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Backward Symbolic Optimal Reachability in Weighted Timed Automata

We address the problem of computing the infimum accumulated weight for the reachability of some goal location in weighted timed automata. While there already exist efficient techniques to solve this problem, we propose here a backwards symbolic algorithm computing the accumulated weight to the goal, instead of the accumulated weight from the initial state. Going backwards has in itself a few advantages: most notably it does not require any extrapolation operation to ensure termination. Also it may be more efficient than going forward if the set of co-reachable states is smaller than the set of reachable states. Backwards algorithms are also instrumental in several problems beyond reachability, like control problems for instance. We obtain our backward algorithm by proposing extensions of the classical action and time predecessor operations on zones to account for weights. We have implemented the approach and report on its performance.

Introduction

The design of timed systems, including for instance critical real-time embedded systems, is a challenging issue, with high stakes. Safety is of course of particular interest but given the limited resources (e.g., memory or energy) such systems usually have, so is optimisation.

This has lead to the development of dedicated formalisms, like timed automata [START_REF] Alur | A theory of timed automata[END_REF] and extensions of those, namely weighted (or priced) time automata [START_REF] Alur | Optimal paths in weighted timed automata[END_REF][START_REF] Behrmann | Minimum-cost reachability for priced timed automata[END_REF], to account for resource consumption.

The success of those formalisms relies on the availability of efficient algorithms and data structures (in particular Difference Bound Matrices, DBM) for their analysis, and of state-of-the-art tools, like Uppaal [START_REF] Larsen | Uppaal in a Nutshell[END_REF], implementing them. Those successful techniques have been extended to the setting of weighted timed automata [START_REF] Larsen | As cheap as possible: Efficient cost-optimal reachability for priced timed automata[END_REF] and then further refined [START_REF] Rasmussen | Resource-optimal scheduling using priced timed automata[END_REF][START_REF] Rasmussen | On using priced timed automata to achieve optimal scheduling[END_REF][START_REF] Bouyer | Symbolic optimal reachability in weighted timed automata[END_REF], retaining much of their efficiency, and are available in tools like Uppaal-CORA 1 and TiAMo 2 .

Much of the efficiency of those tools for solving infimum weight reachability in weighted timed automata comes from the extension of zones, representing in a symbolic manner the values of the clocks, to weighted zones including an expression of the weight from the initial state. This extension of course comes with extensions of the algorithms to efficiently handle zones represented as DBMs. Based on that data structure the exploration of the state-space classically proceeds in a forward manner, by iteratively computing successors, rather than backwards, by computing predecessors. This is mostly due to the fact that state-of-the-art tools extend timed automata with finite-range integer variables for modelling convenience, and that there are many predecessors by a transition with an integer variable assignment like i ← 2.

The backwards approach has some advantages of its own however: most notably it does not require any extrapolation operation to ensure termination [START_REF] Bouyer | Model checking timed automata[END_REF][START_REF] Herbreteau | Better abstractions for timed automata[END_REF], while its treatment in the weighted case is not trivial [START_REF] Bouyer | Symbolic optimal reachability in weighted timed automata[END_REF] (and arguably it is already the case for plain timed automata [START_REF] Bouyer | Untameable timed automata![END_REF]). Also it may be more efficient than going forward if the set of co-reachable states is smaller than the set of reachable states. Backwards algorithms are also instrumental in several problems beyond reachability, like control problems for instance [START_REF] Maler | On the synthesis of discrete controllers for timed systems[END_REF][START_REF] Cassez | Efficient on-the-fly algorithms for the analysis of timed games[END_REF]. A hybrid forward / backward approach like that of [START_REF] Cassez | Efficient on-the-fly algorithms for the analysis of timed games[END_REF], generalised in [START_REF] Enevoldsen | Abstract dependency graphs and their application to model checking[END_REF], also allows to circumvent the "predecessor of assignment" problem mentioned above.

We therefore propose here an extension of the classical time and action predecessors for timed automata, lifting them to the weighted case in the spirit of [START_REF] Larsen | As cheap as possible: Efficient cost-optimal reachability for priced timed automata[END_REF], by encoding in zones the accumulated weight to the goal, instead of the accumulated weight from the start. This allows us to easily adapt the classical exploration algorithm of [START_REF] Rasmussen | On using priced timed automata to achieve optimal scheduling[END_REF] so that it works in a backward manner. We have implemented this algorithm and report on its performances.

Backwards algorithms for weighted timed automata have already been studied in more general contexts: for probabilistic timed automata in [START_REF] Berendsen | Probably on time and within budget: On reachability in priced probabilistic timed automata[END_REF][START_REF] Berendsen | Fortuna: Model checking priced probabilistic timed automata[END_REF], where the property studied is cost-bounded reachability with only non-negative weights, and for optimal timed control in [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF] with an additional assumption on weight cycles. The main difference with our work is that in both cases, they are not interested in the efficient representation and computation of the symbolic states, which is the crux of this article.

The paper is organized as follows: Section 2 recalls the basics of weighted timed automata, Section 3 introduces the operators needed to perform backward infimum weight reachability and the corresponding algorithm. We proceed with a small experimental evaluation in Section 4 and, finally, we conclude in Section 5.

Weighted Timed Automata

We denote by R the set of real numbers, by Q the set of rational numbers, by Z the set of integers, and by N the set of natural numbers (including 0). The subset of non-negative real numbers is denoted by R ≥0 .

For any sets A and B we denote by B A the set of mappings from A to B.

