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Av. Antônio Carlos 6627, Pampulha, CP 702, CEP 31270-901, Belo Horizonte, MG, Brazil

Abstract

In this paper we propose an axiomatization for the notion of strong emergence phenomenon
between field theories depending on additional parameters, which we call parameterized field
theories. We present sufficient conditions ensuring the existence of such phenomena between two
given Lagrangian theories. More precisely, we prove that a Lagrangian field theory depending
linearly on an additional parameter emerges from every multivariate polynomial theory evaluated
at differential operators which have well-defined Green functions (or, more generally, that has a
right-inverse in some extended sense). As a motivating example, we show that the phenomenon
of gravity emerging from noncommutativy, in the context of a real or complex scalar field theory,
can be recovered from our emergence theorem. We also show that, in the same context, we could
also expect the reciprocal, i.e., that noncommutativity could emerge from gravity. Some other
particular cases are analyzed.

1 Introduction

The term emergence phenomenon has been used for years in many different contexts. In each
of them, Emergence Theory is the theory which studies those kinds of phenomena. E.g, we have
versions of it in Philosophy, Art, Chemistry and Biology [1, 49, 15]. The term is also often used in
Physics, with different meanings (for a review on the subject, see [13, 18]. For an axiomatization
approach, see [19]). This reveals that the concept of emergence phenomenon is very general and
therefore difficult to formalize. Nevertheless, we have a clue of what it really is: when looking at all
those instances of the phenomenon we see that each of them is about describing a system in terms
of other system, possibly in different scales. Thus, an emergence phenomenon is about a relation
between two different systems, the emergence relation, and a system emerges from another when
it (or at least part of it) can be recovered in terms of the other system, which is presumably more
fundamental, at least in some scale. The different emergence phenomena in Biology, Philosophy,

∗yurixm@ufmg.br (corresponding author)
†rodneyjb@ufmg.br

1



Physics, and so on, are obtained by fixing in the above abstract definition a meaning for system,
scale, etc.

Notice that, in this approach, in order to talk about emergence we need to assume that to each
system of interest we have assigned a scale. In Mathematics, scales are better known as parameters.
So, emergence phenomena occur between parameterized systems. This kind of assumption (that in
order to fix a system we have to specify the scale in which we are considering it) is at the heart of
the notion of effective field theory, where the scale (or parameter) is governed by Renormalization
Group flows [12, 31, 26, 22]. Notice, in turn, that if a system emerges from another, then the second
one should be more fundamental, at least in the scale (or parameter) in which the emergence
phenomenon is observed. This also puts Emergence Theory in the framework of searching for
the fundamental theory of Physics (e.g Quantum Gravity), whose systems should be the minimal
systems relative to the emergence relation [13, 18]. The main problem in this setting is then the
existence problem for the minimum. A very related question is the general existence problem: given
two systems, is there some emergence relation between them?

One can work on the existence problem at different levels of depth. Indeed, since the systems
is question are parameterized one can ask if there exists a correspondence between them in some
scales or in all scales. Obviously, requiring a complete correspondence between them is much
stronger than requiring a partial one. On the other hand, in order to attack the existence problem
we also have to specify which kind of emergence relation we are looking for. Again, is it a full
correspondence, in the sense that the emergent theory can be fully recovered from the fundamental
one, or is it only a partial correspondence, through which only certain aspects can be recovered?
Thus, we can say that we have the following four versions of the existence problem for emergence
phenomena:

weak weak-scale weak-relation strong

relation partial full partial full

scales some some all all

Table 1: Types of Emergence

In Physics one usually works on finding weak emergence phenomena. Indeed, one typically
shows that certain properties of a system can be described by some other system at some limit,
corresponding to a certain regime of the parameter space. These emergence phenomena are strongly
related with other kind of relation: the physical duality, where two different systems reveal the same
physical properties. One typically builds emergence from duality. For example, AdS/CFT duality
plays an important role in describing spacetime geometry (curvature) from mechanic statistical
information (entanglement entropy) of dual strongly coupled systems [42, 39, 46, 8, 10, 9].

There are also some interesting examples of weak-scale emergence relations, following again from
some duality. These typically occur when the action functional of two Lagrangian field theories are
equal at some limit. The basic example is gravity emerging from noncommutativity following from
the duality between commutative and noncommutative gauge theories established by the Seiberg-
Witten maps [43]. Quickly, the idea was to consider a gauge theory S[A] and modify it into two
different ways:

1. by considering S[A] coupled to some background field χ, i.e, Sχ[A;χ];

2. by using the Seiberg-Witten map to get its noncommutative analogue Sθ[Â; θ].

2



Both new theories can be regarded as parameterized theories: the parameter (or scale) of the
first one is the background field χ, while that of the second one is the noncommutative parameter
θµν . By construction, the noncommutative theory Sθ[A; θ] can be expanded in a power series on the
noncommutative parameter, and we can also expand the other theory Sχ[A;χ] on the background
field, i.e, one can write

Sχ[A;χ] =

∞∑
i=0

Si[A;χi] = lim
n→∞

S(n)[A;χ] and Sθ[Â; θ] =

∞∑
i=0

Si[A; θi] = lim
n→∞

S(n)[A; θ],

where S(n)[A;χ] =
∑n

i=0 Si[A;χi] and S(n)[A; θ] =
∑n

i=0 Si[A; θi] are partial sums. One then tries
to find solutions for the following question:

Question 1. Given a gauge theory S[A], is there a background version Sχ[A;χ] of it and a number
n such that for every given value θµν of the noncommutative parameter there exists a value of
the background field χ(θ), possibly depending on θµν , such that for every gauge field A we have
S(n)[A;χ(θ)] = S(n)[A; θ]?

Notice that if rephrased in terms of parameterized theories, the question above is precisely
about the existence of a weak-scale emergence between Sχ and Sθ, at least up to order n. This
can also be interpreted by saying that, in the context of the gauge theory S[A], the background
field χ emerges in some regime from the noncommutativity of the spacetime coordinates. Since
the noncommutative parameter θµν depends on two spacetime indexes, it is suggestive to consider
background fields of the same type, i.e, χµν . In this case, there is a natural choice: metric tensors
gµν . Thus, in this setup, the previous question is about proving that in the given gauge context,
gravity emerges from noncommutativity at least up to a perturbation of order n. This has been
proved to be true for many classes of gauge theories and for many values of n [40, 52, 4, 30, 16].
On the other hand, this naturally leads to other two questions:

1. Can we find some emergence relation between gravity and noncommutativity in the nonper-
turbative setting? In other words, can we extend the weak-scale emergence relation above to
a strong one?

2. Is it possible to generalize the construction of the cited works to other kinds of background
fields? In other words, is it possible to use the same idea in order to show that different
fields emerge from spacetime noncommutativity? Or, more generally, is it possible to build a
version of it for some general class of field theories?

The first of these questions is about finding a strong emergence phenomena and it has a positive
answer in some cases [51, 5, 44, 41]. The second one, in turn, is about finding systematic and
general conditions ensuring the existence (or nonexistence) of emergence phenomena. At least to
the authors knowledge, there are no such general studies, specially focused on the strong emergence
between field theories. It is precisely this point that is the focus of the present work. Indeed we
will:

1. based on Question 1, propose an axiomatization for the notion of strong emergence between
field theories;

2. establish sufficient conditions ensuring that a given Lagrangian field theory emerges from each
theory belonging to a certain class of theories.
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We will work on the setup of parameterized field theories, which are given by families S[ϕ; ε] of
field theories depending on a fundamental parameter ε. In the situations described above, ε is the
the noncommutative parameter θµν or the background field χµν . In the cases where the emergence
was explicitly obtained, it was of summary importance that the parameters θµν and χµν belongs to
the same class of fields and that the corresponding action functions are defined on the same field
Aµ. Thus, given two parameterized theories S[ϕ; ε] and S′[ϕ; ε′] we always assume that they are
defined on the same fields and that the parameters ε and ε′ belong to the same space. Keeping
Question 1 as a motivation, let us say that S[ϕ; ε] emerges from S′[ϕ; ε′] if there is a map F on the
space of parameters such that, for every ε and every field ϕ we have S[ϕ; ε] = S′[ϕ;F (ε)]. We call
F a strong emergence phenomenon between S and S′.

