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Backward Symbolic Optimal Reachability in
Weighted Timed Automata

Rémi Parrot1 and Didier Lime1[0000−0001−9429−7586]

École Centrale de Nantes, LS2N, UMR CNRS 6004, Nantes, France

Abstract. We address the problem of computing the infimum accumu-
lated weight for the reachability of some goal location in weighted timed
automata. While there already exist efficient techniques to solve this
problem, we propose here a backwards symbolic algorithm computing
the accumulated weight to the goal, instead of the accumulated weight
from the initial state. Going backwards has in itself a few advantages:
most notably it does not require any extrapolation operation to ensure
termination. Also it may be more efficient than going forward if the set of
co-reachable states is smaller than the set of reachable states. Backwards
algorithms are also instrumental in several problems beyond reachability,
like control problems for instance. We obtain our backward algorithm by
proposing extensions of the classical action and time predecessor opera-
tions on zones to account for weights. We have implemented the approach
and report on its performance.

1 Introduction

The design of timed systems, including for instance critical real-time embedded
systems, is a challenging issue, with high stakes. Safety is of course of particular
interest but given the limited resources (e.g., memory or energy) such systems
usually have, so is optimisation.

This has lead to the development of dedicated formalisms, like timed au-
tomata [1] and extensions of those, namely weighted (or priced) time automata [2,3],
to account for resource consumption.

The success of those formalisms relies on the availability of efficient algo-
rithms and data structures (in particular Difference Bound Matrices, DBM) for
their analysis, and of state-of-the-art tools, like Uppaal [19], implementing them.
Those successful techniques have been extended to the setting of weighted timed
automata [17] and then further refined [22,23,11], retaining much of their effi-
ciency, and are available in tools like Uppaal-CORA 1 and TiAMo2.

Much of the efficiency of those tools for solving infimum weight reachability
in weighted timed automata comes from the extension of zones, representing in a
symbolic manner the values of the clocks, to weighted zones including an expres-
sion of the weight from the initial state. This extension of course comes with ex-
tensions of the algorithms to efficiently handle zones represented as DBMs. Based

1 http://people.cs.aau.dk/~adavid/cora/index.html
2 https://git.lsv.fr/colange/tiamo
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on that data structure the exploration of the state-space classically proceeds in a
forward manner, by iteratively computing successors, rather than backwards, by
computing predecessors. This is mostly due to the fact that state-of-the-art tools
extend timed automata with finite-range integer variables for modelling conve-
nience, and that there are many predecessors by a transition with an integer
variable assignment like i← 2.

The backwards approach has some advantages of its own however: most
notably it does not require any extrapolation operation to ensure termina-
tion [12,16], while its treatment in the weighted case is not trivial [11] (and
arguably it is already the case for plain timed automata [9]). Also it may be
more efficient than going forward if the set of co-reachable states is smaller than
the set of reachable states. Backwards algorithms are also instrumental in sev-
eral problems beyond reachability, like control problems for instance [21,13]. A
hybrid forward / backward approach like that of [13], generalised in [14], also
allows to circumvent the “predecessor of assignment” problem mentioned above.

We therefore propose here an extension of the classical time and action pre-
decessors for timed automata, lifting them to the weighted case in the spirit
of [17], by encoding in zones the accumulated weight to the goal, instead of the
accumulated weight from the start. This allows us to easily adapt the classical
exploration algorithm of [23] so that it works in a backward manner. We have
implemented this algorithm and report on its performances.

Backwards algorithms for weighted timed automata have already been stud-
ied in more general contexts: for probabilistic timed automata in [6,7], where the
property studied is cost-bounded reachability with only non-negative weights,
and for optimal timed control in [10] with an additional assumption on weight
cycles. The main difference with our work is that in both cases, they are not in-
terested in the efficient representation and computation of the symbolic states,
which is the crux of this article.

The paper is organized as follows: Section 2 recalls the basics of weighted
timed automata, Section 3 introduces the operators needed to perform backward
infimum weight reachability and the corresponding algorithm. We proceed with a
small experimental evaluation in Section 4 and, finally, we conclude in Section 5.

2 Weighted Timed Automata

We denote by R the set of real numbers, by Q the set of rational numbers, by
Z the set of integers, and by N the set of natural numbers (including 0). The
subset of non-negative real numbers is denoted by R≥0.

For any sets A and B we denote by BA the set of mappings from A to B.
A clock constraint on finite set X is a conjunction of expressions of the form

x ∼ k, with x ∈ X, k ∈ N, and ∼∈ {<,≤,=,≥, >}. We denote by C(X) the set
of clock constraints, and by C′(X) its subset where ∼∈ {<,≤}.

Definition 1 (Weighted Timed Automaton). A weighted timed automaton
(WTA) is a tuple A = (L, l0, X,E, Inv,weight) where:



– L is a finite set of locations;
– l0 ∈ L is an initial location;
– X is a finite set of clocks;
– E ⊆ L × C(X) × 2X × L is a finite set of edges. Let (l, g, R, l′) ∈ E. This

corresponds to an edge in the automaton with source location l, guard g, set
of clocks to reset to zero R, and target location l′;

– Inv ∈ (C′(X))L is a mapping giving for each location an invariant;
– weight : ZL∪E is a weight mapping giving for each edge a discrete weight

and for each location a weight rate.

