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Abstract

This paper presents three fault-tolerant control (FTC) strategies for a coaxial octorotor unmanned aerial vehicle
(UAV) regarding motor failures. The first FTC is based on a control mixing strategy which consists of a set of
control laws designed offline, each one dedicated to a specific fault situation. The second FTC, a robust adaptive
sliding mode control allocation is presented, where the control gains of the controller are adjusted online in order to
redistribute the control signals among the healthy motors in order to stabilize the overall system. The third FTC
strategy is a new strategy proposed in this article, which is based on a self-tuning sliding mode control (STSMC)
where the control gains are readjusted based on the detected error to maintain the stability of the system. Multiple
indoor experiments on an octorotor UAV are conducted to show and compare the effectiveness and the behavior of
each FTC scheme after successive faults are injected. More specifically, we inject complete actuator’s failures into
the top four motors of our octorotor. Every strategies show good fault tolerance results, although the control mixing
method performs slightly better overall while the adaptive method performs slightly worse. However, the control
mixing method requires a huge design effort to take into account as much situations as possible, while the adaptive
method and the STSMC only require to determine a few gains. The adaptive method do not need fault detection to
operate, but it thus does not provide information on the system’s health without an additional fault identification
and diagnosis mechanism, while both the control mixing method and the STSMC provide such information.

Keywords: fault-tolerant control, sliding mode control, robust control, multiplexing, control allocation, actuator
redundancy, adaptive control, UAV

1. Introduction

Nowadays, several applications fields rely on the use of drones or UAVs. As they are small, light, and maneuver-
able, drones have many uses in both military and civilian domains, such as fire detection, inspection of power lines,
flying surveillance, aerial photography, roof and solar panels inspection, 3d mapping, etc. In order to accomplish
these missions safely, UAVs must be equipped with an onboard computer or autopilot, different sensors (GPS, IMU,5

magnetometer, barometer...) and monitoring systems to ensure the full functionality of the drone.
From a dependability point of view, UAVs are primarily concerned with the safety and reliability attributes, which

are respectively the absence of catastrophic consequences on the users and the environment, and the deliverance of
correct service [1]. However, these concerns can be contradictory, since in some critical situations safety concerns
would require to safely stop the UAV while reliability concerns would require to continue the mission. In this paper,10

we focus on the safety attribute, which needs fault tolerance mechanisms to cope with possible faults and failures of
actuators during flights, and to preserve the performance of the system without imperiling itself and its surroundings.

A motor failure can be described as a partial or total loss of actuator effectiveness. A motor failure can be first
considered as an error in the system until it has undesired consequences on the system’s behavior, which will usually
happen quickly. Fault-tolerant control (FTC) strategies for UAVs have recently received significant attention in15

research fields due to the increasing awareness about the risks resulting from components failures, and the need for
reliable and safe systems in critical applications [2].

Among different types of multirotor UAVs, the quadrotor has been widely used by the academic communities
due to its simple design and dynamics. This allows to easily develop and test several control algorithms [3]. In
the literature, different strategies were developed considering the FTC problem against partial actuator failures of20
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a quadrotor. In [4], a reconfigurable FTC is proposed, based on a trajectory re-planning scheme and an online
decision making strategy using differential flatness. This strategy consists in synthesizing a reconfigurable feedback
control with a modified reference trajectory once an actuator fault has been diagnosed by a fault detection and
diagnosis scheme, which uses a parameter estimation based unscented Kalman filter. In [5], the authors proposed
a nonlinear adaptive feedback linearization strategy where the solution takes into account the management of the25

control authority by incorporating the post-fault model of the actuator. This guarantees an acceptable performance
in presence of certain types of faults in the actuators. Other proposed strategies addressing partial actuator failures
can be found in [6], [7] and [8], where the authors proposed robust and adaptive control laws based on sliding mode
and backstepping theories to compensate the effectiveness loss in actuators.

A complete loss of a motor/propeller of the quadrotor leads to the inability to fully control the system’s attitude30

[9]. Due to this difficulty, there are few works considering the case of complete rotor loss: [10], [11], [12]. The most
common solution is to sacrifice the controllability of the yaw angle to still be able to command the UAV’s position
and altitude by making it continuously rotate around its Z axis.

In order to maintain complete control of the UAV in the case of one or more motor failures, one solution is to
consider multirotors with redundant actuators, i.e., hexarotors [13] and octorotors [14]. The main advantage of such35

configurations is the possibility of tolerating multiple failures without losing complete controllability. It thus allows
the UAV to keep a stable flight and possibly continue its mission. In the present paper, we will consider a coaxial
octorotor configuration to compare three FTC recovery algorithms in real experiments.

The first FTC is based on a control mixing strategy which consists in a set of control laws designed offline, each
one is dedicated to a specific fault situation. The second FTC consists in a robust adaptive sliding mode control40

allocation (ASMCA), where the control gains of the controller are adjusted online in order to redistribute the control
signals among the healthy motors in order to stabilize the overall system. The third FTC strategy is a new strategy
proposed in this article, which is based on a self-tuning sliding mode control (STSMC) where the control gains are
readjusted depending on the detected error to maintain the stability of the system. The fault tolerance characteristics
and aspects of the three FTC schemes are analyzed and compared after conducting a set of 60 experiments both45

in hovering and trajectory tracking modes. During these experiments, we inject complete actuator’s failures into
the top four motors of our octorotor. Based on our experimental results, the three FTC strategies show good fault
tolerance results. The control mixing method outperforms slightly the two other strategies while the adaptive method
performs slightly worse. However, the control mixing method requires a huge design effort to take into account as
much different faults as possible, while the adaptive method and the STSMC only require to determine few gains. In50

the adaptive method, no fault detection module is required and thus it does not provide information on the system’s
health, while both the control mixing and the STSMC methods provide such information.