A clock constraint on finite set X is a conjunction of expressions of the form x ∼ k, with x ∈ X, k ∈ N, and ∼∈ {<, ≤, =, ≥, >}. We denote by C(X) the set of clock constraints, and by C (X) its subset where ∼∈ {<, ≤}.

Definition 1 (Weighted Timed Automaton). A weighted timed automaton (WTA) is a tuple A = (L, l 0 , X, E, Inv, weight) where:

-L is a finite set of locations; -l 0 ∈ L is an initial location; -X is a finite set of clocks; -E ⊆ L × C(X) × 2 X × L is a finite set of edges. Let (l, g, R, l ) ∈ E. This
corresponds to an edge in the automaton with source location l, guard g, set of clocks to reset to zero R, and target location l ; -Inv ∈ (C (X)) L is a mapping giving for each location an invariant; -weight : Z L∪E is a weight mapping giving for each edge a discrete weight and for each location a weight rate.

A clock valuation is a mapping from X to R ≥0 . We denote by 0 the null valuation such that ∀x, 0(x) = 0. Given a clock x and

d ∈ R ≥0 , v + d is the valuation such that ∀x, (v + d)(x) = v(x) + d. Valuation v -d is defined similarly. Given a set of clocks to reset to zero, R, v[R] is the valuation such that v[R](x) = 0 if x ∈ R and v(x) otherwise.
Given a clock constraint g, we say that valuation v satisfies g, denoted by v |= g if substituting each clock x with v(x) in g gives a boolean expression that evaluates to true. In the sequel, we often slightly abuse the notations and denote also by g the set of valuations that satisfy g.

A state of a WTA is a tuple (l, v, w) ∈ L × R X ≥0 × R. The semantics of a WTA is a timed transition system [START_REF] Larsen | Model-checking for real-time systems[END_REF]: Definition 2 (Semantics of a WTA). The semantics of WTA A = (L, l 0 , X, E, Inv, weight) is the timed transition system (Q, q 0 , →) where:

-Q is the subset of L × R X ≥0 × R such that for all (l, v) ∈ Q, v |= Inv(l); -q 0 = (l 0 , 0, 0); -→ is a subset of Q × (E ∪ R ≥0 ) × Q.
We write q α -→ q to denote that (q, α, q ) ∈→. Relation → is decomposed as:

• Discrete transitions: for e ∈ E, (l, v, w) A run in a WTA is a possibly infinite sequence ρ = q 1 α 1 q 2 α 2 • • • such that for all i, q i αi -→ q i+1 . We denote by init(ρ) the first state of run ρ. Similarly, last(ρ) denotes the last state of finite run ρ. We denote by Runs(q, A) the set of runs starting in state q and by Runs(A) the set Runs(q 0 , A).

A state q is reachable if there exists a finite run ρ such that init(ρ) = q 0 and last(ρ) = q. A location l is reachable if (l, v, w) is reachable for some v and some w.

The weight of a finite run ρ is weight(ρ) = w -w where (l, v, w) is the first state of ρ for some value of l and v, and (l , v , w ) is the last state of ρ for some value of l and v .

Let lastl(ρ) denote the location of the last state in finite run ρ. The infimum weight to reach some location l is defined as infweight(l) = +∞ if l is not reachable, and infweight(l) = inf ρ∈Runs(A)

lastl(ρ)=l weight(ρ) otherwise. l0 l1 l2 l3 l4 +5 y = 0 +10 +1 x ≤ 2, y ← 0 x ≥ 2, +1
x ≥ 2, +7 Fig. 1. A weighted timed automaton.

Example 1. Figure 1 presents a classical example of weighted timed automaton from [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF]. Actually, it is a weighted timed game in that article but we treat it here as a WTA. It has two clocks x and y, constrained by the guards written on transitions (e.g. x ≤ 2 from l 0 to l 1 ) and invariants (e.g. y = 0 on l 1 ), and possibly reset to zero (e.g. y ← 0 from l 0 to l 1 ). The initial location is l 0 . Weight is updated discretely on transitions (on both transitions to l 4 , +1 and +7) and with time with a derivative written below the location (e.g. +5 for l 0 ). When no such indication is present, we assume the weight is not updated. The minimum weight to reach l 4 by going through l 2 (and leaving it as soon as possible) is 5t + 10(2 -t) + 1 = 21 -5t, with 0 ≤ t ≤ 2 the time spent in l 0 . When going through l 3 , it is 5t + (2 -t) + 7 = 9 + 4t. Hence the minimum weight to reach l 4 is 9, obtained for t = 0 and by going through l 3 .

In Section 3, we propose a backwards symbolic zone-based algorithm to compute infweight(l). Given a set of goal locations Goal, we assume that the weight of all runs to a location in Goal is uniformly lower-bounded: there exists a constant M such that ∀l ∈ Goal, infweight(l) ≥ M . This condition in particular prevents negative weight cycles, the detection of which would make the algorithm more complex. For futher informations see [START_REF] Bouyer | Symbolic optimal reachability in weighted timed automata[END_REF].

Weighted Symbolic Predecessor

There is in general an infinite number of states in a WTA. In order to provide an algorithm to compute infimum weights we group them into a finite number of symbolic states. Such a symbolic state consists of all the states that can be reached by taking a given sequence of edges (whatever the delays in between). They are therefore defined by the common location l of all those states and the union D of all their valuations.

