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Abstract—We provide a subclass of parametric timed au-
tomata (PTA) that we can actually and efficiently analyze,
and we argue that it retains most of the practical usefulness
of PTA for the modeling of real-time systems. The currently
most useful known subclass of PTA, L/U automata, has a
strong syntactical restriction for practical purposes, and we
show that the associated theoretical results are mixed. We
therefore advocate for a different restriction scheme: since
in classical timed automata, real-valued clocks are always
compared to integers for all practical purposes, we also search
for parameter values as bounded integers. We show that
the problem of the existence of parameter values such that
some TCTL property is satisfied is PSPACE-complete. In
such a setting, we can of course synthesize all the values of
parameters and we give symbolic algorithms, for reachability
and unavoidability properties, to do it efficiently, i.e., without
an explicit enumeration. This also has the practical advantage
of giving the result as symbolic constraints between the
parameters. We finally report on a few experimental results
to illustrate the practical usefulness of our approach.

I. INTRODUCTION

Real-time systems are ubiquitous, and to ensure their
correct design it seems natural to rely on the mathematical
framework provided by formal methods. Within that frame-
work, the model-checking of timed models is becoming
ever more efficient. It nevertheless requires a complete
knowledge of the system. Consequently, the verification
can only be performed after the design stage, when the
global system and its environment are known. Getting a
complete knowledge of a system is often impossible and
even when it is possible, it increases the complexity of the
conception and the verification of systems. Moreover, if the
model of the system is proved wrong or if the environment
changes, this complex verification process must be carried
out again. It follows that the use of parametric timed models
is certainly a very interesting approach for the design of
real-time systems.

However, for general parametric formalisms such as
Parametric Timed Automata, the existence of a parameter
value such that some state is reachable is undecidable and
there is currently no algorithm that solves the synthesis
problem of parameter values except for severely restricted
subclasses, whose practical usability is unclear.
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It is then a challenging issue to define a subclass of
parametric timed automata, which retains enough of its
expressive power and such that, for both reachability and
unavoidability properties, the existence of parameter values
is decidable and for which there exist efficient symbolic
synthesis algorithms.

A. Related Work
Parametric timed automata (PTA) have been introduced

by Alur et al. in [3], as a way to specify parametric
timing constraints. They study the parametric emptiness
problem which asks if there exists a parameter valuation
such that the automaton has an accepting run. The problem
is proven undecidable for PTA that use three clocks and
six parameters, and applies to both dense and discrete time
domain. In [12], the undecidability proof is extended for
parametric timed automata that use only strict inequalities.
Further in [18], Hune et al. identify a subclass of PTA,
called lower bound/upper bound (L/U) automata, for which
the emptiness problem is decidable. However, their model-
checking algorithm, that uses Difference Bound Matrix as
data structure, might not terminate. Decidability results for
L/U automata have been further investigated by Bozzelli
and La Torre in [8]. They consider infinite accepting
runs and liveness properties, and show that main decision
problems such as emptiness, finiteness and universality for
the set of parameter valuations are decidable and PSPACE-
complete. They also study constrained versions of empti-
ness and universality, where parameters are constrained by
linear systems of equalities and inequalities, and obtain de-
cidability if parameters of different types (lower and upper
bound parameters) are not compared in the linear constraint.
They show how to compute the explicit representation of
the set of parameters, when all the parameters are of the
same type (L-automata and U-automata).

An approach for the verification of Parametric TCTL
(PTCTL) formulae has been developed in [36] by Wang,
where the problem has been proved decidable. A more
general problem is studied in [9], where parameters are
allowed both in the model and the desired property (PTCTL
formula). The authors show that the model-checking prob-
lem is decidable and the parameter synthesis problem is
solvable, in discrete time, over a PTA with one parametric
clock, if equality is not allowed in the formulae.

In [4], the authors develop a synthesis algorithm that
starts from a reference parameter valuation and derives con-
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straints on parameters, ensuring that the behaviors of PTA
are time-abstract equivalent. They prove the termination in
the acyclic case (all the traces of the automaton are acyclic),
while in the general case, the algorithm is not guaranteed
to terminate. Henzinger et al. in [16], study more general,
hybrid, systems extended with parameters. Their state-
space exploration algorithms have been implemented in the
model-checking tool HyTech. In [35], the authors analyze
time Petri nets with parameters in timing constraints. A
property is given as a PTCTL formula, but their model-
checking algorithm consists in analysis of a region graph
for each parameter valuation. In [34], the authors extend
time Petri nets with inhibitor arcs with parameters, and
propose an abstraction of the parametric state-space and
semi-algorithms for the parametric synthesis problem, con-
sidering simple PTCTL formulae.

B. Contributions

L/U-automata can be seen as the most useful sub-
class of PTA supported by many decidability results for
reachability-like properties. We show that the existence
of parameter valuations such that a given unavoidability
property is satisfied is undecidable though. We also pinpoint
some difficulties with the actual synthesis of parameter
values for L/U automata and reachability properties.

We therefore propose a different way of subclassing PTA:
instead of syntactical restrictions of guards and invariants
we propose a novel approach based on restricting the possi-
ble values of the parameters. To obtain decidability results,
we show that we have to restrict these values to bounded
integers. From a practical point of view, the subclass of
PTA in such a setting is not that restrictive since the
temporal constraints for timed automata are usually defined
on natural (or rational) numbers. It is also uncommon in
practice not to have a bound (possibly a quite big one)
on the delay modelled by some parameter and if we do
not, it might be that the constraint is altogether not needed.
Nevertheless, this subclass is restrictive enough to make
the problems we address decidable and to allow symbolic
synthesis algorithms of parameter values.

We give symbolic algorithms to synthesize the set of all
parameters valuations for reachability and unavoidability
properties, without having to enumerate all the possibilities.
These algorithms are implemented in our tool, Roméo.

Finally, we show that the problem of the existence of
bounded integer valuations for PTA such that some property
is satisfied is PSPACE-complete for a significant number of
properties, which include Timed Computation Tree Logic
(TCTL), and also that lifting either of the boundedness
or the integer assumption leads to undecidability even for
reachability.

C. Organization of the Paper

Section II gives the basic definitions related to the
formalism of parametric timed automata. Section III recalls
the main positive results on L/U-automata and gives new

negative results that make more precise the practical use-
fulness of that model. This motivates a different restriction
scheme based on limiting the possible values of the pa-
rameters. Section IV presents symbolic algorithms for the
synthesis problems when parameter valuations are searched
as bounded integers. In its development this section also
exhibits semi-algorithms for the general setting and the
(unbounded) integer setting. Section V gives the compu-
tational complexities of the associated problems. Finally,
section VI discusses the performance in practice of the
proposed approach, illustrated on a few small but realistic
case-studies. We conclude with section VII.

II. PARAMETRIC TIMED AUTOMATA

Z is the set of integers, N the set of natural numbers
and Q is the set of rational numbers. R is the set of real
numbers. R≥0 is the set of non-negative real numbers and
R>0 = R≥0 \ {0}. For any closed interval [a, b] of R with
a, b ∈ Z, we denote by [a..b] its intersection with Z.

Let X be a finite set. 2X denotes the powerset of X and
|X| the size of X .

A linear expression on X is an expression generated by
the following grammar, for k ∈ Z and x ∈ X: λ ::=
k | k ∗ x | λ+ λ.

Without loss of generality, we consider reduced linear
expressions λ in which each element of X occurs at most
once and with at most one constant term. We let Coeff(λ, x)
denote the coefficient of variable x ∈ X in λ. If x does
not occur in λ then Coeff(λ, x) = 0. Coeff(λ, x) is well
defined since λ is reduced.
∧ denotes the logical conjunction. A linear constraint on

X is an expression generated by the following grammar,
with λ a linear expression on X , ∼∈ {>,≥}: γ ::= λ ∼
0 | γ ∧ γ. We denote by C(X) the set of linear constraints
on X .

Let V ⊆ R. A V -valuation for X is a function from X
to V . We denote by V X the set of V -valuations on X .

For any subset X ′ ⊆ X , and a V -valuation v on X ,
we define the restriction v|X′ of v to X ′ as the unique V -
valuation on X ′ such that v|X′(x) = v(x) for all x ∈ X ′.
If Y is a set of valuations on X , then Y|X′ denotes its
projection on X ′, i.e., Y|X′ = {v|X′ | v ∈ Y }.

For a linear expression (resp. constraint) λ on X and a
V -valuation v on X ′ ⊆ X , we denote by v(λ) the linear
expression (resp. constraint) obtained by replacing in λ each
element x of X ′ by the real value v(x). Note that if X ′ = X
then we obtain a real number (resp. a boolean value).

Given some arbitrary order on X , a valuation can be seen
as a real vector of size |X|. The set of valuations satisfying
some linear constraints is then a convex polyhedron ofR|X|.

A zone is a convex polyhedron defined only by conjunc-
tions of constraints of the form x − y ∼ c or x ∼ c, with
x, y ∈ X, c ∈ Z and ∼∈ {<,≤,≥, >}.

If Z is a convex polyhedron on variable set X defined
by the linear constraints L1, . . . , Ln, X ′ ⊆ X and v is
a valuation on X ′, then v(Z) is the convex polyhedron
defined by the linear constraints v(L1), . . . , v(L2).
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Let X (resp. P ) be a finite set. We call clocks (resp.
parameters) the elements of X (resp. P ). A simple (para-
metric clock) constraint γ on X (and P ) is a linear
constraint on X ∪P such that exactly one element x of X
occurs in each conjunct of the expression (not necessarily
the same for each conjunct), and Coeff(γ, x) ∈ {−1, 1}.
We denote by B(X,P ) the set of such simple constraints
and B′(X,P ) the set of simple constraints in which the
clock variable always has coefficient −1. As before, for
any V -valuation v on P , and any simple constraint γ on
X ∪ P , v(γ) is the linear constraint on X obtained by
replacing each parameter p ∈ P by the real value v(p).

If v is a parameter valuation (on P ) and x a clock
valuation (on X), we denote by x

v the valuation on X ∪P
such that x

v |P = v and x
v |X = x. Similarly, for a set of

clock valuations Z, we denote by Z
v the set of valuations

x on X ∪ P such that x|X ∈ Z and x|P = v.
We further define the null valuation ~0X on X as ~0X(x) =

0,∀x ∈ X . For any subset R of X , and any valuation v
on X , we denote by v[R] the valuation on X such that
v[R](x) = 0 if x ∈ R and v[R](x) = v(x) otherwise.
Finally v + d, for d ≥ 0, is the valuation such that (v +
d)(x) = v(x) + d for all x ∈ X .

We now introduce parametric timed automata as an
extension of the classical model of timed automata (TA).