A clock valuation is a mapping from X to R≥0. We denote by ~0 the null

valuation such that ∀x,~0(x) = 0. Given a clock x and d ∈ R≥0, v + d is the
valuation such that ∀x, (v+d)(x) = v(x)+d. Valuation v−d is defined similarly.
Given a set of clocks to reset to zero, R, v[R] is the valuation such that v[R](x) =
0 if x ∈ R and v(x) otherwise.

Given a clock constraint g, we say that valuation v satisfies g, denoted by
v |= g if substituting each clock x with v(x) in g gives a boolean expression that
evaluates to true. In the sequel, we often slightly abuse the notations and denote
also by g the set of valuations that satisfy g.

A state of a WTA is a tuple (l, v, w) ∈ L×RX≥0×R. The semantics of a WTA
is a timed transition system [18]:

Definition 2 (Semantics of a WTA). The semantics of WTA A = (L, l0, X,E,
Inv,weight) is the timed transition system (Q, q0,→) where:

– Q is the subset of L× RX≥0 × R such that for all (l, v) ∈ Q, v |= Inv(l);

– q0 = (l0,~0, 0);

– → is a subset of Q × (E ∪ R≥0) × Q. We write q
α−→ q′ to denote that

(q, α, q′) ∈→. Relation → is decomposed as:
• Discrete transitions: for e ∈ E, (l, v, w)

e−→ (l′, v′, w′) iff e = (l, g, R, l′) ∈
E, with v |= g, v′ = v[R], and w′ = w + weight(e);

• Time elapsing: for d ∈ R≥0, (l, v, w)
d−→ (l, v′, w′) iff v′ = v + d, and

w′ = w + weight(l) · d.

A run in a WTA is a possibly infinite sequence ρ = q1α1q2α2 · · · such that
for all i, qi

αi−→ qi+1. We denote by init(ρ) the first state of run ρ. Similarly,
last(ρ) denotes the last state of finite run ρ. We denote by Runs(q,A) the set of
runs starting in state q and by Runs(A) the set Runs(q0,A).

A state q is reachable if there exists a finite run ρ such that init(ρ) = q0 and
last(ρ) = q. A location l is reachable if (l, v, w) is reachable for some v and some
w.

The weight of a finite run ρ is weight(ρ) = w′ − w where (l, v, w) is the first
state of ρ for some value of l and v, and (l′, v′, w′) is the last state of ρ for some
value of l′ and v′.

Let lastl(ρ) denote the location of the last state in finite run ρ. The infimum
weight to reach some location l is defined as infweight(l) = +∞ if l is not
reachable, and infweight(l) = infρ∈Runs(A)

lastl(ρ)=l

weight(ρ) otherwise.
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Fig. 1. A weighted timed automaton.

Example 1. Figure 1 presents a classical example of weighted timed automaton
from [10]. Actually, it is a weighted timed game in that article but we treat it
here as a WTA. It has two clocks x and y, constrained by the guards written
on transitions (e.g. x ≤ 2 from l0 to l1) and invariants (e.g. y = 0 on l1), and

possibly reset to zero (e.g. y ← 0 from l0 to l1). The initial location is l0. Weight
is updated discretely on transitions (on both transitions to l4, +1 and +7) and
with time with a derivative written below the location (e.g. +5 for l0). When no
such indication is present, we assume the weight is not updated. The minimum
weight to reach l4 by going through l2 (and leaving it as soon as possible) is
5t + 10(2 − t) + 1 = 21 − 5t, with 0 ≤ t ≤ 2 the time spent in l0. When going
through l3, it is 5t + (2 − t) + 7 = 9 + 4t. Hence the minimum weight to reach
l4 is 9, obtained for t = 0 and by going through l3.

In Section 3, we propose a backwards symbolic zone-based algorithm to com-
pute infweight(l). Given a set of goal locations Goal, we assume that the weight of
all runs to a location in Goal is uniformly lower-bounded: there exists a constant
M such that ∀l ∈ Goal, infweight(l) ≥ M . This condition in particular prevents
negative weight cycles, the detection of which would make the algorithm more
complex. For futher informations see [11].

3 Weighted Symbolic Predecessor

There is in general an infinite number of states in a WTA. In order to provide
an algorithm to compute infimum weights we group them into a finite number
of symbolic states. Such a symbolic state consists of all the states that can be
reached by taking a given sequence of edges (whatever the delays in between).
They are therefore defined by the common location l of all those states and the
union D of all their valuations.

Assuming an arbitrary order on clocks, clock valuations can be seen as vectors

of R|X|≥0 , where |X| is the (finite) number of clocks. Set D is a convex polyhedron

of R|X|≥0 [10]. Its projection on clocks is defined as a conjunction of constraints of



the form xi ∼ ki0, −xi ∼ k0i, or xi−xj ∼ kij , with for all i, j, xi, xj ∈ X, kij ∈ Z
and ∼∈ {<,≤} [18]. Such a polyhedron is called a zone.

In [23], the authors prove that inequalities relating weight and clock variables
can be computed and handled separately from the projection of Z on clock
variables, and that polyhedron D can be represented by a finite union of weighted
zones.

Definition 3 (Weighted zone). A weighted zone is a tuple Z = (Z,w, r)
where:

– Z is a zone;
– w is the weight of the point in Z with infimum coordinates, called the offset,

and noted ∆Z (it exists and is unique due to the forms of the constraints
shaping Z);

– r ∈ ZX gives for each clock its contribution to the evolution of the weight for
points in Z.