Our main result states that for certain S[ϕ; ε] and S′[ϕ; ε′], depending on ε and ε′ in a suitable
parameter space, in the sense that it has some special algebraic structure, then these strong emer-
gence phenomena exist. The formal statement of this result will be presented in Section 3 after
some technical digression. But, as a motivation, let us state a particular version of it and show
how it can be used to recover an example of emergence between gravity and noncommutativity.

First of all, recall that the typical field theory has a kinetic part and an interacting part.
The kinetic part is usually quadratic and therefore of the form Lknt,i(ϕi) = 〈ϕi, Diϕi〉i, with i =
1, ..., N , where N is the number of fields, Di are differential operators and 〈·, ·〉i are pairings in the
corresponding space of fields. Summing the space of fields and letting ϕ = (ϕ1, ..., ϕN ), D = ⊕iDi

and 〈·, ·〉 = ⊕i〈·, ·〉i, one can write the full kinetic part as Lknt(ϕ) = 〈ϕ,Dϕ〉. On the other hand,
the interacting part is typically polynomial, i.e., it is of the form Lint(ϕ) = 〈ϕ, pl[D1, ..., DN ]ϕ〉,
where l ≥ 0 is the degree of the interaction and pl[D1, ..., DN ] =

∑
|α|≤l fα ·Dα. Since the space of

differential operators constitutes an algebra, it follows that pl[D1, ..., DN ] is a differential operator
too, so that both the kinetic and the interacting parts (and therefore the sum of them, which
constitute the typical lagrangians) are of the form L(ϕ) = 〈ϕ,Dϕ〉.

Notice, furthermore, that the pairing 〈·, ·〉 is typically induced by fixed geometric structures
(such as metrics) in the spacetime manifold M and in the field bundle E. Thus, in the parameterized
context the natural dependence on the parameter is on the differential operator, i.e., the typical
parameterized Lagrangian theories are of the form L(ϕ; ε) = 〈ϕ,Dεϕ〉. In the case of polynomial
theories (e.g., those describing interations), it is more natural to assume that the dependence
on Dε is actually on the coefficient functions fα, i.e., plε[D1, ..., DN ] =

∑
|α|≤l fα(ε)Dα. These

coefficient functions could be scalar functions or, more generally, parameter-valued functions if
we have an action of parameters in differential operators. In this last case, the polynomial is
plε[D1, ..., DN ] =

∑
|α|≤l fα(ε) · Dα, where the dot denotes the action of parameters in differential

operators.

Emergence Theorem (rough version) Let M be a spacetime manifold and E →M a field bundle
which define a pairing 〈·, ·〉 in E. Let L1(ϕ; ε) = 〈ϕ,Dεϕ〉 be an arbitrary parameterized theory and
L2(ϕ; δ) = 〈ϕ, plδ[D1, ..., DN ]ϕ〉 a polynomial theory, e.g., an interaction term. Suppose that:

1. the parameters ϕ are nonnegative real numbers or, more generally, positive semi-definite
operators or tensors acting on the space of differential operators;

2. the dependence of Dε on ε is of the form Dεϕ = ε·Dϕ, where D is a fixed differential operator;

3. the coefficient fα(δ) of plδ[D1, ..., DN ] are nowhere vanishing scalar or parameter-valued func-
tions, and the differential operators D1, ..., DN have well-defined Green functions.
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Then the theory L1(ϕ; ε) emerges from the theory L2(ϕ; ε).

Now, looking at [40], consider again the question of emergent gravity in a four dimensional space-
time. The first order perturbation of a real scalar field theory ϕ, coupled to a semi-Riemannian1

gravitational field g = η + h, in an abelian gauge background, is given by equation (10) of [40]2:

Lgrav(ϕ;h) = ∂µϕ∂µϕ− hµν∂µϕ∂νϕ (1)

= −〈ϕ,�ϕ〉+ 〈ϕ, (h ·D1)ϕ〉 (2)

= L0(ϕ) + L1(ϕ;h). (3)

where in the second step we did integration by parts and used the fact that the spacetime manifold
is boundaryless. Furthermore, the pairing is just 〈ϕ,ϕ′〉 = ϕϕ′, while D1 = ∂µ∂ν and for every
2-tensor t = tµν , we have the trace action t ·D = tµν∂µ∂ν . In particular, η ·D1 = ∂µ∂ν = �. On the
other hand, the first order expansion in θ of the Seiberg-Witten dual of a real scalar field theory,
in an abelian gauge background, is given by (equation (7) of [40]):

Lncom(ϕ; θ) = ∂µϕ∂µϕ+ 2θµαFακη
κν(−∂µϕ∂νϕ+

1

4
ηµν∂

ρϕ∂ρϕ) (4)

= 〈ϕ, (−�)ϕ〉+ 〈ϕ, (f(θ) ·D2)ϕ〉 (5)

= 〈ϕ, p1
θ[�, D2]ϕ〉, (6)

where in the first step we again integrated by parts, and used the fact that p1
θ[x, y] is the first order

polynomial (−1) · x+ f(θ) · y, where f(θ) = θ and, in coordinates, D2 = 2Fακη
κν(∂µ∂ν − 1

4ηµν�).
Notice that if hµν is a positive-definite tensor (which is the case in Riemannian signature),

then L1(ϕ;h) in (3) satisfies the hypotheses of the emergence theorem. On the other hand, since
in the Riemannian setting � is the Laplacian and D2 is essentially a combination of generalized
Laplacians, both of them have Green functions3. Thus, if we forget the trivial case θµν = 0, then
Lncom(ϕ; θ) also satisfies the hypotheses of the emergence theorem. Thus, as a consequence we see
that the gravitational term L1(ϕ;h) emerges from the noncommutative theory Lncom(ϕ; θ), as also
proved in [40]. In other words, there is a function F on the space of 2-tensors, such that for every
hµν we have L1(ϕ;hµν) = Lncom(ϕ;F (hµν)).

Some comments.

1. In [40] the author proved explicitly that gravity emerges from noncommutativy. More pre-
cisely, he gave an explicit expression for the function F (hµν). Here, however, our result is
only about the existence of such function,

2. While above we had to assume Rimemannian signature, our main result (Theorem 3.1) applies
equally well to the Lorentzian signature. It is different, however, of the rough version stated
above.

1In [40] the author considered only Lorentzian spacetimes. However, we notice that in order to get the emergence
phenomena the Lorentzian signature was not explicitly used, so that the same holds in the semi-Rimennanian case.

2In [40] an expansion of the form gµν = ηµν +hµν +hηµν was considered, where h is some function, but the author
concluded that the emergence phenomenon exists only if h = 0. Thus, we are assuming this necessary condition from
the beginning.

3Actually, they are elliptic and thus have Fredholm inverses; this is enough for us.
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3. In [40] analogous emergence phenomena were established in the case of complex scalar fields.
Our main theorem also holds for complex fields.

4. Notice that the scalar theory in the gravitational background (3) can also be written as
Lgrav(ϕ;h) = 〈ϕ, p1

h[�, D1]ϕ〉, where p1
h[x, y] is the first order polynomial (−1) · x + f(h) · y,

where, again f(h) = h. Thus, we can also see the gravitational theory as a polynomial
theory, defined by the same polynomial, but evaluated in different differential operators. On
the other hand, (6) can be written as L0(ϕ) +L2(ϕ; θ), where L2(ϕ; θ) = 〈ϕ, (θ ·D2)ϕ〉. Since
� and D1 are generalized Laplacians, they have Green functions. Thus, if one restricts to the
case of noncommutativity parameters θ which are positive definite (say, e.g., positive definite
symplectic forms), then one can again use our emergence theorem to conclude the reciprocal
fact: that L2(ϕ; θ) emerges from Lgrav(ϕ;h), i.e., that noncommutativity may also emerges
from gravity.

