
HAL Id: hal-02939637
https://hal.science/hal-02939637

Submitted on 15 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integer-Complete Synthesis for Bounded Parametric
Timed Automata

Étienne André, Didier Lime, Olivier Henri Roux

To cite this version:
Étienne André, Didier Lime, Olivier Henri Roux. Integer-Complete Synthesis for Bounded Parametric
Timed Automata. 9th International Conference on Reachability Problems (RP 2015), Sep 2015,
Warsaw, Poland. pp.7-19, �10.1007/978-3-319-24537-9_2�. �hal-02939637�

https://hal.science/hal-02939637
https://hal.archives-ouvertes.fr

Integer-Complete Synthesis for Bounded
Parametric Timed Automata?

Étienne André1, Didier Lime2, and Olivier H. Roux2

1 Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, UMR 7030, France
2 École Centrale de Nantes, IRCCyN, CNRS, UMR 6597, France

Abstract. Ensuring the correctness of critical real-time systems, involv-
ing concurrent behaviors and timing requirements, is crucial. Parameter
synthesis aims at computing dense sets of valuations for the timing re-
quirements, guaranteeing a good behavior. However, in most cases, the
emptiness problem for reachability (i.e., whether there exists at least
one parameter valuation for which some state is reachable) is undecid-
able and, as a consequence, synthesis procedures do not terminate in
general, even for bounded parameters. In this paper, we introduce a
parametric extrapolation, that allows us to derive an underapproxima-
tion in the form of linear constraints containing all the integer points
ensuring reachability or unavoidability, and all the (non-necessarily inte-
ger) convex combinations of these integer points, for general PTA with a
bounded parameter domain. Our algorithms terminate and can output
constraints arbitrarily close to the complete result.

1 Introduction

The verification of systems mixing time and concurrency is a notoriously difficult
problem. Timed automata (TA) [AD94] are a powerful formalism for which many
interesting problems (including the reachability of a location) are decidable.
However, the classical definition of TA is not tailored to verify systems only
partially specified, especially when the value of some timing constants is not
yet known. Parametric timed automata (PTA) [AHV93] leverage this problem
by allowing the specification and the verification of systems where some of the
timing constants are parametric. This expressive power comes at the price of the
undecidability of most interesting problems.

Related Work Parametric Timed Automata were introduced in [AHV93]. The
simple problem of the existence of a parameter valuation such that some location
is reachable is undecidable in both discrete and dense-time even with only three
parametric clocks (i.e., clocks compared to a parameter) [Mil00,BBLS15], and
even with only strict constraints [Doy07]. It is decidable for a single parametric

? This is the author version of the paper of the same name accepted for publication at
RP 2015. The final publication is available at http://www.springer.com. This work
is partially supported by the ANR national research program “PACS” (ANR-2014).

1

http://www.springer.com

clock in discrete and dense time [AHV93], and in discrete time with two para-
metric clocks and one parameter (and arbitrarily many non-parametric clocks)
[BO14], or for a single parametric clock (with arbitrarily many non-parametric
clocks) [BBLS15]. More complex properties expressed in parametric TCTL have
been studied in [Wan96,BR07]. PTA subclasses have been studied, most notably
L/U-automata, for which the problem is decidable [HRSV02], but no synthesis
algorithm is provided, and there are indeed practical difficulties in proposing
one [JLR15]. When further restricting to L- or U-automata, the integer-valued
parameters can be synthesized however [BL09]. The trace preservation problem
(i.e., given a reference parameter valuation whether there exists another valua-
tion for which the discrete behavior is the same) is undecidable for both general
PTA and L/U-PTA [AM15].

In [JLR15], we focus on integer-valued bounded parameters (but still consid-
ering dense-time), for which many problems are obviously decidable, and we pro-
vide symbolic algorithms to compute the set of correct integer parameter values
ensuring a reachability (“IEF”) or unavoidability (“IAF”) property. A drawback
is that returning only integer points prevents designers to use the synthesized
constraint to study the robustness or implementability of their system (see, e.g.,
[Mar11]).

Contribution We propose terminating algorithms that compute a dense under-
approximation of the set of parameter values ensuring reachability or unavoid-
ability in bounded PTA (i.e., PTA with a bounded parameter domain). These
under-approximations are “integer-complete” in the sense that they are guar-
anteed to contain at least all the correct integer values given in the form of a
finite union of polyhedra; they are also “almost-complete” in the sense that the
only points that may not be included in the result are non-integer (rational)
points beyond the last integer point in a convex polyhedron. To the best of
our knowledge, these algorithms are the first synthesis algorithms that return
an almost-complete result for a subclass of PTA (namely bounded PTA) for
which the corresponding emptiness problems are undecidable; in fact, with the
exception of two subclasses of L/U-PTA (namely L-PTA and U-PTA) considered
over discrete parameter valuations [BL09], we are not aware of any terminating
synthesis algorithm deriving a complete or an almost-complete result. Our al-
gorithms also quantify the “size” of the resulting constraint, i.e., they return
all valuations except possibly some non-integer points beyond the “last” integer
points.

While of great practical interest, our algorithms are in essence quite similar
to those of [JLR15]. We however demonstrate that while the algorithms from
[JLR15] also return a symbolic representation of the “good” integer parameter
values, interpreting the result of the IAF algorithm as dense is not correct in the
sense that some non-integer parameter values in that result may not ensure the
unavoidability property. Furthermore, since we produce real-valued parameter
values, we cannot use anymore the result from [JLR15] ensuring termination
of the algorithms, which allows to derive a bound on clock values but relies
on the parameters being bounded integers. The main technical contribution of

2

this paper is therefore the derivation of a maximum-constant-based paramet-
ric extrapolation operator for bounded PTA that ensures termination of our
algorithms. To the best of our knowledge this operator is the first of its kind.

