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Théorie inverse de Galois sur les corps des fractions rationnelles tordus

In this article, we prove that if H is a skew field of center k and σ an automorphism of finite order of H such that the fixed subfield k σ of k under the action of σ contains an ample field, then the inverse Galois problem has a positive answer over the skew field H(t, σ) of twisted rational fractions. Moreover, if k σ contains either a real closed field, or an Henselian field of residue characteristic 0 and containing all roots of unity, then the profree group of countable rank F ω is a Galois group over H(t, σ). Résumé.-Dans cet article, nous montrons que si H est un corps gauche de centre k et σ un automorphisme d'ordre fini de H tels que le sous-corps k σ de k fixé par σ contient un corps ample, alors le problème inverse de Galois admet une réponse positive sur le corps H(t, σ) des fractions rationnelles tordus. De plus, si k σ contient un corps qui est, soit réel clos, soit hensélien de caractéristique résiduelle nulle et contenant toutes les racines de l'unité, alors le groupe prolibre de rang dénombrable F ω est groupe de Galois sur H(t, σ). 1 c'est-à-dire, si L ∩ k = k 2 Un corps k est dit ample si toute courbe lisse définie sur k et géométriquement irréductible possède une infinité de points k-rationnels dès qu'elle en possède un. Par exemple, la clôture totalement réelle Q tr de Q, le corps C((u)) et le corps des nombres réels R, etc. Pour les corps amples, on peut consulter aussi [Jar11], [BSF13] et [Pop14].

Introduction

Le traditionnel problème inverse de Galois sur un corps commutatif k, noté PIG k , consiste à savoir si, pour tout groupe fini G, il existe une extension galoisienne finie L/k dont le groupe de Galois est G. L'étude de ce problème dans le cas d'un corps de fractions k(t) peut s'appréhender de manière géométrique si l'on demande en plus à l'extension L/k(t) d'être régulière 1 sur k. Il s'agit du problème inverse de Galois régulier, noté PIGR k , qui consiste lui à savoir si, pour tout groupe fini G, il existe un G-revêtement X -→ P 1 défini sur k. Dans les années 90, Florian Pop a démontré que le PIGR k admettait une réponse positive dès que k contenait un corps ample 2 (voir [START_REF] Pop | Embedding problems over large fields[END_REF]). En fait, dans cette situation, le corps k satisfait à un problème encore plus fort (voir la preuve de [DL19, Proposition 10]) :

PIGS k (Problème Inverse de Galois Sérié sur k) : Pour tout groupe fini G, existe t-il un G-revêtement X -→ P 1 défini sur k tel que X possède un point k-rationnel non ramifié ?

De manière équivalente, ce problème consiste à savoir si, pour tout groupe fini G, il existe une extension galoisienne finie L/k(t) dont le groupe de Galois est G et telle que L se plonge dans le corps des séries de Laurent k((t)), énoncé qui justifie la terminologie de sérié que nous utilisons pour le PIGS.

Rappelons que dans le cadre des corps gauches, la notion d'extension galoisienne est à considérer au sens d'Artin : une extension M/H est dite galoisienne si H est le corps laissé fixe par les H-automorphismes de M . Dans leur article [START_REF] Deschamps | Le problème inverse de Galois sur les corps des fractions tordus à indéterminée centrale[END_REF], Bruno Deschamps et François Legrand s'intéressent à la problématique inverse de Galois sur des corps gauches H. En effet, la théorie de Galois admet une généralisation dans le cas de ces corps (voir [Coh95, Chapter 3]), qui rend légitime le PIG H . Malheureusement, la notion de clôture algébrique n'étant pas immédiate pour les corps gauches, le PIGR H n'a pas de sens. On peut néanmoins s'intéresser au PIG H(t) dès que l'on sait donner un analogue d'un corps de fractions sur un corps non commutatif. La théorie des anneaux de polynômes tordus de Ore en est un cadre idéal. Rappelons que, l'anneau de polynômes tordu H[t, σ] est le H-espace vectoriel des polynômes sur H muni du produit qui vérifie ta = σ(a)t pour tout a ∈ H. Cet anneau possède un unique corps de fractions H(t, σ) (voir [Coh95, Chapter 2]). L'un des résultats principaux de [START_REF] Deschamps | Le problème inverse de Galois sur les corps des fractions tordus à indéterminée centrale[END_REF] affirme que, si H est de dimension finie sur son centre k et si σ = Id, alors