This work is organized as follows. In Section 2 we propose, based on the lines of this introduc-
tion, a formal definition for the notion of strong emergence between parameterized field theories,
and we introduced the emergence problem which is about determining if there is some emergence
phenomenon between such two given theories. We discuss why it is natural (or at least reasonable)
to restrict to a certain class of parameterized field theories, defined by certain “generalized oper-
ators”. In Section 3 our main theorem is stated. We begin by introducing its “syntax”, leaving
the precise formal statement (or “semantic”) to Section 3.1. Before giving the proof, which is a bit
technical and based on induction arguments, in Section 3.2 we analyze some particular cases of the
main theorem trying to emphasize its real scope. In Section 4 the main result is finally proved.

Remark. Although we used the example of gravity emerging from noncommutativity as a mo-
tivating context, we would like to emphasize that this paper is not intended to focus on it or in
building concrete examples. Indeed, our aim is to propose a formalization to the notion of strong
emergence, at least in the context of Lagrangian field theories, and a general strategy to investigate
the existence problem for such phenomena. With this remark we admit the need of additional
concrete applications of the methods proposed here, which should appear in a future work. In
particular, the case of gravity emerging from noncommutative in its difference incarnations, is to
appear in a work in progress.

2 The Strong Emergence Problem

Recall that a field theory on a n-dimensional manifold M (regarded as the spacetime) is given
by an action functional S[ϕ], defined in some space of fields (or configuration space) Fields(M),
typically the space of sections of some real or complex vector bundle E → M , the field bundle.
A parameterized field theory consists of another bundle P → M (the parameter bundle), a subset
Par(P ) ⊂ Γ(P ) of global sections (the parameters) and a collection Sε[ϕ] of field theories, one
for each parameter ε ∈ Par(P ). A more suggestive notation should be S[ϕ; ε]. So, e.g, for the
trivial parameter bundle P ' M ×K we have Γ(P ) ' C∞(M ;K) and in this case we say that we
have scalar parameters. If we consider only scalar parameters which are constant functions, then a
parameterized theory becomes the same thing as a 1-parameter family of field theories. Here, and
throughout the paper, K = R or K = C depending on whether the field bundle in consideration is
real or complex.
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We will think of a parameter ε as some kind of “physical scale”, so that for two given parameters
ε and ε′, we regard S[ϕ; ε] and S[ϕ; ε′] as the same theory in two different physical scales. Notice
that if P has rank l, then we can locally write ε =

∑
εiei, with i = 1, ..., l, where ei is a local basis

for Γ(P ). Thus, locally each physical scale is completely determined by l scalar parameters εi which
are the fundamental ones. In terms of these definitions, Question 1 has a natural generalization:

Question 2. Let S1[ϕ; ε] and S2[ψ; δ] be two parameterized theories defined on the same spacetime
M , but possibly with different field bundles E1 and E2, and different parameter bundles P1 and
P2. Arbitrarily giving a field ϕ ∈ Γ(E1) and a parameter ε ∈ Par1(P1), can we find some field
ψ(ϕ) ∈ Γ(E2) and some parameter δ(ε) ∈ Par2(P2) such that S1[ϕ; ε] = S2[ψ(ϕ); δ(ε)]? In more
concise terms, are there functions F : Par1(P1) → Par2(P2) and G : Γ(E1) → Γ(E2) such that
S1[ϕ; ε] = S2[G(ϕ);F (ε)]?

We say that the theory S1[ϕ; ε] emerges from the theory S2[ψ; δ] if the problem above has a
positive solution, i.e, if we can fully describe S1 in terms of S2. Notice, however, that as stated
the emergence problem is fairly general. Indeed, if P1 and P2 have different ranks, then, by the
previous discussion, this means that the parameterized theories S1 and S2 have a different number
of fundamental scales, so that we should not expect an emergence relation between them. This
leads us to think of considering only the case in which P1 = P2. However, we could also consider the
situations in which P1 6= P2, but P2 = f(P1) is some nice function of P1, e.g, P2 = P1×P1× ...×P1.
In these cases the fundamental scales remain only those of P1, since from them we can generate
those in the product. Throughout this paper we will also work with different theories defined on
the same fields, i.e, E1 = E2. This will allow us to search for emergence relations in which G is the
identity map G(ϕ) = ϕ.

Hence, after these hypotheses, we can rewrite our main problem, whose affirmative solutions
axiomatize the notion of strong emergence we are searching for:

Question 3. Let S1[ϕ; ε] and S2[ϕ; δ] be two parametrized theories defined on the same spacetime
M , on the same field bundle E and on the parameter bundles P1 and P2 = f(P1), respectively.
Does there exists some map F : Par1(P1)→ Par2(f(P1)) such that S1[ϕ; ε] = S2[ϕ, F (ε)]?

Our plan is to show that the problem in Question 3 has an affirmative solution for certain
class of parameterized field theories, which by the absence of a better name we call generalized
parameterized field theories. This will be obtained from the class of differential parameterized
theories by means of allowing dynamical operators which are not necessarily differential, but some
generalized version of them.

2.1 Differential Parameterized Theories

In order to motivate the need for looking at a special class of field theories, we begin by
noticing that typically the field theories are local, in the sense that they are defined by means
of integrating some Lagrangian density L(x, ϕ, ∂ϕ, ∂2ϕ, ...), i.e, S[ϕ] =

∫
M L(j∞ϕ)dxn, where

j∞ϕ = (x, ϕ, ∂ϕ, ∂2ϕ, ...) is the jet prolongation. On the other hand, a quick look at the stan-
dard examples of field theories shows that, when working in a spacetime without boundary, after
integration by parts and using Stoke’s theorem, those field theories can be stated, at least locally,
in the form L(x, ϕ, ∂ϕ) = 〈ϕ,Dϕ〉, where 〈ϕ,ϕ′〉 is a nondegenerate pairing on the space of fields
Γ(E) and D : Γ(E)→ Γ(E) is a differential operator of degree d, which means that it can be locally
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written as Dϕ(x) =
∑
|α|≤d aα(x)∂αϕ, where α = (α1, ..., αr) is some mult-index, |α| = α1 + ...+αr

is its degree and ∂α = ∂α1
1 ◦ ... ◦ ∂αrr , with ∂li = ∂l/∂lxi. This is the case, e.g, of ϕ3 and ϕ4

scalar field theories, the standard spinorial field theories, Einstein-Hilbert-Palatini-Type theories
[33, 34] as well as Yang-Mills-type theories and certain canonical extensions of them [36, 37]. More
generally, recall that the first step in building the Feynman rules of a field theory is to find the
(kinematic part of the) operator D and take its “propagator” .

In these examples, the pairing 〈ϕ,ϕ′〉 is typically symmetric (resp. skew-symmetric) and the
operator D is formally self-adjoint (resp. formally anti-self-adjoint) relative to that pairing. Fur-
thermore, 〈ϕ,ϕ′〉 is usually a L2-pairing induced by a semi-Riemannian metric g on the field bundle
E and/or on the spacetime M , while D is usually a generalized Laplacian or a Dirac-type operator
relative to g [17]. For example, this holds for the concrete field theories (scalar, spinorial and Yang-
Mills) above. The skew-symmetric case generally arises in gauge theories (BV-BRST quantization)
after introducing the Faddeev-Popov ghosts/anti-ghosts and it depends on the grading introduced
by the ghost number [17].

Another remark, still concerning the concrete situations above, is that if the metric g induc-
ing the pairing 〈ϕ,ϕ′〉 is actually Riemannian (which means that the gravitational background is
Euclidean), then 〈ϕ,ϕ′〉 becomes a genuine L2-inner product and D is elliptic and extends to a
bounded self-adjoint operator between Sobolev spaces [20, 23]. Working with elliptic operators is
very useful, since they always admits parametrices (which in this Euclidean cases are the propa-
gators) and for generalized Laplacians the heat kernel not only exists, but also has a well-known
asymptotic behavior [50], which is very nice in the Dirac-type case [11].