Then for a given valuation v ∈ RX≥0, the weight of the valuation in the weighted
zone Z is:

Weight(v,Z) = w +
∑
x∈X

r(x)(v(x)−∆Z(x))

Now weighted symbolic states are represented by pairs of the form (l,Z),
and are subsets of the set of states Q.

In the backward computation context, the weight of weighted zones will rep-
resent the (opposite of the) infimum remaining weight from a given valuation,
to reach the goal. Thus, the weight of the null valuation in the weighted zone
obtained in the initial location is exactly the opposite of the infimum weight to
reach the goal from the initial state.

Definition 4. Let A = (L, l0, X,E, Inv,weight) be a WTA. Let e = (l, g, R, l′)
be an edge, and let D be a set of states of (the semantics of) A. Then:

Prede(D) = {(l, v, w) | ∃(l′, v′, w′) ∈ D s. t. (l, v, w)
e−→ (l′, v′, w′)}

Predδ(D) = {(l, v, w) | ∃d ≥ 0, (l′, v′, w′) ∈ D, s. t. (l, v, w)
d−→ (l′, v′, w′)

and w = sup{w′ − t · weight(l) | t ≥ 0, (l, v + t, w′) ∈ D}}

Given a set of states D of an (unweighted) timed automaton, any point in
the past of D is in general the time predecessor of an infinity of points in D
(corresponding to infinitly many delays), Predδ computes one with an optimal
weight among all of them.

Let cl(Z) denote the topological closure of zone Z. Note that if D is actually
defined by a weighted zone Z = (Z,w, r), we can equivalently write the sup in
Predδ as max{Weight(v+t,Z)−t ·weight(l) | t ≥ 0, (l, v+t) ∈ cl(Z)}. Moreover,
if Z is unbounded then the supremum might not be finite and then the result of
Predδ is empty.

In the following we will sometimes need to shrink a weighted zone by inter-
secting it with a non-weighted zone. This implies a change of offset.



Definition 5. Let Z = (Z,w, r) be a weighted zone, and let Z ′ be a zone.
Then Z ∩ Z ′ is the weighted zone (Z ′′, w′′, r), where Z ′′ = Z ∩ Z ′, and w′′ =
Weight(∆Z′′ ,Z). In particular, for a guard g we have Z ∩g = (Z ′′, w′′, r), where
Z ′′ = Z ∧ g, and w′′ = Weight(∆Z′′ ,Z).

Definition 6 (Facet). The facets of the zone Z are the derived zones cl(Z) ∧
(x = n), for each constraint x ∼ n defining the zone. The facets can be grouped
as follows:

– The facets defined by lower bounds on individual clocks, x ≥ n, are called
lower facets, and we denote LF(Z) the set of lower facets of Z;

– Similarly, the facets defined by upper bounds on individual clocks, x ≤ n,
are called upper facets, and we denote UF(Z) the set of upper facets of Z.

In the following, for a weighted zone Z = (Z,w, r) we denote by UF(Z) and
LF(Z) the set of weighted zones defined naturally by F ∈ UF(Z) (resp. LF(Z))
iff there exists F ∈ UF(Z) (resp. LF(Z)) s.t. F = (F,wF , r), with wF =
Weight(∆F ,Z).

In [17], the authors also define relative facets, corresponding to diagonal
constraints, but we will not need them here.

Some more operations on weighted zones are required to compute the prede-
cessors of weighted symbolic states.

First we need a relaxation operator to account for all clock valuations that
might be predecessors of some valuations by an edge with a reset. This leads to
an “inverse reset” operator.

Definition 7. Let Z = (Z,w, r) be a weighted zone, and R ⊆ X a subset of the
clock set.

We denote by relaxR(Z) the zone Z from which all constraints (except non-
negativity) on every clock in R are removed. That is: relaxR(v) = {v′ ∈ RX≥0|∀x 6∈
R, v′(x) = v(x)} and relaxR(Z) =

⋃
v∈Z relaxR(v).

Then the zone obtained by taking backward a reset of the clocks in R is
Z[R]−1 = relaxR(Z ∧ (R = 0)), where R = 0 is a shorthand for

∧
y∈R(y = 0).

We further define Z[R]−1 = (Z ′, w′, r′) such that: Z ′ = Z[R]−1, w′ = w, and
r′(x) = 0 if x ∈ R and r(x) otherwise.

Second, we need to account for the past of clock valuations, that is valuations
from which we can reach a given valuation (or a set of them) by some delay.

Definition 8. Let Z = (Z,w, r) be a weighted zone, where F is a lower or upper
facet of Z, derived from a constraint y ∼ n, and F = Z ∩ (y ∼ n) = (F,wF , r)
the related weighted zone. Let p ∈ Z be a weight-rate.

Then, the past of Z is Z↓ = {v | ∃d ∈ R≥0, v + d ∈ Z}.
And similarly, we define the past of F with rate p as F↓p = (Z ′, w′, r′) such

that Z ′ = F ↓, r′(y) = −(
∑
x6=y r(x) − p), r′(x) = r(x) for every x 6= y, and

w′ = wF +
∑
x∈X r

′(x) · (∆Z′(x)−∆F (x)).



The intuition behind w′ is that we compute the weight of the new offset ∆Z′

relatively to the offset of the facet. Notice that in the case where F is a lower
facet, we have ∆F = ∆Z and wF = w.