PIGS k =⇒ PIG H(t,Id) .
Leur méthode consiste à contrôler, grâce à l'étude de la norme réduite, l'extension des scalaires à H. De ce point de vue, la condition de finitude de H sur k est essentielle. Une application de ce résultat a été récemment donnée dans [START_REF] Alon | Galois groups over rational function fields over skew fields[END_REF], où il est montré que l'anneau H(X) des fonctions polynomiales en la variable X et à coefficients dans H est isomorphe à un certain corps H (t, Id). Les auteurs en déduisent, par [START_REF] Deschamps | Le problème inverse de Galois sur les corps des fractions tordus à indéterminée centrale[END_REF], que le problème inverse de Galois admet une réponse sur H(X) dès que k contient un corps ample.

Dans cet article, tout en continuant à utiliser la méthode de l'extension des scalaires, nous introduisons une nouvelle approche utilisant les corps de séries de Laurent tordus, qui nous permet de montrer la généralisation du résultat de Deschamps-Legrand suivante : Théorème A.-Soient H un corps gauche de centre k (H non nécessairement de dimension finie sur k) et σ un automorphisme d'ordre fini de H. Si k σ désigne le corps des invariants de k par σ, alors on a PIGS k σ =⇒ PIG H(t,σ) .

En particulier, si k σ contient un corps ample, alors le PIG H(t,σ) admet une réponse positive.

Un exemple d'application du théorème A ne rentrant pas dans le cadre des travaux de [START_REF] Deschamps | Le problème inverse de Galois sur les corps des fractions tordus à indéterminée centrale[END_REF] peut être donné en considérant le corps

H = k(u, σ) où k/k 0 désigne une extension galoisienne vérifiant σ = Gal(k/k 0 ) infini et k 0 ample (e.g. k 0 = C((x)) et k = C((x))).
Voir les exemples d'application dans le §2.1 pour plus de détails. 

Preuves des théorèmes

Théorème A

Commençons par rappeler la stratégie de l'extension galoisienne des scalaires présentée dans [START_REF] Deschamps | Le problème inverse de Galois sur les corps des fractions tordus à indéterminée centrale[END_REF] : si l'on se donne un corps gauche K et un corps k contenu dans le centre Z(K) de K, alors on a le Lemme 2.1.1.-Si L/k désigne une extension algébrique galoisienne de groupe G telle que la k-algèbre M = K ⊗ k L soit un corps, alors : 1) Si l'on considère K comme sous-corps de M , l'application

Ψ : Gal(L/k) → Aut(M/K) σ → Ψ(σ) : M → M h ⊗ x → h ⊗ σ(x) (1)
est un isomorphisme de groupes. 2) L'extension M/K est galoisienne de groupe G.

Preuve : 1) On voit facilement que Ψ est un morphisme de groupes. Il reste à montrer qu'elle est bijective. L'injectivité est immédiate. Pour la surjectivité, considérons η ∈ Gal(M/K). On remarque tout d'abord que Z(M ) est un corps. Vu que

η(Z(M )) = Z(M ), la restriction de η à Z(M ) est un k-automorphisme. Or (k ⊗ k L)/k est une sous-extension galoisienne de Z(M )/k, donc η(k ⊗ k L) = k ⊗ k L. Ainsi, on peut définir une application σ η : L → L qui à l ∈ L associe l'unique l ∈ L vérifiant η(1 ⊗ l) = 1 ⊗ l. On vérifie aisément que σ η est un isomorphisme d'anneaux, donc σ η ∈ Gal(L/k). Il reste à vérifier que l'on a Ψ(σ η ) = η. A cet effet, pour h ∈ K et l ∈ L, on a Ψ(σ η )(h⊗l) = Ψ(σ η )(h⊗1)Ψ(σ η )(1⊗l) = (h ⊗ 1)(1 ⊗ σ η (l)) = η(h ⊗ 1)η(1 ⊗ l) = η((h ⊗ 1)(1 ⊗ l)) = η(h ⊗ l). Ainsi, on a Ψ(σ η ) = η.
2) On voit immédiatement que la sous-algèbre des invariants de M par l'action de Aut(M/K) vaut K, ce qui conclut.