This paper is organized as follows: Section 2 presents an overview on fault tolerant control schemes. Related
works are given in Section 3. In Section 4, we present the nonlinear equations of motion of the coaxial octorotor, and
the design of three different FTC schemes are developed in Section 5 and 6. The experimental results are followed in55

Section 7, to test the effectiveness of each FTC recovery strategy with an analysis of the corresponding behavior. The
obtained results are discussed in Section 8. Finally, some conclusions and perspectives are summarized in Section 9.

2. Fault-Tolerant control classification

In the control system’s literature, fault-tolerance control systems (FTC) are divided into two categories, namely
active and passive FTCs.60

In active fault-tolerant control (AFTC) strategies, the fault tolerance process is carried out via three successive
steps: (1) Error detection, using a fault detection FD unit, (2) fault diagnosis, which identifies the occurrence and the
type of a fault after the detection, (3) system recovery. In the AFTC approach, it is required to have a fault detection
and identification (FDI) process. This FDI detects and localizes the faults occurring in the system. Then, the system
recovery is done through redundancies in the system, using projection-based methods or online redesign/adaptation65

methods. In projection based methods, a set of new pre-computed control laws are predefined offline, and associated
with a fault pattern. When the FDI diagnoses and isolates a fault, a corresponding control law is selected from the
set to deal with this particular situation. The drawback of this approach is that it is restricted to the finite number
of faults that have been considered offline. In online based redesign/adaptation methods, control parameters or even
the whole structure of the controller are reconfigured online using computation algorithms to guarantee the system70

stability in faulty situations. In both cases, since we are monitoring the system health, we can know if the system is
getting close to its limits (particularly in term of redundancy), and putting the system in a safe state can be realized
if the system is deemed not safe enough (such as an emergency landing or an order to return to base). The main
drawback of AFTCs is that the fault is not tolerated during the time needed to detect and isolate it, possibly leading
to a system’s failure if the detection takes too much time.75
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Figure 1: Classification of FTCs

In contrast to AFTCs, passive fault-tolerant control (PFTC) strategies consists in masking the faults for example
by using a robust and reliable controller able to deal with all expected fault without the need to detect and identify
them. As a good example, an adaptive sliding mode control allocation (ASMCA) is proposed in [15] to automatically
redistribute the control signals to the fault-free motors. The main advantage of using PFTCs is that it can avoid
the time delay needed to detect the error since it is not required. However, in this case, we don’t monitor the system80

health, and this could lead eventually to a failure when the system reaches its fault-tolerance limits. Moreover,
adaptation to failing situations from robustness is generally not as efficient to recover from a particular failure as
a specifically designed recovery mechanism. A classification of FTCs is presented in Fig. 1, and a more detailed
description is given in [16].

3. State of the art on fault-tolerant control for UAVs through actuators redundancy85

We present in this section previous work relevant to our topic: that is FTC strategies that allow the system to
remain fully controllable. The added hardware redundancy in coaxial octorotors, though allowing more dependability
in the system, complexifies the definition of the control law as it makes the system over-actuated. A full analysis
considering different actuators configurations, and fault tolerance capabilities regarding failures is given in [17]. The
actuators redundancy is considered as an important factor in any FTC strategy implementation, since it allows to90

maintain complete controllability of the system not only with partial faults, but also with up to four total motors
failures. However, an effective motor control allocation of the remaining healthy motors is required to achieve
acceptable performance [18].

In [19], a time delay fault tolerant control (TDC) is proposed to maintain attitude stabilization after a fault
on one or more rotors by treating the fault as a disturbance. Another work [20] suggests a fault-tolerant control95

strategy using cooperation between a radial based function neural network, fuzzy logic control and sliding mode
control (SMC) technique in presence of actuator faults, to alleviate the chattering and to maintain good tracking
of the system. In [21], two FTC schemes using linear parameter varying system representation, with a combination
of SMC theory and control allocation, are developed and tested in the presence of uncertainty, as well as faults
and failures. In the first scheme, the knowledge of the rotor effectiveness is required in order to apply an online100

control allocation methodology, and to redistribute the control signal to working motors, but in the second scheme
this knowledge is not necessary. In [22], a neural network, an interval type-2 fuzzy logic control approach and a
sliding mode control technique are used to design a controller, named fault tolerant neural network interval type-2
fuzzy sliding mode controller. This control scheme has many advantages, since it allows avoiding difficult modeling,
attenuating the chattering effect of the SMC, reducing the number of rules for the fuzzy controller, and guaranteeing105

the stability and the robustness of the system.
Another fault tolerant control scheme based on nonlinear model predictive control for a Y6 coaxial tricopter

is proposed in [23]. In this study, a cascaded closed-loop control methodology is proposed which incorporates a
reconfigurable low-level controller. The effectiveness of the presented fault-tolerant scheme is validated by following
an 8-shaped trajectory with a complete loss of one rotor. In [24], the authors proved that a passive FTC controller110

based on a second order sliding mode control outperforms an active FTC controller designed using a pseudo-inverse
dynamic control re-allocation and a first order sliding mode control.

A global active FTC of underactuated UAV with redundant actuators (hexarotors and octorotors) is proposed
in [25] where the entire architecture contains a baseline controller (adopted from [26]), and a fault detection and
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isolation scheme based on a robust parameter identification approach. The FDI identifies the generated thrust and115

torques by the actuators in normal and faulty situations and a controller reconstruction module then calculates a
feasible solution to the control allocation problem in faulty cases. In [27], a fault-tolerant control for an octorotor
UAV is proposed based on a combination of Backstepping and Dynamic Surface Control. In this method, the
uncertainties and parameters variations caused by faults and failures are estimated and then taken into account in
the control allocation algorithm, based on a Moore-Penrose pseudoinverse [28], which distributes the control efforts120

among the actuators and minimizes the energy consumption. Another FTC strategy based on the reconfiguration of
the remaining rotors was proposed in [29], to handle the disturbance torque and the large yaw rate which occurs after
the failure of a one rotor in a hexarotor UAV. The main issue in all these different studies is that only simulations
are presented to validate the effectiveness of the proposed methods.