From the discussion above, it is natural to focus on parameterized theories such that each
functional S[ϕ; ε] is local and defined by a Lagrangian density of the L(∞ϕ) = 〈ϕ,Dεϕ〉, i.e, are
determined by a single nondegenerate pairing 〈ϕ,ϕ′〉 in Γ(E), fixed a priori by the nature of M
and E, and by a family of differential operators Dε ∈ Diff(E), one for each parameter ε ∈ Par(P ),
where Diff(E) =

⊕
d Diffd(E;E) denotes the K-vector space of all differential operators in E

(which is actually a K-algebra which the composition operation) and Diffd(E;E) is the space of
those operators of degree d. Thus:

Definition 2.1. Let M be a compact and oriented manifold. A background for doing emergence
theory (or simply background) over M is given by the following data:

1. a K-vector bundle E →M (the field bundle);

2. a pairing 〈ϕ,ϕ′〉 in Γ(E);

3. a parameter bundle P →M and a set of parameters Par(P ) ⊂ Γ(P ).

Definition 2.2. A differential parameterized theory in a background over M is a collection of
differential operators Dε ∈ Diff(E) with ε ∈ Par(P ). The parameterized Lagrangian density is given
by L(ϕ; ε) = 〈ϕ,Dεϕ〉. The parameterized action functional is the integral of the parameterized
Lagrangian in M .

2.2 Generalized Parameterized Theories

Sometimes working on the narrow class of field theories defined by differential operators is
not enough. For instance, notice that in building the “propagator” of a Lagrangian field theory
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L(∞ϕ) = 〈ϕ,Dϕ〉 we are actually finding some kind of “quasi-inverse” D−1 for the differential
operator D. For example, in the Riemannian case, where differential operators D ∈ Diffd(E)
extend to bounded operators D̂ ∈ B(W d,2(E)) in the Sobolev space, if D is elliptic, then building
the propagator is equivalent to building parametrices, which in turn can described in terms of
Fredholm inverses for D̂ [17]. On the other hand, in the Lorentzian setting (where the spacetime
manifold is assumed globally hyperbolic and the typical differential operators are hyperbolic),
building the propagator is about finding its advanced and retarded Green functions [7, 6].

Independently of the case, it would be very useful if the quasi-inverse D−1 could exist as a
differential operator, i.e., if D−1 ∈ Diff(E). Indeed, in this case D−1 would also define a differential
field theory. In particular, in the parameterized case, if each Dε has a “quasi-inverse” described
by a differential operator D−1

ε , the collection of them define a parameterized differential theory
over the same background. In turn, from the physical viewpoint, it would be very interesting if
the “quasi-inverse” D−1 of the differential operator D was a genuine inverse for D in the algebra
Diff(E). Indeed, in this case one could use the relations D ◦D−1 = I and D−1 ◦D = I in order to
get global solutions for the equation of motion Dϕ = 0 [45].

Notice, however, that the equations D◦D−1 = I = D−1◦D typically has no solutions in Diff(E).
Indeed, recall that Diff(E) =

⊕
d Diffd(E;E) is a Z≥0-graded algebra with composition, so that if

D−1 was a left or right inverse for D, then deg(D−1) = −degD, which has no solution if degD 6= 0.
This forces us to search for extensions of the algebra Diff(E) such that left and/or right inverses
of differential operators may exist. The obvious idea is to consider extensions by adding a negative
grading to Diff(E) getting the structure of a Z-graded K-algebra, and the natural choice is the
Z-graded algebra Psd(E) of pseudo-differential operators, which are defined via symbol-theoretic
(i.e., microlocal analysis) approach [32, 38].

For constant coefficient operators, the right-inverse really exist in Psd(E). In the case of non-
constant coefficients, for Riemannian spacetimes, elliptic operators satisfying specific ellipticity
conditions admit right-inverse in Psd(E) [28, 14, 47, 48, 2, 29, 3, 25]. For globally hyperbolic
Lorentzian spacetimes, at least when restricted to fields with support in the causal cones, Green
hyperbolic operators (in particular normally hyperbolic operators) have both left and right inverses
in Psd(E) [7, 6]. For flat spacetimes, more abstract examples exist [27]. On the other hand, if a
differential operator is not right-invertible in Psd(E) it could be invertible in another extension of
Psd(E), such as in the class of Fourier-type operators [45].

Our main result does not depend on the extension of Diff(E); the only thing we need is the
existence of a right-inverse for a differential operator as some kind of operator, i.e., we only need
some K-algebra Op(E) such that Diff(E) ⊂ Op(E) ⊂ End(Γ(E)) and such that the subset of
differential operators Op(E) contains nontrivial elements.

Definition 2.3. Let M be a compact and orientable manifold. A generalized background over
M , denoted by GB(M) is given by the same data in Definition 2.1 and, in addition, a K-algebra
Op(E) ⊂ End(Γ(E)) extending Diff(E) and such that Diff(E) ∩ ROp(E) contains non-multiplies
of the identity, where ROp(E) is the set of right-invertible elements of Op(E).

Definition 2.4. A generalized parameterized theory (GPT) in a generalized background GB(M) is
a collection of generalized operators Ψε ∈ Op(E), with ε ∈ Par(P ). The corresponding Lagrangian
density action funcional are defined analogously to Definition 2.2, just replacing Dε with Ψε.

Definition 2.5. We say that a GPT over M is right-invertible if the generalized operators Ψε are
right-invertible, i.e, if they belongs to ROp(E) for every ε ∈ Par(P ).

9



2.3 Polynomial Parameterized Theories

Until this moment we considered theories which are defined by a 1-parameter family of differ-
ential (or more general) operators. As discussed, these provide a description of free theories and of
their parameterized version. We will show, however, that the concept in broad enough to describe
interacting theories as well. In order to do this, recall that the classical examples of interacting
field theories has interacting terms given by multivariate polynomials with variables corresponding
to operators of different theories at interaction, as discussed at the introductory section.

But, in order to talk about polynomials we need a ring of coefficients. In our parameterized
context, the natural idea is to consider coefficients depending on the parameters. This leads us to
look at the ring Map(Par(P );K) of scalar functions f : Par(P ) → K on the space of parameters.
For a given l ≥ 0 and formal variables x1, ..., xr, let Mapl(Par(P );K)[x1, ..., xr] be the corresponding
K-vector space of multivariate polynomials of degree l in the given variables. Thus, an element of
it can be written as pl[x1, ..., xr] =

∑
|α|≤l fα · xα, where fα ∈ Map(Par(P );K) and α is a multi-

index. If Ψ1, ...,Ψr ∈ Op(E) are fixed generalized operators and pl[x1, ..., xr] is a polynomial as
above, recalling that Op(E) is a K-algebra, by means of replacing the formal variables xi with the
operators Ψi we get a family of operators pl[Ψ1, ...,Ψr](ε) =

∑
|α|≤l fα(ε)Ψα, with ε ∈ Par(P ). The

following definitions are then natural.

Definition 2.6. Let M be a compact and oriented manifold. A polynomial parameterized theory
(PPT ) of degree l ≥ 0 in r variables, defined on a generalized context GB(M), is given by an
element pl of Mapl(Par(P );K)[x1, ..., xr] and by operators Ψi ∈ Op(E), with i = 1, ..., r. The
parameterized Lagrangian and the parameterized action functional are

L(∞ϕ; ε) = 〈ϕ, pl[Ψ1, ...,Ψr](ε)ϕ〉 and S[ϕ; ε] =� ϕ, pl[Ψ1, ...,Ψr](ε)ϕ�,

while the extended Lagrangian and the extended action functional are defined analogously by means
of replacing ψi with Ψ̃i.

Now, to check that the definition above really captures the standard examples of interacting
terms, if the interaction to be described is of j > 1 different fields, the corresponding PPT is usually
of j variables and such that E ' ⊕iEi, with i = 1, ..., j, and Ψi = (0, ...,Φi, ..., 0), where Ψi ∈ Γ(E)
and Φi ∈ Γ(Ei). Here, Ei is the field bundle of the ith field theory4.

Remark 2.1. Every PPT of arbitrary degree l and in arbitrary number r of variables is a GPT,
on the same generalized background, with parameterized operator Ψε = pl[Ψ1, ...,Ψr](ε), so that
the concept of GPT is really broad enough to describe both free and interacting terms of a typical
Lagrangian field theory.