Definition 1 (Parametric TA): A Parametric Timed Au-
tomaton (PTA) A is a tuple (L, l0,Σ, X, P,E, Inv) where:
L is a finite set of locations; l0 ∈ L is the initial location;
Σ is a finite set of actions; X is a finite set of clocks; P is
a finite set of parameters; E ⊆ L×Σ×B(X,P )×2X ×L
is a finite set of edges: if (l, a, γ,R, l′) ∈ E then there is
an edge from l to l′ with action a, (parametric) guard γ
and set of clocks to reset R; Inv : L → B′(X,P ) assigns
a (parametric) invariant to each location.

For any Q-valuation v on P , the structure v(A) obtained
from A by replacing each simple constraint γ by v(γ) is a
timed automaton with invariants [2], [17] (TA). In a similar
way, if e = (l, a, γ,R, l′) is an edge of a PTA A, then
v(e) = (l, a, v(γ), R, l′)) is an edge of a timed automaton
v(A) .

The behavior of a PTA A is described by that of all
the timed automata obtained by considering all possible
valuations of the parameters.

Definition 2 (Semantics of a PTA): Let A =
(L, l0,Σ, X, P,E, Inv) be a PTA and v be an R-
valuation on P . The semantics of v(A) is given by the
timed transition system (Q, q0,→) with:
• Q = {(l, u) ∈ L×RX

≥0 | u(v(Inv(l))) is true};
• q0 = (l0,~0X) (q0 ∈ Q due to the special form of

invariants);
• Time transitions: (l, u)

d−→ (l, u + d), with d ≥ 0, iff
∀d′ ∈ [0, d], (l, u+ d′) ∈ Q;

• Action transitions: (l, u)
a−→ (l′, u′), with a ∈

Σ, iff (l, u), (l′, u′) ∈ Q, there exists an edge
(l, a, γ,R, l′) ∈ E, u′ = u[R] and u(v(γ)) is true.

A finite run is a finite sequence ρ = q1a1q2a2 . . . an−1qn
such that for all i, qi ∈ Q, ai ∈ Σ ∪R≥0 and qi

ai−→ qi+1.

For any run ρ, we define Edges(ρ) = e1 . . . em as the
sequence of edges of the automaton taken in the discrete
transitions along the run. We suppose without loss of
generality that these edges are indeed thus uniquely defined.
A run is maximal if it either has an infinite number of
discrete actions or cannot be extended by a discrete action.
We denote by Runs(v(A)) the set of runs that start in the
initial state of v(A).

We can define several interesting parametric problems on
PTA. Among them we can ask: does there exist valuations
for the parameters such that some property is satisfied?
And, even more interesting, can we compute a finite rep-
resentation of the set of these valuations? Given a class
of problems P (e.g., reachability, unavoidability, TCTL
model-checking, control) these two questions translate into
what we respectively call the P-emptiness and the P-
synthesis problems:
P-emptiness problem:

INPUTS: A PTA A and an instance φ of P
PROBLEM: Is the set of valuations v of the pa-
rameters such that v(A) satisfies φ empty?

P-synthesis problem:
INPUTS: A PTA A and an instance φ of P
PROBLEM: Compute the set of valuations v of the
parameters such that v(A) satisfies φ.

In this paper we mainly focus on reachability and un-
avoidability properties and call the corresponding problems
EF and AF. Thus, given a PTA A and a subset G of its
locations, EF-emptiness asks: does there exist a valuation
v of the parameters such that G is reachable in v(A) from
the initial state? And AF-emptiness asks: does there exist
a valuation v of the parameters such that all maximal runs
in v(A) from the initial state go through G? The related
synthesis problems immediately follow.

In [3], the EF-emptiness problem was proved undecid-
able for PTA. We give further negative results in the next
section.

III. L/U-AUTOMATA

We briefly present the proof for undecidability of EF-
emptiness for PTA from [3], as we will use it later.

The proof is based on a reduction from a 2-counter
machine halting problem, known to be undecidable [29].
Recall that a two counter machine M has a finite number of
locations (l1, ..., ln) and two non-negative counters C1 and
C2, as well as instructions that either decrement, increment
or test for zero the value of one counter at a time (each
instruction can change the location). A configuration of the
machine is a tuple (l, c1, c2) where l is a location of the
machine, c1 a value for C1 and c2 a value for C2. The
machine halts when it reaches a given location lhalt, from
the initial configuration (l1, 0, 0), for some values of the
counters.

A parametric timed automaton AM is constructed in a
way that it reaches a corresponding halting location lhalt
for some parameter valuation iff the 2-counter machine M
halts.
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AM has n locations, each one corresponding to a location
of the 2-counter machine, plus some auxiliary locations,
uses three clocks x, y, z and two parameters a and b. For
every instruction of the 2-counter machine, a path between
appropriate locations is added to AM (auxiliary locations
are used to maintain the counter values along the path).
Counter values are encoded in the values of clocks y =
b−c1 and z = b−a−c2, directly using parameters instead
of their valuations (v(a) and v(b)) to simplify the writing.
The states of AM are tuples consisting of a current location
and values of clocks (l, v(x), v(y), v(z)).

Fig. 1 shows a path to increment counter C1, [3].

li lj
y = b+ 1

y := 0

x = a z = b

z := 0

x = b

x := 0

Figure 1. C1 increment gadget

When location li is reached, AM is in a state (li, x =
0, y = b − c1, z = b − a − c2) which encodes the
configuration (li, c1, c2) of the machine.

In location li we spend exactly c1+1 time units before we
reach the first auxiliary location. As we reach the location
lj when x = b (the guard between the last auxiliary location
and lj is x = b), the duration of the path is b. Since we reset
y after c1 + 1 time units, the new value of y is b− c1 − 1.

The new value of clock z when reaching lj can be
calculated similarly, by subtracting the time passed be-
fore the reset of z from the total duration of the path
z = b − (a + c2) = b − a − c2, which means that the
value of z is preserved.

After we traverse the path, we end up in a state (lj , x =
0, y = b− c1− 1, z = b− a− c2), which correctly encodes
the increment of the first counter and the new configuration
of the machine (lj , c1 + 1, c2).

In order to traverse the gadget, the clock values in each
location must be such that the guard of the outgoing edge is
satisfiable, at least after some time elapsing. For instance,
in the second location of the increment gadget, x = c1 + 1,
and therefore we must have c1 + 1 ≤ a. This generates
constraints on the parameters.

If the machine halts, AM reaches the corresponding
halting location lhalt, with the set of possible parameter
valuations {a ≥ c1, b − a ≥ c2}, where c1 and c2 are the
maximal values of the counters. If the machine does not
halt, then AM does not reach lhalt for every parameter
valuation. Therefore, the EF-emptiness problem for PTA is
undecidable.

The following syntactic subclass of PTA, called L/U-
automaton, has been proposed in [18] as a decidable
subclass for the EF-emptiness problem. It relies on the
notion of upper and lower bounds for parameters:

Definition 3 (Lower and upper bounds): Let γ be a sin-
gle conjunct of a simple clock constraint on the set of clocks
X and the set of parameters P . Let x be the clock variable

i0 i1 i2

y ≤ a y ≤ a x ≤ 0

x := 0

y ≥ a′

Figure 2. Parametric Timed Automaton E(a, a′) such that, starting from
i0, AFi2 iff a = a′

occurring in γ. γ is an upper (resp. lower) bound constraint
if Coeff(γ, x) is negative (resp. positive).

A parameter p is an upper (resp. lower) bound in γ if
Coeff(γ, p) is positive (resp. negative).

A parameter p is an upper (resp. lower) bound in the PTA
A if for each conjunct γ of each simple clock constraint in
the guards and invariants of A, either Coeff(γ, p) = 0 or p
is an upper (resp. lower) bound in γ.

For example, in a constraint γ = x ≥ b ∧ x < a, b is a
lower bound and a is an upper bound in γ.

Definition 4 (L/U-automaton): A PTA A is an L/U-
automaton if every parameter is either an upper bound or
a lower bound in A.

A PTA A is a U-automaton (resp. L-automaton) if every
parameter is an upper (resp. lower) bound in A.

A. Emptiness

EF-emptiness is PSPACE for L/U-automata [18] and,
more generally, emptiness, universality and finiteness of
the valuation set are PSPACE-complete for infinite runs
acceptance properties [8]. These good results are based on
a monotonicity property that L/U-automata have: decreasing
lower bounds or increasing upper bounds only add behav-
iors. So if we set all lower bounds to 0 and all upper
bounds to a large enough constant that we can compute,
then the resulting timed automaton contains all the possible
behaviors. This makes these automata very well-suited for
reachability-like properties. For other properties however
this is not enough. For AF properties, increasing lower
bounds or decreasing upper bounds can suppress a run that
was a counter-example to the property, and then make this
property true.

We now indeed prove, with a reduction from the halting
problem of 2-counter machines [29], that the AF-emptiness
problem for L/U-automata is undecidable.

Theorem 1: The AF-emptiness problem is undecidable
for L/U-automata.

Proof: As a preliminary, consider PTA E(a, a′) in
Figure 2, in which invariants are given in boxes above the
corresponding locations. Clearly, starting from i0, we have
AF(i2) if and only if a = a′, because any run that reaches
i1 before y is equal to a can be extended by delaying a
non null amount of time into a run that will be blocked by
the invariant of i2. So all runs should enter i1 with y = a,
which is the case if and only if a = a′.

Using this gadget and adapting those from [3], presented
in the beginning of section III, we reduce the halting prob-
lem of 2-counter machines to the AF-emptiness problem
for L/U-automata.
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E(a, a′) E(b, b′) s0 s′0 l1

x ≤ a x ≤ b

x := 0
y := 0

x := 0
y := 0

z := 0

x ≥ a′

x := 0

x ≥ b′

Figure 3. Setting up the initial configuration

Recall that such a machine has a finite number of
locations and two non-negative counters C1 and C2, as well
as instructions that either decrement, increment or test for
zero the value of one counter at a time. Like in the proof
of [3], we consider without loss of generality that, in the
zero test of some counter, either it succeeds (the counter
is indeed 0) and the machine continues or it fails and the
machine blocks.

A configuration of the machine is a tuple (l, c1, c2) where
l is a location of the machine, c1 a value for C1 and c2 a
value for C2. The machine halts when it reaches a given
location. The halting problem for 2-counter machines is
undecidable [29].

We will have that the machine reaches its lhalt location
iff for some parameter valuation, a corresponding location
lhalt is unavoidable in the L/U-automaton, i.e., it satisfies
the property AF lhalt.

For each location li of the machine we add a corre-
sponding location li in the L/U-automaton. The latter also
has three clocks x, y, z and four parameters a, b, a′ and b′.
Parameters a and b are upper bounds and parameters a′ and
b′ are lower bounds.