La difficulté dans la méthode de l'extension galoisienne des scalaires consiste à assurer que l'algèbre M = K ⊗ k L reste un corps. Dans [START_REF] Deschamps | Le problème inverse de Galois sur les corps des fractions tordus à indéterminée centrale[END_REF], les auteurs y arrivent en considérant pour K un corps de fractions tordus à indéterminée centrale dont le corps des constantes H est de dimension finie sur k. Ils contrôlent alors les zéros de la norme réduite dans l'extension L/k. Ceci limite de manière rédhibitoire l'étude au cas où K = H(t, Id) avec [H : k] < +∞. La nouvelle approche que nous proposons pour le cas K = H(t, σ) consiste à plonger K, L et M dans un même corps (de séries). Cela va nous permettre d'étendre le résultat de [START_REF] Deschamps | Le problème inverse de Galois sur les corps des fractions tordus à indéterminée centrale[END_REF] 

(t n )-linéaire τ : H(t, σ) ⊗ k σ (t n ) k σ ((t n )) → H((t, σ)),
qui envoie chaque tenseur x ⊗ l sur xl, est un monomorphisme de k σ (t n )-algèbres.

En particulier, pour toute extension intermédiaire k

σ (t n ) ⊂ L ⊂ k σ ((t n )) de dimen- sion finie sur k σ (t n ), l'algèbre H(t, σ) ⊗ k σ (t n ) L est un corps.
Preuve : En toute généralité, si A, B, C désignent trois k-algèbres et f : A → C, g : B → C sont deux morphismes de k-algèbres, alors l'application k-linéaire de A ⊗ k B -→ C qui au tenseur a ⊗ b associe f (a)g(b), est un morphisme d'algèbres si et seulement si Im(g) est inclus dans le commutant5 dans C de Im(f ) (ce qui équivaut à dire que Im(f ) est inclus dans le commutant dans C de Im(g)). Dans notre situation, k σ ((t n )) est inclus dans le centre de H((T, σ)), ce qui montre que τ est bien un morphisme d'algèbres. Fixons une k σ -base (e j ) j∈J de H. En utilisant la centralité de k σ (t n ), on peut écrire chacun des h m sous la forme d'une somme finie

Pour l'injectivité de τ , considérons h 1 , • • • , h s ∈ H(t, σ) et z 1 , • • • , z s ∈ k σ ((t n )) tels que x = s m=1 h m ⊗z m vérifie τ (x) = 0. Puisque H[t, σ] est un anneau de Ore (voir [Coh95, Chapter 2]), en appliquant s fois la possible écriture b -1 a = a b -1 (a, b, a , b ∈ H[t, σ]), on déduit l'existence d'un polynôme u ∈ H[t, σ] -{0} tel que pour tout m ∈ {1, • • • , s}, on a h m u ∈ H[t, σ]. Comme u ⊗ 1 est inversible et comme τ (x)τ (u ⊗ 1) = τ ( s m=1 h m u ⊗ z m ),
h m (t) = lm l=0 t ln n-1 k=0 a l,k,m t k avec a l,k,m ∈ H = lm l=0 t ln n-1 k=0 j∈Jm λ l,k,j,m e j t k avec J m ⊂ J un sous-ensemble fini choisi uniformément pour l et k variant et λ l,k,j,m ∈ k σ = n-1 k=0 j∈Jm e j t k P k,j,m (t n ) avec P k,j,m (t n ) ∈ k σ [t n ].
On a alors

h m ⊗ z m = n-1 k=0 j∈Jm (e j t k P k,j,m (t n )) ⊗ z m = n-1 k=0 j∈Jm (e j t k ) ⊗ (P k,j,m (t n )z m ) et en sommant pour m = 1, • • • , s, on trouve finalement une partie J 0 = m J m ⊂ J finie et des séries z k,j = s m=1 P k,j,m (t n )z m ∈ k σ [[t n ]]
(en ayant pris soin de poser

P k,j,m (t n ) = 0 si j / ∈ J m ) telles que x = s m=1 h m ⊗ z m = n-1 k=0 j∈J 0 (e j t k ) ⊗ z k,j .
En posant formellement z k,j = l≥0 α k,j,l t ln (avec α k,j,l ∈ k σ ) et en utilisant la centralité, on trouve alors

τ (x) = n-1 k=0 j∈J 0 e j t k l≥0 α k,j,l t ln = l≥0 n-1 k=0 j∈J 0 α k,j
,l e j t ln+k = 0.