Assuming an arbitrary order on clocks, clock valuations can be seen as vectors of R |X| ≥0 , where |X| is the (finite) number of clocks. Set D is a convex polyhedron of R |X| ≥0 [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF]. Its projection on clocks is defined as a conjunction of constraints of the form

x i ∼ k i0 , -x i ∼ k 0i , or x i -x j ∼ k ij ,
with for all i, j, x i , x j ∈ X, k ij ∈ Z and ∼∈ {<, ≤} [START_REF] Larsen | Model-checking for real-time systems[END_REF]. Such a polyhedron is called a zone.

In [START_REF] Rasmussen | On using priced timed automata to achieve optimal scheduling[END_REF], the authors prove that inequalities relating weight and clock variables can be computed and handled separately from the projection of Z on clock variables, and that polyhedron D can be represented by a finite union of weighted zones.

Definition 3 (Weighted zone).

A weighted zone is a tuple Z = (Z, w, r) where:

-Z is a zone; w is the weight of the point in Z with infimum coordinates, called the offset, and noted ∆ Z (it exists and is unique due to the forms of the constraints shaping Z); r ∈ Z X gives for each clock its contribution to the evolution of the weight for points in Z.

Then for a given valuation v ∈ R X ≥0 , the weight of the valuation in the weighted zone Z is:

Weight(v, Z) = w + x∈X r(x)(v(x) -∆ Z (x))
Now weighted symbolic states are represented by pairs of the form (l, Z), and are subsets of the set of states Q.

In the backward computation context, the weight of weighted zones will represent the (opposite of the) infimum remaining weight from a given valuation, to reach the goal. Thus, the weight of the null valuation in the weighted zone obtained in the initial location is exactly the opposite of the infimum weight to reach the goal from the initial state. Definition 4. Let A = (L, l 0 , X, E, Inv, weight) be a WTA. Let e = (l, g, R, l ) be an edge, and let D be a set of states of (the semantics of ) A. Then:

Pred e (D) = {(l, v, w) | ∃(l , v , w ) ∈ D s. t. (l, v, w) e -→ (l , v , w )} Pred δ (D) = {(l, v, w) | ∃d ≥ 0, (l , v , w ) ∈ D, s. t. (l, v, w) d -→ (l , v , w ) and w = sup{w -t • weight(l) | t ≥ 0, (l, v + t, w ) ∈ D}}
Given a set of states D of an (unweighted) timed automaton, any point in the past of D is in general the time predecessor of an infinity of points in D (corresponding to infinitly many delays), Pred δ computes one with an optimal weight among all of them.

Let cl(Z) denote the topological closure of zone Z. Note that if D is actually defined by a weighted zone Z = (Z, w, r), we can equivalently write the sup in

Pred δ as max{Weight(v + t, Z) -t • weight(l) | t ≥ 0, (l, v + t) ∈ cl(Z)}.
Moreover, if Z is unbounded then the supremum might not be finite and then the result of Pred δ is empty.

In the following we will sometimes need to shrink a weighted zone by intersecting it with a non-weighted zone. This implies a change of offset. Definition 5. Let Z = (Z, w, r) be a weighted zone, and let Z be a zone. Then Z ∩ Z is the weighted zone (Z , w , r), where Z = Z ∩ Z , and w = Weight(∆ Z , Z). In particular, for a guard g we have Z ∩ g = (Z , w , r), where Z = Z ∧ g, and w = Weight(∆ Z , Z). Definition 6 (Facet). The facets of the zone Z are the derived zones cl(Z) ∧ (x = n), for each constraint x ∼ n defining the zone. The facets can be grouped as follows:

-The facets defined by lower bounds on individual clocks, x ≥ n, are called lower facets, and we denote LF(Z) the set of lower facets of Z; -Similarly, the facets defined by upper bounds on individual clocks, x ≤ n, are called upper facets, and we denote UF(Z) the set of upper facets of Z.

In the following, for a weighted zone Z = (Z, w, r) we denote by UF(Z) and LF(Z) the set of weighted zones defined naturally by

F ∈ UF(Z) (resp. LF(Z)) iff there exists F ∈ UF(Z) (resp. LF(Z)) s.t. F = (F, w F , r), with w F = Weight(∆ F , Z).
In [START_REF] Larsen | As cheap as possible: Efficient cost-optimal reachability for priced timed automata[END_REF], the authors also define relative facets, corresponding to diagonal constraints, but we will not need them here.

Some more operations on weighted zones are required to compute the predecessors of weighted symbolic states.

First we need a relaxation operator to account for all clock valuations that might be predecessors of some valuations by an edge with a reset. This leads to an "inverse reset" operator. Definition 7. Let Z = (Z, w, r) be a weighted zone, and R ⊆ X a subset of the clock set.

We denote by relax R (Z) the zone Z from which all constraints (except nonnegativity) on every clock in R are removed. That is: relax

R (v) = {v ∈ R X ≥0 |∀x ∈ R, v (x) = v(x)} and relax R (Z) = v∈Z relax R (v).
Then the zone obtained by taking backward a reset of the clocks in R is

Z[R] -1 = relax R (Z ∧ (R = 0)), where R = 0 is a shorthand for y∈R (y = 0). We further define Z[R] -1 = (Z , w , r ) such that: Z = Z[R] -1 , w = w, and r (x) = 0 if x ∈ R and r(x) otherwise.
Second, we need to account for the past of clock valuations, that is valuations from which we can reach a given valuation (or a set of them) by some delay. Definition 8. Let Z = (Z, w, r) be a weighted zone, where F is a lower or upper facet of Z, derived from a constraint y ∼ n, and F = Z ∩ (y ∼ n) = (F, w F , r) the related weighted zone. Let p ∈ Z be a weight-rate.

