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Abstract

This paper tackles the problem of stratified autocalibration of a moving camera with
Euclidean image plane (i.e. zero skew and unit aspect ratio) and constant intrinsic param-
eters. We show that with these assumptions, in addition to the polynomial derived from
the so-called modulus constraint, each image pair provides a new quartic polynomial in
the unknown plane at infinity. For three or more images, the plane at infinity estima-
tion is stated as a constrained polynomial optimization problem that can efficiently be
solved using Lasserre’s hierarchy of semidefinite relaxations. The calibration parameters
and thus a metric reconstruction are subsequently obtained by solving a system of linear
equations. Synthetic data and real image experiments show that the new polynomial in
our proposed algorithm leads to a more reliable performance than existing methods.

1 Introduction
Retrieving the camera calibration parameters from feature correspondences across images,
i.e. camera autocalibration, is a prerequisite to recover the metric structure of an unknown
scene imaged by uncalibrated perspective cameras. Autocalibration methods rely on some
assumptions on the calibration parameters, such as constant [15, 20, 26, 33] or partially
known intrinsic parameters [9, 17, 27, 28, 34]. When the images are captured by the same
moving camera, its internal geometry remains unchanged in the absence of zooming and
focusing. The sensor’s aspect ratio and skew factor also remain quite stable despite a change
in focus or zoom. Moreover, modern cameras commonly have square pixels, i.e. zero skew
and unit aspect ratio. Such cameras are said to have a Euclidean Image Plane (EIP) [16].

The EIP assumption has often been exploited in direct autocalibration methods, which si-
multaneously estimate the plane at infinity (π∞) and the intrinsic parameters. Direct methods
rely mainly on either the Dual Absolute Quadric (DAQ) [33] or Absolute Line Quadric [28,
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34] formulations that encode both π∞ and the intrinsic parameters. A practical difficulty with
these virtual quadrics is to enforce the nonlinear rank-3 constraint in their estimation. Lin-
earization, on the other hand, results in artificial degeneracies [10]. Unlike direct methods, a
stratified approach first tackles the more challenging problem of estimating π∞. Once π∞ is
located, the intrinsic parameters can be retrieved by solving linear equations for the Dual Im-
age of the Absolute Conic (DIAC) [13]. The advantage of this approach over a direct quadric-
based one is that the nonlinearity is confined to fewer unknowns and a rank condition is not
required. Most stratified methods assume constant intrinsic parameters [1, 6, 11, 26, 35] and
rely on the polynomial derived from the modulus constraint [26]. The zero skew assumption
was exploited in [11, 35] using the Infinite Cayley Transform (ICT) [35] to derive quartic
polynomials in π∞ for image triplets. However, using triplets introduces several unknown
projective scale factors that render these polynomials not very practical to use. To the best of
our knowledge, the assumption of a camera with EIP and constant intrinsic parameters has
not been exploited so far in stratified autocalibration.

The autocalibration problem is inherently nonlinear and methods have traditionally re-
lied on local optimization to obtain the calibration parameters. More recent work has also
investigated globally optimal optimization approaches, either based on Branch-and-Bound
algorithms [2, 6, 8, 12] or on polynomial optimization [5] using Lasserre’s hierarchy of
semidefinite relaxations [14, 19]. In [5], Lasserre’s hierarchy has been used to estimate the
DAQ under rank, semi-definiteness, and chirality [13] constraints.

In this paper, we present a stratified autocalibration method for a moving camera with
EIP and constant intrinsic parameters. Our key contribution is in the formulation of a new
quartic polynomial in the unknown π∞, that, in addition to the polynomial from the modulus
constraint, is obtained for each image pair with the assumed camera model. This polynomial
is derived using a yet unexploited property of the ICT. For three or more images, estimating
π∞ is stated as a constrained polynomial optimization problem that is solved using Lasserre’s
hierarchy. The estimated π∞ is refined using local optimization of a normalized cost and the
intrinsic parameters are recovered subsequently by estimating the DIAC. Experiments with
synthetic data and real images show that the new polynomial in our proposed algorithm leads
to a more reliable performance than existing methods, especially for short sequences.

2 Background and related work
We consider a scene embedded in a projective 3-space and imaged n times by a moving
perspective camera. The 3× 4 uncalibrated projection matrices [13] Pi are of the form,
Pi = [ Ai | ai ], i = 1,2, . . . ,n, where Ai is a 3× 3 matrix and ai is a 3-vector. The world
frame is attached to camera 1 such that A1 = I (identity) and a1 = 0.

