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Abstract: Immobilization of biosensors in or on a functional material is critical for 
subsequent device development and translation to wearable technology. Here we present 
the development and assessment of an immobilized quantum dot - transcription factor - 
nucleic acid complex for progesterone detection as a first step toward such device 
integration. The sensor is composed of a polyhistidine-tagged transcription factor linked 
to a quantum dot and a fluorophore-modified cognate DNA, and embedded within a 
hydrogel as an immobilization matrix. The hydrogel is optically transparent, soft, and 
flexible as well as traps the quantum dot - transcription factor DNA assembly but allows 
free passage of the analyte, progesterone. Upon progesterone exposure, DNA 
dissociates from the quantum dot - transcription factor DNA assembly resulting in an 
attenuated ratiometric fluorescent output via Förster resonance energy transfer. The 
sensor performs in a dose-dependent manner with a limit of detection of 55 nM. Repeat 
analyte measurements are also similarly successful. Our approach combines a 
systematically characterized hydrogel as an immobilization matrix and a transcription 
factor – DNA binding as a recognition/ transduction element, offering a promising 
framework for future biosensor devices based upon allosteric transcription factor. 
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1. INTRODUCTION 

Digital health is positively transforming the life sciences from medical devices to 
diagnostics. Wearable sensor technologies will further drive the development of digital 
health and will provide a wealth of opportunities for detection and monitoring across the 
clinical landscape from cancer and trauma to addiction.1 Yet, the full potential of digital 
health, and the subsequent benefit to patients, is not fully realized today because of the: 
1) limited number antibodies, enzymes, and aptamers – i.e., biorecognition elements – 
available for medical relevant biomarkers; and 2) need for additional strategies to 
integrate biorecognition elements within sensors. With regard to sensor discovery, a 
recent genomics-to-sensor approach taps directly into the repertoire of natural bacterial 
regulatory circuits, and identifies and harvests allosteric transcription factors (TF) for 
sensing. This new approach potentially addresses the problem of limited biosensors, and 
expands the number and types of existing biorecognition elements.2-4 Results from these 
metagenomic sequence mining approaches are yielding new TFs as biorecognition 
elements for: 1) in vivo whole-cell sensors– i.e., the bacteria itself is the biosensor;5-7 and, 
2) in vitro sensors– i.e., the isolated bacterial TF is the sensing element in a biosensor.8-

9 In particular, our group has designed quantum dot-based Förster resonance energy 
transfer (FRET) nanosensors for progesterone, where progesterone binding alters TF - 
operator DNA affinity affording a change in the proximity of the FRET donor (QD) and 
acceptor (fluorophore labeled DNA) with subsequent fluorescent signal detection.8 

Progesterone, a steroid hormone of significant clinical relevance, is the primary 
biomarker of reproductive status and its monitoring in humans facilitates fertility planning 
and pregnancy.10 Additionally, in cases of pregnancy of unknown location (PUL), 
progesterone is a validated biomarker of early gestation. Monitoring progesterone levels 
reduces the clinical burden of PUL cases and improves outcomes.11-12 Measuring 
progesterone is also important in the livestock industry. For example, tracking the 
ovulation cycles of dairy cows and detecting pregnancy for fertility management leads to 
considerable cost saving for dairy farms.13 Today, steroid hormones are quantified using 
HPLC or antibody-based immunoassays, and these analytical methods are ill-suited for 
real-time monitoring, repeat measurements, multiple sensing, or decentralized testing.14-

17  
The second challenge is integration of the discovered biorecognition element(s) and 

transduction mechanism into a device, a necessary step towards eventual use. Previously, 
QDs have been entrapped in hydrogels for phenol and dopamine chemo-/bio-sensing 
purposes.18-20 Moreover, immobilization of the biorecognition elements or sensors 
enables working in flow conditions required for integration in lateral flow21-22 or microfluidic 
devices.23-24 Herein, we describe a QD-based FRET sensor for progesterone immobilized 
within a robust covalently crosslinked hydrogel matrix. Specifically, we adapted our 
previous solution phase QD-based FRET sensor,8 composed of a polyhistidine-tagged 
transcription factor (SRTF1) self-assembled on the QD surface, and a Cy5 fluorophore-
labeled cognate DNA sequence. Binding of the TF to its cognate DNA site in the absence 
of progesterone enables FRET between the QD and the Cy5; the presence of 
progesterone induces unbinding of the TF from the DNA with subsequent loss of FRET, 
yielding a progesterone concentration-dependent change in the fluorescence signal.8 To 
our knowledge, this is the first report describing the integration of a transcription factor-
based FRET sensor into a hydrogel and its subsequent performance, a critical step 
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towards device prototyping. Specifically, we report the: 1) preparation and 
characterization of the PEG hydrogel immobilization matrix; 2) sensor assembly; 3) 
diffusion studies of sensor constituents in the hydrogel; 4) sensor performance; and, 5) 
repeated progesterone measurements.  