In contrast, a few studies have addressed the problem of fault-tolerant control for actuators faults in redundant125

UAVs providing experimental validations for the proposed strategies, such as in [30], where the authors proposed
a fault detection and a fault-tolerant control FTC scheme which can handle up to two actuators failure for an
hexarotor. This FTC scheme uses a nonlinear Thau observer to estimate the states of the UAV and to detect the
actuators failures. It also uses a sliding mode and disturbance observer to stabilize the UAV despite the existence
of disturbances. However, the authors cited that for the frames that have more than six motors (like octorotor), the130

fault detection and fault-tolerant control schemes are more complex, which is out of scope of their research and will
be investigated in further studies.

In our opinion, the most important studies related to our work are given in [31] and [15]. In [31], an offline control
mixing fault-tolerant control strategy is detailed, which consists in computing a set of explicit laws, where each one is
dedicated to a fault situation and obtained by solving an optimization problem considering this particular each fault135

situation. Fault detection and isolation must be associated with the FTC scheme to match a corresponding control
mixing law. From this detection, a lookup table containing all possible faults and failures combinations is used to
select the control law to apply for the system recovery. In [15], an online ASMCA scheme is proposed as a passive
robustness approach to adapt to motors failures. The stability of the overall system is verified using the Lyapunov
theory. However, the convergence time may vary depending on the gain tuning process and the initial condition of140

the system.
In this paper, as a new FTC algorithm, a self-tuning sliding mode control (STSMC) FTC method is proposed to

deal with motors failures. An online reconfigurable sliding mode control allocation is developed, where the control
gain’s reconfiguration process is automatically done depending on a FDI unit. This FDI unit is also based on a
sliding mode observer linked with an updated model for the fault detection and identification process. We will detail145

and compare these last three different techniques in the rest of this paper.

4. Octorotor Dynamics

In this section, the dynamic model of the coaxial octorotor (Fig. 2) is presented. This configuration was developed
in [32] and will be used to test the FTC schemes, since it has many advantages over the star-shaped configuration
[21] regarding stability and size factors. First, for design purposes, some assumptions are made:150

• The UAV frame is considered rigid and symmetric, thus the inertia matrix is diagonal.

• The reference trajectory controllers are continuous, differentiable and their derivatives are bounded.

• The vehicle attitudes (roll, pitch and yaw angles) are constrained to (−π/2 < φ, θ < π/2) and (−π ≤ ψ ≤ π).
This means that the UAV can not follow acrobatic trajectories like looping or flying upside-down.

• All the control inputs are bounded, i.e., uf ∈ ]0, 1] and τφ, τθ, τψ ∈ [−1; 1]155

• The system dynamics are limited to small angles and small variations of linear and angular velocities. This
behavior is common in practice with UAV

In order to obtain the nonlinear equations governing the motion of the coaxial octorotor, we need first to consider
two frames: Re and Rb, where Re is the fixed earth frame {Xe, Ye, Ze} and Rb is the body frame {Xb, Yb, Zb} with
its origin at the center of mass of the octorotor.160
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Figure 2: Coaxial octorotor configuration

Following the Newton-Euler approach, the full mathematical model of the vehicle dynamics can be obtained as
follows [15]: 

mẍ = (cosφ sin θ cosψ + sinφ sinψ)uf
mÿ = (cosφ sin θ sinψ − sinφ cosψ)uf
mz̈ = (cosφ cos θ)uf −mG
Ixxṗ = (Iyy − Izz)qr + τφ
Iyy q̇ = (Izz − Ixx)pr + τθ
Izz ṙ = (Ixx − Iyy)pq + τψ

(1)

where x, y and z denote the position in the fixed earth frame, and φ, θ and ψ the Euler angles of the vehicle. p, q
and r are the angular rates expressed in the body frame. Ixx, Iyy and Izz represent the inertia values of the vehicle,
G represents the gravitational constant and finally the virtual input vector u is defined as:

u = [uf τφ τθ τψ]T (2)

with uf , τφ, τθ and τψ representing respectively the total thrust and the three torques of the system (roll, pitch and
yaw).

The virtual inputs of the system are related to the force and torque of each motor by the following expressions:

uf = F12 + F34 + F56 + F78

τφ =
√

2
2 d(F78 + F56 − F34 − F12)

τθ =
√

2
2 d(F34 + F56 − F78 − F12)

τψ = (τ2 + τ3 + τ6 + τ7)− (τ1 + τ4 + τ5 + τ8)

(3)

where d is the length of the arm, and the force Fi produced by each motor is proportional to the square of the
angular speed :

Fi = Kfω
2
i

τi = Ktω
2
i

i = 1, ..., 8
(4)

where Kf and Kt represent respectively the thrust and drag coefficients of the actuators. The force produced by
each pair of coaxial motors i and j is given by [32]:

Fij = αij(Fi + Fj)(1 + Ss
Sprop

) (5)

Ss and Sprop denote respectively the propeller’s surface and the area of the circle covered by the motion of the165

propeller. Thus we can define S = (1 + Ss
Sprop

) as the shape factor of the propellers. Due to the aerodynamic

interference between each coaxial pair, the total aerodynamic efficiency is decreased. This loss of aerodynamic
efficiency is represented by the constant αij .

T is the transformation matrix from the body angular rates and the rates of the Euler angles:pq
r

 = T

φ̇θ̇
ψ̇

 (6)

T =

1 0 − sin θ
0 cosφ cos θ
0 − sinφ cosφ cos θ

 (7)
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For controller design purposes, it is worth to note that for small changes of roll and pitch angles, T is very close170

to the identity matrix, thus the rates of the Euler angles can replace the body angular rates in equation (1), and the
system dynamics become: 

mẍ = (cosφ sin θ cosψ + sinφ sinψ)uf
mÿ = (cosφ sin θ sinψ − sinφ cosψ)uf
mz̈ = (cosφ cos θ)uf −mG
Ixxφ̈ = (Iyy − Izz)θ̇ψ̇ + τφ
Iyy θ̈ = (Izz − Ixx)φ̇ψ̇ + τθ
Izzψ̈ = (Ixx − Iyy)θ̇φ̇+ τψ

(8)

5. Problem formulation

In this section, we present four aspects of the control law common to the three FTC schemes presented in section
6. The first point is the modelization of the control inputs and the motors failures. The second point is the definition175

of the control allocation problem. The third point is the determination of subsystems for the control laws. Finally,
the fourth point is a common sliding manifold for the SMC of the three FTC.