Inter-image homography: An inter-image homography maps image projections of co-
planar scene points from one image to another. It was shown in [11] that given projection
matrices Pi, all inter-image homographies induced by planes not containing the origin of the
world frame are linear functions of a real 3-vector π,

Hi j = A jA
∗
i −A j[ π ]×A

ᵀ
i [ ai ]

ᵀ
×−a jπ

ᵀA∗i for all i 6= j, (1)

where A∗ is the adjoint matrix of A (the transpose of the cofactor matrix) and [ π ]× denotes
the skew-symmetric matrix associated with vector π. The more usual forward, H1i = Ai−
aiπ

ᵀ, and inverse, Hi1 = A∗i − [ π ]×A
ᵀ
i [ ai ]

ᵀ
×, mappings relating any view i and the reference
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image can be extracted from (1). Note that,

Hi1 = H∗1i = det(H1i)H
−1
1i , (2)

where det(H1i) is the determinant of H1i, and that Hi j in (1) is obtained through Hi j =H1 jHi1.

Infinite homography: For a fixed π, all Hi j represent inter-image homographies induced
by the same plane. In particular, for some appropriate π= π∞, the inter-image homograhies
expressed by (1) and denoted hereafter by H∞i j, are those induced by the plane at infinity.
Such a homography H∞i j, referred to as an infinite homography, is distinctively independent
of the camera translation. In particular, when the camera intrinsic parameters are constant,

H∞i j = A jA
∗
i −A j[ π∞ ]×A

ᵀ
i [ ai ]

ᵀ
×−a jπ

ᵀ
∞A∗i , (3a)

= λ
2
i λ j KRi j K

−1, (3b)

for all i 6= j, where Ri j is the rotation matrix relating cameras i and j. The scalar λi is such
that H∞1i = λiKR1iK

−1 with λ1 = 1. Matrix K is the intrinsic parameters matrix of the form,

K=

 fx γ u
0 fy v
0 0 1

 , (4)

encapsulating the focal lengths ( fx, fy), the principal point coordinates (u, v), and the skew γ .

Modulus constraint: When the camera intrinsic parameters are constant, H∞i j is similar to a
scaled rotation matrix (3b). Since a rotation matrix has eigenvalues with unit modulus, those
of H∞i j necessarily have equal moduli. A necessary condition on π∞ (the so-called modulus
constraint) for a given H∞i j to carry this property was derived and exploited in [26]. For any
two views i and j, this condition involves the coefficients of the characteristic polynomial,

det
(
H∞1 j−λH∞1i

)
=−ci(π∞)λ

3 + ti j(π∞)λ
2− t ji(π∞)λ + c j(π∞) = 0, (5)

where ci and ti j are affine functions of π∞. For H∞i j to satisfy the modulus constraint, it was
shown in [26] that π∞ must satisfy the following quartic polynomial equation,

mi j(π∞) = ci(π∞)t3
ji(π∞)− c j(π∞)t3

i j(π∞) = 0 for all i 6= j. (6)

This polynomial can also be derived from (3a) and (3b) by noticing that, on the one hand,

ci(π∞) = det(H∞1i), i = 1,2, . . . ,n and ti j(π∞) = tr(H∞i j) for all i 6= j, (7)

and, on the other hand, that these are related to the scaling of the infinite homographies,

det(H∞1i) = λ
3
i , tr(H∞i j)/tr(H∞ ji) = λi/λ j, (8)

where tr(H∞i j) denotes the trace of H∞i j. Using (6), a finite number of candidate solutions
for π∞ can be obtained when at least 3 such polynomials (i.e. as many images) are available.

Infinite Cayley Transform: The matrix Q∞i j, defined as,

Q∞i j = λ jH∞i j−λiH∞ ji = λ
2
i λ

2
j K[ rij ]×K

−1, (9)

was introduced in [11] and [35] in the context of stratified autocalibration. This matrix,
referred to as the Infinite Cayley Transform (ICT) in [35], is similar to the skew-symmetric
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matrix [ rij ]× = Ri j−Rᵀ
i j. As such, it carries interesting properties that allow the derivation

of constraints on π∞ that are complementary to the modulus constraint (6). For instance,

tr(Q∗∞i j)> 0, (10)

combined with the modulus constraint, are necessary and sufficient conditions for Q∞i j to be
similar to a skew-symmetric matrix [35]. Note that, using (3a) and (8), inequality (10) is a
polynomial in π∞. Furthermore, in [11] the authors showed that for cameras with zero skew
i.e. γ = 0, the coordinates (u, v) of the principal point can be expressed as follows,

u = (Q∞i j)11/(Q∞i j)31, v = (Q∞i j)22/(Q∞i j)32, (11)

where (·)hk is the element in the hth row and kth column of a matrix. New polynomials in
π∞, enforcing the constancy of (u, v) across images, were derived from image triplets in [11].