 
2. MATERIALS AND METHODS 

Sterol responsive allosteric transcription factor (SRTF1-his6) and CdSe/CdS/ZnS 
QD were prepared according to a previously reported procedure.8, 25 The QDs were 
transferred into water using a ligand-exchange procedure. The QD are stable in water of 
aqueous buffer, with a quantum yield of 27± 3%.25 Cy5-labeled HPLC-purified 
oligonucleotides were purchased from Integrated DNA Technologies, Inc. (Coralville, IA). 
Specifically, the polyhistidine-tagged transcription factor was self-assembled onto the QD 
surface at average ratios of TFs to QD (QD/TF=1/4) through chelation-based binding. 
Oligonucleotides labeled with Cy5-DNA containing SRTF1-his6 binding sites were 
combined with QD-TFs at specified ratios of DNA to QD (QD/DNA=1/18).8, 25 The QD 
emission spectrum overlaps with the Cy5-DNA excitation spectrum to enable FRET 
(Figure S9). The TF binding to oligonucleotides depends on hydrogen bonding and van 
der Waals interactions between TF DNA-binding domains and specific bases on 
oligonucleotides and this interaction is disrupted upon binding of an analyte – e.g., 
progesterone – resulting in separation of TF from DNA.26 Metrics of sensor performance 
include EC50 and limit of detection (LOD) values. EC50 is the concentration of analyte that 
gives half-maximal response. The LOD is defined as the progesterone concentration 
yielding a signal greater than 3 times the pool standard deviations above background.  

We synthesized the poly(ethylene glycol)-based hydrogels following published 
procedures.27-29 Briefly, we mixed the 4-arm-PEG-NH2 in 1X borate buffer at pH 8.6 with 
NHS-PEG-NHS, which contains the N-Hydroxysuccinimide functionalities, in phosphate 
buffered saline (PBS 1 x) at pH 7.4 to form the amide-bond linked network. 

The sensor was dialyzed against progesterone (PRG) solution overnight (Figure 
1A and B). With the presence of progesterone, the transcription factor unbinds its cognate 
DNA site. (Figure 1C and D). The sensor was then dialyzed against HEPES overnight to 
remove progesterone for another measurement. This cycle was repeated. Fluorescence 
measurements were recorded between cycles of progesterone exposure and removal. 
Fluorescence spectra were measured on a Nanolog spectrofluorometer (HORIBA, Ltd., 
NJ), equipped with a plate reader. The fluorescence intensity was monitored from 550 nm 
to 750 nm (λexc = 400 nm) with a 450 nm long-pass filter before the emission detector 
(Figure 1E). The intensity was recorded in relative fluorescence units, with baseline 
correction according to manufacturer’s instruction. 

All remaining experimental details, including characterization and assays, and 
statistical analysis are described in Supporting Information. 

3. RESULTS AND DISCUSSION 
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Solution-phase sensors have merit, however integration of the design for analyte 
detection into immobilization matrix expands the potential application space (e.g., 
hydrogel electronics,30 contact lens glucose sensor,31-32 and hydrogel-based 
microsensors).33 Additionally, successful incorporation of such sensors into lateral flow or 
microfluidic devices allows facile sample processing and precise flow control as well as 
integration with electronic devices for miniaturization.34 As an initial step towards such 
devices, we recognize that our QD-based FRET sensors based on quantum dot-bound 
transcription factors and fluorophore-labeled nucleic acid duplexes are amenable to 
immobilization given the precedent for immobilized QDs in hydrogels for fluorescent 
probing and biocatalysis.18-19 In the forthcoming text, we first describe the synthesis and 
characterization of the hydrogel, followed by the progesterone sensor construction and 
performance evaluation. Finally, we validated the performance of the sensor, by 
performing repeated measurements. 