Throughout the proof, we write the states of the au-
tomaton as tuples (li, xi, yi, zi) corresponding to location
li, value xi for x, yi for y and zi for z. Figures 3 and
4 give the detail of the gadgets we use to encode the
operations. They basically correspond to the gadgets of
[3] in which the lower bound and upper bound constraints
have been separated to obtain an L/U-automaton. Also the
upper bounds are expressed as invariants to remove the runs
ending with infinite delay in each location.

Each configuration (li, c1, c2) of the machine is simu-
lated by a state, belonging to some run ρ∗, and of the
form (li, 0, yi, zi), with the following counter encoding:
yi = b − c1 and zi = b − a − c2. Before we precisely
define what run is ρ∗ we need to have a closer look at the
initialization gadget.

a) Initialization gadget: The initial configuration (lo-
cation l1, clock values x = 0, y1 = b, z1 = b − a) is set
using the gadget presented in Figure 3.

We start, in sequence, by the gadget we have seen before,
for both pairs of parameters a, a′ and b, b′. All runs go
through these first two gadgets iff a = a′ and b = b′.
Furthermore, since AF lhalt implies AF s0, it also implies
that a = a′ and b = b′ in s0 (and therefore all subsequent
locations).

Now, assuming this necessary condition is met, we obtain
gadgets quasi-identical to those of [3], except we cannot

li si s′i s′′i lj
y := 0

y ≥ b′ + 1

y ≤ b+ 1

x ≥ a′
x ≤ a

z ≥ b′

z := 0

z ≤ b
x ≥ b′

x := 0

x ≤ b

Figure 4. C1 increment gadget

delay forever in each location. As a consequence, there is
only one run generated by this automaton, which is the run
ρ∗ encoding the counter machine. Let us detail this run in
all gadgets.

Initially, we have the state (s0, 0, 0, 0) of the automaton.
By delaying in order to enable the outgoing edge, we
obtain state (s0, a, a, a). In order to take the outgoing
edge, the invariant of the target location must be satisfied,
which implies a ≤ b. By taking the edge, we obtain state
(s′0, a, a, 0) and, by delay, we get state (s′0, b, b, b − a).
Finally, we take the outgoing edge and get the expected
state (l1, 0, b, b− a).

b) Increment, decrement, zero testing: To simulate
increment, we use the gadget given in Figure 4 for incre-
menting counter C1 and going from state li to lj .

We start from some state (li, 0, b − c1, b − a − c2), for
c1, c2 ∈ N and prove that we reach state (lj , 0, b − (c1 +
1), b− a− c2).

So, first we delay in li to enable the outgoing edge and
obtain state (li, c1 + 1, b+ 1, b− a− c2 + c1 + 1). In order
to take it, we must have c1 +1 ≤ a. Then we take the edge
and obtain state (si, c1+1, 0, b−a−c2+c1+1). Again, we
delay and get state (si, a, a− c1− 1, b− c2). Then we take
the outgoing edge, delay and get (s′i, a+ c2, a− c1 − 1 +
c2, b). Again we take the outgoing edge, which implies that
a+ c2 ≤ b, and obtain state (s′′i , a+ c2, a− c1− 1 + c2, 0).
We delay, which gives state (s′′i , b,−c1−1 + b, b−a− c2).
And finally, by taking the edge to lj we obtain the expected
state (lj , 0, b− (c1 + 1), b− a− c2).

Simulating decrement is similar, using invariant y ≤ b−1
for li instead of y ≤ b + 1 and guard y ≥ b′ − 1
instead of y ≥ b′ + 1. The gadget for incrementing (resp.
decrementing) C2 is obtained in the same way, by replacing
invariant y ≤ b+ 1 by y ≤ b, guard y ≥ b′ + 1 by y ≥ b′,
invariant z ≤ b by z ≤ b + 1 (resp. z ≤ b − 1) and guard
z ≥ b′ by z ≥ b′ + 1 (resp. z′ ≥ b′ − 1).

Finally, zero-testing C1 (resp. C2) can be done with the
same gadget, by replacing invariant y ≤ b + 1 by y ≤ b,
guard y ≥ b′ + 1 by y ≥ b′, and by adding conjunct x ≤ 0
(resp. x ≤ a) in the invariant of li (resp. s′i).

If the machine does not halt, then it does not reach
location lhalt and therefore the automaton does not reach
the corresponding location either, so the AF-property never
holds for any parameter valuation.

If the machine halts, then no run could be blocked in
the zero-testing gadget since zero-testing was always done
when the counter was indeed zero and, similarly to [3],
the valuations such that the property holds are given by
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the set {a′ = a and b′ = b and a ≥ c∗1 and b − a ≥ c∗2},
where c∗1 (resp. c∗2) is the maximum value of the counter C1

(resp. C2) over the finite execution of the machine. These
constraints define a convex polyhedron that is non-empty:
for instance, a′ = a = c∗1 and b′ = b = c∗1 + c∗2 belongs to
it.

B. Synthesis

In [8] the authors prove that for L-automata and U-
automata, the solution to the synthesis problem for infinite
runs acceptance properties can be explicitly computed as a
linear constraint of size doubly-exponential in the number
of parameters. That is to say this solution can be expressed
as a finite union of convex polyhedra.

With a different look at the idea used in [8] to prove
that the constrained (i.e., with initial constraints) emptiness
problem for infinite runs acceptance properties is undecid-
able for L/U-automata, we can express a new and quite
strong result on the solution to the EF-synthesis problem
for L/U-automata.

Theorem 2: If it can be computed, the solution to the EF-
synthesis problem for L/U-automata cannot be represented
using any formalism for which emptiness of the intersection
with equality constraints is decidable.

Proof: We use the same idea as in [8] for proving
that constrained emptiness for infinite runs acceptance
properties is undecidable. Suppose that on the contrary the
solution set can be represented using such a formalism.
Consider a PTA A. For each parameter p of A that is used
both as an upper bound and a lower bound, replace its
occurences as upper bounds by a fresh parameter pu and
its occurrences as lower bounds by a fresh parameter pl. We
therefore obtain an L/U-automaton. Let V be the solution
to the EF-synthesis problem for that L/U-automaton. Let
V ′ be the set of equality constraints pu = pl for each of
the parameters p that were duplicated as pu and pl. By
hypothesis we can decide if V ∩ V ′ = ∅ and therefore
solve the emptiness problem for A, which contradicts the
undecidability of EF-emptiness for PTA.

Note that, in particular, Theorem 2 rules out the pos-
sibilty of computing the solution set as a finite union of
polyhedra.

IV. INTEGER PARAMETRIC PROBLEMS

The decidability results related to emptiness problems
for L/U-automata are mixed: properties related to reach-
ability are decidable but very simple properties that are
not compatible with the monotonicity property, like un-
avoidability, are undecidable. As for the actual synthesis of
the constraints between parameters that describe the set of
valuations that satisfy even the simple case of reachability
properties, we have to resort to L- or U-automata, that have
severe restrictions regarding their use of parameters.

We therefore advocate for different kinds of restrictions
to PTA. Note that with only one irrational constant in
the guards of timed automata, reachability is undecidable
[28]. For all practical purposes these constants are actually

always chosen as integers. Even if we insist on rationals,
we can make those integers through adequate scaling and
we usually have to since most tools only allow them as
integers. So, instead of using syntactical restrictions in the
guards and invariants of PTA, we think it makes a lot of
sense to search for parameter values as bounded integers.

We therefore focus on synthesizing (or just proving
the existence of) integer valuations for the parameters: a
valuation v on a set X is an integer valuation if ∀x ∈
X, v(x) ∈ Z. This induces new emptiness and synthesis
problems that we call integer problems (e.g., integer EF-
emptiness problem).

By insisting that these integer values should be bounded
we will be (unsurprisingly) able to make all parametric
problems decidable, provided the associated non-parametric
problems, obtained by choosing one particular valuation,
are decidable of course.

These decidability results are however only interesting
for practical purposes if we can solve the corresponding
synthesis problems symbolically, i.e., without explicitly
enumerating all the possible valuations.

To this end, we first introduce symbolic semi-algorithms
to solve the synthesis problems in the general setting
(possibly non integer valuations) that are based on a quite
straightforward extension of the symbolic zone-based state-
space exploration that is ubiquitous for timed automata
[24].

A. Symbolic states for PTA

We therefore extend the notion of symbolic state of timed
automata to PTA, as well as the usual operators associated
to them:

Definition 5 (Symbolic state): A symbolic state of a PTA
A, with set of clocks X and set of parameters P , is a pair
(l, Z) where l is a location of A and Z is a set of valuations
on X ∪ P .

For state space computation, we define classical opera-
tions on valuation sets:
• future: Z↗ = {v′ | v ∈ Z ∧ v′(x) = v(x) + d, d ≥

0 if x ∈ X; v′(x) = v(x) if x ∈ P};
• past: Z↙ = {v′ | v ∈ Z ∧ v′(x) ≥ 0, v′(x) + d =
v(x), d ≥ 0 if x ∈ X; v′(x) = v(x) if x ∈ P};

• reset of the clock variables in set R ⊆ X: Z[R] =
{v[R] | v ∈ Z};

• initial symbolic state of the PTA A =
(L, l0,Σ, X, P,E, Inv): Init(A) = (l0, {v ∈
RX∪P | v|X ∈ {~0X}↗ ∧ v(Inv(l0))});

• successor by edge e = (l, a, γ,R, l′):
Succ((l, Z), e) = (l′, (Z ∩ γ)[R]↗ ∩ Inv(l′))

For S = (l, Z), when non-ambiguous, we use S in
place of l or Z to simplify the writing a bit. We say that
a symbolic state is reachable if it can be obtained from
Init(A) by iterative application of the Succ operator for
some finite sequence of edges.

Init(A) is a convex polyhedron and all basic operators
preserve convex polyhedra: intersection does so trivially,
reset is a projection, future can be done by adding a variable
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t ≥ 0, and for all clocks x adding variables x′ with
constraint x′ = x + t and finally eliminating variables t
and x for all clocks. These are all basic convex polyhedra-
preserving operations. We therefore have the following
property.

Property 1: For any reachable symbolic state (l, Z), Z
is a convex polyhedron.

Additionally, future, reset, intersection with some arbi-
trary set are all trivially non-decreasing operations with
respect to the inclusion of sets of states. So we have:

Property 2: Succ is non decreasing with respect to the
inclusion of sets of states: for all edges e, locations l and
sets of states Z and Z ′, Z ⊆ Z ′ ⇒ Succ((l, Z), e) ⊆
Succ((l, Z ′), e).