Polynomial optimization: Consider the, generally nonconvex, optimization problem,

min
x

f (x)

s.t. gi(x)≥ 0, i = 1,2, . . . , `,
(12)

where f (x) and all gi(x) are multivariate scalar polynomials in x, an m-vector. Lasserre,
in [19], has shown that (12) can be solved through a hierarchy of convex LMI (Linear Ma-
trix Inequality) relaxations of increasing order d = 1,2, . . . , yielding monotonically non-
increasing lower bounds on the original problem and converging to its global minimum. At
each order d, the problem is linearized and a surrogate Semidefinite Program (SDP) is solved.
Linearization is possible at a starting relaxation order d, in which no monomial in the prob-
lem is of a degree higher than 2d. Lasserre’s method, implemented in GloptiPoly [14], has
been used to solve several polynomial optimization problems in computer vision [4, 18, 22].
The interested reader may refer to [14, 19] for more details on this method.

3 EIP-based polynomial constraint
We consider a camera with a Euclidean image plane, EIP (i.e. zero skew, γ = 0, and unit
aspect ratio, fx/ fy = 1) whose focal length and principal point coordinates are constant but
unknown. We first show that the Infinite Cayley Transform (ICT) satisfies a yet unexploited
property under these assumptions (Proposition 1). Using this property, we then derive a new
quartic polynomial constraint on π∞ (Proposition 2).

Definition 1. Given a 3×3 matrix B, we define the matrix operator Φ(·) as,

Φ(B) = (B∗ ◦B)31 +(B∗ ◦B)32, (13)

where ◦ denotes the Hadamard (elementwise) product, i.e. (B ◦C)hk = (B)hk(C)hk for any
two matrices B and C of the same dimensions.

Proposition 1. Consider two images i and j captured by a moving camera with EIP and
constant intrinsic parameters. The ICT Q∞i j of these images satisfies,

Φ(Q∞i j) = 0. (14)
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Proof. The ICT Q∞i j, as given by (9), is similar to a skew-symmetric matrix. As such, the
matrix K−1Q∞i jK is skew-symmetric. Given a camera with EIP, the 2×2 matrix,[

(Q∞i j)11−u(Q∞i j)31 (Q∞i j)12−u(Q∞i j)32

(Q∞i j)21− v(Q∞i j)31 (Q∞i j)22− v(Q∞i j)32

]
, (15)

obtained by eliminating the 3rd row and 3rd column of K−1Q∞i j K is also skew-symmetric.
Enforcing the diagonal entries of (15) to be zero leads to the expressions of u and v given
in (11), as obtained in [11] for zero-skew cameras. Furthermore, the sum of the off-diagonal
elements of (15) also being zero yields: (Q∞i j)12 +(Q∞i j)21− u(Q∞i j)32− v(Q∞i j)31 = 0.
Substituting the expressions of u and v in (11) in this equation leads exactly to (14).

Expressing the ICT in terms of π∞ using (9) and (3a), we observe that Φ(Q∞i j) expands as,

Φ(Q∞i j) = ai j(π∞)λ
3
j −bi j(π∞)λiλ

2
j +b ji(π∞)λ

2
i λ j−a ji(π∞)λ

3
i , (16)

where the coefficients ai j and bi j, for any combination of i and j, are cubic polynomials in
π∞. Substituting for λi and λ j using (8) leads to a polynomial of degree 6 at best. We show,
however, that equation (14) can be used to derive a quartic polynomial in π∞. Although ai j,
bi j are fully defined through expansion (16), it is interesting to note that ai j(π∞) = Φ(H∞i j)
and a ji(π∞) = Φ(H∞ ji). As such, we show that the terms involving ai j(π∞) and a ji(π∞) can
be eliminated from (16), so long as the modulus constraint is satisfied. To show this, we
recall here some properties of the Hadamard product and adjoint matrices.