Finally, we define a notation for the subtraction of weight, on weighted zones.

Definition 9. Let Z = (Z,w, r) be a weighted zone, and let n ∈ Z. Then Z −n
is the weighted zone (Z,w − n, r).

We now have all the tools to compute the Pred-operations on weighted sym-
bolic states. We start with the action predecessor, i.e., predecessor by an edge.

Theorem 1 (Action predecessor). Let A = (L, l0, X,E, Inv,weight) be a
WTA. Let e = (l, g, R, l′) ∈ E, and let Z ′ = (Z ′, w′, r′) be a weighted zone.
Then:

Prede((l
′,Z ′)) = (l, (Z ′[R]−1 − weight(e)) ∩ g ∩ Inv(l))

Proof. If we forget about the weights, it is a classical result that symbolic states
are closed under action predecessor operator. We assume that it is also the case
for weighted symbolic states, and we prove that it is sufficient to have only
one weighted symbolic state to describe the action predecessor of one weighted
symbolic state (unlike for action Post-operator [17]).

We note Prede((l
′,Z ′)) = (l,Z1) with Z1 = (Z1, w1, r1) and (Z ′[R]−1 −

weight(e)) ∩ g ∩ Inv(l) = Z2 with Z2 = (Z2, w2, r2).

We want to prove that Z1 = Z2, which is equivalent to Z1 = Z2 and for every
v ∈ Z1, Weight(v,Z1) = Weight(v,Z2). Equality Z1 = Z2 directly follows from
the literature on timed automata (see, e.g., [12]), so we focus on weights. Note
that with respect to that, the invariant plays no role since it cannot modify the
zone offset due to its particular form.

Equality of weight offsets We now prove that w1 = w2. Let q = weight(e).

Let us define ∆′Z1
such that (l,∆Z1)

e−→ (l′, ∆′Z1
). By definition of Prede,

we have: w1 = Weight(∆Z1 ,Z1) = Weight(∆′Z1
,Z ′) − q. Thus, w1 = w′ +∑

x∈X r
′(x)(∆′Z1

(x) − ∆Z′(x)) − q. But, ∆′Z1
= ∆Z1

[R], so ∆′Z1
(x) = 0 if x ∈

R and ∆Z1
(x) if x /∈ R. And Z ′ ∧ (R = 0) 6= ∅ (otherwise the transition e

would not have been taken), therefore ∀x ∈ R, ∆Z′(x) = 0. So we obtain:
w1 = w′ +

∑
x/∈R r

′(x)(∆Z1(x)−∆Z′(x))− q.
Besides, we have, by definition of the operations Z ∩ g, and Z − q, w2 =

Weight(∆Z2
,Z ′[R]−1) − q. We note Z3 = Z ′[R]−1 = (Z3, w3, r3). We have, by

definition of the operation [R]−1: Z3 = Z ′[R]−1 (thus ∆Z3 = ∆Z′), and w3 = w′,
and r3(x) = 0 if x ∈ R and r′(x) if x /∈ R. So, it gives ∀v ∈ Z3, Weight(v,Z3) =
w′+

∑
x/∈R r

′(x)(v(x)−∆Z′(x)). Finally, we obtain: w2 = w′+
∑
x/∈R r

′(x)(∆Z2
(x)−

∆Z′(x))− q
As Z1 = Z2, we have ∆Z1 = ∆Z2 , so we can conclude that w1 = w2.



Equality of weight We finally prove that for any v ∈ Z1, Weight(v,Z1) =
Weight(v,Z2).

Let v ∈ Z1, then ∃v′ ∈ Z ′ such that (l, v)
e−→ (l′, v′) and Weight(v,Z1) =

Weight(v′,Z ′) − q. Thus we have: w1 +
∑
x∈X r1(x)(v(x) − ∆Z1(x)) = w′ +∑

x∈X r
′(x)(v′(x)−∆Z′(x))−q. Yet w1 = w′+

∑
x/∈R r

′(x)(∆Z1
(x)−∆Z′(x))−q,

so by injecting the value of w1 we obtain:∑
x∈X r1(x)(v(x)−∆Z1

(x)) =
∑
x∈R r

′(x)(v′(x)−∆Z′(x))+
∑
x/∈R r

′(x)(v′(x)−
∆Z′(x)− (∆Z1

(x)−∆Z′(x))). Moreover, ∀x ∈ R, v′(x) = ∆Z′(x) = 0 and ∀x /∈
R, v′(x) = v(x), therefore we get:

∑
x∈X r1(x)(v(x)−∆Z1(x)) =

∑
x/∈R r

′(x)(v(x)−
∆Z1(x)) and, by adding w1 to both sides, this gives: Weight(v,Z1) = w1 +∑
x/∈R r

′(x)(v(x)−∆Z1
(x)).