On en déduit que, pour tout k = 0, • • • , n -1 et tout l ≥ 0, on a j∈J 0 α k,j,l e j = 0. La famille (e j ) j étant une k σ -base de H, on a alors α k,j,l = 0 pour tous k, j, l. Ainsi, toutes les séries z k,j sont nulles et donc x = 0.

Pour le dernier point de la proposition, considérons

k σ (t n ) ⊂ L ⊂ k σ ((t n )) tel que le corps L soit de dimension finie sur k σ (t n ). Puisque l'anneau unitaire H(t, σ) ⊗ k σ (t n ) L se plonge dans le corps H((t, σ)), il est donc intègre. En tant que H(t, σ)-espace vectoriel à gauche, H(t, σ) ⊗ k σ (t n ) L est de dimension [L : k σ (t n )] < +∞. Le lemme 2.1.3. qui suit montre alors que H(t, σ) ⊗ k σ (t n ) L est bien un corps.
Lemme 2.1.3.-Si A désigne un anneau unitaire intègre contenant un corps K (non nécessairement commutatif ) tel que A soit de dimension finie en tant que K-espace vectoriel à gauche (pour la multiplication à droite dans A), alors A est un corps.

Preuve : Fixons x ∈ A \ {0} et notons m x : a → ax la multiplication à droite par x. L'application m x est un K-endomorphisme de A, mais comme A est supposé intègre, cette application linéaire est injective. Rappelons que les théorèmes classiques (théorème du rang, etc.) d'algèbre linéaire sur les corps commutatifs restent valables sur les corps gauches (voir [Ehr11, §3.11] et [Ehr11, §3.12] ). En application du théorème du rang et puisque A est supposé de dimension finie sur K, on en déduit que m x est surjective. Ainsi, il existe x -1 ∈ A tel que m x (x -1 ) = x -1 x = 1. Donc, tout x = 0 possède un inverse à gauche mais comme 1 est un neutre bilatère, finalement, tout x = 0 possède un inverse à droite.

Maintenant, venons-en à la

Preuve du théorème A : Supposons que le PIGS k σ admet une réponse positive. Soit G un groupe fini. En notant n ≥ 1 l'ordre de σ, par hypothèse, il existe une extension galoisienne finie L/k σ (t n ) de groupe G telle que L ⊂ k σ ((t n )). Par la proposition 2.1.2, l'algèbre H(t, σ) ⊗ k σ (t n ) L reste un corps. De plus, par le lemme 2.1.1, l'extension H(t, σ) ⊗ k σ (t n ) L/H(t, σ) est galoisienne de groupe de Galois G. Par conséquent, le PIG H(t,σ) admet une réponse positive. En particulier, si k σ contient un corps ample, alors, comme rappelé dans l'introduction, le PIGS k σ admet une réponse positive et il en est donc de même du PIG H(t,σ) .

Remarque.-Soient H un corps gauche de centre k et σ un automorphisme d'ordre fini n ≥ 1 de H. Soit G un groupe fini vérifiant l'un des quatre cas suivants :

1) G abélien et k infini, 2) G = S n (n ≥ 3) et k infini, 3) G = A n (n ≥ 4) et k est de caractéristique nulle, 4) G résoluble et k de caractéristique positive.
Par la preuve de [DL19, Proposition 12], il existe k 0 ⊂ k σ et une extension galoisienne L/k 0 (t n ) de groupe G et vérifie L ⊂ k 0 ((t n )). En conséquence, Lk σ /k σ (t n ) est galoisienne de groupe de G vérifiant Lk σ ⊂ k σ ((t n )). Avec la même preuve du théorème A, G est groupe de Galois sur H(t, σ).