Finally, we have implemented the two algorithms and briefly report on them.

Outline We first recall the necessary definitions in Section 2. We present our
parametric extrapolation in Section 3. We then introduce our terminating algo-
rithms (namely RIEF, RIAF) in Section 4. We conclude in Section 5. All proofs
are given in the appendix.

2 Preliminaries

2.1 Clocks, Parameters and Constraints

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks, i.e., real-
valued variables that evolve at the same rate. A clock valuation is a function
w : X → R+. We identify a clock valuation w with the point (w(x1), . . . , w(xH)).
We write X = 0 for

∧
1≤i≤H xi = 0. Given d ∈ R+, w + d denotes the valuation

such that (w + d)(x) = w(x) + d, for all x ∈ X.
We assume a set P = {p1, . . . , pM} of parameters, i.e., unknown constants.

A parameter valuation v is a function v : P → Q+. We identify a valuation v
with the point (v(p1), . . . , v(pM)). An integer parameter valuation is a valuation
v : P → N.

In the following, we assume ∼ ∈ {<,≤,≥, >}. A constraint C (i.e., a convex
polyhedron) over X ∪P is a conjunction of inequalities of the form lt ∼ 0, where
lt denotes a linear term over X∪P of the form

∑
1≤i≤H αixi+

∑
1≤j≤M βjpj +d,

with αi, βj , d ∈ Z. Given a parameter valuation v, v(C) denotes the constraint
over X obtained by replacing each parameter p in C with v(p). Likewise, given
a clock valuation w, w(v(C)) denotes the expression obtained by replacing each
clock x in v(C) with w(x). We say that v satisfies C, denoted by v |= C, if the
set of clock valuations satisfying v(C) is nonempty. Given a parameter valuation
v and a clock valuation w, we denote by w|v the valuation over X ∪P such that
for all clocks x, w|v(x) = w(x) and for all parameters p, w|v(p) = v(p). We use
the notation w|v |= C to indicate that w(v(C)) evaluates to true. We say that
C is satisfiable if ∃w, v s.t. w|v |= C. An integer point is w|v, where w is an
integer clock valuation, and v is an integer parameter valuation. We define the
time elapsing of C, denoted by C↗, as the constraint over X and P obtained
from C by delaying all clocks by an arbitrary amount of time. We define the
past of C, denoted by C↙, as the constraint over X and P obtained from C by
letting time pass backward by an arbitrary amount of time (see [JLR15]). Given
R ⊆ X, we define the reset of C, denoted by [C]R, as the constraint obtained
from C by resetting the clocks in R, and keeping the other clocks unchanged.
We denote by C↓P the projection of C onto P , i.e., obtained by eliminating the
clock variables.

A guard g is a constraint over X ∪ P defined by inequalities of the form
x ∼ z, where z is either a parameter or a constant in Z. Let plt denote a

3

parametric linear term over P , that is a linear term without clocks (αi = 0 for
all i). A zone C is a constraint over X ∪ P defined by inequalities of the form
xi − xj ∼ plt , where xi, xj ∈ X ∪ {x0}, where x0 is the zero-clock always equal
to 0.

A parametric constraint K is a constraint over P defined by inequalities of
the form plt ∼ 0. We denote by > (resp. ⊥) the parametric constraint that cor-
responds to the set of all possible (resp. the empty set of) parameter valuations.

2.2 Parametric Timed Automata

Parametric timed automata (PTA) extend timed automata with parameters
within guards and invariants in place of integer constants [AHV93].

Definition 1. A PTA A is a tuple A = (Σ,L, l0, X, P, I, E), where: i) Σ is
a finite set of actions, ii) L is a finite set of locations, iii) l0 ∈ L is the initial
location, iv) X is a set of clocks, v) P is a set of parameters, vi) I is the invariant,
assigning to every l ∈ L a guard I(l), vii) E is a set of edges e = (l, g, a,R, l′)
where l, l′ ∈ L are the source and destination locations, a ∈ Σ, R ⊆ X is a set
of clocks to be reset, and g is a guard.

Given a parameter valuation v, we denote by v(A) the non-parametric timed
automaton where all occurrences of a parameter pi have been replaced by v(pi).

Definition 2 (Semantics of a TA). Given a PTA A = (Σ,L, l0, X, P, I, E),
and a parameter valuation v, the concrete semantics of v(A) is given by the
timed transition system (Q, q0,⇒), with Q = {(l, w) ∈ L × RH

+ | v|w |= I(l)},
q0 = (l0, X = 0), ((l, w), e, (l′, w′)) ∈ ⇒ if ∃w′′ : (l, w)

e→ (l′, w′′)
d→ (l′, w′),

with: (l, w)
e→ (l′, w′), if (l, w), (l′, w′) ∈ Q, there exists e = (l, g, a,R, l′) ∈ E,

w′ = [w]R, and v|w |= g; and (l, w)
d→ (l, w + d), with d ∈ R+, if ∀d′ ∈

[0, d], (l, w + d′) ∈ Q.

We refer to states of a TA as concrete states. A concrete run of a TA is an
alternating sequence of (concrete) states of Q and edges of the form s0

e0⇒ s1
e1⇒

· · · em−1⇒ sm, such that for all i = 0, . . . ,m − 1, ei ∈ E, and (si, ei, si+1) ∈ ⇒.
Given a state s = (l, w), we say that s is reachable (or that v(A) reaches s) if s
belongs to a run of v(A).