Closing this section, notice that a priori we have two possible definitions of right-invertibility
for a PPT. Since by the above every PPT is a GPT, we could say that a PPT is right-invertible
if it is as a GPT, i.e., if for every ε the generalized operator pl[Ψ1, ...,Ψr](ε) is right-invertible.
But we could also define a right-invertible PPT as such that each generalized operator Ψi, with
i = 1, ..., r, is right-invertible. These conditions are very different. Indeed, the first one is about
the invertibility of multivariate polynomials in noncommutative variables, while the second one is
about the invertibility of the variables of a multivariate polynomial. Thus, the first one relies on

4Gauge field with gauge group G are incorporated as follows. Recall that they are principal G-connections, which
can be regarded as 1-forms in M taking values in the adjoint G-bundle Eg. Thus, we just take Ei = TM∗ ⊗ Eg.
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constraints on the polynomials pl, while the second one is a condition only on the operators Ψi.
Luckly, we will need only the second condition, leading us to the define:

Definition 2.7. We say that a PPT in r variables is right-invertible if the defining operators Ψi,
with i = 1, ..., r, are right-invertible.

2.4 Higher Parameter Degree

Notice that, as in Definitions 2.2, 2.5 and 2.6, a parameterized field theory has as parameters
a single element ε ∈ Par(P ). On the other hand, as discussed at the beginning of Section 2, a
physical theory may depend on many fundamental scales. This leads us to consider parameterized
theories depending on a list ε(`) = (ε1, ..., ε`) of elements of Par(P ), i.e, such that ε(`) ∈ Par(P )`.
In this case, we say that the number ` ≥ 1 is the fundamental degree of the parameterized theory.
We will also use the convention that Par(P )0 is a singleton, whose element we denote by ε(0). More
precisely, we have the following definition.

Definition 2.8. LetM be a compact and oriented manifold. A GPT of degree ` ≥ 0 in a generalized
background GB(M) is given by a collection of generalized operators Ψε(`) ∈ Op(E). Particularly,

a PPT of degree (l, `) in r variables is given by an element pl` ∈ Mapl(Par(P )`;K)[x1, ..., xr] and
by operators Ψi ∈ Op(E), with i = 1, ..., r.

3 The Emergence Theorem

After the previous digression we are now ready to state our main theorem. The syntax is the
following:

Main Theorem Syntax. Let M be a compact and oriented manifold with a fixed generalized
background GB(M). Let S1 be a GPT of degree ` and S2 a PPT of degree (l, `′) in r variables.
Suppose that:

1. S1 depends on the fundamental parameters ε(`) in a “linear” way;

2. the PPT theory S2 is right-invertible and its coefficients fα are “suitable” functions in a sense
that depends on r, l and `′.

Then S1 emerges from S2.

In order to turn this syntax into a rigorous statement, let us described what we meant by
a “linear” dependence on the parameters and by “suitable” functions. Since the term “linear”
typically means “preservation of some algebraic structure”, it is implicit that we will need to
assume some algebraic structure on the space of parameters Par(P )`. To begin, we will require an
associative and unital K-algebra structure, whose sum and multiplication we will denote by “+`”
and “∗`”, respectively, or simply by “+” and “∗” when the number ` of fundamental parameters is
implicit. Thus,

Definition 3.1. A GPT of degree ` in a generalized background GB(M) is linear (or homomorphic)
if Par(P )` has a K-algebra structure and the rule ε(`) 7→ Ψε(`) is a K-algebra homomorphism.
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Some properties of the emergence phenomena (as those proved in Subsection 4.1) depends only
on the preservation of sum “+”, scalar multiplication, or product “∗”. This motivates the following
definition:

Definition 3.2. Under the same notations and hypotheses of the last definition, we say that a GPT
is additive (resp. multiplicative) if the rule ε(`) 7→ Ψε(`) is K-linear (resp. a multiplicative monoid
homomorphism). If it is only required Ψcε(`) = cΨε(`) we say that the GPT is scalar invariant.

On the other hand, notice that in a PPT the generalized operators Ψ always appear multiplied
by a number f(ε(`)) ∈ K, which depends on the parameters ε(`). However, if one recalls that the
parameters are interpreted as fundamental scales, it should be natural to consider parameters ε(`)
(instead of numbers f(ε(`)) ∈ K assigned to them) multiplying the operators Ψ. Thus, we need an
action ·` : Par(P )` × Op(E) → Op(E). But, since by Definition 2.3 and by the above assumption
both Op(E) and Par(P )` are K-algebras, it is natural to require some compatibility between the
action ·` and these K-algebra structures. More precisely, we will assume that ·` is K-bilinear and
that the following condition are satisfied for every Ψ,Ψ′ ∈ Op(E) and every ε(`) ∈ Par(P )`:

(ε(`) ·` Ψ) ◦Ψ′ = ε(`) ·` (Ψ ◦Ψ′) and (ε(`) ∗ δ(`)) ·` Ψ = ε(`) ·` (δ(`) ·` Ψ). (7)

Remark 3.1. If not only conditions (7) are satisfied, but also

Ψ ◦ (ε(`) ·` Ψ′) = ε(`) ·` (Ψ ◦Ψ′) (8)

is satisfied for every ε(`) and every Ψ,Ψ′, then the algebra Par(P )` must be commutative. See
Comment 3. On the other hand, if (7) is satisfied for every ε(`) and every Ψ,Ψ′, but (8) is satisfied
for every ε(`) and a single Ψ′ = Ψ, then Par(P )` need not be commutative.

Now, to make a rigorous sense of Condition 2 in the previous syntactic statement, let us clarify
what we mean by a “suitable” function f ∈ Map(Par(P )`;K). In few words, a function f is
“suitable” if it belongs to some functional calculus. For us, a functional calculus of degree ` is a
subset C`(P ;K) of Map(Par(P )`;K) endowed with a function Ψ`

− : C`(P ;K) → Op(E) assigning
to each function f ∈ C`(P ;K) a generalized operator Ψ`

f , which is compatible with the action ·`,
in the sense that

Ψ`
f ◦ [f(ε(`))Ψ] = ε(`) ·` Ψ. (9)

Definition 3.3. A functional calculus is unital if C`(P ;K) contains the constant function f ≡ 1.

We notice that, although our main emergence theorem will depend on the choice of a unital
functional calculus, the existence of them is not an obstruction.

Lemma 3.1. In every generalized background GB(M), for every ` ≥ 0 there exists a unique func-
tional calculus of degree ` such that C`(P ;K) is the set of nowhere vanishing functions f : Par(P )` →
K if ` > 0, and the constant function f ≡ 1 if ` = 0.

Proof. First, assume existence for every ` ≥ 0. Uniqueness in the case ` = 0 is obvious. In the case
` > 0, from the existence hypothesis we have Ψ`

f ◦ [f(ε(`))Ψ] = ε(`) ·` Ψ for every f , Ψ and ε(`), so

that Ψ`
f ◦Ψ = (ε(`) ·` Ψ)/f(ε(`)). In particular, for Ψ = I, we get Ψ`

f = (ε(`) ·` I)/f(ε(`)), proving

uniqueness. In order to prove existence, for each ` ≥ 0 define Ψ`
f = (ε(`) ·` I)/f(ε(`)), so that

Ψ`
f ◦ [f(ε(`))Ψ] = (ε(`) ·` I) ◦Ψ = ε(`) ·` (I ◦Ψ) = ε(`) ·` Ψ,

where in the last step we used the compatibility between ·` and ◦, as described in (7).
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Finally, let us state a few more necessary technical assumptions:

1. The K-algebra of fundamental parameters Par(P )` is required to have square roots. This
means that the function ε(`) 7→ ε(`) ∗ ε(`) is surjective, i.e, for every ε(`) we there is another√
ε(`) ∈ Par(P )` such that

(
√
ε(`))2 =

√
ε(`) ∗

√
ε(`) = ε(`).