Property 1. Let B and C be two 3×3 matrices and λ a scalar. We have,

B◦C= C◦B, (17a)
(λB)◦C= B◦ (λC) = λ (B◦C), (17b)

(BC)∗ = C∗B∗, (18a)
(B∗)∗ = det(B)B. (18b)

Using the adjoint matrix properties, one can deduce that,

H∗∞i j = λ
3
i H∞ ji. (19)

This is because, with property (18a), H∗
∞i j = (H∞1 jH∞i1)

∗=H∗
∞i1H

∗
∞1 j. In addition, using (2),

H∗
∞i j =(H∗

∞1i)
∗H∞ j1. Now, property (18b) leads to (19). Note that the same procedure applies

to obtain, H∗
∞ ji = λ 3

j H∞i j. We can deduce, using (19) and property (17b), that H∗
∞i j ◦H∞i j =

λ 3
i (H∞ ji ◦H∞i j) and also that H∗

∞ ji ◦H∞ ji = λ 3
j (H∞i j ◦H∞ ji). It must be clear now, with

property (17a), that λ 3
j (H

∗
∞i j ◦H∞i j) = λ 3

i (H
∗
∞ ji ◦H∞ ji) and, as a consequence, λ 3

j ai j(π∞) =

λ 3
i a ji(π∞). This constitutes the proof to our main proposition, which we state below.

Proposition 2. Consider two images i and j captured by a moving camera with EIP and con-
stant intrinsic parameters. The plane at infinity π∞ satisfies the quartic polynomial equation,

pi j(π∞) =−bi j(π∞)t ji(π∞)+b ji(π∞)ti j(π∞) = 0, (20)

for all i 6= j. The expressions bi j and b ji are cubic polynomials in π∞ defined by the expansion
in (16) while ti j and t ji are linear functions of π∞ defined by (5).

We refer to the polynomial pi j as the EIP polynomial. It is obtained from (14) by substituting
λi and λ j in (16) using (8) and eliminating the ai j and a ji terms.
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4 Stratified autocalibration
Our stratified method relies on polynomial optimization using Lasserre’s hierarchy to es-
timate π∞. The modulus constraint mi j (6) and the EIP polynomial pi j (20) are used to
define a suitable cost function. Since these two polynomials are obtained for each image
pair, our method can be used with three or more images. Additional polynomial inequality
constraints, such as those derived from the ICT (based on (10) and (11)) as well as Hartley’s
chirality inequalities [13], can be easily incorporated in Lasserre’s method. These constraints
are especially useful when few images are used as multiple solutions may persist. The esti-
mated π∞ is refined using local optimization to fit a normalized cost. The camera intrisics are
subsequently recovered by solving a linear system of equations. The steps of our algorithm
are summarized at the end of this section. We first detail the inequality constraints on π∞,
followed by a description of the polynomial and local optimization problems to obtain π∞.

ICT-based inequalities: Inequality (10), a necessary condition for the ICT Q∞i j to be similar
to a skew-symmetric matrix, can be expressed in terms of π∞. This can be done in different
ways. For instance, denoting by ' the equality up to scale, one can consider (8) to obtain,

Q∞i j ' Q̃∞i j = tr(H∞ ji)H∞i j− tr(H∞i j)H∞ ji, (21)

and the constraint qi j(π∞) = tr(Q̃∗
∞i j) > 0. Note that the sign of the unknown scale in (21)

does not affect the sign of qi j(π∞) since it is squared in the adjoint matrix. One may also
exploit (11) to restrict the principal point to lie within the image bounds. Assuming a 2u×2v
image and an image-centered frame, the principal point (u, v) is within the image bounds if
ui j(π∞) = u2(Q∞i j)

2
31− (Q∞i j)

2
11 ≥ 0 and vi j(π∞) = v2(Q∞i j)

2
32− (Q∞i j)

2
22 ≥ 0.

Chirality inequalities: Hartley’s chirality inequalities [13] can be used to preserve the con-
vex hull of camera centers. They impose that all ci(π∞), i = 1,2, . . . ,n, as defined in (7),
carry the same sign, provided that all Pi matrices are sign-corrected [13, 24]. Although the
same can be done for scene points, these are generally considered to be less reliable [24].