Symbolic states We now recall the symbolic semantics of PTA: A symbolic state
of a PTA A is a pair (l, C) where l ∈ L is a location, and C its associated
zone. A state s = (l, C) is v-compatible if v |= C. The initial state of A is s0 =
(l0, (X = 0)↗∧I(l0)). The symbolic semantics relies on the Succ operation. Given
a symbolic state s = (l, C) and an edge e = (l, g, a,R, l′), Succ(s, e) = (l′, C ′),

with C ′ =
(
[(C ∧ g)]R

)↗ ∩ I(l′).
A symbolic run of a PTA is an alternating sequence of symbolic states and

edges of the form s0
e0⇒ s1

e1⇒ · · · em−1⇒ sm, such that for all i = 0, . . . ,m − 1,
ei ∈ E, and si+1 belongs to Succ(si, e). Given a state s, we say that s is reachable

4

if s belongs to a run of A. A maximal run is a run that is either infinite, or that
cannot be extended.

Given a PTA A and a parameter valuation v, given a concrete state (l, w)
of v(A) and a symbolic state (l′, C) of A, we write (l, w) ∈ v((l′, C)) if l = l′ and
w |= v(C).

In this paper, we will consider bounded PTA. A bounded parameter domain
assigns to each parameter a minimum integer bound and a maximum integer
bound. That is, each parameter pi ranges in an interval [ai, bi], with ai, bi ∈ N.
Hence, a bounded parameter domain is a hyperrectangle in M dimensions.

Integer hulls We briefly recall some definitions from [JLR15]. Let C be a convex
polyhedron. C is topologically closed if it can be defined using only non-strict
inequalities.1 The integer hull of a topologically closed polyhedron, denoted by
IH(C), is defined as the convex hull of the integer vectors of C, i.e., IH(C) =
Conv(IV(C)), where Conv denotes the convex hull, and IV the set of vectors with
integer coordinates.

We treat integer hulls for finite unions of convex polyhedra in a manner
similar to [JLR15]: given a (possibly non-convex) finite union of convex polyhedra⋃

i Ci, we write IH(
⋃

i Ci) for the set
⋃

i(IH(Ci)). Given a symbolic state s =
(l, C), we often write IH(s) for (l, IH(C)).

Decision and Computation Problems Given a class of decision problems P (reach-
ability, unavoidability, etc.), we consider the problem of synthesizing the set (or
part of it) of parameter valuations v such that v(A) satisfies φ.

Here, we mainly focus on reachability (i.e., does there exist a run that goes
through some goal locations) called here EF, and unavoidability (i.e., do all
maximal runs go through some goal locations) called here AF.

3 Parametric Extrapolation

In this section, we present an extrapolation based on the classical k-extrapolation
used for the zone-abstraction for timed automata, but this time in a parametric
setting. (Proofs can be found in Appendix A.)

First, let us motivate the use of an extrapolation. Consider the PTA in Fig. 1.
After a number n of times through the loop, we get constraints in l1 of the form
0 ≤ x − y ≤ n × p, with n growing without bound. Even if the parameter p is
bounded (e.g., in [0, 1]), the time necessary to reach location l4 is unbounded.
This was not the case in [JLR15] due to the fact that parameters were integers.
Hence, on this PTA, we cannot just apply the integer hull (as in [JLR15]) to
ensure termination of our algorithms.

1 We only define here the integer hull of a topologically closed polyhedron. In fact, any
non-closed polyhedron can be represented by a closed polyhedron with one extra di-
mension [HPR94]. Direct handling of not-necessarily-closed (NNC) polyhedra raises
no theoretical issue but would impair the readability of this paper (see [JLR15]).

5

l1 l2

l3l4

x = 1
x := 0

x ≥ 1
∧ y = 0

y = 1
y := 0

y ≤ p
y := 0

Fig. 1: Motivating PTA

Now, we will show that the union for all values of the parameters of the
classical k-extrapolation used for the zone-abstraction for timed automata leads
to a non-convex polyhedron. Let us consider the PTA in Fig. 2a with a parameter
p such that 0 ≤ p ≤ 1. By taking n times the loop we obtain:

0 ≤ x ≤ p ∧ 0 ≤ y − x ≤ (n+ 1)× p ∧ 0 ≤ p ≤ 1

The greatest constant of the model is k = 1. After one loop, y can be greater
than 1. Then, for each value of p, we can apply the classical k-extrapolation used
for timed automata (as recalled in [BBLP06]) of the corresponding zone. The
union for all values of p of these extrapolations, projected to the plan (y, p) is
depicted by the plain blue part (light and dark blue) of Fig. 2b. The obtained
polyhedron is non-convex.

Assume : 0 ≤ p ≤ 1

l0 l1

x ≤ p

x := 0

y > 1

(a) PTA

y

p

0 1 2 3

0

1

(b) Extrapolation

Fig. 2: Example illustrating the non-convex parametric extrapolation

Let us now introduce our concept of (M,X)-extrapolation.
For any zone C and variable x, we denote by Cylx(C) the cylindrification of C

along variable x, i.e., Cylx(C) = {w | ∃w′ ∈ C,∀x′ 6= x,w′(x′) = w(x′) and w(x) ≥
0}. This is a usual operation that consists in unconstraining variable x.

Definition 3 ((M,x)-extrapolation). Let C be a polyhedron. Let M be a non-
negative integer constant and x be a clock. The (M,x)-extrapolation of C, de-
noted by ExtMx (C), is defined as:

ExtMx (C) =
(
C ∩ (x ≤M)

)
∪ Cylx

(
C ∩ (x > M)

)
∩ (x > M).