We also have the following lemma:
Lemma 1: For any reachable symbolic state (l, Z),

for all edges e and valuations v, v(Succ((l, Z), e)) =
Succ((l, v(Z)), v(e)).

Proof: We prove that the result holds for all suboper-
ations of Succ. First, v(Z)↗ = v(Z↗). Let x ∈ v(Z)↗.
Then there exists x′ ∈ v(Z) and t ≥ 0 such that x = x′+t.
x′ ∈ v(Z) so x′

v ∈ Z, and therefore x′

v + t ∈ Z↗.
By definition of the future operation, x′

v + t = x′+t
v so

x′+ t = x ∈ v(Z↗). The other direction and the proof for
the reset operation work in the same way.

Now we prove that, v(Z ∩ Z ′) = v(Z) ∩ v(Z ′). Let
x ∈ v(Z ∩ Z ′). Equivalently x

v = Z ∩ Z ′, i.e., x
v ∈ Z and

x
v ∈ Z

′, which is exactly x ∈ v(Z) ∩ v(Z ′).
We can extend the Succ operator to a sequence of

edges e1 . . . en by defining Succ((l, Z), e1e2 . . . en) =
Succ(. . . Succ(Succ((l, Z), e1), e2) . . . , en) and consider-
ing that for the empty sequence ∅, Succ(S, ∅) = S.

The following corollaries of Lemma 1 holds:
Corollary 1: For any reachable symbolic state S, for any

edge sequence e1, . . . , en:

v(Succ(S, e1 . . . en) = Succ(v(S), v(e1) . . . v(en))

Proof: Immediate, by induction on the length of the
sequence.

Corollary 2: For each parameter valuation v, reachable
symbolic state S, and state s, we have s ∈ v(S) if and only
if there is a run of v(A) from the initial state leading to s.

Proof: S is reachable so there exists
an edge sequence e1 . . . en such that S =
Succ(Init(A), e1 . . . en). Using Corollary 1, we have
v(S) = Succ(v(Init(A)), v(e1) . . . v(en)) Then, by the
classical properties of the zone abstraction on timed
automata, s ∈ Succ(v(Init(A)), v(e1) . . . v(en)) is
equivalent to the existence of a run of v(A) (along edges
e1 . . . en) from the initial state of v(A) to s, which
concludes the proof.

Finally, for each integer parameter valuation v, v(A) is a
timed automaton with integer bounds in clock constraints.
So each of its reachable symbolic states is defined by
a location and a zone with integer constants, which are
topologically closed convex unions of the regions [2] of

Alur and Dill (see, e.g., [6]). Therefore such zones have
integer vertices. Hence, with Corollary 1, we have the
following property.

Property 3: For any reachable symbolic state (l, Z), if
v is an integer parameter valuation then v(Z) is a (convex)
zone with integer vertices.

B. Semi-algorithms for the general synthesis problems

The following two algorithms are natural extensions of
their timed automata counterpart. The difficulty here is the
handling of the parameter valuations.

Let A be a PTA and G a subset of its locations we want
to reach (EF) or make unavoidable (AF).

In both algorithms, conditions are evaluated from top to
bottom and M represents a passed list of symbolic states. It
records the symbolic states that have already been explored
on a given path. Initially, M is empty and, the algorithms
are called with the initial symbolic state Init(A) (e.g., for
EF, we compute EFG(Init(A), ∅)).

We compute forward the reachable symbolic states until
we reach a location in G or we find a loop on the current
path (we compute a symbolic state already present in
M ). We backpropagate the “good” parameter valuations,
i.e., those for which the property is satisfied, through the
recursion in the algorithms.

Init(A) is a polyhedron and all the operations we perform
(successor, projections, etc.) preserve polyhedra so the
results of both algorithms are finite unions of polyhedra
(but not zones in general).

For EF-synthesis, we basically aggregate the valuations
found when reaching the locations in G:

EFG(S,M) =


S|P if S ∈ G
∅ if S ∈ M⋃

e∈E
S′=Succ(S,e)

EFG

(
S′,M ∪ {S}

)
otherwise

For AF-synthesis, at a given symbolic state, the “good”
valuations, for each outgoing path (hence the intersection
in the last line), either allow it to reach G if it can, or cut it
off (by being in the complement of its first symbolic state).
A path that is cut off is indeed not a path that never reaches
G.

Cutting a path, even if it does reach G, may also enable a
wider range of parameter values. To illustrate this last point,
consider the simple automaton in Figure 5. The set of goal
locations is G = {`1, `2}, x is a clock and a a parameter.
If we never cut paths that lead to G then the result is the
intersection of constraints, i.e., a ≥ 2, while the upper edge
could also be cut (a < 2) and the AF property still holds,
so the correct result is a ≥ 0.

Furthermore, we need to forbid reaching states from
which no transition can be taken, even after some delay.
In a symbolic state (l, Z), these correspond to the comple-
ment of

⋃
(l,a,g,R,l′)∈E(g ∩ Z)↙. We therefore remove all

parameter valuations that allow to reach such a state.
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`0 `1

`2

x ≥ 2 and x ≤ a

x ≥ 0

Figure 5. A PTA in which cutting an edge can be useful for AF

AFG(S,M) =
S|P if S ∈ G
∅ if S ∈ M(⋂

e∈E
S′=Succ(S,e)

(
AFG

(
S′,M ∪ {S}

)
∪ (RP \ S′

|P )
))

\(
RX∪P \

(⋃
(l,a,g,R,l′)∈E(g ∩ S)↙

))
|P

otherwise

Note that it is possible to have a global passed list shared
between all paths but this complicates the writing of the
algorithms, especially AF.

The following theorem states that EF and AF are semi-
algorithms for their respective synthesis problems.

Theorem 3: For any PTA A and any subset of its
locations G, upon termination, EFG(Init(A), ∅) (resp.
AFG(Init(A), ∅)) is the solution to the EF-synthesis (resp.
AF-synthesis) problem.

Proof: In this proof, we use only Lemma 1, its
corollary (Corollary 2), and the basic properties of Succ
when applied to non-parametric sets of states (i.e., states
of timed automata).

Let us consider the possibly infinite directed labeled tree,
whose root is labeled by Init(A) and for every node n, if
n is labeled by S, then for all edges e of the PTA, there
exists a child n′ labeled by Succ(S, e) iff Succ(S, e) is not
empty. For easier reference, we also label the arc from n
to n′ by e.

Both algorithms are classical depth-first post-order
traversals of that tree.

Now, consider either EF or AF and suppose it has
terminated. Then only a finite prefix (a subset closed under
the parent relation) T of the infinite tree has been visited
and each leaf must correspond to one of the leaf conditions
of the algorithms or to the absence of children in the last
condition. This means that all leaves n of the tree are
labeled by symbolic states S such that:
• either S = (l, Z) and l ∈ G;
• or S ∈M and, by construction of M , this means there

exists another node on the path from the root to n also
labeled by S;

• or S has no successor.
We start by EF and first state the following lemma, the

proof of which can be found in the appendix.
Lemma 2: Let n be a node of T , labeled by some

symbolic state S, and such that the subtree rooted at n has
depth N . We have: v ∈ EFG(S,M), where M contains the
symbolic states labeling nodes on the path from the root,
iff there exists a state s in v(S) and a run ρ in v(A), with
less than N discrete steps, that starts in s and reaches G.

With Lemma 2, we immediately have that if v ∈
EFG(Init(A), ∅) then there exists a run in v(A) that starts
in the initial state and reaches G.

In the other direction, suppose there exists such a run ρ.
Then ρ is finite and its last state has a location belonging
to G. Let e1, . . . , ep be the edges taken in ρ and consider
the branch in the tree T obtained by following this edge
sequence on the labels of the arcs in the tree as long as
possible. If the whole edge sequence is feasible in T , then
the tree T has depth greater or equal to the size of the
sequence and we can apply Lemma 2 to obtain that v ∈
EFG(Init(A), ∅). Otherwise, let S = (l, Z) be the symbolic
state labeling the last node of the branch, ek be the first
edge in e1, . . . , ep that is not present in the branch and s
be the state of ρ just before taking ek. Using Lemma 1
v(Succ(S, ek)) is not empty so Succ(S, ek) is not empty.
Since the node labeled by S has no children in T , it follows
that either l ∈ G or there exists another node on the branch
that is labeled by S. In the former case, then we can apply
Lemma 2 to the prefix of ρ ending in s and we obtain that
v ∈ EFG(Init(A), ∅). In the latter case, by Corollary 2,
there exists a run along edges e1 . . . em, with m < k, that
reaches s in v(A). From that run we can construct another
run ρ′ by merging with the suffix of ρ that starts from s.
ρ′ has strictly less discrete actions than ρ and also reaches
G and we can repeat the same reasoning as we have just
done. We can do this only a finite number of times (because
the length of the considered run is strictly decreasing) so
at some point we have to be in some of the other cases and
we obtain the expected result.

Now we consider the case of AF and we give the
following lemma. Again the proof can be found in the
appendix.

Lemma 3: Let n be a node of T , labeled by some
symbolic state S, and such that the subtree rooted at n has
depth N . We have: v ∈ AFG(S,M), where M contains the
symbolic states labeling nodes on the path from the root,
iff for all states s in v(S) and all maximal runs ρ in v(A)
that starts in s, ρ reaches G in less than N discrete steps.

Similarly to EF, Lemma 3 immediately implies that if
v ∈ AFG(Init(A), ∅) then G is unavoidable in v(A).

In the other direction, suppose that G is unavoidable in
v(A). Then all maximal runs starting in the initial state
of v(A) reach G. In the same fashion as for EF, we can
follow each of those runs along discrete edges in the tree T .
If they all reach G “within” the tree T then Lemma 3 gives
us the result we expect. If not then there exists a run ρ in
v(A) that reaches G by taking discrete edges e1 . . . ep but
such that only a strict prefix of that sequence is feasible
in T . Let ek be the last feasible edge in the sequence
and let S = (l, Z) be the label of the last node in the
branch corresponding to the feasible prefix. With the same
reasoning as for EF, the only possible cases are that either
l ∈ G or S ∈ M . In the former case, Lemma 3 permits
to conlude, so consider the latter case. Then M 6= ∅ and
the feasible prefix contains at least one edge. Let em, with
m < k, be the first edge taken from the previous occurrence
of a node labeled by S in the branch corresponding to the
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`1x = y = 0 `2

x ≤ b

y ≥ 2

x ≥ a, x := 0

Figure 6. The PTA A1 with clocks x and y and parameters a and b

feasible prefix. Then Succ(S, em . . . ek) = S and, using
Lemma 1, we can therefore construct an infinite run in
v(A) first taking edges e1 . . . em−1 and then looping on
the sequence em . . . ek. Since the unavoidability property
is satisfied, the prefix of that infinite run up to edge ek
necessarily reaches a location G. And since that prefix is
common with ρ, we can use Lemma 3 to conclude the
proof.