Polynomial optimization with Lasserre’s hierarchy: A normalized cost function is pre-
ferred in uncalibrated vision problems to eliminate the effect of projective scale factors. This
usually leads to a cost in the form of a sum of rational functions. This problem is difficult
to solve globally and optimally [3] and is not handled well by Lasserre’s method. To reduce
the effect of the scaling with an unnormalized cost, we propose to use homogenized poly-
nomials [7]. Doing so allows us to include an additional constraint to impose some global
scaling. Though this is not equivalent to the normalized case, it works well in practice. The
homogeneous counterpart of a polynomial f of degree d in π , denoted h f , is defined by
introducing an additional variable π4 such that h f (π,π4) = π

d
4 f (π/π4). Note that the degree

of h f remains the same as that of f . We solve the following problem to estimate π∞,

min
π,π4

n−1

∑
i=1

n

∑
j= i+1

hm2
i j(π,π4) +

h p2
i j(π,π4) (22a)

s.t. hci(π,π4)> 0, i = 1, . . . ,n, (22b)
hqi j(π,π4)> 0, i = 1, . . . ,n−1, j = i+1, . . . ,n, (22c)
hui j(π,π4)≥ 0, hvi j(π,π4)≥ 0, i = 1, . . . ,n−1, j = i+1, . . . ,n, (22d)

hc1(π,π4)
hcn(π,π4) +

1
n−1

n−1

∑
i=1

hci(π,π4)
hci+1(π,π4) = 1, (22e)
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where (22e) is the global scaling constraint that we have found most appropriate. We have
observed that this constraint improves the numerical stability and leads more often to a cer-
tified optimal solution with the minimal relaxation order of 4. We suggest using the pairwise
constraints (22c)-(22d) only between consecutive views so that their number grows linearly
and not quadratically with increasing views. For short sequences, constraints between all
image pairs can be included. With long sequences, all but (22e) are optional and can be
dropped. Even if the EIP assumption is not exactly satisfied in practice, problem (22) is still
suitable since the EIP polynomial is minimized in the cost (22a), allowing for residual errors.

Refinement: We locally refine the π∞ estimated from (22) using the normalized cost,

min
π

n−1

∑
i=1

n

∑
j= i+1

m2
i j(π)+ p2

i j(π)

(ci(π)c j(π))4 . (23)

Though the constraint (22e) scales the polynomials suitably, it is recommended, particularly
with high levels of noise, to refine the solution to fit a normalized cost.

Algorithm: Given a projective reconstruction, our autocalibration algorithm proceeds as
follows: (i) estimate π∞ by solving problem (22), (ii) refine the estimated π∞ using (23), and
(iii) solve a system of linear equations for the Dual Image of the Absolute Conic (DIAC) and
extract the intrinsic parameters matrix K through Cholesky factorization (see [13, p. 479]).

5 Experimental results
We tested our autocalibration method using both synthetic data and real images. We com-
puted the 3D RMS error and the following calibration error metrics to assess our results,

∆ f =

√
( fx− f̂x)2 +( fy− f̂y)2

fx
2 + fy

2 , ∆uv =

√
(u− û)2 +(v− v̂)2

u2 + v2 , ∆γ = |γ− γ̂|,

where ( f̂x, f̂y), (û, v̂), and γ̂ are the estimated focal lengths, principal point, and skew, respec-
tively. The 3D RMS error was computed after aligning the estimated metric point cloud to the
ground truth Euclidean point cloud by a best-fit similarity transformation in the least-squares
sense. Our algorithm was implemented in MATLAB R2018b. We used GloptiPoly [14] for
problem (22) and set a relaxation order of d = 4 in all the experiments. We used MOSEK [23]
as the SDP solver and set MSK_DPAR_INTPNT_CO_TOL_{P|D}FEAS= 10−20. All the experi-
ments were conducted on an i7 3.10 GHz 32 GB RAM computer.

We denote our algorithm by EIP*, and the same algorithm without the EIP polynomial,
which then relies only on the modulus constraint in (22a) and (23), by MODULUS*. In addi-
tion, the two approaches EIP* and MODULUS* excluding the inequality constraints in prob-
lem (22) are denoted by EIP and MODULUS, respectively. In these experiments, we used the
inequalities in problem (22) only between consecutive views. Furthermore, we estimated all
five intrinsic parameters in step (iii) of our algorithm. This ensured a fair comparison with
the selected existing methods, all of which solve for five intrinsic parameters.