6

Given s = (l, C), we write ExtMx (s) for ExtMx
(
C
)
.

To illustrate the (M,X)-extrapolation, we go back to the example of Fig. 2a
after one loop. C is the polyhedron for n = 1. Ext1y(C) is depicted in Fig. 2b by

the plain blue part as follows:
(
C ∩ (y ≤ 1)

)
is in light blue and Cyly

(
C ∩ (y >

1)
)
∩ (y > 1) is in dark blue. Note that for this example the (1, y)-extrapolation

gives the same result as the union for all values of the parameter p of the classical
extrapolation for timed automata. Lemma 1 follows from Definition 3.

Lemma 1. For all polyhedra C, integers M ≥ 0 and clock variables x and x′,
we have ExtMx

(
ExtMx′ (C)

)
= ExtMx′

(
ExtMx (C)

)
.

Proof (sketch). The result comes from the following facts:

1. Cylx
(
Cylx′(C)

)
= Cylx′

(
Cylx(C)

)
;

2. for x 6= x′,Cylx(C) ∩ (x′ ∼M) = Cylx
(
C ∩ (x′ ∼M)

)
for ∼ ∈ {<,≤,≥, >}.

We can now consistently define the (M,X)-extrapolation operator:

Definition 4 ((M,X)-extrapolation). Let M be a non-negative integer con-
stant and X be a set of clocks. The (M,X)-extrapolation operator ExtMX is defined
as the composition (in any order) of all ExtMx , for all x ∈ X. When clear from
the context we omit X and only write M -extrapolation or ExtM .

In the rest of this section, we prove most results on the extrapolation first
on ExtMx . It is then straightforward to adapt them to ExtMX using Lemma 1.

Crucially, extrapolation preserves the projection onto P :

Lemma 2. Let C be a constraint over X ∪ P . Then C↓P = ExtMx (C)↓P .

For the preservation of behaviors, following [BBLP06], we use a notion of
simulation:

Definition 5 (Simulation [BBLP06]). Let A = (Σ,L, l0, X, I, E) be a TA
and � a relation on L× RH

+ . Relation � is a (location-based) simulation if:

– if (l1, w1) � (l2, w2) then l1 = l2,

– if (l1, w1) � (l2, w2) and (l1, w1)
a→ (l′1, w

′
1), then there exists (l′2, w

′
2) such

that (l2, w2)
a→ (l′2, w

′
2) and (l′1, w

′
1) � (l′2, w

′
2),

– if (l1, w1) � (l2, w2) and (l1, w1)
d→ (l1, w1 +d), then there exists d′ such that

(l2, w2)→ (l2, w2 + d′) and (l1, w1 + d) � (l2, w2 + d′).

If �−1 is also a simulation relation then � is called a bisimulation.
State s1 simulates s2 if there exists a simulation � such that s2 � s1. If �

is a bisimulation, then the two states are said bisimilar.

Lemma 3 ([BBLP06, Lemma 1]). Let M be a non-negative integer constant
greater or equal to the maximum constant occurring in the time constraints of the
TA. Let ≡M be the relation defined as w ≡M w′ iff ∀x ∈ X: either w(x) = w′(x)
or (w(x) > M and w′(x) > M). The relation R = {((l, w), (l, w′))|w ≡M w′} is
a bisimulation relation.

7

Lemma 4. For all parameter valuation v, non-negative integer constants M ,
clocks x and valuation set C, v(ExtMx (C)) = ExtMx (v(C)).

We use the bounds on parameters to compute the maximum constant M
appearing in all the guards and invariants of the PTA. When those constraints
are parametric expressions, we compute the maximum value that the expression
can take for all the bounded parameter values (it is unique since expressions are
linear): e.g., if a guard is x ≤ 2p1 − p2 + 1 and p1 ∈ [2, 5], and p2 ∈ [3, 4] then
the maximum constant corresponding to this constraint is 2× 5− 3 + 1 = 8.

Also note that bounding the parameter domain of PTA is not a strong re-
striction in practice – especially since the bounds can be arbitrarily large.

Lemmas 5 and 6 are instrumental in proving the preservation of all correct
integer parameter values in the algorithms of Section 4, while Lemma 7 is the
key to proving their termination.

Lemma 5. Let A be a PTA, s be a symbolic state of A, and M a non-negative
integer constant greater than the maximal constant occurring in the PTA (in-
cluding the bounds of parameters). Let x be a clock, v be a parameter valuation,
and (l, w) ∈ v(ExtMx (s))) be a concrete state. There exists a state (l, w′) ∈ v(s)
such that (l, w) and (l, w′) are bisimilar.

Extrapolation and integer hulls Here, for the sake of simplicity, and similarly to
[JLR15], we consider that all polyhedra are topologically closed and, to avoid
confusion, we equivalently (provided that M is (strictly) greater than the max-
imal constant in the PTA) define ExtMx (s) as (s ∩ (x ≤ M)) ∪ Cylx(s ∩ (x ≥
M)) ∩ (x ≥M).

Lemma 6. For all integer parameter valuations v, all non-negative integer con-
stants M , and all reachable symbolic states s = (l, C), v(IH(ExtMX (C))) = v(ExtMX (C)).

Lemma 7. In a bounded PTA, the set of constraints IH(ExtMX (C)) over the set
of symbolic reachable states (l, C) is finite.

4 Integer-Complete Dense Parametric Algorithms

In this section, we describe two parameter synthesis algorithms that always
terminate for bounded PTA, and return not only all the integer points solution
of the problem (à la [JLR15]) but also all real-valued points in between integer
points; that is, these algorithms return a list of convex combinations of integer
points, and all rational-valued points contained in each such convex combination
are also solution of the problem.