3.1. Hydrogel Synthesis and Characterization.  We synthesized the 
poly(ethylene glycol)-based hydrogels following published procedures.27, 35-36 Specifically, 
we mixed the 4-arm-PEG-NH2 in borate buffer at pH 8.6 with NHS-PEG-NHS, which 
contains the NHS-esters, in phosphate buffered saline (PBS 1x) buffer at pH 7.4 to form 
the amide-bond linked network (Figure 2A). We maintained the molar ratio of amine to 
the NHS at 1:1, and varied the total concentration of the polymer in solution from 5, 10, 
25, to 50 wt%. 

First, we evaluated the pore size of the lyophilized hydrogels through scanning 
electron microscopy. Pore sizes are 14.4 ± 1.7, 11.8 ± 1.0, 10.3 ± 1.4, and 9.7 ± 0.4 
microns for the 5 wt%, 10 wt%, 25 wt%, and 50 wt% hydrogels, respectively (Figures 2B, 
C, D, and E). The pore size slightly decreases with increasing polymer weight percents. 
Additionally, we examined the morphology of the dried and hydrated hydrogel samples 
using atomic force microscopy (AFM). AFM analysis of the dried hydrogel reveals a 
surface roughness of 131 ± 21 nm, defined by the root-mean-square value of the height 
(Figure 2F). Upon hydration, the hydrogel exhibits a more homogeneous and smoother 
surface, with a decreased surface roughness of 19 ± 7 nm (Figure 2G). Next, we 
assessed the swelling characteristics of the hydrogels prior to integration with QD-based 
FRET sensor. After exposure to PBS 1x, the hydrogels swell and reach equilibrium by 
day 4 for all polymer weight percents evaluated, while maintaining their structural integrity 
(Figure 2H). The swelling degree positively correlates with the initial polymer content 
(percent by weight). The diffusion of small molecules (water, in this case) through the 
hydrogel translates to its capacity to absorb and release analyte of interest, which is 
essential for biosensor functionality. As it is important that the hydrogels possess integrity, 
we evaluated the viscoelastic properties and mechanical strength of the hydrogels. First, 
we determined the linear viscoelastic region (LVR) by performing the oscillatory stress 
sweep (Figures S2, 3, 4, 5A). Next, we measured the frequency sweep at a controlled 
oscillatory stress of 1 Pa chosen from the LVR (Figures S2, 3, 4, 5C). Across the 
frequencies tested, the hydrogels exhibit solid-like behavior (i.e., G' > G"). Lastly, we 
performed the same experiments on swelled hydrogels (Figures S2, 3, 4, 5B and D). The 
storage (G’) and loss (G’’) moduli positively correlate with the increase in weight percent 
of the hydrogels (Figures 2I, J, K, and L). At the swelling equilibrium, the G’ values 
decrease significantly for all four hydrogels compared to the as prepared hydrogel prior 
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to swelling. Taken together, the ability of the hydrogel to hold water translates to its 
capacity to absorb analyte solution, and maintain an aqueous environment for the sensor 
components. For example, after exposure to PBS 1x, the 10 wt % hydrogel swells 221%, 
reaching equilibrium, while maintaining its integrity and mechanical strength to allow for 
use and easy handling. With tunable mechanical properties and structural integrity, these 
hydrogels hold promise for QD-based FRET sensor integration.  

3.2. Diffusion Studies. The QD-FRET sensor is based on an affinity-based 
biorecognition element.8 This sensing framework requires binding of TF to its cognate 
DNA site in the absence of analyte and subsequent unbinding in the presence of analyte. 
As such, the immobilization matrix must successfully entrap the QD-based FRET (i.e., 
quantum dot - transcription factor DNA assembly) sensor, while allowing transport of the 
analyte and subsequent binding to the TF-DNA complex.  

First, we characterized the diffusion of biomolecules within the hydrogels by 
fluorescence recovery after photobleaching (FRAP). Given a molecule’s diffusion 
coefficient is affected by its molecular weight, we estimated the diffusion behavior of 
progesterone using fluorescein, a molecule with similar molecular weight (fluorescein MW 
= 332.31 g/mol, progesterone MW = 314.46 g/mol). Fluorescein homogeneously 
distributes within the hydrogel and, upon photobleaching, within a region of interest the 
fluorescence recovers as a function of time (Figure S6). The measured diffusion 
coefficient negatively correlates with hydrogel weight percent (Figure 3A).  With 
increasing hydrogel weight percent, the mobility of fluorescein is statistically significantly 
hindered. We repeated the experiments with Cy5 labeled DNA and the fluorophore 
labeled TF, SRTF1. Analogously, the Cy5 labeled DNA and SRTF1 exhibit decreasing 
diffusion coefficients with increasing hydrogel weight percent (descending correlation; 
Figure 3B and C). The entanglement and crosslinking of the hydrogel, which is tunable 
by varying polymer weight percent, influences the diffusional coefficients of molecules 
and biomacromolecules, consistent with previous reports.37-39  