Example 1: In the PTA A1 in Figure 6, after n > 0
iterations of the loop, we get the following valuation set
Zn = {0 ≤ x ≤ b, 0 ≤ y, a ≤ b, 0 ≤ na ≤ y − x ≤
(n + 1)b}. We can see that we will never have Zm = Zn

for m 6= n and therefore neither EF{`2}(Init(A1), ∅) nor
AF{`2}(Init(A1), ∅) will terminate.

C. Extension for the integer synthesis problems

We now modify the two semi-algorithms to symbolically
compute integer valuations. For that we use the notion of
integer hull.

Let n ∈ N and let Y be a subset of Rn. We denote by
Conv(Y ) the convex hull of Y , i.e. the intersection of all
convex sets containing Y . IntVects(Y ) denotes the subset
of all elements of Y with integer coordinates. We call those
elements integer valuations (or vectors, or points).

Let Z be a convex polyhedron. Z is topologically closed
if it can be defined using only non-strict inequalities. The
closure of Z, denoted by Z, is the intersection of all closed
polyhedra containing Z.

The integer hull of a closed polyhedron Z, denoted by
IntHull(Z) is defined as the convex hull of the integer
vectors of Z: IntHull(Z) = Conv(IntVects(Z)).

An integer vertex of a convex polyhedron is a vertex with
integer coordinates. Any (bounded or unbounded) closed
convex polyhedron with all its vertices integer is its own
integer hull [27].

In the rest of this section, we assume without loss of
generality that the polyhedra we consider are topologically
closed. This is not a restriction since any non-closed
polyhedron can be represented by a closed polyhedron
with one extra dimension [15]. Direct handling of not-
necessarily-closed (NNC) polyhedra raises no theoretical
issue but would impair the readability of this section.
Let us just note that we would need only to define the
integer hull of an NNC polyhedron Z as IntHull(Z) =
Z∩Conv(IntVects(Z)) and, when dealing with the vertices

of NNC polyhedra, to also consider the vertices of their
closure as described in [5].

We extend IntVects to symbolic states by:
IntVects((l, Z)) = (l, IntVects(Z)) and extend likewise all
the other operators on valuation sets.

We now show that to address our integer parametric
problems, it is sufficient to consider the integer hulls of
the (valuations in the) symbolic states.

We therefore consider the semi-algorithm IEF (resp. IAF)
obtained from EF (resp. AF) by replacing all occurrences
of the operator Succ by ISucc with ISucc((l, Z), e) =
IntHull(Succ((l, Z), e)). We also extend ISucc to edge
sequences in the same way as for Succ.

Finally, we can state the main result of this subsection:
IEF and IAF are correct semi-algorithms for their respective
integer synthesis problems.

Theorem 4: For any PTA A and any subset of its
locations G, upon termination, IEFG(Init(A), ∅) (resp.
IAFG(Init(A), ∅)) is the solution to the integer EF-synthesis
(resp. AF-synthesis) problem.

The proof of Theorem 4 is immediate from the proof of
Theorem 3, once we have Lemma 4, which is an equivalent
of Lemma 1 for integer valuations.

Lemma 4: For all integer parameter valuations v, sym-
bolic state S reachable through ISucc and edge e,
v(ISucc(S, e)) = Succ(v(S), v(e)).

Proof: Let v be an integer parameter valuation, S be
a symbolic state reachable through ISucc and e be an edge
in A.

Since S is convex, it certainly holds that
IntHull(Succ(S, e)) ⊆ Succ(S, e). And therefore
v(IntHull(Succ(S, e))) ⊆ v(Succ(S, e)). By Lemma 1,
v(ISucc(S, e)) ⊆ Succ(v(S), v(e))).

Since v is an integer parameter valuation and (l, Z)
is a symbolic reachable state, then by property 3, we
have IntHull(Succ(v(S), v(e))) = Succ(v(S), v(e)). Let
u ∈ IntHull(Succ(v(S), v(e))), then by Lemma 1, u ∈
IntHull(v(Succ(S, e))). Recall that the integer hull of
v(Succ(S, e)) is, by definition, the convex hull of the inte-
ger vectors of v(Succ(S, e)). So, there exist z1, . . . , zn ∈
IntVects(v(Succ(S, e))) such that u is a convex combina-
tion of the zi’s, i.e., there also exist λ1, . . . , λn ∈ R≥0 such
that

∑
i λi = 1 and u =

∑
i λizi. Let xi be the valuations

on X ∪P s.t. xi|P = v and xi|X = zi. Then, since v is an
integer valuation, xi ∈ IntVects(Succ(S, e)). Furthermore,
if x is the valuation on X ∪ P s.t. x|P = v and x|X = u,
then x =

∑
i λixi and therefore x ∈ IntHull(Succ(S, e))

and, by consequence, u ∈ v(IntHull(Succ(S, e))), which
concludes the proof.

Example 2: Let us go back to the PTA A1 in Figure 6.
After n iterations of the loop, we still get the same valuation
set Zn = {0 ≤ x ≤ b, 0 ≤ y, 0 ≤ na ≤ y − x ≤ (n +
1)b}. This is because Zn is its own integer hull. So, again
neither IEF{`2}(Init(A1), ∅) nor IAF{`2}(Init(A1), ∅) will
terminate.
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D. Bounded integer synthesis problems

To ensure termination of semi-algorithms IEF and IAF,
we now consider that we are searching for bounded integer
parameter valuations, i.e., given a priori some M,N ∈ N,
we search for integer valuations in [−M..N ]P . Again, this
induces new emptiness and synthesis problems that we
call (M,N)-bounded integer problems (e.g., (100, 100)-
bounded integer EF-emptiness problem).

1) Bounding the clocks of PTA: We now show that,
without loss of generality, the PTA can be considered to
have bounded clocks.

First remark that, in a TA with |L| locations a maximal
constant appearing in the constraints of the TA m, and
R(m) clock regions (according to the classical definition
of [2]), if some location ` is reachable, then there exists a
run that leads to ` and visits at most |L| × R(m) states.
Since it takes at most 1 time unit to go from one region to
another, the duration of this run is at most |L|×R(m) time
units. So, if we add invariants x ≤ |L|×R(m) for all clocks
x in all the locations of the TA, we obtain an equivalent
TA, with respect to location reachability and unavoidability.
Since R(m) is non-decreasing with m, this is also true if
we increase the value of m.

Now, in our bounded integer parameters setting, we can
compute a maximal constant upper (resp. lower) bound
on clocks for each parametric upper (resp. lower) bound
linear constraint used in the guards and invariants of the
automaton: replace the upper bound parameters by their
upper (resp. lower) bound and the lower bound parameters
by their lower (resp. upper) bound. Let K be the maximum
of those maximal constants and of the constants in the
non-parametric constraints of the TA. Using the reasoning
above, we can then add for all clocks x the invariant
x ≤ |L| ×R(K) to all locations of our PTA and obtain an
equivalent PTA, with respect to location reachability and
unavoidability.

2) Soundness and correctness of the algorithms: For a
PTA A with bounded clocks and for any valuation v ∈
[−M..N ]P , v(A) is a TA with bounded clocks for which
the finiteness of the number of zones computed with the
Succ operator is thus ensured.

Let us define an extension of the Init operator that accepts
a bound on the values of the parameters in the initial
symbolic state (and therefore in the whole computation):
for any M,N ∈ N, InitM,N (A) = (l0, {v ∈ RX∪P | v|X ∈
{~0X}↗ ∧ v(Inv(l0)) and v|P ∈ [−M..N ]P }).

Theorem 4 can be naturally adapted to this setting in the
following form:

Theorem 5: For any M,N ∈ N, any PTA A
and any subset of its locations G, upon termination,
IEFG(InitM,N (A), ∅) (resp. IAFG(InitM,N (A), ∅)) is the
solution to the (M,N)-bounded integer EF-synthesis (resp.
AF-synthesis) problem.

The proof of Theorem 5 is immediate from that of
Theorem 4 and the following lemma:

Lemma 5: For any location l, any polyhedron Z on X∪
P , and any edge e of A, for any polyhedron C on X ∪ P

defined only by constraints on P (i.e., for all v ∈ C|P ,
v(C) = RX ), we have:

Succ((l, Z ∩ C), e) = Succ((l, Z), e) ∩ C

Proof: We first prove that (Z ∩ C)↗ = Z↗ ∩ C. Let
x ∈ (Z∩C)↗. Then there exists d ≥ 0 and x′ ∈ Z∩C such
that x = x′+ d. Since x′ ∈ Z, then x ∈ Z↗. Furthermore,
since x′|P = x|P , x′ ∈ C, and x′|P (C) = RX , we have
x ∈ C. The other direction is similar.

We can also prove in the exact same manner that the reset
operator behaves similarly because it affects only clocks.

To conclude, recall that if (l′, Z ′) = Succ((l, Z), e) and
e = (l, a, g, R, l′) then Z ′ = (Z ∩ g)[R]↗ ∩ Inv(l′). With
the above results and commutativity of intersection, we
therefore obtain the expected result.

3) Termination of the algorithms: To prove the termi-
nation of our computations, we rely on a few additional
lemmas.

First, the following lemma states that the computation of
the integer hull of a successor of a symbolic state (l, Z)
(reachable from Init(A)), results in the same set as if we
would compute the integer hull of a symbolic state (l, Z)
at first, and then the integer hull of its successor.

Lemma 6: For any reachable symbolic state (l, Z) and
any edge e:

ISucc((l, IntHull(Z)), e) = IntHull(Succ((l, Z), e))

Proof: IntHull(Z) ⊆ Z because Z is convex, and since
Succ and IntHull are non-decreasing, we immediately have
ISucc((l, IntHull(Z)), e) ⊆ IntHull(Succ((l, Z), e)).

Let us now consider x
v ∈ IntVects(Succ((l, Z), e)).

Then, v being an integer parameter valuation, us-
ing Lemma 4, we have x ∈ Succ((l, v(Z)), v(e)).
Also, by Property 3, v(Z) has integer vertices so
IntHull(v(Z)) = v(Z). Moreover, v(Z)

v ⊆ Z. So,
IntHull being non-decreasing, IntHull( v(Z)

v ) ⊆ IntHull(Z)

and thus v(Z)
v ⊆ IntHull(Z). Then v(v(Z)

v ) ⊆
v(IntHull(Z)), i.e., v(Z) ⊆ v(IntHull(Z)). Succ
is also non-decreasing so: Succ((l, v(Z)), v(e)) ⊆
Succ((l, v(IntHull(Z))), v(e)). So, using Lemma 1, x ∈
v(Succ((l, IntHull(Z)), e)). Then, x being an integer val-
uation, x

v ∈ IntVects(Succ((l, IntHull(Z)), e)). Finally,
Conv being non-decreasing, IntHull(Succ((l, Z), e)) ⊆
IntHull(Succ((l, IntHull(Z)), e)).