5.1. Modelization of the control inputs and the motors health

First, let us consider the general nonlinear system model:

Ẋ = f(X) + g(X)u
u = BLu∗

(9)

where u is the virtual control input, that is the desired thrust and the moments, u∗ represents the real control input,180

that is the each motor’s desired power, and X ∈ Rn is the state vector of the system, defined in the next section.
The nonlinear functions f(X) ∈ Rn and g(X) ∈ Rn are respectively the drift vector field and the control vector
field. L = diag(l1, ..., lm) with m as the number of actuators and 0 ≤ li ≤ 1 representing the control effectiveness of
the actuators, so if li = 1, the i-th actuators is working perfectly, whereas li = 0 means the complete failure of the
i-th actuators, and 0 < li < 1 denotes a partial failure on the i-th actuator. B ∈ Rp×m with p < m is the control185

effectiveness matrix, representing the relation between the virtual and real control inputs. Moreover, as u is bounded
from our fourth assumption (Section 4), we can say from (9) that u∗ belongs to a compact set Σ defined as:

Σ = {u∗ ∈ Rm | u∗imin ≤ u∗i ≤ u∗imax}
i = 1, ...,m

(10)

5.2. Control allocation problem

In the coaxial octorotor configuration, the UAV is equipped with eight actuators where each pair is on the same
arm and has the same axle, but rotates in opposite directions (four motors rotating clockwise, four motors rotating190

counter-clockwise). Usually, FTC schemes take advantage of the added hardware redundancy in order to achieve fast
responses when a motor failure occurs. During fault-free operation, the high level controller generates virtual control

inputs u =
[
uf τφ τθ τψ

]T
. This virtual input vector u is redistributed among the set of m healthy motors

where m ≤ 8. This redistribution is known as the control allocation. The control allocation problem is formulated
as:195

BLu∗(t) = u(t)
u∗imin ≤ u∗i ≤ u∗imax

(11)

where u∗ =
[
ω2

1 ω2
2 ... ω2

8

]T
, and the control effectiveness matrix B is defined as:

B =


t1 ... t8
r1 ... r8

p1 ... p8

y1 ... y8

 (12)

6



with:

ti = αijKfS

ri = ±αijKfSd

√
2

2

pi = ±αijKfSd

√
2

2
yi = ±Kt

(13)

where ri, pi and yi are of the same sign than the moment generated by the i-th motor.
Since the coaxial octorotor is an over-actuated system, the control allocation problem has a finite number of

solutions. In this regard, by taking into account some optimization criterion and actuators constraints, it is possible200

to find the optimal solution by considering the quadratic programming approach based on minimizing the control
input as follows:

J =argmin u∗TWiu
∗

such that: Bu∗ = u
(14)

where J is the value of the function to be minimized, which has the explicit solution:

u∗ = WiB
T (BWiB

T )−1u (15)

where Wi = WT
i is a symmetric positive definite weighting matrix. This method is called the weighted pseudo-

inverse method which is often used to solve unconstrained linear control allocation problems. However, in order to205

counteract the saturation of the healthy actuators in case of failures, another scheme needs to be proposed to update
the weighting matrix Wi, which is given at the end of Section 6.1.

5.3. Common subsystems formulation for all FTC schemes

Since the controller stabilizes both the altitude z and the attitude φ, θ, ψ of the octorotor, we will consider the
state vector as210

X =
[
x1 x2 x3 x4 x5 x6 x7 x8

]T
=
[
z ż φ φ̇ θ θ̇ ψ ψ̇

]T (16)

Given the nonlinear equations of motion in (8), the octorotor dynamic model can be divided into four subsystems
as follows:

Altitude subsystem

{
ẋ1 = x2

ẋ2 = f1 + g1u1
(17)

Roll subsystem

{
ẋ3 = x4

ẋ4 = f2 + g2u2
(18)

Pitch subsystem

{
ẋ5 = x6

ẋ6 = f3 + g3u3
(19)

Yaw subsystem

{
ẋ7 = x8

ẋ8 = f4 + g4u4
(20)

7



where fi and gi are defined as:

f1 = −G
f2 = x6x8(Iyy − Izz)/Ixx
f3 = x4x8(Izz − Ixx)/Iyy

f4 = x4x6(Ixx − Iyy)/Izz

g1 = cos(x3) cos(x5)/m

g2 = 1/Ixx

g3 = 1/Iyy

g4 = 1/Izz

(21)

With the formulation above, and for control design purposes, it is useful to represent each subsystem as a single
input nonlinear system given by:215 {

ẋ2i−1 = x2i

ẋ2i = fi + giui
with i = 1, 2, 3, 4 (22)

5.4. Shared sliding manifold function for all FTC schemes

We present here a sliding manifold for an UAV’s sliding mode controller. This sliding manifold will be used on
the three presented FTCs, in order to compare only the impact of the fault tolerant recovery mechanisms as much
as possible.