Exemples d'application.-Dans [START_REF] Deschamps | Le problème inverse de Galois sur les corps des fractions tordus à indéterminée centrale[END_REF], les auteurs fournissent des exemples de corps non commutatifs, de dimensions finies sur leurs centres et sur lesquels le PIG admet une réponse positive. Ils montrent que si H est un corps gauche contenant un corps ample dans son centre, alors le PIG H(t) admet une réponse positive, où H(t) est de dimension finie sur son centre. Notre théorème A est bien plus général comme le montre les exemples suivants. a) En considérant la conjugaison complexe τ sur C, le corps C(t, τ ) est bien une algèbre simple centrale de centre R(t 2 ), qui contient un corps ample. Le corps C(t, τ ) est bien de dimension finie sur son centre mais les résultats de [START_REF] Deschamps | Le problème inverse de Galois sur les corps des fractions tordus à indéterminée centrale[END_REF] ne peuvent s'appliquer car l'indéterminée n'est pas centrale. Notre théorème A assure cependant une réponse positive au PIG C(t,τ ) . b) Lorsque k 0 est un corps ample à groupe de Brauer nul (par exemple lorsque k 0 est PAC6 ), les résultats de [START_REF] Deschamps | Le problème inverse de Galois sur les corps des fractions tordus à indéterminée centrale[END_REF] sont sans intérêt puisqu'il n'existe pas d'algèbre simple centrale non triviale de centre k 0 . Pour autant, notre théorème A s'applique non trivialement à des corps H de centre k 0 un corps ample à groupe de Brauer nul. Par exemple, si l'on prend k 0 = C((u)), on a k 0 = Puis(C) et Gal(k 0 /k 0 ) Z. En considérant σ un générateur de Z, on voit que H = k 0 (y, σ) est de centre k 0 et le théorème A assure que le PIG est vrai sur H(t).

Théorème B

Dans leur article [START_REF] Dèbes | Corps ψ-libres et théorie inverse de Galois infinie[END_REF], les auteurs introduisent la notion galoisienne de ψ-liberté, dont la définition peut s'adapter au cas des corps gauches. Rappelons en quelques mots de quoi il s'agit. Un corps commutatif H est dit ψ-libre si pour tout système projectif (G n , s n ) n∈N de groupes finis où 

s n : G n G n-
1 → Gal(M/L) → Gal(M/H) → Gal(L/H) → 1,
valable dans le cas commutatif, doit être remplacée par la suite

1 → Gal(M/L) → N Gal(M/H) (Gal(M/L)) → Gal(L/H) → 1,
où N Gal(M/H) (Gal(M/L)) désigne le normalisateur de Gal(M/L) dans Gal(M/H) (dans cette situation, on sait alors que Gal(M/H) est le plus petit N -sous-groupe7 contenant le normalisateur). Ainsi, l'application res M/H L/H n'est pas nécessairement définie. Une manière de pallier à ce problème consiste à considérer des extensions extérieures. En effet, dans cette situation, les éléments x ∈ M tels que l'automorphisme intérieur 3) Par hypothèse, il existe une suite d'isomorphismes

I(x) : m ∈ M → xmx -1 ∈ M appartiennent au groupe N Gal(M/H) (Gal(M/L)) sont exactement les éléments du centre Z(M ) de M . Puisque Z(M ) est un corps, le groupe N Gal(M/H) (Gal(M/L)) est donc un N -groupe et l'on a donc N Gal(M/H) (Gal(M/L)) = Gal(M/H).
( n : G n → Gal(L n /k)) n∈N telle que pour tout n ∈ N, on a n • s n+1 = res L n+1 /k Ln/k • n+1 , (2) 
où res

L n+1 /k Ln/k
désigne le morphisme de restriction. Pour tout n ∈ N, en considérant l'isomorphisme Ψ n : Gal(L n /k) → Gal(M n /H) défini dans (1), on vérifie que l'on a 

Ψ n • res L n+1 /k Ln/k = res M n+1 /H Mn/H • Ψ n+1 (3) pour tout n ∈ N. Pour tout n ∈ N, on pose ˜ n = Ψ n • n . Alors, on a ˜ n • s n+1 = Ψ n • ( n • s n+1 ) = Ψ n • res L n+1 /k Ln/k • n+1 = res M n+1 /H Mn/H • (Ψ n+1 • n+1 ) = res M n+1 /H Mn/H

  pour montrer que x = 0, on peut supposer que les h m sont dans H[t, σ]. Le même type de manipulation permet de supposer que les z m sont dans k σ [[t n ]].