Then, we extend Lemma 6 to sequences of edges.
Lemma 7: For any edge sequence e1 . . . en:

ISucc(Init(A), e1 . . . en) = IntHull(Succ(Init(A), e1 . . . en))

Proof: By induction on the length n of the edge
sequence: for n = 0 the property trivially holds. Suppose
the lemma holds for n ≥ 0 and consider the edge
sequence e1 . . . enen+1. ISucc(Init(A), e1 . . . enen+1) =
ISucc(ISucc(Init(A), e1 . . . en), en+1). By
the induction hypothesis this is equal to
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ISucc(IntHull(Succ(Init(A), e1 . . . en)), en+1).
Thus, using Lemma 6, this is again equal
to IntHull(Succ(Succ(Init(A), e1 . . . en), en+1)).
And finally, this is indeed equal to
IntHull(Succ(Init(A), e1 . . . enen+1)).

Finally Lemma 8 states that computing the integer hull
of a symbolic state is equivalent to separately computing
each of its subsets corresponding to integer parameters and
then taking the convex hull of their union.

Lemma 8: For any reachable symbolic state (l, Z) of the
PTA A, IntHull(Z) = Conv(

⋃
v∈IntVects(Z|P )

v(Z)
v ).

Proof: Recall that IntHull(Z) = Conv(IntVects(Z)).
Let x ∈ IntVects(Z) and x|P be its restriction to

parameters. By definition, x ∈ x|P (Z)

x|P
and x|P is an

integer valuation. So x ∈
⋃

v∈IntVects(Z|P )
v(Z)
v . Then

IntVects(Z) ⊆
⋃

v∈IntVects(Z|P )
v(Z)
v and, by taking the

convex hull, which is non-decreasing with respect to set in-
clusion, we get IntHull(Z) ⊆ Conv(

⋃
v∈IntVects(Z|P )

v(Z))
v .

Now, let v ∈ IntVects(Z|P ). We certainly have v(Z)
v ⊆

Z. So IntHull( v(Z)
v ) ⊆ IntHull(Z) since IntHull is non-

decreasing. v being an integer parameter valuation, by Prop-
erty 3, v(Z) and consequently v(Z)

v have integer vertices. It
is therefore its own integer hull and v(Z)

v ⊆ IntHull(Z). So⋃
v∈IntVects(Z|P )

v(Z)
v ) ⊆ IntHull(Z), and since IntHull(Z)

is convex and Conv is non-decreasing, we finally get
Conv(

⋃
v∈IntVects(Z|P )

v(Z)
v ) ⊆ IntHull(Z).

We can finally prove that, in this setting where all the
clocks are bounded, the semi-algorithms do terminate:

Theorem 6: For any M,N ∈ N, any PTA A and any
subset of its locations G, Algorithms IEFG(InitM,N (A), ∅)
and IAFG(InitM,N (A), ∅) terminate.

Proof: Using Lemma 7 we know that for any edge
sequence e1 . . . en, ISucc(InitM,N (v(A)), e1 . . . en)
is actually the integer hull of (l, Z) =
Succ(InitM,N (v(A)), e1 . . . en).

Then, with Lemma 8, IntHull(Z) =

Conv(
⋃

v∈IntVects(Z|P )
v(Z)
v ).

For all v in IntVects(Z|P ), v(A) is a TA with integer con-
stants and bounded clocks (see subsection IV-D1). It then
generates a finite number of different zones. So v(Z)

v takes
its values (depending on the edge sequence) in a finite set.
Furthermore, since all clocks and parameters are bounded
then IntVects(Z|P ) is finite and also takes its values in a
finite set. Finally, Conv(

⋃
v∈IntVects(Z|P )

v(Z)
v ) takes its val-

ues in a finite set and, consequently, for all possible edge se-
quences e1 . . . e2, so does ISucc(InitM,N (v(A)), e1 . . . en),
which concludes the proof.

Example 3: Consider once again the PTA A1 in Fig-
ure 6. We now suppose that both parameters are bounded
and take their values, say in [0..3]. Then, as seen in
subsection IV-D1, we add the invariants x ≤ 4 and y ≤ 4
to both locations (4 is less than the proposed bound but
enough in this simple case and keeps the computation
understandable). This preserves location-based reachability
and unavoidability properties. Now, after n > 0 iterations
of the loop with the “normal” Succ operator, we have the

valuation set Zn = {0 ≤ a ≤ 3, 0 ≤ b ≤ 3, a ≤ b, 0 ≤
x ≤ 4, 0 ≤ y ≤ 4, x ≤ b, na ≤ y − x ≤ (n + 1)b}.
If we do not suppose that a and b are integers, we still
never have Zm = Zn for any m 6= n. If we do suppose
they are integers, we compute each time Z ′n = IntHull(Zn).
We have Z ′0 = Z0, Z ′1 = Z1 ∩ {y ≤ a + 3, y ≤ b + 2},
Z ′2 = Z2 ∩ {x ≤ b − 2a + 2, y ≤ a + 3, y − x ≤ a + 2},
Z ′3 = Z3 ∩ {a ≤ 1, y ≤ a + 3, y ≤ b + 3a}, Z ′4 =
Z4∩{y−x = 4a, x ≤ 3−3a, x ≤ b−a}, and when n ≥ 5,
Z ′n = Z ′n+1 = {a = 0, x = y, 0 ≤ x ≤ b, b ≤ 3}. And
therefore IEF{`2}(Init0,3(A1), ∅) terminates and its result is
a ∈ [0..3] and b ∈ [1..3]. Similarly, IAF{`2}(Init0,3(A1), ∅)
terminates and its result is a ∈ [1..3] and b ∈ [a..3].

V. COMPLEXITY OF THE INTEGER PARAMETRIC
PROBLEMS

When the possible values of the parameters are integer
and bounded, we can enumerate all of the possible valu-
ations in exponential time. And therefore, for all classes
of problems P that are in EXPTIME for TA, the P-
synthesis problem (and of course the P-emptiness) can be
solved in exponential time. Also, since the P problem for
TA is always a special case of the P-emptiness problem
for PTA, for problems that are complete for some com-
plexity class containing EXPTIME, we can deduce that
the corresponding bounded integer emptiness problem is
complete for the same complexity class. For instance, the
reachability control problem is EXPTIME-complete for TA
[22]. The corresponding parametric emptiness problem is:
for a PTA A with actions partitioned between controllable
and uncontrollable, does there exist a parameter valuation v
such that there exists a controller for v(A) that enforces the
reachability of some location whatever the uncontrollable
actions that occur? This problem is therefore EXPTIME-
complete for bounded integer parameters.

For simpler problems, we have a better and a bit surpris-
ing result, using the classical construction of Savitch giving
PSPACE = NPSPACE [30]:

Theorem 7: The P-emptiness problem for PTA with
bounded integer parameters is PSPACE-complete for any
class of problems P that is PSPACE-complete for TA.

Proof: First, by definition, P for TA is a special case
of P-emptiness for PTA with bounded integer valuations
(consider a PTA with no parameter). This gives us the
PSPACE-hardness.

Now, let A be a PTA, let φ be an instance of P on A, and
let k be the bound on the values of parameters. Consider
the non-deterministic Turing machine that:

1) takes A, φ and k as input;
2) non-deterministically “guesses” an integer valuation

v bounded by k and writes it to the tape;
3) uses the written valuation to overwrite the parameters

with their value giving the TA v(A);
4) solves φ for that TA;
5) accepts iff the result of the previous step is “yes”.
Then the machine obviously accepts iff there exists an

integer valuation v bounded by k for which v(A) satisfies φ,
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i.e., it solves the P-emptiness problem for bounded integer
parameters.

Now let us look at the complexity. The size of the input
is |A|+ |φ|+ |k|, using |.| to denote the size in bits of the
different objects. There are at most kp possible valuations,
where p is the number of parameters in A. So, storing the
valuation at step 2 uses at most p×|k| additional bits, which
is polynomial w.r.t. the size of the input. Step 4 also needs
polynomial space by hypothesis. So globally this non-
deterministic machine runs in polynomial space. Finally,
by Savitch’s theorem, we have PSPACE = NPSPACE and
the expected result.

In particular the whole TCTL model-checking, including
reachability and unavoidability, is PSPACE-complete for
TA [1] and as a consequence, the corresponding emptiness
problem, which includes EF-emptiness and AF-emptiness,
is PSPACE-complete for PTA with bounded integer param-
eters.

Finally, it is important to remark that we cannot easily
lift neither of the boundedness nor the integer assumptions:
the EF-emptiness problem for PTA with bounded rational
parameter values is undecidable [28], and Theorem 8 fol-
lows from the undecidability proof of [3]:

Theorem 8: The EF-emptiness problem for PTA with
possibly unbounded integer parameter values is undecid-
able.

Proof: From the 2-counter machine reduction from [3]
(replacing the parameter b+1 in the guards by the proper
expression b+ 1 and idem for all such parameters):
• When the machine does not halt, the PTA simulating

the machine cannot reach the halting location, so there
is no rational valuation such that the EF-property
holds. And, in particular, there is no integer valuation
either;

• When the machine halts, its execution is obviously
finite. Let c1 (resp. c2) be the biggest value of the
counter C1 (resp. C2) along that execution. Then the
set of valuations such that the EF property holds is
{a ≥ c1 and b − a ≥ c2} which is not empty and
contains at least the integer valuation b = c1 + c2 and
a = c1.

VI. ON PERFORMANCE IN PRACTICE

A. The tool

We have implemented the synthesis of integer parameter
valuations in our tool ROMÉO [25].

The formal timed model: With its textual input lan-
guage, ROMÉO1 handles a model called Clock Transition
Systems (CTS) [19] with timed intervals, which are particu-
larly well-suited for the modeling of real-time systems. This
model encompasses classical models with implicit clocks
such as Time Petri Nets (TPNs) [26] or Duration Kripke
structures [23], and models with explicit clocks such as

1Notice that the graphical user interface of ROMÉO remains on Time
Petri Nets.

Product Interval Automata [13], [14], which are networks
of particular kind of Timed Automata with a single clock
which must be reset along every transition. Though best
presented in the more well-known framework of parametric
timed automata, the method we have proposed in this paper
can be naturally adapted to the model of Clock Transition
Systems with parametric timed intervals, on which operates
ROMÉO.