4.1 Parametric Reachability: RIEF

The goal of RIEF given in Algorithm 1 (“R” stands for robust, and “I” for integer
hull) is to synthesize parameter valuations solution to the EF-synthesis problem,

8

Algorithm 1: RIEF(A, s,G, S)

input : A PTA A, a symbolic state s = (l, C), a set of target locations G, a
set S of passed states on the current path

output: Constraint K over the parameters

1 if l ∈ G then K ← C↓P ;
2 else
3 K ← ⊥;

4 if IH(ExtMX (s)) 6∈ S then
5 for each outgoing e from l in A do
6 K ← K ∪ RIEF(A, Succ(s, e), G, S ∪ {IH(ExtMX (s))});

i.e., the valuations for which there exists a run eventually reaching a location
in G. It is inspired by the algorithms EF and IEF introduced in [JLR15] that
both address the same problem; however EF does not terminate in general, and
IEF can only output integer valuations. In fact, if we replace all occurrences of
IH(C) in Algorithm RIEF by C, we obtain Algorithm EF from [JLR15]. RIEF
proceeds as a post-order traversal of the symbolic reachability tree, and collects
all parametric constraints associated with the target locations G. In contrast
to EF, it stores in S the integer hulls of the states, which ensures termination
due to the finite number of possible integer hulls of k-extrapolations; however,
in contrast to IEF, RIEF returns the actual states (instead of their integer hull),
which yields a larger result than IEF.

As a direct consequence of Lemma 7, it is clear that RIEF explore only a
finite number a symbolic states. Therefore, we have the following theorem:

Theorem 1. For any bounded PTA A, the computation of RIEF(A, Init(A), G, ∅)
terminates.

Theorem 2. Upon termination of RIEF, we have:

1. Soundness: If v ∈ RIEF(A, Init(A), G, ∅) then G is reachable in v(A);

2. Integer completeness: If v is an integer parameter valuation, and G is reach-
able in v(A) then v ∈ RIEF(A, Init(A), G, ∅).

Proof. See Appendix B.

Example 1. Consider the simple PTA with a unique transition from the initial
location l0 to l1 with guard 1 ≤ x ≤ 2a. To ensure the EF{l1} property, we just
need to be able to go through the transition from l0 to l1. The parametric zone
C1 obtained in l1 is 1 ≤ x ∧ 1 ≤ 2a, which implies a ≥ 1

2 . The integer hull of C1

is 1 ≤ x ∧ 1 ≤ a, which implies a ≥ 1.

Algorithm IEF gives the result a ≥ 1 ∧ a ∈ N, while algorithm RIEF gives
(here) the exact result a ≥ 1

2 .

9

Algorithm 2: RIAF(A, s,G, S)

input : A PTA A, a symbolic state (l, C), a set of target locations G, a set S
of passed states on the current path

output: Constraint K over the parameters

1 if l ∈ G then K ← C↓P ;
2 else
3 if (l, IH(ExtMX (C))) ∈ S then K ← ⊥ ;
4 else
5 K ← > ; KLive ← ⊥;
6 for each outgoing e = (l, g, a,R, l′) from l in A do
7 S′ ← Succ((l, C), e);

8 KGood ← RIAF(A, S′, G, S ∪ {(l, IH(ExtMX (C)))});
9 KBlock ← > \ S′↓P ;

10 K ← K ∩ (KGood ∪KBlock);

11 KLive ← KLive ∪ (C ∩ g)↙;

12 K ← K \ (RX∪P \KLive)↓P ;

4.2 Parametric Unavoidability: RIAF

RIAF (given in Algorithm 2) synthesizes parameter valuations solution to the
AF-synthesis problem. It is inspired by the algorithms AF and IAF introduced
in [JLR15]; however AF may not terminate, and IAF can only output integer
valuations. Note also, as shown in Example 2 below, that interpreting the result
of IAF as a dense set is incorrect in general, since it may contain non-integer
values that do not ensure unavoidability. RIAF works as a post-order traversal of
the symbolic reachability tree, keeping valuations that permit to go into branches
reaching G and cutting off branches leading to a deadlock or looping without
any occurrence of G. More precisely, RIAF uses three sets of valuations: i) KGood

contains the set of valuations that indeed satisfy AF, recursively computed by
calling RIAF; ii) KBlock allows to cut off branches leading to deadlock or looping,
by keeping only valuations in the complement of the first state in that branch;
iii) KLive is necessary to forbid reaching states from which no transition can be
taken for any e, even after some delay.

The main difference between AF and RIAF is that we use the convergence
condition of IAF, which operates on integer hulls instead of symbolic states,
hence ensuring termination with the same reasoning as RIEF.

We state below the soundness and integer completeness of RIAF. The proofs
are easily adapted from those of AF in [JLR15], by using the additional arguments
provided in the proof of RIEF, and in particular Lemma 7.

Theorem 3. Upon termination of RIAF, we have:

1. Soundness: If v ∈ RIAF(A, Init(A), G, ∅) then G is inevitable in v(A);
2. Integer completeness: If v is an integer parameter valuation, and G is in-

evitable in v(A) then v ∈ RIAF(A, Init(A), G, ∅).

10

l0l1 l2
x ≥ 0 1 ≤ x ≤ 2a

Fig. 3: Counter-example to the density of the result of IAF.