2. Right multiplication by I is injective. More precisely, for every ε(`), δ(`) ∈ Par(P )`, if ε(`)·`I =
δ(`) ·` I, then ε(`) = δ(`), i.e., ϕi = δi for i = 1, ..., `.

Some comments concerning these technical conditions:

1. The square roots
√
ε(`) in condition 1. need not be unique.

2. Condition 2 above and compatibility conditions (7) imply that the right multiplication r`Ψ :
Par`(P ) → Op(E) is injective for every right-invertible operator Ψ ∈ ROp(E). Thus, for
every such Ψ, the map r`Ψ is actually an isomorphism Par(P )` ' Par(P )` ·` Ψ between its
domain and its image.

3. If both compatibility conditions (7) and (8) are satisfied, then Condition 2 above implies that
the K-algebra (Par(P )`, ∗`) is commutative. This follows basically from the Eckmann-Hilton
argument [21, 24].

Now, suppose that Par(P )` has a K-algebra structure. Then Par(P )k` has an induced K-
algebra structure, with k > 0, given by componentwise sum and multiplication. If Par(P )` has
square roots, then Par(P )k` has too, given by

√
ε(k`) = (

√
ε(`1), ...,

√
ε(`k)), where ε(k`) =

(ε(`1), ..., ε(`k)) and ε(`i) = (εi,1, ..., εi,`). On the other hand, since Par(P )l` embeds in Par(P )k`

as ε(`) 7→ (ε(`1), ..., ε(`l), 0, ..., 0), if l ≤ k, it follows that every action ·k` of Par(P )k` can be pulled
back to an action ·l` of Par(P )l`.

If Ck`(P ;K) ⊂ Map(Par(P )k`;K) is a set of functions, pullback by the inclusion ı : Par(P )l` ↪→
Par(P )k` above defines a new set of functions Cl`;k(P ;K) ⊂ Map(Par(P )l`;K). Furthermore, if
Ck`(P ;K) is actually a functional calculus defined by a map Ψk`

− : Ck`(P ;K)→ Op(E), we have an

induced functional calculus in Cl`;k(P ;K), defined by the function Ψl`;k
− : Cl`;k(P ;K)→ Op(E) such

that Ψl`;k
ı◦f = Ψk`

f . Notice that if Ck`(P ;K) is unital and/or satisfies the third technical conditions
above, then Cl`;k(P ;K) does.

3.1 Formal Statement

We can now rigorously state the main result of this paper. First, notice that the three technical
conditions of last section are about algebraic properties of the space Par`(P ) of fundamental pa-
rameters and on its action on the algebra Op(E) of generalized operators. On the other hand, recall
from Definition 2.3 that both Par`(P ) and Op(E) are part of the data defining a generalized back-
ground. Thus, those conditions are actually conditions on the underlying generalized background
GB(M). This motivates the following definition.

Definition 3.4. Let M be a compact and oriented smooth manifold and let ` ≥ 0 and k > 0 be
non-negative integers. We say that a generalized background GB(M) is of (`, k)-type if:
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1. the space of fundamental parameters Par`(P ) has an structure of K-algebra with square roots;

2. the induced K-algebra Park`(P ) acts in Op(E) by an action ·k` which is injective at the
identity operator I and compatible with a functional calculus Ck`(P ;K).

Our main theorem is then the following:

Theorem 3.1 (Emergence Theorem). Let M be a compact and oriented manifold and let GB(M)
be a generalized background of (`, k)-type, with k > 0. Let S1 be a GPT of degree ` and let S2 be a
PPT of degree (l, `′) in r variables, where `′ = k′`, with 0 < k′ ≤ k, defined on GB(M). Assume:

1. S1 is homomorphic;

2. S2 is right-invertible and the coefficient functions fα : Par(P )k
′` → K belongs to the functional

calculus Ck′`;k(P ;K).

Then S1 emerges from S2.

Before proving the emergence theorem, let us say that the proof which will be given here can
be generalized, with basically the same steps and arguments, in some directions (for more details,
see [35]):

1. the spacetime manifold M need not be compact nor orientable. Notice that these conditions
were used only to define integrals. Thus, instead, one could only assume integrability condi-
tions on global sections (such as compact supportness) and consider Lagrangians as taking
values on general densities.

2. the space of fundamental parameters need not be a K-algebra, but a more lax algebraic entity.
As will be clear during the proofs, we only need the “nonnegative” part of a K-algebra.
More precisely, what we really need is that the set Par(P )` can be regarded as the subset
of a K-algebra A, which is closed by sum, multiplication, and scalar multiplication by R≥0.
Notice that if P is a K-algebra bundle, then Par(P )` can always be realized as a subset of
the K-algebra Γ(P )`.

3. the coefficient functions fα need not be scalar functions, but actually maps fα : Par(P )`
′ →

Par(P )`, so that the scalar multiplication fα(ε(`))Ψ is replaced by the action ·`. The notions
of functional calculus, etc., can be defined in an analogous way such that the syntax of the
theorem remains the same5.

3.2 Some Particular Cases

Let M be a compact and orientable manifold, K = C an E = M × C the complex trivial line
bundle, regarded as a field bundle with space of fields given by complex scalar functions C∞(M ;C),
endowed with the pairing 〈ϕ,ψ〉 = ϕψ. In addition, let P = M × C, viewed now as the parameter
bundle, and take the constant functions as parameters, so that Par(P ) ' C. This data clearly
defines a background over M . Let Op(E) be the complex algebra Psd(M×C) of pseudo-differential

5Recall from the discussion at Introduction that parameter-valued coefficient functions plays an important role in
the description of emergent gravity in terms of emergence phenomena. Further explanations will appear in a work in
progress.
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operators. By the discussion of Section 2.2 we then have a generalized background. Notice that
Par(P ) ' C is a C-algebra with square roots and with their action in Psd(M × C) via scalar
multiplication, if z · I = z′ · I, then clearly z = z′. Finally, let C1(P ;C) be the unital functional
calculus given by nowhere vanishing functions f : Par(P ) ' C → C, as in Lemma 3.1, defining a
generalized background over M of (1, 1)-type.

As a particular case of Theorem 3.1 we then have:

Corollary 3.1. Let M be a compact and oriented manifold and let GB(M) be the generalized
background of (1, 1)-type defined above. Let D ∈ Diff(M×C) be any idempotent differential operator,
i.e., there exists n > 0 such that D2n = Dn. For given r > 0 and l ≥ 0, let pl[x1, .., xr] be
a polynomial of degree l in r variables and whose coefficients fα : C → C are nowhere vanishing
functions. Let D1, ..., Dr ∈ Diff(M×C) other differential operators and assume one of the following
conditions:

1. the operators Di, with i = 1, ..., r are of constant coefficient;

2. there exists a Riemannian metric in M such that Di, with i = 1, ..., r are strongly elliptic in
the sense of any of references [28, 14, 47, 48, 2, 29, 3, 25];

3. there exists a Lorentzian metric in M such that M is globally hyperbolic and each Di, with
i = 1, ..., r, is Green hyperbolic.

Then theory L1(∞ϕ; ε) = ϕεDnϕ emerges from theory

L2(∞ϕ; δ) = ϕpl[D1, ..., Dr]ϕ =
∑
|α|≤l

ϕfα(δ)Dαϕ.

Proof. Since D2n = Dn ◦ Dn = Dn, the rule ε 7→ εDn is clearly homomorphic. On the other
hand, from the discussion on Section 2.2 each of the three hypotheses above implies that Di, for
i = 1, ..., r, are right-invertible as objects of Psd(M × C). Since the coefficient functions fα are
nowhere vanishing and therefore belong to the functional calculus of GB(M), the result follows
from Theorem 3.1.

Remark 3.2. From Comment 1, the same construction of GB(M) holds if M is a bounded open
set of some RN . From Comment 3 it remains valid if Par(P ) ' R≥0 are the constant non-negative
real functions and the functional calculus C1(R≥0;C) consists of the nowhere vanishing functions
taking values in R≥0. The difference, in this case, is that both ε and fα(δ) are real numbers, so
that the Lagrangians in the last corollary are real too. See [35] for further details.