The symbolic abstraction: On CTS with timed inter-
vals, ROMÉO uses the well known state class abstraction of
[7], which is specific to models using timed intervals, and
do not require extrapolation. A very interesting feature of
the result presented in this paper is that it directly carries
over any parametrization of a timed abstraction satisfying
Lemma 1, and Properties 1,3 and 2. This is trivially the case
for parametric state class abstraction of [34] implemented
in ROMÉO for CTSs.

Computing the Integer Hull: In the tool ROMÉO,
the computation of the integer hull of a given convex
polyhedron is adapted from the computation of Chvátal-
Gomory cuts originally formulated in the context of integer
linear programming (see, e.g., [31]).

We first shortly introduce Time Petri Nets [26], as we
will use them as a model for our second case-study.

Time Petri Nets extend Petri Nets with timing constraints
on the firings of transitions. In a TPN, a time interval is
associated with each transition. An implicit clock can then
be associated with each enabled transition, and gives the
elapsed time since it was last enabled. An enabled transition
can be fired if its clock value belongs to the interval of
the transition. Furthermore, time cannot progress if time
elapsing would result in leaving the interval of a transition.

In parametric Time Petri Nets we allow the use of
parameters in the time intervals of transitions.

B. Case-studies

The PTA in Figure 6 demonstrates that it is very easy
to find an example for which the symbolic computation
does not terminate without the bounded integer parameters
restriction but one could object that this PTA models
nothing real (if a = 0, there are zeno runs for instance).

We now show with two simple but realistic case-studies
that this restriction is also useful for real applications. We
first describe the two systems:

1) Task Set Schedulability: We consider a scheduling
problem, adapted from [11] for a non-preemptive setting:
we have three real-time tasks τ1, τ2 and τ3. τ1 is periodic
with period a and has an execution time C1 ∈ [10, b].
τ2 is sporadic: it has only a minimal delay between two
activations and that delay is 2a. The execution time of τ2
is C2 ∈ [c, d], with c ≤ d. Finally, τ3 is periodic with period
3a and has an execution time C3 ∈ [20, 28]. These three
tasks are scheduled using a non-preemptive2 priority policy
defined by τ1 > τ2 > τ3.

2A running task cannot be interrupted even if another task with a greater
priority is ready.
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task1

ready1

run1

notReady1 !

y1 ≤ bstart1?

activate1?
y1 := 0

y1 ≥ 10
end !

clock1

req1

x1 ≤ a

x1 ≥ a
start1!
x1 := 0

task2

ready2

run2

notReady2 !

y2 ≤ dstart2?

activate2?
y2 := 0

y2 ≥ c
end !

clock2

req2

x2 ≤ ∞

x2 ≥ 2a
start2!
x2 := 0

task3

ready3

run3

notReady3 !

y3 ≤ 28start3?

activate3?
y3 := 0

y3 ≥ 20
end !

clock3

req3

x3 ≤ 3a

x3 ≥ 3a
start3!
x3 := 0

sched s4

s1

s2

s3

notReady1?

notReady2?

notReady3?

activate1!

activate2!

activate3!

activate1!
or activate2!
or activate3!

end ?

Fig 7.a The periodic request and the model of the task τ1

Fig 7.b The sporadic request and the model of the task τ2

Fig 7.c The periodic request and the model of the task τ3

Fig 7.d The scheduler

Figure 7. A PTA with 6 clocks and 4 parameters for non-preemptive
scheduling modeling (non-underlined channel are urgent)

We model this problem with a network of parametric
timed automata given in Fig. 7. The automata of the
network interact with each other by a classical synchronized
product à la Arnold Nivat where a transition with label e!
(respectively e?) must be executed simultaneously with one
and only one other transition with label e? (respectively
e!). A synchronization is done as soon as possible (which
corresponds to the urgent channel of the tool UPPAAL [6])
except for the synchronization end which is a classical
channel.

The models of the tasks and their request are given in
Figures 7.a, 7.b and 7.c. For example, for the task τ1 in
Figure 7.a, as soon as clock x1 reaches the value a the
synchronization start1 can be performed if the automaton
of the task is in state task1. After the synchronization, the
automaton of the request is in state (clock1, x1 = 0) and
the automaton of task τ1 is in the discrete state ready1.
The model of the non-preemptive scheduler is given in
Figure 7.d.

We say that the system is schedulable if each task always
has at most one instance running, which is a safety property.
On our model, this property is verified iff the transitions
starti are always possible in null time meaning for the
example of task τ1, that a state such that the model is in
location req1 with x1 > a is not reachable.

2) Alternating Bit Protocol: The Alternating Bit Pro-
tocol (ABP) is a network protocol operating at the data
link layer that retransmits lost or corrupted messages. This
protocol transmits messages between two entities, allowing
only one message in transit at a time, over an unreliable
transmission medium. Hypotheses on the behavior of the
transmission medium are that messages or acknowledg-
ments may be lost in transit. Recovery from losses is
done using a time-out and retransmission: each sender
records the time at which it sends a message and if an
acknowledgment of its delivery does not return within
before the time-out, the message is retransmitted. ABP has
most of the important features of communication protocols
such as TCP and then has been modelled using many
extensions of Petri Nets with time [32], [7], [10]. We extend
the ABP model of [7] with 6 parameters a, b, c, d, e, f as
shown in Figure 8. The model of [7] corresponds to a = 5,
b = 5, c = 1, d = 1, e = 0 and f = 2.

In this net, retransmissions of messages occur at a time
given by parameters a and b after the message has been
sent. The time for losses of messages and acknowledgments
(transitions with no output places) is an interval [0, 1] or
[0, c] or [0, d]. The time for receptions of messages and
acknowledgments is an interval [0, 1]. The time for the
receiver to send the acknowledgments is [e, 2] or [0, f ].

The property that should be verified is that the TPN
is one safe. This guarantees that at most one message
or acknowledgment is pending at any time and that the
transmission medium never holds more than one message
or acknowledgment.

C. Verification with Roméo

The models we have proposed for both case-studies
belong to the class of CTS with parametric timed intervals.
In both cases, we have a safety property, which is verified
using implementations of the semi-algorithms EF and IEF
presented in section IV. We use a machine with an Intel
Core i7 at 2.3 GHz and 8 Gb RAM.

1) Obtained constraints: Using ROMÉO, and given that
all parameters should be non-negative integers, we obtain
for the schedulability problem that a − b ≥ 24, b ≥
10, c ≤ 28 when d is equal to 28. As we will see in
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P1
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P2
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t4

P4

t6

P5
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t8
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t10
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t5

t12

t15

[0,∞[

[a, a+ 1]

[0, 1]

[0,∞[

[b, b+ 1]

[0, 1]

[0, c]

[0, 1]

[0, d]

[0, 1]

[0, 1]

[0, 1]

[e, 2]

[0, 1]

[0, 1]

[0, f ]

Figure 8. The parametrized TPN model of the Alternating Bit Protocol

the next subsection the computation did not terminate in
a reasonable time without fixing the value of d.

For the alternating bit protocol, we obtain the following
constraint with all six parameters as non-negative integers:

c = 0
a ≥ 4
e ≤ 2
b− f ≥ 3

or

 e ≤ 2
b− f ≥ 3
a ≥ 5

or

 e ≤ 2
−b+ d+ f ≤ −2
a ≥ 5

or

 e = 0
a− c ≥ 4
b− f ≥ 3

or

 e = 0
a− c ≥ 4
−b+ d+ f ≤ −2

or


c = 0
a ≥ 4
e ≤ 2
−b+ d+ f ≤ −2

2) Usefulness of the Integer Hull: Tables I and II provide
some insight on the performance of Algorithm IEF and a
comparison to Algorithm EF. The only difference in the
implementations of the two algorithms is the application
or not of the integer hull operator. The table shows the
total time for the verifications, the part of it used for
computing the integer hull for Algorithm IEF, and the
memory consumptions. DNF means that the computation
did not finish within 90 min (memory was not a problem
here).

Note that in all these cases some parameters are un-
bounded so termination of Algorithm IEF was actually
not guaranteed but it is interesting to remark that the
computation did terminate. For both case-studies the use
of the integer hull, while sometimes expansive to compute,

allows for much better results, in terms of both computation
time and memory.

3) Scaling with respect to the bounds on parameters:
With Tables III and IV, we illustrate the smooth scaling of
our approach with the value of upper bounds (except for
very small number of values of parameter). Note that the
performance of Algorithm IEF is actually worse when all
parameters are bounded (compare with the fourth column of
Table I). This is due to the fact that our implementation uses
inclusion for convergence, which is favored by the reduced
number of constraints in the absence of upper bounds. In
this setting, termination is guaranteed however.

4) Comparison with an enumeration of the parameter
values: To conclude, we comment on the overall usefulness
of our approach compared to an explicit enumeration of all
the possible parameter values coupled with efficient timed
verification.

First, as seen above, our symbolic computation may
terminate even if the parameters are not bounded, while
explicit enumeration is impossible in this case. This situa-
tion occurs in both the case-studies presented here.

Second our approach directly gives a symbolic constraint,
which is, in our opinion, more useful than the individual
values satisfying the property. Obtaining these constraints
from the explicit enumeration technique requires some post-
processing.

Finally, in practice, our approach behaves well with
respect to the scaling of the bounds on parameters. For
an explicit enumeration we can easily see this would not
be the case. For the schedulability problem, for instance,
the typical verification time with ROMÉO in the timed
case (with all parameter values fixed) is reliably 0.1 s. If
we consider 100 different possible values for each of the
parameters a, b and c, this would give a total computation
time of the order of 10,000 s for an explicit enumeration.

We explicitly do this comparison with the state-of-the-art
model checker UPPAAL [6] for the schedulabilty problem
of figure 7. We choose values of parameters leading to both
true or false results for the schedulability property. The
results are given in table V. We can see that there exists a
bound from which our symbolic computation behaves faster
than an enumerative approach with UPPAAL:
• for one parameter (a), the bound is about 70 values of

the parameter;
• for two parameters (a, b), the bound is about 15 values

per parameter;
• for three parameters (a, b, c), the bound is under 10

values per parameter.