Moreover, r2(x) = 0 if x ∈ R and r′(x) otherwise, by definition of Z2. Thus,
the weight in Z2 is: Weight(v,Z2) = w2 +

∑
x/∈R r

′(x)(v(x) − ∆Z2
(x)). Since

w1 = w2 and ∆Z1
= ∆Z2

, this finally gives Weight(v,Z1) = Weight(v,Z2). ut

As for the time Post-operator [17], weighted symbolic states are not directly
closed under Predδ operator: a split of the weighted zone is needed. For example,
let us consider the weighted zone (Z,w, r) depicted in Figure 2, with w = −3,
r(x) = 2 and r(y) = −1. If we want to compute the time predecessor of this
weighted zone in l1 with a weight rate of 3, we will have to split Z↓ in three
subzones: Z, F1

↓ = (Z↓ \ Z) ∧ (x− y ≤ 1) and F2
↓ = (Z↓ \ Z) ∧ (x− y ≥ 1).

l1 l2

3

x ≥ 2, y ≥ 3

0 2 4 6 8 10
0

2

4

6

8

F1

F2∆Z

2

−1

w = −3

Z

x

y

Fig. 2. Example of time predecessor of a weighted zone

The following theorem formalizes this intuition and gives an expression to
compute the Predδ operator.

Theorem 2 (Time predecessor). Let A = (L, l0, X,E, Inv,weight) be a WTA.
Let l ∈ L, with weight(l) = p, Inv(l) = J , and let Z ′ = (Z ′, w′, r′) be a weighted



zone. Then:

Predδ((l,Z ′)) =

{
(l,Z ′) ∪

⋃
F∈LF(Z′)(l,F↓p ∩ J), if p ≥

∑
x∈X r

′(x)⋃
F∈UF(Z′)(l,F↓p ∩ J), if p <

∑
x∈X r

′(x)

To prove Theorem 2, we need three technical lemmas.

Lemma 1. Let Z be a zone. Then the following holds:

1. if UF(Z) 6= ∅, then Z↓ ⊆
⋃
F∈UF(Z) F

↓

2. Z↓ ⊆ Z ∪
⋃
F∈LF(Z) F

↓

Proof. 1. Assume UF(Z) 6= ∅. So there exists some facets Fi = (xi = ni) ∧ Z
for xi ∈ X, ni ∈ N, and xi ≤ ni the upper constraints of Z.
Consider v ∈ Z↓. Then there exists d ≥ 0 such that v + d ∈ Z. In partic-
ular, the latter satisfies the constraint of the upper bound constraints. For
the corresponding to Fi: (v + d)(xi) ≤ ni. Let dm = mini(ni − v(xi)). By
construction dm ≥ d ≥ 0. We prove that v + dm belongs to some upper
facet. By definition of dm, there exists xj such that v(xj) + dm = nj and
∀xi 6= xj , v(xi) + dm ≤ ni, so v + dm satisfies the upper bound constraints
of cl(Z).
Moreover, for every xi ∈ X, and every lower bound constraint (xi ≥ mi)
of cl(Z), v + d |= (xi ≥ mi), and since dm ≥ d, v(xi) + dm ≥ mi. Finally,
diagonal constraints are trivially verified since (v+dm)(xj)−(v+dm)(xk) =
v(xj)− v(xk) = (v + d)(xj)− (v + d)(xk).
We conclude that v + dm ∈ cl(Z) and v + dm |= (xj = nj), which means

v + dm ∈ Fj and therefore v ∈ Fj↓. And, finally, Z↓ ⊆
⋃
F∈UF(Z) F

↓.

2. In the sequel, we write ≺ for an element of {<,≤} and � for an element of
{>,≥}. Let v ∈ Z↓, then ∃d ∈ R≥0 such that v + d ∈ Z. Then for every
xi ∈ X, if (xi � mi) is the corresponding lower bound constraint of Z, then
v + d |= (xi � mi). Let dM = maxxi∈X(mi − v(xi)).
If dM ≤ 0 then ∀xi, mi−v(xi) ≤ dM ≤ 0 so v(xi) ≥ mi. Yet ∀xi, if (xi ≺ mi)
is the corresponding upper bound constraint of Z, then v+d |= (xi ≺ ni) and
then v(xi) ≺ ni. Similarly any diagonal constraint (xi−xj ≺ pij) of Z is also
satisfied by v+d, and thus by v since v(xi)+d− (v(xj)+d) = v(xi)−v(xj).
So v ∈ Z.
Otherwise, dM > 0. By definition of dm, there exists xj such that v(xj) +
dM = mj and ∀xi 6= xj , v(xi) + dM ≥ mi. Yet ∀xi ∈ X, d ≥ mi − v(xi), in
particular d ≥ mj−v(xj) = dM . So for every xi, v(xi)+dM ≤ v(xi)+d ≤ ni.
As before, v+dM also trivially satisfies the diagonal constraints of cl(Z) and
therefore, v + dM ∈ cl(Z) and v + dM |= (xj = mj). So v + dM ∈ Fj
with Fj = cl(Z) ∧ (xj = mj) ∈ LF(Z). Therefore v ∈ Fj

↓, and finally
v ∈

⋃
F∈LF(Z) F

↓. ut

Lemma 2. Let Z be a zone, and F be a facet of Z derived from a constraint on
a single clock x ∼ n. Let v ∈ F ↓. Then there exists dF such that v + dF ∈ F .
And the following holds:



1. if F ∈ LF(Z), then dF = mind≥0
v+d∈cl(Z)

(d)

2. if F ∈ UF(Z), then dF = maxd≥0
v+d∈cl(Z)

(d)

Proof. The facet is defined by F = cl(Z) ∧ (x = n). Thus, v + dF ∈ F gives
v(x) + dF = n.

1. F ∈ LF(Z): Assume there exists d ∈ R≥0 such that v+d ∈ cl(Z) and d < dF .
We have in particular v(x) + d < v(x) + dF = n, therefore v + d does not
satisfy the guard (x ≥ n), hence v + d /∈ cl(Z). This is a contradiction, and
the result follows.