Other generalizations of the last corollary, and particular cases of Theorem 3.1, are the following:

1. We can consider other kind of fields. In Corollary 3.2 we considered a generalized background
defined on the trivial line bundle M × C. Notice, however, that if E is any complex bundle
with an Hermitian metric at the fibers, then the space of pseudo-differential operators Psd(E)
remains well-defined as a Z-graded C-algebra, so that the same thing holds equally well if
instead of scalar fields one considered vector fields and tensor fields.
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2. We can consider other kind of parameters. In Corollary 3.2 we considered ` = 1 and Par(P ) '
C (or R≥0, due to the remark above). We could consider, more generally, Par(P ) as any
complex algebra with square roots endowed with an action · : Par(P ) × Psd(E) → Psd(E),
where E is a complex vector bundle (due to the last remark), such that conditions (7) and
Condition 2 are satisfied. Let Ψ0 be such that Ψn

0 is idempotent and suppose that (8) are
satisfied for fixed Ψ = Ψ′ = Ψn

0 . Then the rule ε 7→ ε ·Ψn
0 is an algebra homomorphism and

Corollary 3.2 holds equally well.

Example 3.1 (operator parameters). Take P = End(E), so that Γ(P ) ' End(Γ(E)), which is
an associative C-algebra with an obvious action in Psd(E) by composition such that conditions
(7) and Condition 2 are clearly satisfied. Let Ψ0 ∈ Psd(E) be such that Ψn

0 is idempotent and
let Z(Ψn

0 ) denote its centralizer, i.e., the subalgebra of all elements σ ∈ End(Γ(E)) such that
σ ◦Ψn

0 = Ψn
0 ◦σ, so that (8) is satisfied. Then take Par(P ) as some subalgebra of Z(Ψn

0 ) with
square roots. As a concrete example, one can take Par(P ) as the subalgebra of nonnegative
bounded self-adjoint operators in Γ(E) which commutes with Ψn

0 .

3. We can consider other kinds of parameterized operators. In Corollary 3.2 and in the above
generalizations we considered only parameterized operators of the form Ψε = ε · Ψ, which
forced us to assume Ψ idempotent. Indeed, notice that the nilpotency condition was used
only to ensure that ε 7→ ε·Ψ is an algebra homomorphism. More generally, let Par(P ) be some
complex algebra with square roots endowed with a representation ρ : Par(P )→ EndC(Γ(E))
and define the action of Par(P ) in Psd(E) by ε ·Ψ := ρ(ε) ◦Ψ, so that the second condition
in (7) is clearly satisfied. If the action is faithful, then Condition 2 is satisfied too. Finally, if
the action is compatible with the algebra structure of Psd(E), i.e., if

ρ(ε) ◦ (Ψ ◦Ψ′) = (ρ(ε) ◦Ψ) ◦ (ρ(ε) ◦Ψ′) (10)

for every ε ∈ Par(P ) and Ψ,Ψ′ ∈ Psd(E), then the first part of (7) is also satisfied and for
every fixed Ψ the rule ε 7→ ρ(ε) ◦Ψ is homomorphic, so that Corollary 3.2 holds analogously.

Example 3.2. Recall that a ring R is Boolean if each element is idempotent, i.e., if x∗x = x
for every x ∈ R. Let Bol(P ) be a Boolean ring6 and take Par(P ) = Bol(P ) ⊗Z C. Let
ρ : Bol(P ) → EndC(Γ(E)) be a faithful representation of this Boolean ring and notice that
(10) is immediately satisfied (recall that every Boolean ring is commutative). Tensoring with
C we get a faithful representation of Par(P ) = Bol(P )⊗ZC. Finally, notice that every Boolean
ring has square roots, since for every x we have x2 = x, i.e.,

√
x = x.

Example 3.3 (a more concrete case). Let P = M × A be a trivial algebra bundle, so that
Γ(P ) ' C∞(M ;A). Let Bol(A) ⊂ A be the Boolean ring of the idempotent elements of
A and take Bol(P ) as the set of functions f : M → A such that f(x) ∈ Bol(A) for every
x ∈ M . Now, let ρ : A→ End(F ) be a faithful representation of A in the typical fiber of E.
It induces a faithful representation ρ : Γ(P ) → EndC(Γ(E)) and, therefore, by restriction a
faithful representation of Par(P ).

6We suspect that the same holds, more generally, for Von Neumann regular rings, but we do not have a proof of
this.
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4 Proof of Theorem 3.1

In this section we prove our emergence theorem. The proof will be inductive on the number r of
variables of S2. In order to prove the base case, i.e., the emergence theorem when S2 is a univariate
polynomial, we will need to use some additivity and multiplicativity properties of the emergence
phenomena. In turn, the induction step will be based on a technical lemma.

In order to better understand the whole proof, this section will be organized as follows. In
Subsection 4.1 we prove the basic properties of the emergence phenomena needed to prove the
base step. In Subsection 4.2 this base step is proved. In Subsection 4.4, Theorem 3.1 is finally
demonstrated, with the technical lemma used for the induction step being presented before in
Subsection 4.3.

4.1 Properties of Emergence Phenomena

• In the following discussion, when the degree of a GPT does not matter it will be made implicit
in order to simplify the notation. In these cases we will also write ε instead of ε(`). Thus,
from now on, by saying “let Ψε be a GPT over GB(M)” we mean that it is any GPT of any
degree `.

Definition 4.1. Let Ψε and Ψ′ε′ be GPT over the same generalized background GB(M). The sum
and the composition between them are the GPT over GB(M) given by Ψ+

(ε,ε′) = Ψε + Ψ′ε′ and

Ψ◦(ε,ε′) = Ψε ◦Ψ′ε′ . Notice that the sum and the composition between GPT of degrees ` and `′ has

degree `+ `′.

Lemma 4.1. Let Ψ1,ε, Ψ2,δ and Ψ3,κ be three GPT over the same generalized background GB(M)
with fundamental parameter algebra Par(P )`, where ` is the degree of the first GPT, such that:

1. Ψ1,ε is multiplicative;

2. Ψ1,ε emerges from both Ψ2,δ and Ψ3,κ.

Then Ψ1,ε emerges from the compositions S2,δ ◦ S3,κ and S3,κ ◦ S2,δ.

Proof. From the second hypothesis we conclude that Ψ1,ε = Ψ2,F (ε) and Ψ1,ε = Ψ3,G(ε) for certain
functions F,G. Composing them and using the first hypothesis, we find

Ψ1,ε2 = Ψ1,ε ◦Ψ1,ε = Ψ2,F (ε) ◦Ψ3,G(ε) = Ψ3,G(ε) ◦Ψ2,F (ε).

Let
√
− : Par(P )` → Par(P )` be a function selecting to each fundamental parameter ε′ a square

root
√
ε′, which exists by hypothesis. Then, for every ε′ one gets

Ψ1,ε′ = Ψ2,F (
√
ε′) ◦Ψ3,G(

√
ε′) = Ψ3,G(

√
ε′) ◦Ψ2,F (

√
ε′) = Ψ◦H(ε′),

finishing the proof.

In a completely analogous way one proves the following.

Lemma 4.2. Let Ψ1,ε, Ψ2,δ and Ψ3,κ be three GPT over the same generalized background GB(M),
such that:

1. Ψ1,ε is scalar invariant;

2. Ψ1,ε emerges from both Ψ2,δ and Ψ3,κ.

Then Ψ1,ε also emerges from the sum Ψ2,δ + Ψ3,κ.
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4.2 Base of Induction

In this subsection, using the additivity and multiplicativity properties of last section, we will
prove the following lemma, which will be the base of the induction step in the proof of Theorem
3.1:

Lemma 4.3. Let GB(M) be generalized background of (`, k)-type. Let Ψ1,ε(`) be a GPT of degree `
and let Ψ2,δ(`′) a PPT of degree (l, `′) in r = 1 variables, defined on GB(M) and such that `′ = k′`,
with 0 < k′ ≤ k. Suppose that:

1. Ψ1,ε(`) is homomorphic;

2. Ψ2,δ(`′) is right-invertible and the coefficient functions fα : Par(P )k
′` → R of the polynomial

pl`′ defining Ψ2,δ(`′) belongs to the functional calculus Ck′`;k(P ;K).