Then, the past of

Z is Z ↓ = {v | ∃d ∈ R ≥0 , v + d ∈ Z}.
And similarly, we define the past of F with rate p as F ↓p = (Z , w , r ) such that Z = F ↓ , r (y) = -( x =y r(x) -p), r (x) = r(x) for every x = y, and

w = w F + x∈X r (x) • (∆ Z (x) -∆ F (x)).
The intuition behind w is that we compute the weight of the new offset ∆ Z relatively to the offset of the facet. Notice that in the case where F is a lower facet, we have ∆ F = ∆ Z and w F = w.

Finally, we define a notation for the subtraction of weight, on weighted zones.

Definition 9. Let Z = (Z, w, r) be a weighted zone, and let n ∈ Z. Then Z -n is the weighted zone (Z, w -n, r).

We now have all the tools to compute the Pred-operations on weighted symbolic states. We start with the action predecessor, i.e., predecessor by an edge.

Theorem 1 (Action predecessor). Let A = (L, l 0 , X, E, Inv, weight) be a WTA. Let e = (l, g, R, l ) ∈ E, and let Z = (Z , w , r ) be a weighted zone. Then:

Pred e ((l , Z )) = (l, (Z [R] -1 -weight(e)) ∩ g ∩ Inv(l))
Proof. If we forget about the weights, it is a classical result that symbolic states are closed under action predecessor operator. We assume that it is also the case for weighted symbolic states, and we prove that it is sufficient to have only one weighted symbolic state to describe the action predecessor of one weighted symbolic state (unlike for action Post-operator [START_REF] Larsen | As cheap as possible: Efficient cost-optimal reachability for priced timed automata[END_REF]).

We note Pred e ((l , Z )) = (l, Z 1 ) with

Z 1 = (Z 1 , w 1 , r 1 ) and (Z [R] -1 - weight(e)) ∩ g ∩ Inv(l) = Z 2 with Z 2 = (Z 2 , w 2 , r 2 ).
We want to prove that Z 1 = Z 2 , which is equivalent to Z 1 = Z 2 and for every v ∈ Z 1 , Weight(v, Z 1 ) = Weight(v, Z 2 ). Equality Z 1 = Z 2 directly follows from the literature on timed automata (see, e.g., [START_REF] Bouyer | Model checking timed automata[END_REF]), so we focus on weights. Note that with respect to that, the invariant plays no role since it cannot modify the zone offset due to its particular form.

Equality of weight offsets

We now prove that w 1 = w 2 . Let q = weight(e).

Let us define ∆ Z1 such that (l, ∆ Z1 ) e -→ (l , ∆ Z1 ). By definition of Pred e , we have:

w 1 = Weight(∆ Z1 , Z 1 ) = Weight(∆ Z1 , Z ) -q. Thus, w 1 = w + x∈X r (x)(∆ Z1 (x) -∆ Z (x)) -q. But, ∆ Z1 = ∆ Z1 [R], so ∆ Z1 (x) = 0 if x ∈ R and ∆ Z1 (x) if x / ∈ R.
And Z ∧ (R = 0) = ∅ (otherwise the transition e would not have been taken), therefore ∀x ∈ R, ∆ Z (x) = 0. So we obtain:

w 1 = w + x / ∈R r (x)(∆ Z1 (x) -∆ Z (x)) -q.
Besides, we have, by definition of the operations Z ∩ g, and Z -q, w 2 = Weight(∆ Z2 , Z [R] -1 ) -q. We note

Z 3 = Z [R] -1 = (Z 3 , w 3 , r 3 ). We have, by definition of the operation [R] -1 : Z 3 = Z [R] -1 (thus ∆ Z3 = ∆ Z ), and w 3 = w , and r 3 (x) = 0 if x ∈ R and r (x) if x / ∈ R. So, it gives ∀v ∈ Z 3 , Weight(v, Z 3 ) = w + x / ∈R r (x)(v(x)-∆ Z (x))
. Finally, we obtain:

w 2 = w + x / ∈R r (x)(∆ Z2 (x)- ∆ Z (x)) -q
As Z 1 = Z 2 , we have ∆ Z1 = ∆ Z2 , so we can conclude that w 1 = w 2 .

Equality of weight We finally prove that for any

v ∈ Z 1 , Weight(v, Z 1 ) = Weight(v, Z 2 ). Let v ∈ Z 1 , then ∃v ∈ Z such that (l, v) e -→ (l , v
) and Weight(v, Z 1 ) = Weight(v , Z ) -q. Thus we have:

w 1 + x∈X r 1 (x)(v(x) -∆ Z1 (x)) = w + x∈X r (x)(v (x)-∆ Z (x))-q. Yet w 1 = w + x / ∈R r (x)(∆ Z1 (x)-∆ Z (x)
)-q, so by injecting the value of w 1 we obtain:

x∈X r 1 (x)(v(x)-∆ Z1 (x)) = x∈R r (x)(v (x)-∆ Z (x))+ x / ∈R r (x)(v (x)- ∆ Z (x) -(∆ Z1 (x) -∆ Z (x))). Moreover, ∀x ∈ R, v (x) = ∆ Z (x) = 0 and ∀x / ∈ R, v (x) = v(x), therefore we get: x∈X r 1 (x)(v(x)-∆ Z1 (x)) = x / ∈R r (x)(v(x)- ∆ Z1 (x)
) and, by adding w 1 to both sides, this gives:

Weight(v, Z 1 ) = w 1 + x / ∈R r (x)(v(x) -∆ Z1 (x)). Moreover, r 2 (x) = 0 if x ∈ R and r (x) otherwise, by definition of Z 2 . Thus, the weight in Z 2 is: Weight(v, Z 2 ) = w 2 + x / ∈R r (x)(v(x) -∆ Z2 (x)). Since w 1 = w 2 and ∆ Z1 = ∆ Z2 , this finally gives Weight(v, Z 1 ) = Weight(v, Z 2 ).
As for the time Post-operator [START_REF] Larsen | As cheap as possible: Efficient cost-optimal reachability for priced timed automata[END_REF], weighted symbolic states are not directly closed under Pred δ operator: a split of the weighted zone is needed. For example, let us consider the weighted zone (Z, w, r) depicted in Figure 2, with w = -3, r(x) = 2 and r(y) = -1. If we want to compute the time predecessor of this weighted zone in l 1 with a weight rate of 3, we will have to split Z ↓ in three subzones: The following theorem formalizes this intuition and gives an expression to compute the Pred δ operator.

Z, F 1 ↓ = (Z ↓ \ Z) ∧ (x -y ≤ 1) and F 2 ↓ = (Z ↓ \ Z) ∧ (x -y ≥ 1).
Theorem 2 (Time predecessor). Let A = (L, l 0 , X, E, Inv, weight) be a WTA. Let l ∈ L, with weight(l) = p, Inv(l) = J, and let Z = (Z , w , r ) be a weighted zone. Then:

Pred δ ((l, Z )) = (l, Z ) ∪ F ∈LF(Z ) (l, F ↓p ∩ J), if p ≥ x∈X r (x) F ∈UF(Z ) (l, F ↓p ∩ J), if p < x∈X r (x)
To prove Theorem 2, we need three technical lemmas.

Lemma 1. Let Z be a zone. Then the following holds:

1. if UF(Z) = ∅, then Z ↓ ⊆ F ∈UF(Z) F ↓ 2. Z ↓ ⊆ Z ∪ F ∈LF(Z) F ↓ Proof. 1. Assume UF(Z) = ∅.
So there exists some facets F i = (x i = n i ) ∧ Z for x i ∈ X, n i ∈ N, and x i ≤ n i the upper constraints of Z. Consider v ∈ Z ↓ . Then there exists d ≥ 0 such that v + d ∈ Z. In particular, the latter satisfies the constraint of the upper bound constraints. For the corresponding to

F i : (v + d)(x i ) ≤ n i . Let d m = min i (n i -v(x i ))
. By construction d m ≥ d ≥ 0. We prove that v + d m belongs to some upper facet. By definition of d m , there exists x j such that v(x j ) + d m = n j and ∀x i = x j , v(x i ) + d m ≤ n i , so v + d m satisfies the upper bound constraints of cl(Z). Moreover, for every x i ∈ X, and every lower bound constraint (

x i ≥ m i ) of cl(Z), v + d |= (x i ≥ m i ), and since d m ≥ d, v(x i ) + d m ≥ m i . Finally, diagonal constraints are trivially verified since (v + d m )(x j ) -(v + d m )(x k ) = v(x j ) -v(x k ) = (v + d)(x j ) -(v + d)(x k ).
We conclude that v + d m ∈ cl(Z) and v + d m |= (x j = n j ), which means v + d m ∈ F j and therefore v ∈ F j ↓ . And, finally, Z ↓ ⊆ F ∈UF(Z) F ↓ . 2. In the sequel, we write ≺ for an element of {<, ≤} and for an element of {>, ≥}. Let v ∈ Z ↓ , then ∃d ∈ R ≥0 such that v + d ∈ Z. Then for every

x i ∈ X, if (x i m i ) is the corresponding lower bound constraint of Z, then v + d |= (x i m i ). Let d M = max xi∈X (m i -v(x i )). If d M ≤ 0 then ∀x i , m i -v(x i ) ≤ d M ≤ 0 so v(x i ) ≥ m i . Yet ∀x i , if (x i ≺ m i )
is the corresponding upper bound constraint of Z, then v+d |= (x i ≺ n i ) and then v(x i ) ≺ n i . Similarly any diagonal constraint (x i -x j ≺ p ij ) of Z is also satisfied by v + d, and thus by v since v(

x i ) + d -(v(x j ) + d) = v(x i ) -v(x j ). So v ∈ Z. Otherwise, d M > 0. By definition of d m , there exists x j such that v(x j ) + d M = m j and ∀x i = x j , v(x i ) + d M ≥ m i . Yet ∀x i ∈ X, d ≥ m i -v(x i ), in particular d ≥ m j -v(x j ) = d M . So for every x i , v(x i )+d M ≤ v(x i )+d ≤ n i .
As before, v + d M also trivially satisfies the diagonal constraints of cl(Z) and therefore, v

+ d M ∈ cl(Z) and v + d M |= (x j = m j ). So v + d M ∈ F j with F j = cl(Z) ∧ (x j = m j ) ∈ LF(Z). Therefore v ∈ F j ↓ , and finally v ∈ F ∈LF(Z) F ↓ .
Lemma 2. Let Z be a zone, and F be a facet of Z derived from a constraint on a single clock x ∼ n. Let v ∈ F ↓ . Then there exists d F such that v + d F ∈ F . And the following holds:

1. if F ∈ LF(Z), then d F = min d≥0 v+d∈cl(Z) (d) 2. if F ∈ UF(Z), then d F = max d≥0 v+d∈cl(Z) (d)
Proof. The facet is defined by

F = cl(Z) ∧ (x = n). Thus, v + d F ∈ F gives v(x) + d F = n. 1. F ∈ LF(Z): Assume there exists d ∈ R ≥0 such that v +d ∈ cl(Z) and d < d F .
We have in particular v(x)

+ d < v(x) + d F = n, therefore v + d does not satisfy the guard (x ≥ n), hence v + d / ∈ cl(Z)
. This is a contradiction, and the result follows. 2. F ∈ UF(Z): Assume there exists d ∈ R ≥0 such that v +d ∈ cl(Z) and d > d F .