Preuve:

  Il suffit de montrer le résultat lorsque k = k 0 . En effet, supposons qu'il existe une tour (F n /k 0 (t)) n qui réalise (G n , s n ) n∈N telle queF n ⊂ k 0 ((t)) pour tout n ∈ N. Pour tout n ∈ N, on pose L n = F n k. On obtient que la tour (L n /k(t)) n∈N réalise aussi (G n , s n ) n∈N et que l'on a L n ⊂ k((t)) pour tout n ∈ N.Nous remarquons que, quitte à faire le changement de variables t → 1/t, il suffit de trouver une tour(L n /k(t)) n∈N telle que L n ⊂ k((1/t)) pour tout n ∈ N.Pour la preuve, nous allons distinguer selon que le corps k est réel clos ou valué hensélien. -1er cas : Le corps k est réel clos. Si k = R, alors cela résulte de [DD04, Remarque 2.2]. Dans le cas général, voir la preuve de [DD04, Théorème 2.3]. -2ème cas : Le corps k est valué hensélien. Notons v la valuation sur k et (k v , v) le complété de (k, v). Par les constructions de [DD04, Partie 3.1], il existe une suite croissante de parties finies non vides (U n ) n∈N de k et une tour d'extensions galoisiennes ( Ln /k v (t)) n∈N de points de branchement 8 U n telles que( L n /k v (t)) n∈N réalise régulièrement (c'est-à-dire L n ∩ k v = k v ) le système (G n , s n ) n∈N et que pour tout n ∈ N, la spécialisation 9 ( L n ) ∞ de L n /k v (t) en ∞ est égale à k v . La preuve du [DD04, Théorème 3.4] montre que la tour ( L n /k v (t)) n∈N admet un modèle (L n /k(t)) n∈N (c'est-à-dire L n = L n k v ) qui réalise régulièrement le système complet (G n , s n ) n∈N . Pour tout n ∈ N, puisque ∞ n'est pas un point de branchement de L n /k v (t), le point ∞ n'est pas non plus un point de branchement de L n /k(t). Vu que (k, v) est hensélien pour une valuation de rang 1, on a k v ∩ k = k. Or la spécialisation (L n ) ∞ de L n en ∞ est incluse à la fois dans k et dans la spécialisation ( L n ) ∞ de L n en ∞, donc (L n ) ∞ = k.

  Par ailleurs, la théorie de Krull reste valable et il y a la correspondance entre les corps intermédiaires et les sous-groupes fermés (voir [Jac56, §6 Theorem 1]). Dans cette perspective, on s'inspire des travaux de Pierre Dèbes et Bruno Deschamps sur la ψ-liberté des corps (présentés dans[START_REF] Dèbes | Corps ψ-libres et théorie inverse de Galois infinie[END_REF]), pour nous intéresser à la possibilité de réaliser le groupe prolibre F ω comme groupe de Galois d'une extension de H(t, σ, δ). A cet effet, nous montrons le Théorème B.-Soient H un corps gauche de centre k et σ un automorphisme d'ordre fini de H. Supposons que le corps des invariants k σ contient un corps k 0 qui est, soit réel clos, soit hensélien de caractéristique résiduelle nulle et contenant toutes les racines de l'unité. Alors, il existe une extension L/H(t, σ) galoisienne extérieure, relativement algébrique à gauche et de groupe de Galois F ω .Ce théorème montre, par exemple, que le groupe F ω est groupe de Galois sur H(t), le corps des fractions rationnelles tordu à indéterminée centrale, où H est le corps des quaternions de Hamilton (voir l'exemple d'application dans le §2.2). Dans certaines situations, les corps de fractions rationnelles tordus avec dérivation H(t, σ, δ) peuvent se ramener au cas où δ = 0, ce qui permet d'appliquer les résultats de ce travail. En effet, il est par exemple montré dans [Coh95, Theorem 2.3.1] que si δ = 0 et k σ = k, alors les corps H(t, σ, δ) et H(t, σ) sont isomorphes. Nous n'avons pas inclus ces cas dans les théorèmes A et B pour ne pas en alourdir artificiellement les énoncés.Remerciements.-Je tiens à remercier mes directeurs de thèse, Bruno Deschamps et François Legrand, pour leurs nombreuses relectures, commentaires utiles et précieuses suggestions. Je remercie également le GDRI GANDA pour son soutien financier.