Then Ψ1,ε(`) emerges from Ψ2,δ(`′).

We begin with another lemma.

Lemma 4.4. Let Ψ1,ε(`) be a GPT of degree ` defined on a generalized background GB(M) of
(`, k)-type, with k > 0. Then Ψ1,ε(`) emerges from every GPT Ψ2,δ(`′) over GB(M), which has

degree `′ = k′` for some 0 < k′ ≤ k, and such that Ψl
2,δ(`′) = g(δ(`′))Ψl, with l ≥ 0, where Ψ is

right-invertible and g ∈ Ck′`;k(P ;K).

Proof. Since Ψ0 = I is right-invertible, the case l = 0 is a particular setup of case l = 1. Further-
more, if l > 1 and Ψ is right-invertible, then Ξ = Ψl is right-invertible too, so that the case l > 1
also follows from the l = 1 case. Thus, it is enough to work with l = 1. Thus, let RΨ ∈ Op(E)
be a right-inverse for Ψ and notice that to find an emergence from Ψ1,ε(`) to Ψ2,δ(`′) is equivalent

to building a function F : Par(P )` → Par(P )`
′

such that Ψ1,ε(`) ◦RΨ = g(F (ε(`)))I. From (9) and
from the fact that the right multiplication by right-invertible operators is injective, last condition is
in turn equivalent to the existence of F such that Ψ`′

g ◦Ψ1,ε(`) ◦RΨ = F (ε(`)) ·`′ I, but this actually

defines F via Par(P )`
′ ·`′ I ' Par(P )`

′
.

Sketch of proof of Lemma 4.3. Given a PPT Ψ2,δ(`′) =
∑

i fi(δ(`
′))Ψi in the hypothesis, for each

j = 1, ..., l let Γj =
∑l

i=j fi(δ(`
′))Ψi−1 and notice that

Ψ2,δ(`′) = (

l∑
i=1

fi(δ(`
′))Ψi−1) ◦Ψ = Γ1(δ(`′)) ◦Ψ.

Since Ψ is right-invertible and GB(M) is of (`, k)-type, with k > 0, from Lemma 4.4 it follows that
Ψ1,ε(`) emerges from 1 ·Ψ7. Thus, if Sε(`) itself emerges from Γ1 one can use Lemma 4.1 to conclude
that it actually emerges from Γ1 ◦Ψ. In turn, notice that Γ1 = f1 · I+ Γ2 ◦Ψ = Γ2 ◦Ψ + f1 · I. But,
since I is right-invertible and since f1 ∈ C`′;k(P ;K), from Lemma 4.4 we get that Sε(`) emerges
from the theory defined by f1 · I, while by the same argument we see that Γ2 ◦ Ψ emerges from
f1 · I. Therefore, if Ψ1,ε(`) emerges from Γ2 ◦ Ψ we will be able to use Lemma 4.2 to conclude
that it emerges from Γ1, finishing the proof. It happens that, as done for Γ1 ◦ Ψ, we see that Γ2

7Here we are using explicitly that the functional calculus is unital.
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emerges from Ψ and we already know that Ψ1,ε(`) emerges from Ψ. Thus, our problem is to prove
that Ψ1,ε(`) emerges from Γ2 instead of from Γ1. A finite induction argument proves that if Ψ1,ε(`)

emerges from Γl, then it emerges from Γj , for each j = 1, ..., l. Recall that Γl = fl · Ψl−1. Since
fl ∈ C`′;k(P ;K) we can use Lemma 4.4 to see that Sε(`) really emerges from Γl.

4.3 Technical Lemma for Induction Step

Also as a consequence of the properties of the emergence phenomena, we can now prove the
following technical lemma, which will be used in the induction step of Theorem 3.1.

Lemma 4.5. Let Ψ1,ε be a GPT over a generalized background GB(M). Given l ≥ 1, let Ψ2j ,δj

and Ψ3s,κs, with 1 ≤ j, s ≤ l be two families of GPT, also defined over GB(M). Assume that:

1. Ψ1,ε is homomorphic;

2. Ψ1,ε emerges from Ψ2j ,δj and from Ψ3s,κs for every j, s.

Then Ψ1,ε emerges from Ψs
δJ ,κJ

=
∑s

j=1 Ψ2j ,δj ◦Ψ3j ,κj , for every s = 1, ..., l

Proof. We proceed by induction in l. First of all, notice that from the first two hypotheses and
from Lemma 4.1 we see that Ψ1,ε emerges from the composition Ψ2j ,δj ◦Ψ3j ,κj for every j = 1, ..., l.
In particular, it emerges from Ψ1

δ1,κ1
= Ψ21,δ1 ◦ Ψ31,κ1 , which is the base of induction. For every

m = 1, ..., l− 1 it also emerges from Ψ2m+1,δm+1 ◦Ψ3m+1,κm+1 . For the induction step, suppose that
Ψ1,ε emerges from Ψm

δJ ,κJ
=

∑m
j=1 Ψ2j ,δj ◦ Ψ3j ,κj for every 1 ≤ m ≤ l − 1 and let us show that it

emerges from Ψm+1
δJ ,κJ

. Notice that

Ψm+1
δJ ,κJ

=

m+1∑
j=1

Ψ2j ,δj ◦Ψ3j ,κj =

m∑
j=1

(Ψ2j ,δj ◦Ψ3j ,κj ) + Ψ2m+1,δm+1 ◦Ψ3m+1,κm+1

= Ψm
δJ ,κJ

+ (Ψ2m+1,δm+1 ◦Ψ3m+1,κm+1).

From the induction hypothesis Ψ1,ε emerges from Ψm
δJ ,κJ

, while by the above it also emerges from
Ψ2m+1,δm+1 ◦Ψ3m+1,κm+1 . The result then follows from Lemma 4.2.

4.4 Proof of Theorem 3.1

We can finally proof our emergence theorem. For the convenience of the reader, we state it
again.

Theorem 3.1 (Emergence Theorem) Let M be a compact and oriented manifold and let GB(M)
be a generalized background of (`, k)-type, with k > 0. Let Ψ1,ε(`) be a GPT of degree ` and let
Ψ2,δ(`) be a PPT of degree (l, `′) in r variables, where `′ = k′`, with 0 < k′ ≤ k, defined on GB(M).
Suppose that:

1. Ψ1,ε(`) is homomorphic;

2. Ψ2,δ(`) is right-invertible and the coefficient functions fα : Par(P )k
′` → K belongs to the

functional calculus Ck′`;k(P ;K).
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Then Ψ1,ε(`) emerges from Ψ2,δ(`).

Proof. The proof will be done by induction in r. The base of induction is Lemma 4.3. Sup-
pose that the theorem holds for each r = 1, ..., q and let us show that it holds for r = q +
1. Let pl`′;q+1[x1, ..., xr+1] =

∑
|α|≤l fα · xα be a multivariate polynomial with coefficients in

Map(Par(P )`
′
;K), which actually belong to Ck′`;k(P ;K). Since for every commutative ring R we

have R[x1, ..., xq+1] ' R[x1, ..., xq][xq+1], given right-invertible generalized operators Ψ1, ...,Ψq+1 ∈
Op(E) one can write

Ψ2,δ(`) = pl`′;q+1[Ψ1, ...,Ψr+1] =
∑
j

p
lj
`′;q,j [Ψ1, ...,Ψq] ·Ψj

q+1,

where each p
lj
`′;q,j [x1, ..., xq] ∈ Maplj (Par(P )`

′
;K)[x1, ..., xq] has coefficients which belongs to belongs

to Ck′`;k(P ;K). Thus, by the induction hypothesis, Ψ1,ε(`) emerges from p
lj
`′;q,j [x1, ..., xq]. Since Ψq+1

is right-invertible and since the functional calculus is unital, from Lemma 4.4 we see that Ψ1,ε(`)

emerges from Ψj
q+1. The result then follows from Lemma 4.5.
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