Example 2. Consider the PTA in Fig. 3. To ensure the AF{l1} property, we
need to cut the transition from l0 to l2. The parametric zone C2 obtained in l2
is 1 ≤ x ∧ 1 ≤ 2a, which implies a ≥ 1

2 . The integer hull of C2 is 1 ≤ x ∧ 1 ≤ a,
which implies a ≥ 1. In order to block the path to l2 in l0, we intersect with the
complement of projection on parameters of IH(C2), i.e., a < 1. Since there is no
constraint on the transition from l0 to l1 the final result of our former algorithm
IAF is actually a < 1. For integer parameters this means a = 0, which is correct.
But if we interpret the result for real parameters, we obtain that, for instance,
a = 1

2 should be a valuation ensuring the property, while it is obviously not.
On the same example, RIAF gives (here) the exact result a < 1

2 .

4.3 Implementation in Roméo

The algorithms have been implemented in the tool Roméo [LRST09]; poly-
hedra operations (both convex and non-convex) are handled by the PPL li-
brary [BHZ08]. To illustrate this, we refer the reader to the scheduling example
of [JLR15]. It consists in three tasks τ1, τ2, τ3 scheduled using static priorities
(τ1 > τ2 > τ3) in a non-preemptive manner. Task τ1 is periodic with period a
and a non-deterministic duration in [10, b], where a and b are parameters. Task
τ2 only has a minimal activation time of 2a and has a non-deterministic duration
in [18, 28] and finally τ3 is periodic with period 3a and a non-deterministic du-
ration in [20, 28]. Each task is subject to a deadline equal to its period so that it
must only have one instance active at all times. We ask for the parameter values
that ensure that the system does not reach a deadline violation.2 Algorithm IEF
produces the constraint a ≥ 34, b ≥ 10, a−b ≥ 24 in 7.4 s on a Core i7/Linux com-
puter, while algorithm RIEF produces the constraint a > 562

17 , b ≥ 10, a− b > 392
17

in 12.7 s.
As illustrated here, the results are indeed a bit more precise but the main

improvement is of course the guaranteed density of the result. Also, RIEF is
generally slower than IEF and profiling shows that this is due to a decreased effi-
ciency in computing the integer hull: we start each time from the whole symbolic
state instead of starting from the successor of an already computed integer hull.
This could maybe be mitigated using a cache for the constraints generated in
computing the integer hulls.

5 Conclusion

Summary We introduced here an extrapolation for symbolic states that contains
not only clocks but also parameters. We then proposed algorithms that always

2 The result is therefore the complement of the result given by IEF and therefore an
over-approximation containing no incorrect integer value.

11

terminate for PTA with bounded parameters, and output symbolic constraints
that define dense sets of parameter valuations that are guaranteed to be correct
and containing at least all integer points.

Synthesizing not only the integer points but also the real-valued points is
of utmost importance for the robustness or implementability of the system. In
fact, one can even consider any degree of precision instead of integers (e.g., a
degree of precision of 1

10) by appropriately resizing the constants of the PTA
(e.g., by multiplying all constants and all parameter bounds by 10). This makes
possible the synthesis of an underapproximated result arbitrarily close to the
actual solution.

Future Works We proposed a first attempt to define a k-extrapolation for PTA;
this can serve as a basis for further developments, e.g., using better extrap-
olation operators such as L/U, local-L/U or local-diagonal-L/U abstractions.
The approach we propose is fairly generic and could probably be adapted to
more complex properties, expressed in LTL or CTL and their parametric vari-
ants. Moreover, we would like to extend in a similar manner the inverse method
proposed in [ACEF09], hence ensuring termination of this algorithm with an
almost-complete result. Furthermore, we use here the integer hull as an underap-
proximation of the result; in contrast, we could use an overapproximation using
a notion (yet to be defined) of “external integer hull”, and then combine both
hulls to obtain two sets of “good” and “bad” parameter valuations separated by
an arbitrarily small set of unknown valuations.

Acknowledgement We would like to thank anonymous reviewers for their useful
comments, especially for a meaningful remark on a preliminary version of this
paper together with the suggestion of the example in Fig. 1.

References

ACEF09. Étienne André, Thomas Chatain, Emmanuelle Encrenaz, and Laurent Fri-
bourg. An inverse method for parametric timed automata. International
Journal of Foundations of Computer Science, 20(5):819–836, 2009. 12

AD94. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994. 1

12

AHV93. Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-
time reasoning. In STOC, pages 592–601. ACM, 1993. 1, 2, 4

AM15. Étienne André and Nicolas Markey. Language preservation problems in
parametric timed automata. In FORMATS, volume 9268 of Lecture Notes
in Computer Science, pages 27–43. Springer, 2015. 2

BBLP06. Gerd Behrmann, Patricia Bouyer, Kim G. Larsen, and Radek Pelánek. Lower
and upper bounds in zone-based abstractions of timed automata. Inter-
national Journal on Software Tools for Technology Transfer, 8(3):204–215,
2006. 6, 7

BBLS15. Nikola Beneš, Peter Bezděk, Kim G. Larsen, and Jǐŕı Srba. Language empti-
ness of continuous-time parametric timed automata. In ICALP, Part II,
volume 9135 of Lecture Notes in Computer Science, pages 69–81. Springer,
2015. 1, 2

BHZ08. Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma Polyhe-
dra Library: Toward a complete set of numerical abstractions for the analy-
sis and verification of hardware and software systems. Science of Computer
Programming, 72(1–2):3–21, 2008. 11

BL09. Laura Bozzelli and Salvatore La Torre. Decision problems for lower/upper
bound parametric timed automata. Formal Methods in System Design,
35(2):121–151, 2009. 2

BO14. Daniel Bundala and Joël Ouaknine. Advances in parametric real-time rea-
soning. In MFCS, volume 8634 of Lecture Notes in Computer Science, pages
123–134. Springer, 2014. 2