We have in particular v(x)

+ d > v(x) + d F = n, therefore v + d does not satisfy the guard (x ≤ n), hence v + d / ∈ cl(Z)
. This is a contradiction, and the result follows.

Lemma 3. Let Z = (Z, w, r) be a weighted zone, F be a lower or upper facet of Z, derived from a constraint y ∼ n, with ∼∈ {<, ≤, ≥, >}, and F = (F, w, r) be the corresponding weighted zone. Let p ∈ N be a weight-rate.

Then, Weight(v,

F ↓p ) = Weight(v + d F , Z) -d F • p, with d F = n -v(y).
Proof. Writing m = x∈X r(x) -p, we have:

Weight(v + d F , Z) -d F • p = w + x∈X r(x)(v(x) + d F -∆ Z (x)) -d F • p = w + x∈X r(x)(v(x) -∆ Z (x)) + d F • m = w + x∈X r(x)(v(x) -∆ Z (x)) -m • (v(y) -n)
Moreover, F is derived from the constraint y ∼ n, we have ∆ F (y) = n. Then, Weight(v + d F , Z) -d F • p can be rewritten as:

Weight(v + d F , Z) -d F • p = w + x∈X r(x)(v(x) -∆ Z (x)) -m • (v(y) -∆ F (y)) = w + x∈X r(x)(∆ F (x) -∆ Z (x)) + x∈X r(x)(v(x) -∆ F (x)) -m • (v(y) -∆ F (y)) = w F + x =y r(x)(v(x) -∆ F (x)) -( x =y r(x) -p) • (v(y) -∆ F (y))
Let us denote by (Z , w , r ) the weighted zone F ↓p . Then by definition r (y) = -( x =y r(x) -p) and ∀x = y, r (x) = r(x):

Weight(v + d F , Z) -d F • p = w F + x∈X r (x)(v(x) -∆ F (x))
Recall that the weight w of the offset ∆ Z of F ↓p is defined as:

w = w F + x∈X r (x)(∆ Z (x) -∆ F (x))
So finally:

Weight(v + d F , Z) -d F • p = w + x∈X r (x)(v(x) -∆ Z (x)) = Weight(v, F ↓p )
Proof (Theorem 2). In order to prove this theorem we proceed by double inclusion.

⊆ Let (l, v, w) ∈ Pred δ ((l, Z )).Then there exists d ∈ R ≥0 such that v + d ∈ Z , by definition of Pred δ , and therefore v ∈ Z ↓ . Also, by definition of Pred δ , we have:

w = max{Weight(v + t, Z ) -t • weight(l) | t ≥ 0, v + t ∈ cl(Z )}
For every t ∈ R ≥0 , writing m = x∈X r (x) -p, we have:

Weight(v + t, Z ) -t • weight(l) = w + x∈X r (x)(v(x) + t -∆ Z (x)) -t • p = w + x∈X r (x)(v(x) -∆ Z (x)) + t • m = Weight(v, Z ) + t • m
In order to maximize this, we consider the derivative m = x∈X r (x) -p.

-If p ≥ x∈X r (x) : Then we need to minimize t. Lemma 1 gives v ∈ Z ∪ F ∈LF(Z ) F ↓ .

• If v ∈ Z : Then, we can take t = 0 to minimize the weight, and we obtain w = Weight(v, Z ). Thus (l, v, w) ∈ (l, Z ).

• Else v ∈ F ∈LF(Z ) F ↓ : Then, there exists F ∈ LF(Z ) such that v ∈ F ↓ . Facet F is defined by F = cl(Z ) ∧ (y = n), with y ∈ X and n ∈ N. Then, v ∈ F ↓ gives that there exists d F ∈ R ≥0 s.t. v + d F ∈ F . Thus, v(y) + d F = n. Lemma 2 gives that d F is the minimal value of d such that d ≥ 0 and v + d ∈ cl(Z ). Then, if we note F = (F, w , r ), we have v ∈ F ↓ . Moreover w = Weight(v + d F , Z ) -d F • p, thus Lemma 3 gives w = Weight(v, F ↓p ).
Finally, v |= J by definition of the time predecessor, thus (l, v, w) ∈ (l, F ↓p ∩ J). -Else p < x∈X r (x) : Then we need to maximize t.