5.1 Synthetic data experiments
Each synthetic scene consisted of 200 points sampled randomly from the surface of the unit
sphere. The cameras were positioned at a distance of 3.5–4 units from the sphere center,
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Figure 1: Benefits of EIP polynomial. Success rate of EIP
and EIP* compared with MODULUS and MODULUS* us-
ing 3 views (left) and 4 views (right).
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Figure 2: Effect of refinement.
3D errors with and without re-
finement using 4 views.

and oriented such that their optical axes passed close to the sphere center. All cameras were
simulated to have an EIP with focal length fx = fy = 800, and an image-centered principal
point, (u, v) = (256, 256), in pixels. Noise, modeled as a zero-mean Gaussian distribution
with standard deviation in the range [0, 2] pixels, was added to the pixel coordinates in in-
crements of 0.5 pixels. Projective reconstructions were obtained using [25] implemented
in [29]. We report the statistics collected over 100 generated scenes.

Benefits of EIP polynomial: We assessed the contribution of the EIP polynomial (20) in
our algorithm’s performance by comparing the reliability of EIP(*) in obtaining a metric
reconstruction with that of MODULUS(*). We focused on short sequences and considered a
3D error above 0.25 as a failed metric upgrade. Figure 1 shows the success rate using 3 and
4 views for varying noise levels. With 3 views, MODULUS failed most of the time (result
not shown) as multiple solutions exist using the modulus constraint alone. A higher success
rate was obtained using MODULUS* due to the inequality constraints, but it declined consid-
erably with increasing noise. On the other hand, EIP led to a reliable metric upgrade even
with high noise levels, and the inequalities in EIP* further improved the success rate. With 4
views, there are sufficient polynomials from the modulus constraint to obtain a unique solu-
tion. Even so, the success rate of EIP was significantly higher than that of MODULUS. With
additional views, all the approaches performed reliably. For the successful trials, the esti-
mated plane at infinity and consequently the 3D errors were similar using all the approaches.
These results show that the EIP polynomial is especially useful for short sequences.

Effect of refinement: We analyzed the impact of the refinement step (step (ii)) in our al-
gorithm. Figure 2 shows the 3D error distribution using EIP and EIP* with and without
refinement for 4 views. The errors decreased overall after refinement, particularly for high
levels of noise. Moreover, a few reconstructions that failed in the metric upgrade without
refinement were recovered after refinement. We clipped errors above the 0.25 threshold to
the axis limit in Figure 2. The observations were similar when varying the number of views.
Thus, refinement using a normalized cost improves the accuracy of our algorithm.

Comparisons with the state of the art: We compared EIP and EIP* with two stratified
methods, GO-Stratified [6] and QUARCH*M [1], and a DAQ-based method, GO-DAQ [5].
For GO-Stratified, we computed solutions for both signs of chirality and retained the one
with lower calibration error (the authors’ implementation was used). For GO-DAQ, we set
a relaxation order of d = 2. The rotation angle assumption of QUARCH*M is satisfied in
our simulations. Figure 3 shows the success rate (top row) of the tested methods. With
three views, the success rate of GO-DAQ was lower than that of EIP* and it dropped below
that of EIP with increasing noise. Although GO-DAQ uses additional priors on the prin-
cipal point location, the results are inferior because our simulated cameras are close to an
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Figure 3: Comparisons with the state of the art. Top: success rate using 3 views (left) and
4 views (middle) with varying noise levels, and using 3-6 views with 1 pixel noise level
(right). Bottom: distribution of 3D error (left) and focal length error (middle), and runtime
results (right) using 3-6 views with 1 pixel noise level.

artificial degenerate configuration for the DAQ estimation (when all optical axes intersect in
one point) [10]. GO-DAQ then fails when its rank-3 constraint is not well enforced due to
numerical scaling issues, as has also been reported in [1]. With four views, EIP and EIP*
outperformed GO-Stratified and QUARCH*M as well due to the additional EIP constraint.
With more views, all the methods succeeded most of the time. The 3D and focal length error
distributions as well as the runtime results are shown in Figure 3 (bottom row). GO-Stratified
obtained relatively higher 3D and calibration errors and was also two orders of magnitude
slower (not shown) than the other methods. For our algorithm, we report the computation
time excluding the problem modeling overhead in GloptiPoly. The time complexity of EIP
is constant with respect to the number of images as it does not use the pairwise inequalities.
From 4 views onward, EIP can thus be used instead of EIP* for a speedup.