Next, we measured the diffusion coefficients of QD and QD-TF under semi-infinite 
diffusion condition. Unlike the experiments above, the QD is difficult to photobleach due 
to its photostability, rendering techniques like FRAP unsuitable for the diffusion coefficient 
measurement.40 Thus, we directly monitored the mass transfer by acquiring vertical cross 
section images of hydrogel with QD (or QD-TF) as it moved through the hydrogel (Figure 
S7). Fitting the intensity profiles of the cross-sectional images to Fick’s second law yields 
the diffusion coefficient. The magnitude of the QD diffusion coefficient declines with 
respect to increasing hydrogel weight percent (Figure 3D). Conjugation of TF with QD 
further attenuates the diffusion coefficient of QD-TF (Figure 3E). 

Lastly, we compared all of the diffusion coefficients of the species or sensor 
constituents in different wt% hydrogels. In 5 wt% hydrogel, the small molecule fluorescein 
possesses a diffusion coefficient > 25-fold higher than the other sensor constituents 
(Figure S8). In 10 wt% hydrogel, the fluorescein possesses a diffusion coefficient > 60-
fold higher than the other sensor constituents (Figure 3F). Additionally, the absolute 
diffusion coefficients of fluorescein and the sensor constituents are decreased compared 
to the values measured in the 5 wt% hydrogel. The significantly faster diffusion of 
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fluorescein indicates the feasibility of analyte molecules diffusing in and out of the 
hydrogel network while the sensor components remain entrapped. In the 25 wt% hydrogel, 
the fluorescein possesses a diffusion coefficient > 135-fold higher than the other sensor 
constituents, but the overall significantly hindered diffusion implies undesirable longer 
diffusion time to add or remove analyte (to be describe in Section 3.4). Collectively, these 
results suggest that the integration of QD-based FRET sensors into the hydrogel will: 1) 
allow the progesterone molecules to diffuse in and out easily; and, 2) hinder the diffusion 
of the quantum dot-TF conjugate (FRET donor) and Cy5 fluorophore modified DNA 
(FRET acceptor), thus minimizing the undesirable leakage of sensor constituents.18, 41 
Consequently, we evaluated the 10 wt% hydrogels throughout the course of the 
remaining studies. 

3.3. Sensor Performance in Hydrogel. The discussion of the hydrogel-loaded 
QD-based FRET sensor is separated into three stages. First, we assembled the sensor 
constituents at a molar ratio of QD/TF/DNA = 1/4/18 Specifically, the FRET donor is the 
TF-conjugated QD, and the DNA oligonucleotide is decorated with fluorophores as FRET 
acceptor. Next, we dissolved the two PEGylated macromonomers in the sensor solution 
and formed the hydrogel in situ to entrap sensors over approximately 30 minutes. When 
the TFs bind their cognate DNA binding sites in the absence of progesterone, the donors 
and acceptors are sufficiently close to enable energy transfer. Lastly, we subjected the 
QD-based FRET sensors embedded in the hydrogel to a solution of progesterone 
overnight. Upon progesterone binding to the transcription factor, the affinity of the TF for 
its cognate DNA reduces by several orders of magnitude;8 the resultant unbinding of the 
TF and DNA increases the distance between the associated FRET donors and acceptor, 
producing a decrease in the fluorescence of the acceptor (FA) and increase in the 
fluorescence of the donor (FD) (Figure S10). The sensor output is the normalized ratio of 
the integrated acceptor emission to the integrated donor emission (FA/FD). A four-
parameter logistic function analysis of progesterone binding as a function of concentration 
reveals a dose-dependent decrease in sensor output (Figure 4). The constructed sensor 
permits the measurement of progesterone from 78 to 632 nM. The in EC50 and LOD 
values of the hydrogel imbedded sensor are 223 nM and 55 nM, respectively, and 
comparable to solution-based counterpart (Table S2). This solution-based progesterone 
TF-DNA sensor does not respond to cholesterol, estrogen, 5β-Pregnane-3α,20-α-diol, or 
5β-Pregnane-3α,20-α-diol-glucoronide while affords a 10% and 13% response to 
aldosterone and cortisol, respectively, indicating it is reasonably selective for 
progesterone.8 Additionally the progesterone TF-DNA sensor performs in artificial urine8. 