	La théorie de Galois admet aussi une généralisation au cas infini. Dans [Jac56, Chapter VII : §6 ], il est montré que si Ω/H est une extension galoisienne extérieure 3 et relativement algébrique à gauche 4 , le groupe de Galois Gal(Ω/H) de Ω/H est profini. Plus précisément, ce groupe est la limite projective des groupes de Galois Gal(M/H) des sous-extensions galoisiennes finies M/H de Ω/H. Remarque.-

  à des cas où σ = Id et [H : k] = +∞.Etant donnés un corps gauche H de centre k et σ un automorphisme de H, rappelons que le corps des séries de Laurent tordu, noté H((t, σ)), est constitué des séries formellesi≥i 0 x i t i (i 0 ∈ Z et x i ∈ H) et est muni du produit ta = σ(a)tpour tout a ∈ H. Le corps H(t, σ) se plonge canoniquement dans H((t, σ)) par t → t et a → a (a ∈ H). Si l'on suppose que σ est d'ordre n ≥ 1, alors le corps k σ (t n ) est à la fois dans le centre de H(t, σ) et dans celui de H((t, σ)). Pour plus de détails, nous renvoyons le lecteur à [Coh95, Chapter 2]. Proposition 2.1.2.-Soient H un corps gauche de centre k (de dimension non nécessairement finie sur k) et σ un automorphisme de H d'ordre n ≥ 1. Si k σ désigne le corps des invariants de k par l'action de σ, alors l'application k σ

  1 est un épimorphisme pour tout n ≥ 1 (ce que Dèbes et Deschamps appellent dans leur article un système complet de groupes finis), il existe une tour d'extensions finies galoisiennes (H n /H) n∈N et une suite d'isomorphismes ( n : G n → Gal(H n /H)) n∈N tels que pour tout n ∈ N, on a : Gal(H n+1 /H) → Gal(H n /H) désigne l'épimorphisme de restriction. Dans ce cas, on dit que la tour (H n /H) n∈N réalise le système complet (G n , s n ) n∈N . Cette définition n'est pas directement applicable dans le cas où H est un corps gauche. En effet (voir [Coh95, Chapter 3]), si l'on dispose d'une tour d'extensions galoisiennes finies M/L/H, la traditionnelle suite exacte

	n • s n+1 = res H n+1 /H Hn/H	• n+1 ,
	H n+1 /H où res Hn/H	

  On peut donc définir la ψ-liberté d'un corps gauche de la même manière que dans le cas commutatif, mais en demandant que chaque extension H n /H soit extérieure. Un autre intérêt à ne considérer que des extensions extérieures est que, dans cette situation, la théorie de Krull des extensions galoisiennes infinies reste valide dans le cas relativement algébrique, comme mentionné dans l'introduction. Pour ces raisons, nous étendons la définition de ψ-liberté comme suit : Définition 2.2.1.-Un corps H est dit ψ-libre si pour tout système complet de groupes finis (G n , s n ) n∈N , il existe une tour d'extensions (H n /H) n∈N telle que : a) Ω = n H n est une extension galoisienne extérieure, relativement algébrique à gauche, b) pour tout n ∈ N, H n /H est galoisienne (nécessairement extérieure) de groupe G n et il existe n : G n Gal(H n /H), vérifiant n • s n+1 = res Eu égard aux propriétés de la théorie de Galois infinie des corps gauches, la preuve présentée dans [DD04, Proposition 1.2] montre immédiatement que ψ-liberté d'un corps gauche équivaut juste à l'existence d'une extension relativement algébrique galoisienne extérieure de groupe de Galois le groupe prolibre de rang dénombrable F ω (c'est-à-dire à la réalisation d'un système complet de groupes finis particulier qui définit ce groupe). Soient H un corps gauche, k un corps contenu dans le centre de H et (L n /k) n∈N une tour d'extensions galoisiennes qui réalise un système complet de groupes finis (G n , s n ) n∈N . Supposons que M n = H ⊗ k L n reste un corps pour tout n ∈ N. Alors : 1) pour tout n ∈ N, l'extension M n /H est galoisienne extérieure relativement algébrique à gauche de groupe G n , 2) si l'on pose L = n∈N L n , alors M = L ⊗ k H = n∈N M n est un corps qui est une extension galoisienne extérieure relativement algébrique à gauche de H, 3) la tour d'extensions galoisiennes (M n /H) n∈N réalise le système (G n , s n ) n∈N de sorte que Comme M n est un corps, l'extension M n /H est galoisienne de groupe de Galois G n . En remarquant [M

		H n+1 /H Hn/H	• n+1
	pour tout n ∈ N, où res H n+1 /H Hn/H	: Gal(H n+1 /H) → Gal(H n /H) désigne l'épimorphisme de
	restriction.	
	n Proposition 2.2.2.-Gal(M/H) lim ←-	G n .