The integral sliding manifold Si is proposed as follows:220

Si = {X ∈ Rn | si(X) = 0} (23)

The integral switching function s(X) is defined as:

si(X) = ėi + λiei + ki

∫
eidt− λiei0 − ėi0 (24)

where λi and ki are the gains for the sliding variables which must be selected as positive values but not too high to
provide a smooth response of the system, and (25) gives ei for (17), (18), (19) and (20) with i = 1, .., 4, such that ei
and ėi represent the position and velocity errors between the real states xi measured by the vehicle sensors, and the
desired values xdi calculated by the trajectory generator. ei0 and ėi0 are the initial errors.225

ėi = x2i − xd2i
ei = x2i−1 − xd2i−1

(25)

6. FTCs recovery applied to coaxial octorotor

When a motor failure occurs, the control allocation should redistribute in a specific way some control signals to
the healthy actuators in order to compensate for the loss of thrust. This could be done be by changing the weighting
matrix Wi in the STSMC and control mixing techniques, or by modifying gains in the higher level controller ui to
attain the new stability conditions as it is done in the ASMCA and STSMC techniques. In this section, we will first230

present our contribution for FTC methods: a self-tuning sliding mode control (STSMC) that uses error detection to
modify multiplexing and the control law’s gains and to adapt to the erroneous state. Then, we will introduce two
other FTC methods: a FTC based on off-line control mixing [31] and an adaptive sliding mode control allocation
(ASMCA) for future comparison and validation of our proposed recovery method.

6.1. Self-Tuning sliding mode control (STSMC)235

We propose in this section an AFTC scheme which automatically tunes itself to an error once this error has been
detected and identified. The detection and isolation can be done for example by using additional current sensors
equipped to each actuator (see chapter 5 in [33]). This FDI module must identify the faulty actuator and provide
the effectiveness loss of each actuator for our method to be applied.

Let us recall the subsystems formulation presented in (17) to (20), the definition of the integral sliding variable240

in (24) and the definition of the system errors given in (25). The goal of the controller is to drive the sliding variable
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si and its first derivative to zero, which implies that the difference between the system’s position and the desired one
will also be driven to zero and the system will follow the desired trajectory. To do this, we design a control law u
that ensure the following desired dynamics of the sliding variables si:

ṡi = −Ki sat(si/εi) (26)

where Ki are positive gains of the discontinuous part of the control law and εi are small positive values defining the245

boundaries of the linear part of the sat(.) function, defined as:

sat(si/ε) =

{
sign(si) if | si |> εi
si/εi if | si |< εi

(27)

From Eq. (24) and (25), the first derivative of si is calculated as:

ṡi = ëi + λiėi + kiei

= (ẋ2i − ẋd2i) + λiėi + kiei
(28)

By substituting the expressions of ẍ2i from the subsystems (17), (18), (19) and (20), we get:

ṡi = (fi + giui − ẍd2i) + λiėi + kiei (29)

In order to obtain the desired dynamics of the sliding variable, we choose the control law as follows:

ui = 1
gi

(ẋd2i − λiėi − kiei − fi)− 1
gi
Ki sat(si/εi)

for i = 1, .., 4
(30)

By substituting this control law in Eq. (29), the desired dynamics of the sliding variable (26) are established.250

Proposition 1. Given the nonlinear subsystems (17), (18), (19) and (20), by applying the control law (30) and by
choosing Ki ≥ ηi > 0, where ηi is any fixed positive value, the condition si(X) = 0 is satisfied and thus the system
errors ei and ėi converge to zeros, meaning that the system’s state will eventually be the desired one.

Proof. Consider the following Lyapunov function Vi :

Vi =
1

2
s2
i (31)

Then the derivative of this function would be by using (24), (25) and (17) to (20):

V̇i = siṡi

= si(ëi + λiėi + kiei)

= si(ẋ2i − ẋd2i + λiėi + kiei)

= si(fi + giui − ẋd2i + λiėi + kiei)

(32)

and by substituting (30) into (32), we get:255

V̇i = −Kisi sat(si/ε)

≤ −ηisi sat(si/ε)

≤ −ηi | si |
(33)

Thus the system satisfies the η-reachability condition, and the system will asymptotically reach the desired
trajectory. The proof is satisfied for i = 1, ..., 4.

In faulty scenarios, actuators failures are modeled as losses in the control effectiveness. We represent these losses
by the L = diag(l1, ..., l8) matrix, where li = 1 and li = 0 indicate respectively that the i-th motor is fully healthy
or completely failing. Then the real force Fi produced by each actuator is actually:260

Fi = liFi (34)
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where Fi is the force produced in fault-free situation. In this situation, the real virtual input vector u =
[
uf τφ τθ τψ

]T
produced by the system becomes: 

uf
τφ
τθ
τψ

 =


uf
τφ
τθ
τψ

+


∆uf
∆τφ
∆τθ
∆τψ

 (35)

where u =
[
uf τφ τθ τψ

]T
and ∆u =

[
∆uf ∆τφ ∆τθ ∆τψ

]T
are respectively the nominal virtual control

input calculated by the controller and the input caused by the erroneous actuators, or input fault vector. In practice,
an error could be caused either by a damage affecting the motor or the propeller. In this work, we do not distinguish265

these faults.
Depending on the faulty actuator, additive faults in torques (∆τφ , ∆τθ , ∆τψ) can be either positive or negative

depending on the direction of the actuator rotation and its position with respect to the center of gravity of the
vehicle. In contrast to faults altering torques, the additive faults affecting the thrust (∆uf ) can only be negative
since the generated thrust doesn’t depend on the rotation direction nor on the actuator’s position.270

First, we consider that a single fault is present in the system. In this case, the additive faults input can be defined
as:

∆uf = −(1− lj)FjαjkS

∆τφ = ±(1− lj)FjαjkSd
√

2

2

∆τθ = ±(1− lj)FjαjkSd
√

2

2
∆τψ = ±(1− lj)τj

(36)

where the j-th and k-th terms represent respectively the faulty actuators and its redundant actuator. Note that this
notation will be adopted in the rest of this chapter. The signs of the additive faults in torques are given in Table 1.

