i )) ∑ p j=1 y j u13 : Pearson's Correlation Coefficient uρ(x, y) = 1 -|ρ(x, y)|

Summary

The choice of a proximity measure between objects has a direct impact on the results of any operation of supervised or unsupervised classification, comparison, evaluation or structuring a set of objects. For a given problem, the user is prompted to choose one among the many existing proximity measures. However, according to the notion of topological equivalence chosen, some are more or less equivalent. In this paper, we propose a new approach to select and compare the proximity measures for the purpose of discrimination. In a context of discrimination, we introduce a new concept of topological equivalence. This approach exploits the concept of local neighborhood and believes that two proximity measures are equivalent if they induce the same neighborhood structure on the objects. We illustrate the principle of this selection and comparison on a simple example for about fifteen proximity measures of the literature.
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  Exemple de GG pour un ensemble de points dans R 2 et la matrice d'adjacence associée.
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	FIG. 2 -	

  permet d'obtenir le dendogramme suivant.

	Pearson Correlation
	Cosine Dissimilarity
	Histogram Intersection
	Mahalanobis
	Chi-Squared
	Jeffrey Divergence
	Squared Chord
	Canberra
	Tchebytchev
	Minkowski
	Manhattan
	Weighted Euclidean
	Euclidean
	FIG. 3 -Arbre hiérarchique -Topologie.

TABLE 1 -

 1 Quelques mesures de proximité.

	D	u1	u2	u3	u4	u5	u6	u7	u8	u9	u10	u11	u12	u13
	u1	1	.776	.973	.988	.967	.869	.890	.942	1	.947	.945	.926	.863
	u2	.876	1	.773	.774	.752	.701	.707	.737	.776	.739	.738	.742	.703
	u3	.964	.840	1	.964	.940	.855	.882	.930	.973	.933	.932	.924	.848
	u4	.964	.876	.947	1	.967	.871	.892	.946	.988	.950	.949	.925	.866
	u5	.947	.858	.929	.964	1	.865	.887	.940	.957	.942	.942	.914	.860
	u6	.858	.858	.840	.840	.858	1	.893	.898	.869	.899	.899	.830	.957
	u7	.911	.840	.929	.893	.911	.822	1	.943	.890	.940	.942	.874	.868
	u8	.947	.840	.947	.929	.947	.858	.947	1	.942	.995	.998	.913	.884
	u9	1	.876	.964	.964	.947	.858	.911	.947	1	.947	.945	.926	.863
	u10	.947	.840	.947	.929	.947	.858	.947	1	.947	1	.998	.912	.885
	u11	.947	.840	.947	.929	.947	.858	.947	1	.947	1	1	.914	.884
	u12	.884	.813	.884	.867	.902	.884	.884	.920	.884	.920	.920	1	.825
	u13	.867	.849	.831	.867	.867	.973	.796	.849	.867	.849	.849	.876	1

Où, p est la dimension de l'espace, x = (xi)i=1,...,p et y = (yi)i=1,...,p deux points de R p , (αi)i=1,...,p ≥ 0, ∑ -1 l'inverse de la matrice des variances covariances, γ > 0, mi = x i +y i 2 et ρ(x, y) désigne le coefficient de corrélation linéaire de Bravais-Pearson.

TABLE 2 -

 2 Tableaux des dissimilarités -Topologie (ligne) & Préordonnance (colonne).

On constate que les résultats de la classification diffèrent selon que l'on compare les mesures de proximité au moyen de l'équivalence de préordonnance ou de l'équivalence topologique.

Nous allons maintenant montrer quelques résultats plus généraux. Du théorème 1 d'équivalence en préordonnance, on en déduit la propriété suivante.

Propriété Soient f une fonction strictement monotone de R + dans R + , u i et u j deux mesures de proximité telles que :

Démontration Supposons que : max(u i (x, z) , u i (y, z)) = u i (x, z), d'après le théorème 1 d'équivalence en préordonnance,

L'implication réciproque est vraie, vu que f est continue et strictement monotone alors, son application réciproque f -1 est continue et de même sens de variation que f . On peut ainsi dire, dans le cas où f est strictement monotone, que si le préordre est conservé alors la topologie est conservée et inversement. Cette propriété nous amène à énnoncer le théorème suivant.

Théorème 2 -Equivalence en topologie Soient deux mesures de proximité u i et u j , s'il existe une fonction f strictement monotone telle que pour tout couple d'objets (x, y) on a u i (x, y) = f (u j (x, y)) alors u i et u j induisent des graphes topologiques identiques et par conséquent, elles sont équivalentes : u i ≡ u j . La réciproque étant également vraie, i.e. deux mesures de proximité dont l'une est fonction de l'autre induisent la même topologie et sont, par conséquent, équivalentes.

La proposition ci-dessous montre que l'équivalence en préordonnance de deux mesures de proximité u i et u j = f (u i ) implique nécessairement l'équivalence en topologie, quelque soit la fonction f . Proposition Dans le cadre des structures topologiques induites par le graphe des voisins relatifs, si deux mesures de proximité u i et u j sont équivalentes en préordonnance, alors elles sont en équivalence topologique.

Démontration Si u i ≡ u j (équivalence en préordonnance) alors, z, x), u i (z, y)) ⇒ u j (x, y) ≤ max(u j (z, x), u j (z, y)) en utilisant la propriété P1 de symétrie, u i (x, y) ≤ max(u i (x, z), u i (y, z)) ⇒ u j (x, y) ≤ max(u j (x, z), u j (y, z)) d'où, u i ≡ u j (équivalence topologique).