2. F ∈ UF(Z): Assume there exists d ∈ R≥0 such that v+d ∈ cl(Z) and d > dF .
We have in particular v(x) + d > v(x) + dF = n, therefore v + d does not
satisfy the guard (x ≤ n), hence v + d /∈ cl(Z). This is a contradiction, and
the result follows. ut

Lemma 3. Let Z = (Z,w, r) be a weighted zone, F be a lower or upper facet of
Z, derived from a constraint y ∼ n, with ∼∈ {<,≤,≥, >}, and F = (F,w, r) be
the corresponding weighted zone. Let p ∈ N be a weight-rate.

Then, Weight(v,F↓p) = Weight(v + dF ,Z)− dF · p, with dF = n− v(y).

Proof. Writing m =
∑
x∈X r(x)− p, we have:

Weight(v + dF ,Z)− dF · p = w +
∑
x∈X

r(x)(v(x) + dF −∆Z(x))− dF · p

= w +
∑
x∈X

r(x)(v(x)−∆Z(x)) + dF ·m

= w +
∑
x∈X

r(x)(v(x)−∆Z(x))−m · (v(y)− n)

Moreover, F is derived from the constraint y ∼ n, we have ∆F (y) = n. Then,
Weight(v + dF ,Z)− dF · p can be rewritten as:

Weight(v + dF ,Z)− dF · p = w +
∑
x∈X

r(x)(v(x)−∆Z(x))−m · (v(y)−∆F (y))

= w +
∑
x∈X

r(x)(∆F (x)−∆Z(x)) +
∑
x∈X

r(x)(v(x)−∆F (x))−m · (v(y)−∆F (y))

= wF +
∑
x 6=y

r(x)(v(x)−∆F (x))− (
∑
x 6=y

r(x)− p) · (v(y)−∆F (y))

Let us denote by (Z ′, w′, r′) the weighted zone F↓p. Then by definition r′(y) =
−(

∑
x 6=y r(x)− p) and ∀x 6= y, r′(x) = r(x):

Weight(v + dF ,Z)− dF · p = wF +
∑
x∈X

r′(x)(v(x)−∆F (x))



Recall that the weight w′ of the offset ∆Z′ of F↓p is defined as:

w′ = wF +
∑
x∈X

r′(x)(∆Z′(x)−∆F (x))

So finally:

Weight(v + dF ,Z)− dF · p = w′ +
∑
x∈X

r′(x)(v(x)−∆Z′(x)) = Weight(v,F↓p)

ut

Proof (Theorem 2). In order to prove this theorem we proceed by double inclu-
sion.
⊆ Let (l, v, w) ∈ Predδ((l,Z ′)).Then there exists d ∈ R≥0 such that v+ d ∈

Z ′, by definition of Predδ, and therefore v ∈ Z ′↓. Also, by definition of Predδ, we
have:

w = max{Weight(v + t,Z ′)− t · weight(l) | t ≥ 0, v + t ∈ cl(Z ′)}

For every t ∈ R≥0, writing m =
∑
x∈X r

′(x)− p, we have:

Weight(v + t,Z ′)− t · weight(l) = w′ +
∑
x∈X

r′(x)(v(x) + t−∆Z′(x))− t · p

= w′ +
∑
x∈X

r′(x)(v(x)−∆Z′(x)) + t ·m

= Weight(v,Z ′) + t ·m

In order to maximize this, we consider the derivative m =
∑
x∈X r

′(x)− p.

– If p ≥
∑
x∈X r

′(x) : Then we need to minimize t. Lemma 1 gives v ∈
Z ′ ∪

⋃
F∈LF(Z′) F

↓.

• If v ∈ Z ′ : Then, we can take t = 0 to minimize the weight, and we
obtain w = Weight(v,Z ′). Thus (l, v, w) ∈ (l,Z ′).

• Else v ∈
⋃
F∈LF(Z′) F

↓ : Then, there exists F ∈ LF(Z ′) such that v ∈ F ↓.
Facet F is defined by F = cl(Z ′) ∧ (y = n), with y ∈ X and n ∈ N.
Then, v ∈ F ↓ gives that there exists dF ∈ R≥0 s.t. v + dF ∈ F . Thus,
v(y) + dF = n. Lemma 2 gives that dF is the minimal value of d such
that d ≥ 0 and v + d ∈ cl(Z ′).
Then, if we note F = (F,w′, r′), we have v ∈ F ↓. Moreover w =
Weight(v + dF ,Z ′) − dF · p, thus Lemma 3 gives w = Weight(v,F↓p).
Finally, v |= J by definition of the time predecessor, thus (l, v, w) ∈
(l,F↓p ∩ J).

– Else p <
∑
x∈X r

′(x) : Then we need to maximize t.