Actuatori ∆τφ ∆τθ ∆τψ

1 + + +

2 + + -

3 + - -

4 + - +

5 - - +

6 - - -

7 - + -

8 - + +

275

Table 1: Additive faults in torques according to the failing actuator

A new control law uf =
[
uff τfφ τfθ τfψ

]T
is designed to recover the system from this faulty situation, such

that:

u = uf + ∆u (37)

Thereby, the subsystems (17), (18), (19) and (20), become:

Altitude subsystem

{
ẋ1 = x2

ẋ2 = f1 + g1u
f
f + g1∆uf

(38)

Roll subsystem

{
ẋ3 = x4

ẋ4 = f2 + g2τ
f
φ + g2∆τφ

(39)

Pitch subsystem

{
ẋ5 = x6

ẋ6 = f3 + g3τ
f
θ + g3∆τθ

(40)

Yaw subsystem

{
ẋ7 = x8

ẋ8 = f4 + g4τ
f
ψ + g4∆τψ

(41)
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Let us have:280

uf =
[
uff τfφ τfθ τfψ

]T
=
[
uf1 uf2 uf3 uf4

]T
(42)

We propose the following control law to recover the system from erroneous situations:

ufi =
1

gi
(ẋd2i − λiėi − kiei − fi)−

1

gi
Kf
i sat(si/εi)

Kf
i = Ki + ∆umaxij , i = 1, ..., 4

(43)

where ∆umaxij is the additive fault term of the input fault vector ∆umaxj due to the fault injected to the j-th actuator
given in Eq. (44). In fact, ∆umaxij is positive and bounds the maximal value of ∆ui. Thus, by adding this positive

value to the control gain Kf
i of the proposed control law (43), we can prove (using the Proposition 2 and its proof)

that the system will be able to maintain its overall stability in case of actuator failures.285

It can be seen that the control parameter Kf
i updates itself over time based on the fault detection information

carried by the additive bounded input fault vector ∆umaxj . Thus, the proposed controller adapts over time depending
on the actuators faults in order to maintain the stability of the system.

The expression of the input fault vector ∆umaxj is given by:

∆umaxj =


∆umaxfj

∆τmaxφj

∆τmaxθj

∆τmaxψj

 =


∆umax1j

∆umax2j

∆umax3j

∆umax4j

 =


ljF

max
j αjkS

ljF
max
j αjkSd

√
2

2

ljF
max
j αjkSd

√
2

2

ljτ
max
j

 (44)

where Fmaxj and τmaxj for our experimental drone’s actuators have been identified in [33]. The lj are the effectiveness290

losses detected by the FDI mechanism, as previously stated in this section, and the other terms are dependent of the
system and are identified for our experimental UAV in section 7.

Proposition 2. Given the nonlinear subsystems (17), (18), (19) and (20), by applying the new control law (43) and
by choosing Ki ≥ ηi > 0 in a similar way than for the fault-free control law, the condition si(X) = 0 is satisfied and
thus the system errors ei and ėi converge to zeros, meaning that the system’s state will eventually be the desired one.295

Proof. Consider the following Lyapunov function Vi:

Vi =
1

2
s2
i (45)

Then the derivative of this function would be

V̇i = siṡi

= si(ëi + λiėi + kiei)

= si(ẋ2i − ẋd2i + λiėi + kiei)

= si(fi + giu
f
i + gi∆ui − ẋd2i + λiėi + kiei)

(46)

and by substituting (43) into (46), we get:

V̇i = −Kf
i si sat(si/ε) + gi∆uisi

= −Kisi sat(si/ε)− gi∆umaxij si sat(si/ε) + gi∆uisi

= −Ki | si | −gi(∆umaxij | si | −∆uisi)

(47)
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Let us recall the expressions of gi (from Eq. (21):

g1 = cos(φ) cos(θ)/m

g2 = 1/Ixx

g3 = 1/Iyy

g4 = 1/Izz

(48)

Since the parameters Ixx, Iyy and Izz are all positive, thus the terms g2, g3, g4 are positives. Moreover, since the roll
and pitch angles are constrained to (−π/2 < φ, θ < π/2), and using the fact that m is the mass of the UAV which
is a positive value, we can conclude that g1 is also positive. Then, the following inequality holds true:

gi > 0 (49)

And, as ∆umaxij is positive and bounds the maximal value of ∆ui, we can write:

∆umaxij > |∆ui| (50)

Thus, using the Eq. (49) and (50), we have:

V̇i = −Ki | si | −gi(∆umaxij | si | +∆uisi)

≤ −Ki | si |
≤ −ηi | si |

(51)

Then the system satisfies the η-reachability condition, and the system will asymptotically track the desired trajectory.
300

In case of multiple faults, the term ∆umaxij is replaced by the sum of the input fault vectors corresponding to all
the injected faults. The additive faults input for multiple faults thus becomes:

∆uf = −
∑
j

(1− lj)FjαjkS

∆τφ =
∑
j

±(1− lj)FiαjkSd
√

2

2

∆τθ =
∑
j

±(1− lj)FiαjkSd
√

2

2

∆τψ =
∑
j

±(1− lj)τi

(52)

where the j-th terms are the indices of all the failing actuators and, as we mentioned previously, the k-th terms
represent the redundant actuators of the j-th failing actuators. The same proof of stability used in the case of one
fault holds true in the case of multiple faults by adding the sum of the upper bounds

∑
j

∆umaxij of all the injected305

faults in equation (43).
Note that when an error occurs, the weighting matrix Wi, in Eq (15), is updated according to the output of

the FDI module, i.e., the detected fault information, namely wi = 1/li. When the i-th actuator becomes faulty,
its weight value increases and its control signal also increases. If the control signal exceeds the power limit of the
actuator, it will cause saturation. The following weighting algorithm Ŵi is always used in (15) instead of Wi to avoid310

this actuators saturation::

Ŵi = ΞWiΞ with Ξ = diag(ξ1, ξ2, ..., ξ8)

ξi =

(1 + η1)
u∗i

η2u∗imax
, u∗i > η2u

∗
imax

1, η2u
∗
imin ≤ u∗i ≤ η2u

∗
imax

(53)
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where η1 and η2 are small positive values with 0 < η2 ≤ 1.