For the sake of completeness we have also tried to
combine explicit enumeration with an efficient decision
diagram based model-checker (with a discrete time seman-
tics): we have used the SDD-based ITS tools, which is
capable of verifying huge state-spaces [33] and has the
advantage of providing a parser for ROMÉO models and
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a ∈ [0,∞)
b = 20
c = 18
d = 28

a ∈ [0,∞)
b ∈ [10,∞)
c = 18
d = 28

a ∈ [0,∞)
b ∈ [10,∞)
c ∈ [0, 28]
d = 28

a ∈ [0,∞)
b ∈ [10,∞)
c = 18
d ∈ [18,∞)

a ∈ [0,∞)
b ∈ [10,∞)
c ≥ 0
d ≥ c

IEF Time 1 s 2.8 s 27 s 840 s DNF
Int. Hull 0.2 s (20%) 0.4 s (14%) 2.9 s (11%) 146 s (17%) −
IEF Mem. 15MB 35MB 153MB 1289MB −
EF Time 1.5 s 6.4 s DNF DNF DNF
EF Mem. 19.6MB 55MB − − −

Table I
SCALING UP THE NUMBER OF PARAMETERS IN THE SCHEDULABILITY PROBLEM

a, b a, b, c a, b, c, d a, b, c, d, e a, b, c, d, e, f
EF Time 0 s 0.2 s 0.7 s DNF DNF
EF Mem. 1.6MB 2.4MB 4.7MB DNF DNF
IEF Time 0 s 0.2 s 0.6 s 44.7 s 152.7 s
IEF Mem. 1.6 MB 2.5 MB 4.4 MB 75.2 MB 106.9 MB

Table II
SCALING UP THE NUMBER OF PARAMETERS FOR THE ABP PROBLEM

a = 50 a ∈ [40, 50] a ∈ [0, 100] a ∈ [0, 1000] a ∈ [0, 10000]
IEF Time 17 s 211 s 1079 s 1150 s 1178 s
Int. Hull 2 s (11.7%) 25.7 s (12.1%) 166 s (15.4%) 167 s (14.5%) 168 s (14.3%)
IEF Mem. 121MB 425MB 1598MB 1667MB 1667MB

Table III
SCALING UP a’S UPPER BOUND IN THE SCHEDULABILITY PROBLEM FOR b ∈ [10, 100], c = 18 AND d ∈ [18, 100]

a ≤ 10 a ≤ 100 a ≤ 1000 a ≤ 10000
IEF Time 152.8 s 152.6 s 154 s 153.2 s
Int. Hull 2.3 s (%) 2.3 s (%) 2.3 s (%) 2.3 s (%)
IEF Mem. 108.2MB 108.2MB 108.2MB 108.2MB

Table IV
SCALING UP a’S UPPER BOUND FOR ABP PROBLEM

automatic discrete-time analysis for which it has already
given good results. The performance was however not
so good here, with the verification of the property on
the schedulability problem for a typical instance, namely
a = 50, b = 30, c = d = 18, taking 74 s for 392 962 states.

Of course, given the good model-checker and a small set
for the possible parameter values, an explicit enumeration
has good chances to be more efficient. In the general case
however, we believe that our approach is more flexible and
efficient.

VII. CONCLUSION

We have presented novel results for the parametric ver-
ification of timed systems modeled as parametric timed
automata. Our new negative results show that even when
severely restricting the form of the parametric constraints
we encounter undecidabilty for many interesting problems.
In particular, we have proved that the AF-emptiness prob-
lem is undecidable for L/U-automata (it is still open for
U- and L-automata though). So we have proposed instead
to restrict the codomain of the parameter valuations to
bounded integers.

This is completely orthogonal to previous restriction
schemes in the sense that it does not enforce any syntactic
restriction on PTA, thus simplifying the modeling activ-
ity. Also experimental evidence shows that the symbolic
approach we propose to avoid an explicit enumeration of
all the possible parameter values is robust to scaling the

bounds of the parameters (and improves on convergence
even without any bounds in some cases).

Also, in this setting, most problems are of course de-
cidable and we have proved that, for instance, emptiness
for TCTL properties, which include reachability and un-
avoidability, is PSPACE-complete. We have also proved
that lifting the boundedness or the integer assumption leads
to undecidability. We have exhibited symbolic algorithms
that allow to avoid the explicit enumeration of all possible
valuations and implemented them in our tool ROMÉO [25].

We have extended the work presented here to timed game
automata with parameters, a model that is used for the
analysis of control problems on real-time systems, [21]. The
challenge was to handle non-convex sets, as the backward
exploration, needed for the computation of winning states,
creates non-convex zones.

The main problem we are now investigating is whether
the symbolic result we obtain, as a finite union of convex
polyhedra is dense or not, i.e., wether non-integer points
in that result also are valuations satisfying the property.
This is undoubtly true for reachability but not so clear for
unavoidability or parametric timed reachability games. We
may however be able to slightly alter the algorithms to
make it true in all cases.

Our other current lines of work on this topic include
improving the computation of the integer hulls, the search
for less restrictive codomains for parameter valuations, and
extension of this work to PTA with stopwatches.
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a ∈ [30, 50]
b = 20
c = 18

a ∈ [10, 100]
b = 20
c = 18

a ∈ [40, 50]
b ∈ [20, 30]
c = 18

a ∈ [10, 50]
b ∈ [10, 50]
c = 18

a ∈ [40, 49]
b ∈ [20, 29]
c ∈ [18, 22]

a ∈ [10, 50]
b ∈ [10, 50]
c ∈ [0, 28]

a ∈ [10, 100]
b ∈ [10, 100]
c ∈ [0, 28]

UPPAAL
(enumeration)

0.34 s 1.4 s 1.8 s 28.1 s 7.9 s 802 s > 2000 s

ROMÉO
(symbolic)

1.1 s 1.1 s 3.5 s 4.6 s 8.5 s 56.3 s 55.8 s

Table V
COMPARISON WITH AN EXPLICIT ENUMERATION OF PARAMETER VALUES USING UPPAAL (WITH d = 28)

Acknowledgments The authors thank the anonymous re-
viewers for their very useful comments.
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APPENDIX
ADDITIONAL PROOFS

Lemma 1: Let n be a node of T , labeled by some
symbolic state S, and such that the subtree rooted at n has
depth N . We have: v ∈ EFG(S,M), where M contains the
symbolic states labeling nodes on the path from the root,
iff there exists a state s in v(S) and a run ρ in v(A), with
less than N discrete steps, that starts in s and reaches G.

Proof: We prove this by induction on N . Note that
the tree T is always non-empty (it contains at least the root
which is labeled by Init(A)).
• Case of a leaf n labeled by S: the subtree rooted at n

has depth 1.
– if v ∈ EFG(S,M) then the only leaf condition of

the algorithm that can be verified is S = (l, Z)
and l ∈ G so for all states in v(S), there is a run
with no discrete steps that starts in s and reaches
G.

– if there exists a state s ∈ v(S) and a run with
no discrete steps that starts in s and reaches G,
then if l is the location of s, we have l ∈ G, and
therefore v ∈ EFG(S,M).

• Case of a non-leaf node n labeled by S: Suppose the
subtree rooted at n has depth k > 1 and that for all
nodes n′ with subtree rooted at n′ of depth k′ < k,
the property holds.

– if v ∈ EFG(S,M) then, since n is not a leaf,
the third condition of the algorithm must be true:
v ∈

⋃
e∈E
S′=Succ(S,e)

EFG

(
S′,M ∪ {S}

)
. Equiva-

lently, there exists a successor n′ of n, labeled
by S′ = Succ(S, e) for some edge e such that
v ∈ EFG(S′,M ∪{S}). Since it is a successor of
n, n′ has depth less than k. So we can use the
induction hypothesis: there exists a run with less
than k − 1 discrete steps, starting in some state
s′ ∈ v(S′) and reaching G in v(A). By Lemma 1,
s′ ∈ Succ(v(S), v(e)) so s′ has a predecessor s
by e in v(S) and we get the expected result.

– if there exists a run ρ starting in some state
s ∈ v(S) and reaching G, with less than k discrete
steps, then this run has at least 1 discrete step
otherwise n would be a leaf of T . So we can
write it s d−→ sd

a−→ ρ′ where a is the action
of some edge e. Then ρ′ is a run starting from
some state s′ ∈ Succ(v(S), v(e)), reaching G
and with less than k− 1 discrete steps. Moreover
s′ ∈ v(S′) with S′ = Succ(S, e) (by Lemma 1).
So we can apply the induction hypothesis and
v ∈ EFG(S′,M ∪ {S}). Since n is not a leaf,
its value for EFG is given by the last condition,
and therefore v ∈ EFG(S,M) by computing the
union.

Lemma 2: Let n be a node of T , labeled by some
symbolic state S, and such that the subtree rooted at n has
depth N . We have: v ∈ AFG(S,M), where M contains the
symbolic states labeling nodes on the path from the root,
iff for all states s in v(S) and all maximal runs ρ in v(A)
that starts in s, ρ reaches G in less than N discrete steps.

Proof:
• The case of a leaf in T is exactly the same as for EF.
• Case of a non-leaf node n labeled by S: Suppose the

subtree rooted at n has depth k > 1 and that for all
nodes n′ with subtree rooted at n′ of depth k′ < k,
the property holds.

– if v ∈ AFG(S,M), since n is not a leaf, the third
condition of the algorithm must be true: First, v 6∈(
RX∪P \

(⋃
(l,a,g,R,l′)∈E (g ∩ S))

)↙)
|P

. This

means that for all states s in v(S), there is at least
one edge that can be taken, possibly after some
delay. Now for all edges e that can be taken, we
further have that, if we note S′ = Succ(S, e) =
(l′, Z ′), either v ∈ AFG(S′,M ∪ {S}) or v ∈
R
|P |
≥0 \ Z ′|P . In the latter case, v(S′) = ∅ so, by

Lemma 1, the edge e cannot be taken in v(A)
from v(S), so only v ∈ AFG(S′,M ∪{S}) holds.
As before, the depth of the subtree rooted at the
successor node of n labeled by S′, is less than
k − 1 and we can therefore apply the induction
hypothesis to S′ and thus obtain the expected
result.

– if for all states s in v(S) and all maximal runs ρ
in v(A) that starts in s, ρ reaches G in less than
k discrete steps, then, as for EF, we can write
ρ = s

d−→ sd
a−→ ρ′ where a is the action of some

edge e. Then ρ′ is a maximal run starting from
some state s′ ∈ Succ(v(S), v(e)) = v(S′) with
S′ = Succ(S, e) (using Lemma 1), which reaches
G in less than k− 1 discrete steps. For a given e,
the set of the first states of the runs ρ′, plus those
obtained from them by a delay respecting the
invariant (who also belong to one of those runs),
is exactly Succ(v(S), v(e)) = v(S′) (using once
more Lemma 1). So we can apply the induction
hypothesis to v(S′) and v ∈ AFG(S′,M ∪ {S}).
Since this is true for all edges e that are first taken
by all the runs ρ, v ∈

⋂
e∈E
S′=Succ(S,e)

AFG(S′,M ∪

{S}). Finally, since all those maximal runs ρ′

reach G, there is no state in v(S′) that cannot take,
possibly after some delay, any discrete transition
anymore. Then v ∈ AFG(S,M) using the third
condition of the algorithm.