Preuve : 1) Soit n ∈ N. n : H] = Gal(M n /H), on déduit de
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que M n /H est extérieure. Le fait que M n /H soit relativement algébrique est clair. 2) La suite (M n ) n∈N filtre M , donc M est un corps. D'une part, l'extension M/H est galoisienne car L/k l'est. D'autre part, M/H est extérieure car tout x ∈ M est dans un certain M n . De plus, l'extension M/H est relativement algébrique en étant filtrée par les extensions relativement algébriques M n /H (n ∈ N).

  La deuxième (resp. troisième) égalité vient de l'égalité (2) (resp. (3)). Il reste à montrer l'isomophisme. Pour tout n ∈ N, on a res Gal(M n /H), qui est un isomorphisme car (M n /H) n∈N filtre M/H. Etant donnés un corps commutatif ψ-libre k et un corps gauche H contenant k dans son centre, on voit que si pour tout système complet de groupes finis (G n , s n ), on sait trouver une tour (L n /k) réalisant ce système et telle que H ⊗ k L n reste un corps pour tout n, alors H sera ψ-libre. C'est cette idée que nous allons utiliser pour montrer le théorème B. Nous exploitons à cet effet la construction présentée dans [DD04] pour montrer la Proposition 2.2.3.-Soit k un corps commutatif contenant un corps k 0 qui est, soit réel clos, soit hensélien de caractéristique résiduelle nulle et contenant µ ∞ . Alors, pour tout système complet de groupes finis (G n , s n ) n∈N , il existe une tour d'extensions galoisiennes (L n /k(t)) n∈N qui réalise (G n , s n ) n∈N telle que L n ⊂ k((t)) pour tout n ∈ N.

	M/H M n+1 /H • res M n+1 /H Mn/H	= res M/H Mn/H ,
	donc on déduit un morphisme Φ : Gal(M/H) → lim ←-n	

• ˜ n+1 pour tout n ∈ N.

Une extension galoisienne M/H est dite extérieure si Gal(M/H) ne possède aucun automorphisme intérieur non trivial.

dans le sens où pour tout élément x ∈ Ω, le sous-corps H(x) de M engendré par H et x est de dimension finie à gauche sur H. Cette terminologie apparaît dans [Jac56, §6 : Definition 1].

Etant donné un anneau R et une partie S de A, le commutant de S dans R est l'ensemble des x ∈ R qui commutent avec tous les éléments de S.

Un corps k est dit PAC (Pseudo Algébriquement Clos) si toute variété non vide définie sur k admet au moins un k-point rationnel. Par exemple, un corps algébriquement clos. Le fait qu'être PAC implique avoir un groupe de Brauer nul vient de [FJ08, Theorem 11.6.4]. Voir [FJ08] pour plus de détails sur les corps PAC.

Un sous-groupe J de Gal(M/H) est dit N -groupe si l'ensemble {x ∈ M \ {0} | I(x) ∈ J} ∪ {0}, où I(x)(m) = xmx -1 pour tout m ∈ M , est une algèbre sur le centre Z(M ) de M .

Etant donnée une extension finie galoisienne E/K(t) K-régulière (c'est-à-dire E ∩ K = K), on dit que t 0 ∈ P 1 (K) est un point de branchement de E/K(t) si l'idéal t -t 0 est ramifié dans la clôture intégrale de K[t -t 0 ] dans EK (si t 0 = ∞, t -t 0 doit être remplacé par 1/t).

Etant donnés une extension finie galoisienne E/K(t) K-régulière et t 0 ∈ P 1 (K), la spécialisation de E/K(t) en t 0 , notée E t0 /K, est l'extension résiduelle en un idéal premier P au dessus de t -t 0 . L'extension E/K(T ) étant galoisienne, le corps E t0 ne dépend pas du choix de P.