6.2. AFTC based on an offline control mixing

Since the coaxial octorotor configuration is an over-actuated system, there exists a finite number of solutions to
the control allocation problem (11). In [31], a static reallocation for each motors failures case is obtained by resolving315

the optimization problem (14) for each fault situation.
By considering that at least four motors are healthy, the number of complete failures combinations is Nf =∑4
i=1 C

i
4 = 162.

However, due to the symmetry in the coaxial octorotor’s configuration, the number of dissimilar combinations is
highly reduced to 27.320

In this FTC scheme, the same baseline control law (30) is used in all cases, i.e., in nominal and faulty situations.
However, as mentioned in [31], after each error detection, a new set of control gains depending of the new system’s
configuration must be associated to the control law. These gains must be determined empirically for every one
of the erroneous configuration that we want to consider. For complete motors failures, the number of dissimilar
configurations can be reduced to 27 as previously stated. However, if we want to take into account partial motors325

failures, this number can grow to hundreds.

6.2.1. Fault-Free Mode

In nominal behavior, the expression of the ith motor speed ωi is given by (54):

ωi =

√
1
8 .

(
uf

αij .Kf .S
± τφ

αij .Kf .S.d
√

2
2

± τθ
αij .Kf .S.d

√
2

2

± τψ
Kt

)
(54)

In fact, the above expression of ωi represents the solution of the equation (11) by taking L = I8×8.

6.2.2. One complete failure

To deal with the case of one motor’s complete failure, the solution proposed in [31] from the resolution of 14 (with330

one li = 0) is to reduce the power of its dual to the half, and to increase the powers of the three upper remaining
actuators by a factor of 1.5. For example considering a complete failure of motor 1 (l1 = 0), we would have:

F
′

6 = 0.5F6

F
′

i = 1.5Fi i = 2, 4, 8

F
′

i = Fi i = 3, 5, 7

(55)

Failed Motors Reallocated inputs
1 & 2 F ′i = 0 i = 5, 6

F ′i = 2Fi i = 3, 4, 7, 8
1 & 3 F ′i = 2Fi i = 2, 4

F ′i = Fi i = 5, 6, 7, 8
1 & 4 F ′i = 2Fi i = 2, 3, 5, 8

F ′i = 0 i = 6, 7
1 & 5 F ′i = Fi i = 2, 3, 6, 7

F ′i = 2Fi i = 4, 8
1 & 6 F ′i = 4

3Fi i = 2, 3, 4, 5, 7, 8
1 & 7 F ′i = 2Fi i = 2, 8

F ′i = Fi i = 3, 4, 5, 6
1 & 8 F ′i = 2Fi i = 2, 4, 5, 7

F ′i = 0 i = 3, 6

Table 2: Static reallocation in case of two motors failures, adopted from [31]
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Failed Motors Reallocated inputs

1 & 2 & (3 or 4 or 7 or 8) —

1 & 2 & (5 or 6) F ′i = 2Fi i = 3, 4, 7, 8
F ′i = 0 i = 6 or 5

1 & 3 & 4 —

1 & 3 & 5 F ′i = 1.5Fi i = 2, 6, 8
F ′i = 2.5Fi i = 4
F ′i = Fi i = 7

1 & 3 & (6 or 8) F ′i = 2Fi i = 2, 4, 5, 7
F ′i = 0 i = 8 or 6

1 & 3 & 7 F ′i = 2.5Fi i = 2
F ′i = 1.5Fi i = 4, 6, 8

F ′i = Fi i = 5

1 & 4 & 5 —

1 & 4 & (6 or 7) F ′i = 2Fi i = 2, 3, 5, 8
F ′i = 0 i = 7 or 6

1 & 5 & 6 F ′i = 2Fi i = 3, 4, 7, 8
F ′i = 0 i = 2

1 & 5 & 7 F ′i = 2.5Fi i = 8
F ′i = 1.5Fi i = 2, 4, 6

F ′i = 1Fi i = 3

1 & 6 & 7 F ′i = 2Fi i = 2, 3, 5, 8
F ′i = 0 i = 4

1 & 6 & 8 F ′i = 2Fi i = 2, 4, 5, 7
F ′i = 0 i = 3

1 & 7 & 8 —

335

Table 3: Static reallocation in case of three motors failures, adopted from [31]

Failed Motors Reallocated inputs

1 & 2 & 5 & 6 F ′i = 2Fi i = 3, 4, 7, 8

1 & 3 & 5 & 7 F ′i = 2Fi i = 2, 4, 6, 8

1 & 4 & 6 & 7 F ′i = 2Fi i = 2, 3, 5, 8

2 & 3 & 5 & 8 F ′i = 2Fi i = 1, 4, 6, 7

2 & 4 & 5 & 7 F ′i = 2Fi i = 1, 3, 6, 8

2 & 4 & 6 & 8 F ′i = 2Fi i = 1, 3, 5, 7

3 & 4 & 7 & 8 F ′i = 2Fi i = 1, 2, 5, 6

Table 4: Static reallocation in case of four motors failures, adopted from [31]

6.2.3. Two, three and four complete motors failures

As mentioned before, in case of multiple complete failures, many solutions of the optimization problem (14) are340

symmetrically equivalent since the frame configuration of the coaxial octorotor is symmetric. So, without loss of
generality, only the cases where motors 1 and i = 2, 3, ..., 8 fail are presented in Tables 2 and 3. Also, the Table 4
presents all the possible cases of four motors failures. Note that the dashed line indicates that no solution was found
with this combination [31].

6.3. Adaptive sliding mode control allocation (ASMCA)345

In this robust approach, an adaptive control allocation and re-allocation strategy [15] is proposed to redistribute
control signals among healthy motors. This ASMCA is employed to maintain the overall system performance,
providing tolerance to motors faults but also robustness to external perturbations.