5.2 Real image experiments

We used four sequences, fountain-P11, Herz-Jesu-P8, Herz-Jesu-P25 [32], and City hall
Leuven [31], with known ground truth calibration, to quantitatively compare our algorithm
with existing methods. We also qualitatively assessed the metric reconstructions obtained
with our algorithm using different sequences (see supplementary material). The projective
reconstructions were obtained using P2SfM [21] and feature matches using COLMAP [30].

Quantitative assessment: Table 1 reports the calibration errors from EIP, MODULUS, and
state-of-the-art methods on three tested sequences. With fountain-P11, MODULUS led to
large calibration errors and thus it failed to obtain a metric upgrade. While MODULUS* pro-
vided a calibration similar to that from EIP, it required 10 times the computation time. MOD-
ULUS and EIP otherwise yielded the same calibration as MODULUS* and EIP*, respectively.
With Herz-Jesu-P8, GO-Stratified failed to obtain a metric upgrade. Moreover, while the re-
sults improved with the longer Herz-Jesu-P25 sequence (not shown) for all the methods,
GO-Stratified still led to an erroneous calibration. This is due to the method relying on scene
points that prove unreliable with noise and outliers. With City hall Leuven, the reference cali-
bration parameters do not fit the assumptions of GO-DAQ as closely as those of the previous
sequences. The principal point is farther from the image center and the skew is not null.
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Sequence Method ∆ f (%) ∆uv(%) ∆γ Time (s)

fountain-P11 MODULUS 62.90 66.39 2172.12 0.91
EIP 0.08 0.25 1.06 0.59

GO-Stratified 0.10 0.19 1.08 302.90
QUARCH*M 0.05 0.23 1.05 2.44

GO-DAQ 0.36 1.26 0.01 1.49

Herz-Jesu-P8 MODULUS 0.89 3.12 2.16 0.82
EIP 0.55 2.84 3.98 0.57

GO-Stratified 43.86 31.13 157.31 243.18
QUARCH*M 0.88 3.11 2.03 1.26

GO-DAQ 1.43 1.27 0.05 1.53

City hall Leuven MODULUS 2.96 6.73 5.90 0.62
EIP 0.78 0.72 2.80 0.56

GO-Stratified 7.09 10.10 25.85 169.21
QUARCH*M 2.94 6.70 5.81 1.02

GO-DAQ 9.93 7.68 9.70 1.38

Table 1: Quantitative assessment. Autocalibration re-
sults on the real image sequences from [31, 32].
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Figure 4: Quantitative assess-
ment using 3 views. Success
rate (top), and error distribution
(bottom) over 20 triplets sam-
pled from Herz-Jesu-P25.

As a result, the errors are larger using GO-DAQ. In contrast, EIP provided an accurate cali-
bration for all the sequences and required only half a second of computation time. The errors
from MODULUS and QUARCH*M are similar as they rely on the same cost.

Quantitative assessment using three views: To test the minimal case of three views, we
sampled image triplets sequentially from the Herz-Jesu-P25 sequence, discarding those with
insufficient feature matches, leaving a set of 20 triplets. Figure 4 shows the results from
EIP(*), MODULUS(*), and GO-DAQ on this set. We considered a focal length error above
25% as a failure in this experiment. From our tests, the quality of the metric reconstruction
was mostly influenced by the estimated focal length, and errors above this threshold corre-
sponded to distorted reconstructions. The results in Figure 4 are consistent with those on
the synthetic data as MODULUS failed most of the time and EIP performed reliably. Both
EIP* and GO-DAQ succeeded with all the triplets. GO-DAQ also consistently provided an
accurate calibration as its assumptions on the calibration parameters are closely satisfied in
this sequence. The skew parameter was also accurately estimated by all the methods (not
shown), resulting in less than 1◦ deviation from a rectangular image plane on average.

6 Conclusion

We presented a stratified autocalibration method for a moving camera with a Euclidean im-
age plane and constant intrinsic parameters. Our method relies on a new quartic polynomial
in the plane at infinity that is obtained for each image pair with these assumptions. For three
or more images, estimating the plane at infinity is formulated as a constrained polynomial
optimization problem that is solved using Lasserre’s hierarchy of semidefinite relaxations.
Experiments with synthetic data and real images showed that our method performs more
reliably than existing ones, especially for short sequences.
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