Previously, QDs have been extensively employed in the context of solution-based 
sensors;42-45 however, only recently has it been reported that hydrogel-embedded QDs 
(semiconductor quantum dots,20, 46-52 carbon dots,53 and graphene quantum dots)54-55 
elicit effective analytical responses, similar to the results obtained herein. In addition, 
several studies report the successful integration of solution-based QD-based sensors into 
microfluidic lab-on-a-chip systems56-57 or microcapsules58 supporting the continued 
development of these types of sensors for real world applications.  

3.4. Repeated Progesterone Sensing. One can envision two sensing formats for 
a progesterone measuring device: single or repeat use. The latter is more demanding 
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from a device development standpoint as repeated use requires the TF/DNA complex to 
remain in close proximity for assembly and dis-assembly while the analyte must be able 
to diffuse in and out. To assess our system’s capability to perform multiple measurements, 
we subjected hydrogel-embedded QD-based FRET sensors to cycles of progesterone 
exposure and removal between measurements. The sensor output – the change in FRET 
- is derived from deconvolved fluorescent spectra and was fit to a four-parameter logistic 
function as described above (Figure 5). After regeneration, the sensor displays a dose-
dependent response with an EC50 of 159 nM and R2= 0.76, comparable to first-time 
sensing (EC50 = 223 nM, and R2 = 0.98). Notably, the relatively small differences in the 
dose-dependent sensor response in the first and second measurements (not statistically 
significantly different for most cases) shows the potential for transcription factor-based 
biosensors in repeated sensing applications without the need for additional procedures 
to reform the nucleic acid - transcription factor complex for subsequent sensing (Figure 
S11). Greater variability is observed between measurements after dialysis, and this is 
likely due to limitations in the ability of dialysis to completely remove progesterone. Finally, 
we note that the relatively long time for dialysis to remove progesterone is a limitation for 
repeated measurements but not for single use measurements, and this will need to be 
overcome in future designs. 

The sensor consists of a transcription factor (SRTF1) linked to a core/shell/shell 
QD and a Cy5 fluorophore labeled DNA, with an immobilization matrix composed of a 
hydrogel. From a sensor performance perspective, the LOD is 55 nM and the device is 
suitable for clinically relevant sample analysis.59 Such a QD-based FRET sensor is also 
advantageous as it enables repeated analyte measurements. By contrast, immunoassays 
are considered effectively irreversible, stemming from fixation of antibody-analyte 
binding.60 The regeneration of immunosensors pose significant barriers if prolonged use 
is desired.61 As such, this study represents a first step toward assessing the potential of 
using transcription factor-based sensors in the context of single, or repeat use for practical 
applications. 

From a sensor design perspective, the potential versatility of our transcription factor-
based sensor stems from diverse biorecognition elements mined from the nature. In 
bacteria, TFs natively sense and react to a wide variety of stimuli and transduce a 
measurable transcriptional response – an alteration in reporter gene expressions.62 
Previously, TFs have been used as in vivo biosensors with the advances in synthetic 
biology, yet hampered by slow response time and biosafety concerns for practical 
applications as the genetically re-programed bacteria itself is the biosensor;7, 63-67 
however, only recently has it been deployed in vitro, similar to this study.68-69 Although 
known, the lack of characterized TFs prohibits the evaluation, optimization, and 
prototyping of next generation biosensors to wide variety analytes. To address this 
problem, a recent genomics-to-sensor approach represents a potential paradigm shift in 
biosensor development, which identifies and harvests biosensing elements from high-
throughput microbial genomic sequencing.2, 8 Metagenomic sequence mining continues 
to expand the repertoire of natural sensors3-4, and tap directly into this rich diversity, being 
a first line solution to the lack of biosensors. Finally, due to modular design of our sensor 
system, developing a wealth of new affinity-based FRET sensor becomes feasible, 
capitalizing on TFs with novel analyte specificities.  
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4. CONCLUSIONS 