BR07. Véronique Bruyère and Jean-François Raskin. Real-time model-checking:
Parameters everywhere. Logical Methods in Computer Science, 3(1:7), 2007.
2

Doy07. Laurent Doyen. Robust parametric reachability for timed automata. Infor-
mation Processing Letters, 102(5):208–213, 2007. 1

HPR94. Nicolas Halbwachs, Yann-Éric Proy, and Pascal Raymond. Verification of
linear hybrid systems by means of convex approximations. In SAS, pages
223–237, 1994. 5

HRSV02. Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager.
Linear parametric model checking of timed automata. Journal of Logic and
Algebraic Programming, 52-53:183–220, 2002. 2

JLR15. Aleksandra Jovanović, Didier Lime, and Olivier H. Roux. Integer parameter
synthesis for real-time systems. IEEE Transactions on Software Engineering,
41(5):445–461, 2015. 2, 3, 5, 8, 9, 10, 11, 15, 16

LRST09. Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie
Traonouez. Romeo: A parametric model-checker for Petri nets with stop-
watches. In TACAS, volume 5505 of Lecture Notes in Computer Science,
pages 54–57. Springer, March 2009. 11

Mar11. Nicolas Markey. Robustness in real-time systems. In SIES, pages 28–34.
IEEE Computer Society Press, 2011. 2

Mil00. Joseph S. Miller. Decidability and complexity results for timed automata
and semi-linear hybrid automata. In HSCC, volume 1790 of Lecture Notes
in Computer Science, pages 296–309. Springer, 2000. 1

Sch86. Alexander Schrijver. Theory of linear and integer programming. John Wiley
& Sons, Inc., New York, NY, USA, 1986. 15

Wan96. Farn Wang. Parametric timing analysis for real-time systems. Information
and Computation, 130(2):131–150, 1996. 2

13

A Proofs of Section 3

Lemma 2 (recalled). Let C be a constraint over X ∪ P . Then C↓P =
ExtMx (C)↓P .

Proof. First notice that C ⊆ ExtMx (C), and therefore C↓P ⊆ ExtMx (C)↓P . Sec-
ond, ExtMx only adds points with new clock values, without modifying parameter
values: by definition of ExtMx , for any valuation in ExtMx (C), there exists a valu-
ation in C with the same projection on parameters. So, C↓P ⊇ ExtMx (C)↓P . ut

Lemma 5 (recalled). Let A be a PTA, s be a symbolic state of A, and M
a non-negative integer constant greater than the maximal constant occurring
in the PTA (including the bounds of parameters). Let x be a clock, v be a
parameter valuation, and (l, w) ∈ v(ExtMx (s))) be a concrete state. There
exists a state (l, w′) ∈ v(s) such that (l, w) and (l, w′) are bisimilar.

Proof. If (l, w|v) ∈ s, then the results holds trivially. Otherwise, it means that
there exists some clock x such that (l, w|v) ∈ Cylx(s ∩ (x > M)) ∩ (x > M).
This implies that v(s ∩ (x > M)) 6= ∅ and w(x) > M . Therefore, and using
the definition of Cylx, there exists (l, w′|v) ∈ s ∩ (x > M) such that for all
x′ 6= x,w′(x′) = w(x′). We also have w′(x) > M , which means that w′ ≡M w
and by Lemma 3, we obtain the expected result. ut

Lemma 4 (recalled). For all parameter valuation v, non-negative integer
constants M , clocks x and valuation set C, v(ExtMx (C)) = ExtMx (v(C)).

Proof. It is easy to prove, just by writing their definitions, that v(C ∩ C ′) =
v(C) ∩ v(C ′) and Cylx(v(C)) = v(Cylx(C)), and the result follows. ut

It is clear that Lemmas 2, 4 and 5 directly extend from ExtMx to ExtMX .

Lemma 8. For all symbolic states s and s′, non-negative integer constant M
greater than the maximal constant occurring in the PTA (including the bounds
of parameters), and parameter valuation v, such that v(ExtMX (s)) = v(ExtMX (s′)),
for all states (l, w) ∈ v(s)), there exists a state (l, w′) ∈ v(s′)) such that (l, w)
and (l, w′) are bisimilar.

Proof. This is a direct consequence of Lemmas 4 and 5. ut

Lemma 9. For all integer parameter valuations v, all non-negative integer con-
stants M , and all reachable symbolic states s = (l, C), v(ExtMx (C)) is its own
integer hull.

Proof. We use the fact that a DBM with integer coefficients is its own integer
hull. From Lemma 4, v(ExtMx (C)) = ExtMx (v(C)). Since s is reachable in a PTA,
C is a parametric DBM and, since v is an integer valuation, v(C) is a DBM
with integer coefficients. Now, constraints x > M and x ≤ M are DBMs with

14

integer coefficients too. Also cylindrification on x preserves DBMs with integer
coefficients too: it consists in putting a +∞ coefficient in the line and column
corresponding to x. So, finally, ExtMx (v(C) is a union of two DBMs with integer
coefficients, and each of them is then its own integer hull (recall that we take
the integer of a union of polyhedra as the union the integer hulls). ut

Lemma 6 (recalled). For all integer parameter valuations v, all non-
negative integer constants M , and all reachable symbolic states s = (l, C),
v(IH(ExtMX (C))) = v(ExtMX (C)).

Proof. Since we take the integer hull on each convex parts, it certainly holds
that IH(ExtMX (s)) ⊆ ExtMX (s) and so v(IH(ExtMX (C))) ⊆ v(ExtMX (C)).