Let us suppose that UF(Z ′) = ∅. Then
⋃
F∈UF(Z′)(l,F↓p ∩ J) = ∅. Let tM

the value of t that maximizes the weight, that is to say w = Weight(v +



tM ,Z ′) − tM · weight(l) and v + tM ∈ cl(Z ′). Let ε > 0, then v + tM + ε ∈
cl(Z ′) because Z ′ has no upper facet. Moreover, because tM + ε > tM and
because

∑
x∈X r

′(x) − p > 0, we have Weight(v + tM + ε,Z ′) − (tM + ε) ·
weight(l) > Weight(v + tM ,Z ′)− tM · weight(l). Which means that tM does
not maximize the weight: Weight(v,Z) <Weight(v+ tM ,Z ′)+ tM ·weight(l).
So the supremum in the expression of Predδ is infinite and Predδ((l,Z ′)) = ∅
also (and we actually could not take a point from it).
Assume now that UF(Z ′) 6= ∅. Lemma 1 gives v ∈

⋃
F∈UF(Z′) F

↓. Then, there

exists F ∈ UF(Z ′) such that v ∈ F ↓. Facet F is defined by F = cl(Z ′)∧ (y =
n), with y ∈ X and n ∈ N. Then, v ∈ F ↓ gives that there exists dF ∈ R≥0
s.t. v+dF ∈ F = cl(Z ′)∧ (y = n). Thus, v(y) +dF = n. Lemma 2 gives that
dF is the maximal value of d such that d ≥ 0 and v + d ∈ cl(Z ′).
Thus, if we note F = (F,w′, r′), we have w = Weight(v + dF ,Z ′) + dF · p,
thus Lemma 3 gives w = Weight(v,F↓p) and (v, w) ∈ F↓p. Moreover, v |= J
by definition of the time predecessor, thus v ∈ F↓p∩J . Therefore, (l, v, w) ∈
(l,F↓p ∩ J).

This concludes the proof for the left-to-right inclusion.
⊇ Consider now the right-to-left inclusion:

– If p ≥
∑
x∈X r

′(x) : Let (l, v, w) ∈ (l,Z ′∩J)∪
⋃
F∈LF(Z′)(l,F↓p∩J). We still

have Weight(v+ t,Z ′)− t ·weight(l) = Weight(v,Z ′) + t · (
∑
x∈X r

′(x)− p),
for every t ∈ R≥0.

• If (l, v, w) ∈ (l,Z ′) : Then, we have v ∈ Z ′, so there exists d ∈ R≥0
s.t. v + d ∈ Z ′ (d = 0). Also, since

∑
x∈X r

′(x) − p ≤ 0, the maximum
of Weight(v,Z ′) + t · (

∑
x∈X r

′(x) − p) is obtained for t = 0, thus w =
Weight(v,Z ′). We thus have (l, v, w) ∈ Predδ((l,Z ′)).
• Else ∃F ∈ LF(Z ′) s.t. (l, v, w) ∈ (l,F↓p ∩ J) : We note F = (F,w′, r′),

with F = cl(Z ′) ∧ (y = n). Then v ∈ F ↓, thus ∃d ∈ R≥0 s.t. v + d ∈
F ⊆ cl(Z ′). Moreover, v |= J because v ∈ F ↓ ∧ J . Then, Lemma 3 gives
w = Weight(v,F↓p) = Weight(v + dF ,Z) − dF · p, with dF = n − v(y).
Also, we have v+dF ∈ F ⊆ cl(Z ′) (because v(y)+dF = n). Furthermore
dF is the minimal d ≥ 0 such that v + d ∈ cl(Z ′) according to lemma 2.
Then w = max{Weight(v + t,Z ′) − t · weight(l) | t ≥ 0, v + t ∈ cl(Z ′)},
and finally (l, v, w) ∈ Predδ((l,Z ′))

– Else p <
∑
x∈X r

′(x) : Then ∃F ∈ UF(Z ′) s.t. (l, v, w) ∈ (l,F↓p ∩ J), we
note F = (F,w′, r′), with F = cl(Z ′) ∧ (y = n). We still have Weight(v +
t,Z ′)−t ·weight(l) = Weight(v,Z ′)+t ·(

∑
x∈X r

′(x)−p), for every t ∈ R≥0.

First v ∈ F ↓, thus ∃d ∈ R≥0 s.t. v + d ∈ F ⊆ cl(Z ′). Second, v |= J
because v ∈ F ↓∧J . Then, Lemma 3 gives w = Weight(v,F↓p) = Weight(v+
dF ,Z) − dF · p, with dF = n − v(y). Also, we have v + dF ∈ F ⊆ cl(Z ′)
(because v(y) + dF = n). Furthermore dF is the maximal d ≥ 0 such that
v + d ∈ Z ′ according to Lemma 2. Then as

∑
x∈X r

′(x)− p > 0, we indeed
have w = max{Weight(v + t,Z ′) − t · weight(l) | t ≥ 0, v + t ∈ cl(Z ′)}, and
finally (l, v, w) ∈ Predδ((l,Z ′)). ut



Using the Predδ and Prede operators, we can straightforwardly adapt the
algorithm of [23] to work backwards, which gives Algorithm 1.

Starting from a set of goal locations Goal, we build initial set of symbolic
states by combining with each of these locations the universal zone RX≥0 (defined
by all clocks should be non-negative) on set of clocks X, with a weight uniformly
equal to 0.

The algorithm works as usual with a passed list Passed and a waiting list
Waiting. At each iteration, we pick a waiting symbolic state and if it contains
the initial state of the automaton, which is then necessarily the offset of the zone,
we check if the corresponding weight (the opposite of the weight of the offset
since we start from 0 at the goal and subtract the weights as we go backwards)
is better than the current value of Weight. If so we update Weight.

Then we add all predecessors of the current symbolic state to the waiting
list, unless some bigger and cheaper symbolic state has already been visited.