Let us suppose that UF(Z ) = ∅. Then F ∈UF(Z ) (l, F ↓p ∩ J) = ∅. Let t M the value of t that maximizes the weight, that is to say

w = Weight(v + t M , Z ) -t M • weight(l) and v + t M ∈ cl(Z ). Let > 0, then v + t M + ∈ cl(Z ) because Z has no upper facet. Moreover, because t M + > t M and because x∈X r (x) -p > 0, we have Weight(v + t M + , Z ) -(t M + ) • weight(l) > Weight(v + t M , Z ) -t M • weight(l).
Which means that t M does not maximize the weight:

Weight(v, Z) < Weight(v + t M , Z ) + t M • weight(l).
So the supremum in the expression of Pred δ is infinite and Pred δ ((l, Z )) = ∅ also (and we actually could not take a point from it). Assume now that UF(Z

) = ∅. Lemma 1 gives v ∈ F ∈UF(Z ) F ↓ . Then, there exists F ∈ UF(Z ) such that v ∈ F ↓ . Facet F is defined by F = cl(Z ) ∧ (y = n), with y ∈ X and n ∈ N. Then, v ∈ F ↓ gives that there exists d F ∈ R ≥0 s.t. v + d F ∈ F = cl(Z ) ∧ (y = n). Thus, v(y) + d F = n. Lemma 2 gives that d F is the maximal value of d such that d ≥ 0 and v + d ∈ cl(Z ).
Thus, if we note F = (F, w , r ), we have

w = Weight(v + d F , Z ) + d F • p,
thus Lemma 3 gives w = Weight(v, F ↓p ) and (v, w) ∈ F ↓p . Moreover, v |= J by definition of the time predecessor, thus v ∈ F ↓p ∩ J. Therefore, (l, v, w) ∈ (l, F ↓p ∩ J).

This concludes the proof for the left-to-right inclusion.

⊇ Consider now the right-to-left inclusion:

-If p ≥ x∈X r (x) : Let (l, v, w) ∈ (l, Z ∩J)∪ F ∈LF(Z ) (l, F ↓p ∩J). We still have Weight(v + t, Z ) -t • weight(l) = Weight(v, Z ) + t • ( x∈X r (x) -p),
for every t ∈ R ≥0 .

• If (l, v, w) ∈ (l, Z ) : Then, we have v ∈ Z , so there exists d ∈ R ≥0 s.t. v + d ∈ Z (d = 0). Also, since x∈X r (x) -p ≤ 0, the maximum of Weight(v, Z ) + t • ( x∈X r (x) -p) is obtained for t = 0, thus w = Weight(v, Z ). We thus have (l, v, w) ∈ Pred δ ((l, Z )). • Else ∃F ∈ LF(Z ) s.t. (l, v, w) ∈ (l, F ↓p ∩ J) : We note F = (F, w , r ), with

F = cl(Z ) ∧ (y = n). Then v ∈ F ↓ , thus ∃d ∈ R ≥0 s.t. v + d ∈ F ⊆ cl(Z ). Moreover, v |= J because v ∈ F ↓ ∧ J. Then, Lemma 3 gives w = Weight(v, F ↓p ) = Weight(v + d F , Z) -d F • p, with d F = n -v(y). Also, we have v + d F ∈ F ⊆ cl(Z ) (because v(y) + d F = n). Furthermore d F is the minimal d ≥ 0 such that v + d ∈ cl(Z ) according to lemma 2. Then w = max{Weight(v + t, Z ) -t • weight(l) | t ≥ 0, v + t ∈ cl(Z )},
and finally (l, v, w) ∈ Pred δ ((l, Z )) Using the Pred δ and Pred e operators, we can straightforwardly adapt the algorithm of [START_REF] Rasmussen | On using priced timed automata to achieve optimal scheduling[END_REF] to work backwards, which gives Algorithm 1.

-Else p < x∈X r (x) : Then ∃F ∈ UF(Z ) s.t. (l, v, w) ∈ (l, F ↓p ∩ J), we note F = (F, w , r ), with F = cl(Z ) ∧ (y = n). We still have Weight(v + t, Z ) -t • weight(l) = Weight(v, Z ) + t • ( x∈X r (x) -p), for every t ∈ R ≥0 . First v ∈ F ↓ , thus ∃d ∈ R ≥0 s.t. v + d ∈ F ⊆ cl(Z ). Second, v |= J because v ∈ F ↓ ∧ J. Then, Lemma 3 gives w = Weight(v, F ↓p ) = Weight(v + d F , Z) -d F • p, with d F = n -v(y). Also, we have v + d F ∈ F ⊆ cl(Z ) (because v(y) + d F = n).
Starting from a set of goal locations Goal, we build initial set of symbolic states by combining with each of these locations the universal zone R X ≥0 (defined by all clocks should be non-negative) on set of clocks X, with a weight uniformly equal to 0.

The algorithm works as usual with a passed list Passed and a waiting list Waiting. At each iteration, we pick a waiting symbolic state and if it contains the initial state of the automaton, which is then necessarily the offset of the zone, we check if the corresponding weight (the opposite of the weight of the offset since we start from 0 at the goal and subtract the weights as we go backwards) is better than the current value of Weight. If so we update Weight.

Then we add all predecessors of the current symbolic state to the waiting list, unless some bigger and cheaper symbolic state has already been visited.

To capture this last notion of bigger and cheaper we use the classical subsumption operator defined as: Definition 10. Let (l, Z), with Z = (Z, w, r), and (l , Z ), with Z = (Z , w , r ) be two symbolic states. We say that (l, Z) is subsumed by (l , Z ), and we write

(l, Z) (l , Z ), if: (1) l = l , (2) Z ⊆ Z and (3) for all v ∈ Z, Weight(v, Z) ≤ Weight(v, Z ).
In the usual definition the weight in Z would be higher than in Z but remember that our weight is the opposite of the remaining weight to the goal. if l = l0 and 0 ∈ Z and -w < Weight then 7:

Weight ← -w 8:

end if 9:

if for all S ∈ Passed, S S then 10:

add S to Passed 11:

for all e = (l, g, R, l ) ∈ E, for all S ∈ Pred δ (Prede(S)), add S to Waiting 12:

end if 13: end while 14: return Weight Algorithm 1 has the classical advantage of exploring only co-reachable states (but may of course explore non-reachable states). Also in contrast to the discrete successor operator for weighted symbolic states, the Pred e operator never splits zones. Finally, zone abstraction/normalization is not necessary to ensure termi-nation when computing backwards [START_REF] Bouyer | Model checking timed automata[END_REF][START_REF] Herbreteau | Better abstractions for timed automata[END_REF], while it should be handled carefully when working forward [START_REF] Bouyer | Symbolic optimal reachability in weighted timed automata[END_REF].