We describe a hydrogel-immobilized biosensor based on allosteric transcription 
factor-DNA binding. Specifically, this Förster resonance energy transfer sensor 
comprises a quantum dot-TF conjugate (FRET donor), a Cy5 fluorophore modified DNA 
(FRET acceptor), and a hydrogel immobilization matrix. Upon progesterone binding, the 
QD-TF assembly dissociates, resulting in a decrease in ratiometric fluorescent output as 
the TF and QD are now no longer in close proximity. The key elements of this sensor 
include: 1) TF-DNA coupling as a recognition/ transduction element; 2) fluorescent 
nanoparticles, QDs, that resist photobleaching and efficiently transfer energy to the 
fluorophore labeled DNA; 3) a hydrogel immobilization matrix, polymerized in situ to 
entrap sensors, while enabling analyte diffusion and binding; and, 4) repeated 
progesterone sensing through capitalizing on the reversible interactions associated 
between the transcription factor and DNA. We foresee a convergence of high-throughput 
microbial genomic sequencing to identify new biorecognition elements, and artificial 
intelligence algorithms to acquire and process sensor signals, as well as immobilization 
and integration into wearable microfluidic devices advancing digital health.  
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 Figure 1. QD-based FRET sensor immobilized in hydrogel. (A) and (B) Schematic 
illustration of the progesterone diffusion into hydrogel. (C) and (D) FRET-based sensor 
utilizing TF-DNA binding mechanism. When progesterone binds to the TF, the affinity 
between the TF and the DNA reduces. The resulting dissociation of the TF-DNA complex 
produces a decreased FRET signal. (E) Representative spectra of sensor response to 
progesterone. A selection of the analyte concentrations is plotted for visual clarity. 
Zoomed in figure is shown in the inset. 
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Figure 2. Hydrogel precursors, formation, and swelling. (A) Chemical structures of the 
hydrogel forming components: 4-arm-PEG-NH2 and NHS-PEG-NHS. Hydrogel formation 
proceeds via a reaction between NHS ester (N-hydroxysuccinimide ester) and primary 
amine, producing a 3D network. The crosslinked network enables encapsulation of the 
QD-based FRET sensor. Scanning electron microscopy images of (B) 5 wt%, (C) 10 wt%, 
(D) 25 wt%, and (E) 50 wt% hydrogels, scale bar is 50 μm. Atomic force microscopy 
image of hydrogel (F) before and (G) after hydration. (H) Swelling degree of the hydrogel 
samples at 5, 10, 25, and 50 wt%, stored in PBS at 20 °C as a function of time. Storage 
and loss moduli of (I) 5 wt%, (J) 10 wt%, (K) 25 wt%, and (L) 50 wt% hydrogels with 
oscillatory stress of 1Pa at the frequency of 1Hz before and after swelling. *Statistical 
significance (95% confidence) for mechanical strength relative to respective Day 0 data.  
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Figure 3. Diffusion coefficients of QD-based FRET sensor constituents. Diffusion 
coefficients of (A) fluorescein, (B) Cy5-DNA, and (C) Cy5-TF, determined by fluorescence 
recovery after photobleaching (FRAP). Diffusion coefficients of (D) QD and (E) QD-TF, 
determined by monitoring 100 nM QD or QD-TF diffusion into hydrogel. (F) Diffusion 
coefficients of sensor constituents in 10 wt% hydrogel. N=3 * P ≤ 0.05. ** P ≤ 0.01. *** P 
≤ 0.001. **** P ≤ 0.0001. ns, not significant. 
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Figure 4. Dose-response curves for progesterone sensors in aqueous solution and in 10 
wt% hydrogel immobilization matrix, respectively. FA/FD at [PRG] = 0 nM is normalized to 
1, FA/FD at [PRG] = 10,000 nM is normalized to 0, and linear interpolation is applied for 
concentrations in between. 
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Figure 5. Reversibility of the progesterone sensors immobilized in hydrogel. (A) Sensor 
response with first cycle of progesterone exposure and removal. (B) Sensor response 
with second cycle of progesterone exposure and removal. With repeated cycles of 
progesterone exposure (+), dose-response curves are generated (green data points: light 
green points for first PRG addition, and dark green points for second PRG addition). After 
PRG removal (-), sensor outputs are plotted at corresponding concentrations to which the 
same samples were exposed (black data points). With PRG addition, FA/FD at [PRG] = 0 
nM is normalized to 1, FA/FD at [PRG] = 10,000 nM is normalized to 0, and linear 
interpolation is applied for concentrations in between. After PRG removal, FA/FD is scaled, 
where FA/FD at [PRG] = 0 nM is normalized to 1. 
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