To capture this last notion of bigger and cheaper we use the classical sub-
sumption operator 4 defined as:

Definition 10. Let (l,Z), with Z = (Z,w, r), and (l′,Z ′), with Z ′ = (Z ′, w′, r′)
be two symbolic states. We say that (l,Z) is subsumed by (l′,Z ′), and we write
(l,Z) 4 (l′,Z ′), if: (1) l = l′, (2) Z ⊆ Z ′ and (3) for all v ∈ Z, Weight(v,Z) ≤
Weight(v,Z ′).

In the usual definition the weight in Z would be higher than in Z ′ but
remember that our weight is the opposite of the remaining weight to the goal.

Algorithm 1 Symbolic algorithm for optimal weight
1: Weight← +∞
2: Passed← ∅
3: Waiting← {(l, (RX≥0, 0,~0)) | l ∈ Goal}
4: while Waiting 6= ∅ do
5: select and remove S = (l, (Z,w, r)) from Waiting
6: if l = l0 and ~0 ∈ Z and −w <Weight then
7: Weight← −w
8: end if
9: if for all S′ ∈ Passed, S 64 S′ then

10: add S to Passed
11: for all e = (l, g, R, l′) ∈ E, for all S′ ∈ Predδ(Prede(S)), add S′ to Waiting
12: end if
13: end while
14: return Weight

Algorithm 1 has the classical advantage of exploring only co-reachable states
(but may of course explore non-reachable states). Also in contrast to the discrete
successor operator for weighted symbolic states, the Prede operator never splits
zones. Finally, zone abstraction/normalization is not necessary to ensure termi-



nation when computing backwards [12,16], while it should be handled carefully
when working forward [11].

4 Implementation and Experiments

We have implemented the technique in Roméo [20]. The implementation and all
the benchmarks presented here are freely available3. Note that Roméo is a tool
designed for time Petri nets, a model close to timed automata, but with some
expressiveness differences [5]. The zone graph techniques are however perfectly
usable for time Petri nets [15]. The forward technique of [17] is not implemented
in Roméo, so we instead compare with the similar forward technique presented
in [8]. Also, since Roméo deals with Petri nets, where markings can be seen as
the values of a finite set of integer variables, a purely backward method would be
impractical as explained in the introduction, so we have implemented a mixed
forward backward approach in which we first precompute the reachable state-
space and then compute backward on this. Therefore, for the comparison to be
fair, we look at examples with negative costs (but no negative cycles), for which
the whole state-space would have to be explored anyway.

First we look at the aircraft landing problem described in [4]. The modelling
with a Petri-net like model (even using also additional integer variables) is fairly
different from the original one: in particular we cannot test a global clock without
resetting it with time Petri nets. In accordance with the above comments, we
have also made it so that planes that land early actually get some bonus (negative
cost). For all these reasons, we had to limit to a small subset of the planes in
the original model to get some reasonable performances.

Second we look at the scheduling example of [8], in which we need to execute
some periodic task set, on two processors, possibly using renewable energy (which
counts as a negative cost), the availability of which depends on meteorological
conditions. We add an additional constraints that instances of tasks should not
overlap, which reduces the state-space quite a bit.

Both approaches give the same results on all examples, which is a good point.
The results are presented in Table 1.

Landing Scheduling
Aircrafts / Tasks 3 4 5 6 2 3 4 5

Forward Time (s) 1 4 14 50 1 17 196 1044
Mem. (MB) 8 48 205 756 17 177 1501 5826

Backward Time (s) < 1 6 46 322 < 1 6 50 251
Mem. (MB) 17 112 504 1804 13 61 209 504

Table 1. Results on an Intel Core i7-7700 CPU @ 3.60GHz with 32GB of RAM.

3 http://romeo.rts-software.org/releases/FORMATS2020.tgz

http://romeo.rts-software.org/releases/FORMATS2020.tgz


We see that for the aircraft landing problem, the forward approach per-
forms clearly better, though both techniques scale exponentially with the num-
ber of aircrafts (and hence of clocks, as expected). In the scheduling problem,
for the original problem of [8], with 4 tasks, we get 60s (785MB) forward and
52s (402MB) backward. If we increase the execution time of task 2 from 4 to 16
(reaching a utilization factor of 1 for processor 1 if it were alone), we get the
numbers in Table 1, where the backward approach is now clearly better.

We conjecture the performance is heavily impacted by the size of the co-
reachable state-space. For the aircraft problem, using internal statistics, we es-
timate the number of co-reachable states to represent more than 80% of the
reachable state-space, while we estimate it to less than 50% in the scheduling
problem. It is even less (around 35%) for the original version but most of the
time (around 65%) is used for the state-space precomputation, which is much
bigger than with the modified task 2 (where the precomputation only takes 15%
of the total time).

5 Conclusion

We have proposed extensions of the classical backwards operators for timed
automata so that they can compute the remaining weight to some goal location in
a weighted setting. This allows us to devise a backwards optimal cost reachability
algorithm.

On the practical side, we have implemented the algorithm in the tool Roméo,
and we have reported on its performance on two (slightly modified) case-studies
from the literature. This experimental evaluation shows that the algorithm may
outperform the classical forward approach, in particular, as could be expected,
when the set of co-reachable states is significantly smaller than the set reachable
states.

While this algorithm has advantages on its own, it is also a step towards sym-
bolic and efficient verification and optimization for more expressive properties
and we now want to investigate timed computation tree logic and controllability.
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