Implementation and Experiments

We have implemented the technique in Roméo [START_REF] Lime | Romeo: A parametric model-checker for Petri nets with stopwatches[END_REF]. The implementation and all the benchmarks presented here are freely available 3 . Note that Roméo is a tool designed for time Petri nets, a model close to timed automata, but with some expressiveness differences [START_REF] Bérard | The expressive power of time Petri nets[END_REF]. The zone graph techniques are however perfectly usable for time Petri nets [START_REF] Gardey | State space computation and analysis of time Petri nets. Theory and Practice of Logic Programming (TPLP)[END_REF]. The forward technique of [START_REF] Larsen | As cheap as possible: Efficient cost-optimal reachability for priced timed automata[END_REF] is not implemented in Roméo, so we instead compare with the similar forward technique presented in [START_REF] Boucheneb | Optimal reachability in cost time petri nets[END_REF]. Also, since Roméo deals with Petri nets, where markings can be seen as the values of a finite set of integer variables, a purely backward method would be impractical as explained in the introduction, so we have implemented a mixed forward backward approach in which we first precompute the reachable statespace and then compute backward on this. Therefore, for the comparison to be fair, we look at examples with negative costs (but no negative cycles), for which the whole state-space would have to be explored anyway.

First we look at the aircraft landing problem described in [START_REF] Behrmann | Optimal scheduling using priced timed automata[END_REF]. The modelling with a Petri-net like model (even using also additional integer variables) is fairly different from the original one: in particular we cannot test a global clock without resetting it with time Petri nets. In accordance with the above comments, we have also made it so that planes that land early actually get some bonus (negative cost). For all these reasons, we had to limit to a small subset of the planes in the original model to get some reasonable performances.

Second we look at the scheduling example of [START_REF] Boucheneb | Optimal reachability in cost time petri nets[END_REF], in which we need to execute some periodic task set, on two processors, possibly using renewable energy (which counts as a negative cost), the availability of which depends on meteorological conditions. We add an additional constraints that instances of tasks should not overlap, which reduces the state-space quite a bit.

Both approaches give the same results on all examples, which is a good point. The results are presented in Table 1. We see that for the aircraft landing problem, the forward approach performs clearly better, though both techniques scale exponentially with the number of aircrafts (and hence of clocks, as expected). In the scheduling problem, for the original problem of [START_REF] Boucheneb | Optimal reachability in cost time petri nets[END_REF], with 4 tasks, we get 60s (785MB) forward and 52s (402MB) backward. If we increase the execution time of task 2 from 4 to 16 (reaching a utilization factor of 1 for processor 1 if it were alone), we get the numbers in Table 1, where the backward approach is now clearly better.

Landing

We conjecture the performance is heavily impacted by the size of the coreachable state-space. For the aircraft problem, using internal statistics, we estimate the number of co-reachable states to represent more than 80% of the reachable state-space, while we estimate it to less than 50% in the scheduling problem. It is even less (around 35%) for the original version but most of the time (around 65%) is used for the state-space precomputation, which is much bigger than with the modified task 2 (where the precomputation only takes 15% of the total time).

Conclusion

We have proposed extensions of the classical backwards operators for timed automata so that they can compute the remaining weight to some goal location in a weighted setting. This allows us to devise a backwards optimal cost reachability algorithm.

On the practical side, we have implemented the algorithm in the tool Roméo, and we have reported on its performance on two (slightly modified) case-studies from the literature. This experimental evaluation shows that the algorithm may outperform the classical forward approach, in particular, as could be expected, when the set of co-reachable states is significantly smaller than the set reachable states.

While this algorithm has advantages on its own, it is also a step towards symbolic and efficient verification and optimization for more expressive properties and we now want to investigate timed computation tree logic and controllability.

e-→

  (l , v , w ) iff e = (l, g, R, l ) ∈ E, with v |= g, v = v[R], and w = w + weight(e); • Time elapsing: for d ∈ R ≥0 , (l, v, w) d -→ (l, v , w ) iff v = v + d, and w = w + weight(l) • d.

l1 l2 3 x ≥ 2 ,Fig. 2 .

 322 Fig. 2. Example of time predecessor of a weighted zone

  Furthermore d F is the maximal d ≥ 0 such that v + d ∈ Z according to Lemma 2. Then as x∈X r (x) -p > 0, we indeed have w = max{Weight(v + t, Z ) -t • weight(l) | t ≥ 0, v + t ∈ cl(Z )}, and finally (l, v, w) ∈ Pred δ ((l, Z )).

Algorithm 1

 1 Symbolic algorithm for optimal weight1: Weight ← +∞ 2: Passed ← ∅ 3: Waiting ← {(l, (R X ≥0 , 0, 0)) | l ∈ Goal} 4: while Waiting = ∅ do 5:select and remove S = (l, (Z, w, r)) from Waiting 6:

3

  http://romeo.rts-software.org/releases/FORMATS2020.tgz

Table 1 .

 1 Results on an Intel Core i7-7700 CPU @ 3.60GHz with 32GB of RAM.
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