In the other direction, using Lemma 9, v(ExtMX (C)) = IH(v(ExtMX (C))). Now,
if w ∈ IH(v(ExtMX (C))), then w|v ∈ IH(ExtMX (C)), i.e., w ∈ v(IH(ExtMX (C)). ut

Lemma 7 (recalled). In a bounded PTA, the set of constraints
IH(ExtMX (C)) over the set of symbolic reachable states (l, C) is finite.

Proof. In each disjunct of ExtMX (C), clocks are either upper bounded by M or
the only constraint, due to the cylindrification, is a lower bound of M . There-
fore, vertices of these disjuncts all have coordinates less or equal to M . When
taking the integer hull of all these disjuncts separately we obtain a finite union a
polyhedra with integer vertices with coordinates less or equal to M (and a finite
set of extremal rays3, taken in the finite set of the directions of clock variables),
of which there can be only finitely many. ut

B Proof of Theorem 2 (RIEF)

In order to prove the soundness and completeness of Algorithm 1, we inductively
define, as in [JLR15], the symbolic reachability tree of A as the possibly infinite
directed labeled tree T∞ such that:

– the root of T∞ is labeled by Init(A);
– for every node n of T∞, if n is labeled by some symbolic state S, then for all

edges e of A, there exists a child n′ of n labeled by Succ(S, e) iff Succ(S, e)
is not empty.

Algorithm RIEF is a post-order depth-first traversal of some prefix of that
tree.

Theorem 2 (recalled). Upon termination of RIEF, we have:

1. Soundness: If v ∈ RIEF(A, Init(A), G, ∅) then G is reachable in v(A);
2. Integer completeness: If v is an integer parameter valuation, and G is

reachable in v(A) then v ∈ RIEF(A, Init(A), G, ∅).

3 Informally speaking, extremal rays are the directions in which the polyhedron is
infinite, see, e.g., [Sch86] for details.

15

Proof. 1. Soundness: this part of the proof is almost exactly the same as in
[JLR15] so we do not repeat it. The only difference is that, with the same
proof, we actually have a slightly stronger result that holds for any finite
prefix of T∞ instead of exactly the one computed by EF:

Lemma 10. Let T be a finite prefix of T∞, on which we apply algorithm
RIEF. Let n be a node of T labeled by some symbolic state s, and such that
the subtree rooted at n has depth N . We have: v ∈ RIEF(A, s,G,M), where
M contains the symbolic states labeling nodes on the path from the root, iff
there exists a state (l, w) in v(s) and a run ρ in v(A), with less than N
discrete steps, that starts in (l, w) and reaches G.

Soundness is a direct consequence of Lemma 10.
2. Integer completeness: The proof of this part follows the same general struc-

ture as that of EF in [JLR15] but with additional complications due to the
use of the extrapolation. For the sake of clarity, we rewrite it completely
here, taking care of the modified convergence scheme.
Before we start, let us just recall two more results from [JLR15]:

Lemma 11 ([JLR15, Lemma 1]). For all parameter valuation v, symbolic
states s and edges e, we have Succ(v(s), v(e)) = v((Succ(s, e))).

Lemma 12 ([JLR15, Corollary 2]). For each parameter valuation v,
reachable symbolic state S, and state s, we have s ∈ v(S) if and only if
there is a run of v(A) from the initial state leading to s.

Now, the algorithm having terminated, it has explored a finite prefix T of
T∞. Let v be an integer parameter valuation. Suppose there exists a run
ρ in v(A) that reaches G. Then ρ is finite and its last state has a location
belonging to G. Let e1, . . . , ep be the edges taken in ρ and consider the branch
in the tree T obtained by following this edge sequence on the labels of the
arcs in the tree as long as possible. If the whole edge sequence is feasible in
T , then the tree T has depth greater or equal to the size of the sequence and
we can apply Lemma 10 to obtain that v ∈ RIEF(A, Init(A), G, ∅). Otherwise,
let s = (l, C) be the symbolic state labeling the last node of the branch, ek
be the first edge in e1, . . . , ep that is not present in the branch and (l, w) be
the state of ρ just before taking ek. Using Lemma 11, v(Succ(s, ek)) is not
empty so Succ(s, ek) is not empty. Since the node labeled by s has no child
in T , it follows that either l ∈ G or there exists another node on the branch
that is labeled by s′ such that IH(ExtMX (s)) = IH(ExtMX (s′)).
In the former case, we can apply Lemma 10 to the prefix of ρ ending in (l, w)
and we obtain that v ∈ RIEF(A, Init(A), G, ∅).
In the latter case, we have v(IH(ExtMX (s))) = v(IH(ExtMX (s′))). Since v is an
integer parameter valuation, by Lemma 6, this is v(ExtMX (s)) = v(ExtMX (s′)).
Using now Lemma 8, there exists a state (l, w′) ∈ s′ that is bisimilar to
(l, w).
Also, by Lemma 12, (l, w′) is reachable in v(A) via some run ρ1 along edges
e1 . . . em, with m < k. Also, since (l, w′) and (l, w) are bisimilar, there exists

16

a run ρ2 that takes the same edges as the suffix of ρ starting at (l, w). Let
ρ′ the run obtained by merging ρ1 and ρ2 at (l, w′). Run ρ′ has strictly less
discrete actions than ρ and also reaches G. We can thus repeat the same
reasoning as we have just done. We can do this only a finite number of times
(because the length of the considered run is strictly decreasing) so at some
point we have to be in some of the other cases and we obtain the expected
result. ut

17

	Integer-Complete Synthesis for Bounded Parametric Timed Automata