The proposed control law is as follows:

ui = Υ̂i(ẋ
d
2i − λiėi − kiei − fi)− Υ̂iKi ∗ sat(si/εi) (56)

The parameter Υ̂i is adaptively adjusted online when there is an error between the baseline controller ui and the
desired one udi in the case of actuator faults or external perturbations. The online update scheme of the parameter

Υ̂i is given by:
˙̂
Υi = (−ẋd2i + λiėi + kiei + fi) +Ki ∗ sat(si/εi)s∆i (57)

where s∆i
= si − ε sat(si/ε). Further information about this algorithm are given in [15].350
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Symbole Parameter Value Unit

Kf Thrust factor 3 ∗ 10−5 N . s2 / rad2

Kt Drag factor 7 ∗ 10−7 N .m . s2 / rad2

Ixx , Iyy Inertia 4.2 ∗ 10−2 Kg .m2

Izz Inertia 7.5 ∗ 10−2 Kg .m2

d length of the arm 0.23 m
m mass 1.6 Kg

Fmax Max forces 5 N
τmaxφ , τmaxθ Max torque 2 Nm

τmaxψ Max torque 0.08 Nm

Table 5: Coaxial octorotor parameters

The main steps of the adaptive allocation are conducted as follows:

1. When there exists an error between the actual baseline controller ui and the desired controller uid, which means
that the position and the velocity of the system are different from the desired values, thus the parameter Υ̂i is
updated following the equation (57) to maintain the system performance.

2. The control effectiveness matrix Bi is updated accordingly through a defined relationship B̂i = Υ̂i ∗ Ti, where355

the relationship between gi from equations (17) to (20) and Bi is bounded by Ti = giBi.

3. The control signals are redistributed to the healthy motors through the relationship u∗ = WiB̂
T (B̂WiB̂

T )−1u

It is proved in [15] that for a nonlinear system with bounded disturbance, the sliding motion will be achieved and
maintained by applying the feedback control law (56) and the online adaptation scheme (57) and by an appropriate
choice of the discontinuous gains Ki.360

7. Experimental Validation

In this section, we demonstrate the performance of our proposed STSMC. Also, we test and compare the behavior
of the three FTC schemes in real indoor experiments. In these experiments, four successive fault injections are used
to simulate the total failures of top actuators of the coaxial octorotor (actuators 6, 2, 4 and 8) by sending stop
commands at desired times.365

7.1. Experimental platform

The experimental coaxial octorotor is shown in Fig. 5. It was designed and built at the Heudiasyc Laboratory.
Its parameters are given in Table 5.

The localization is done using an Optitrack motion capture system which provides the position measurements
(position x, y, z and heading ψ in Earth frame) to the position control loop of the UAV. In addition, the octorotor370

is equipped with a 3DM-GX3-25 Microstain IMU composed of accelerometers, gyroscopes, and a magnetometer to
provide inertial measurements and static/dynamic orientation. Also, an ultrasonic telemeter SRF08 is added to
enhance the altitude measurement.

An embedded computer module is mounted on the drone, namely the IGEPv2. It is a fanless computer platform
with a compact size and low power consumption which is programmed using a C++ compiler. The states of the375

vehicle are measured by the sensors and transmitted to the IGEPv2 through different communication interfaces
(serial communication, wifi, etc.). The software used to write applications for the octorotor is called FL-AIR, which
has been developed at the Heudiasyc laboratory to ease development and integration of research algorithms. FL-AIR
is based on Linux and is compatible with real time features (Xenomai). Also, a ground station is built to monitor
all the octorotor states in real time.380

Finally, in order to compare the FTC methods, we use the same initial control parameters for all FTC control
schemes, i.e. in (43) and (56):

λ1 = 3, λ2 = 5, λ3 = 5, λ4 = 4

k1 = 3, k2 = 4, k3 = 4, k4 = 5

K1 = 6, K2 = 5, K3 = 5, K4 = 6

ε = 0.15

(58)
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Note that for the reconfigurable control mixing technique, we assign new control parameters after each failure
injection to meet the new condition of the system. The gains for each recovery configuration are determined ex-
perimentally and are not given here for lack of space. On the other hand, for the STSMC and ASMCA, the initial385

control parameters (58) are adjusted online with respect to equations (43) and (56) respectively.

7.2. Fault detection and isolation (FDI) using current sensors

As mentioned before, the system recovery in AFTCs is depending upon the occurring errors in the system
being detected and identified. Therefore, a fault detection and isolation (FDI) unit is required to detect the failed
component and to estimate the fault parameters. Fault detection and isolation techniques can be classified into two390

categories, namely Model-based FDI and Model-free FDI.
In Model-based FDI, the detection, isolation and identification of faults are done by comparing the output of the

system available measurements with a priori information represented by the dynamics equations of the system. In
Model-free FDI, the detection relies only on real-time or historical data collected from the sensors and measurements
in order to detect and isolate failed components without the need of any information about the system dynamics.395

In our experiments, the FDI is supposed to be carried out by comparing each actuator’s current to the current
that it should theoretically have given the desired command (a Model Based FDI). This technique was successfully
tested in [33], but we only simulated it in our experiments in order to focus on the reconfiguration problem of the
FTC.

Fig. 3 and 4 illustrate the motor currents during a real hovering flight. Note that after the injection of the first400

failure, the current measurements take about one second before converging to zero. We chose in our experiments to
fix the simulated error detection time at 0.5s as we consider from this data that an 80% decrease of motor current
could be correlated to the complete failure of the actuator.

Figure 3: Motors currents during real hover flight and successive failures injections (FI)

Figure 4: Zoomed view of motors currents during real hover flight and successive failures injections (FI)
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Figure 5: Experimental Coaxial Octorotor

7.3. Experimental Results

To compare the three FTC schemes, two indoor scenarios are considered: (1) The coaxial octorotor is required405

to do a stable flight at 1 meter altitude. (2) The octorotor is required to follow a squared trajectory of 2 meters
sides at the same altitude of 1 meter. For each FTC scheme, we realized 10 experimental tests of each flight, thus a
total of 60 flight tests were carried out, as each test is not completely reproducible but can be influenced by external
perturbations such as sensors noises or communications delays.

To study this number of experimentation, we plot the results using the box ans whisker technique, since it is able410

to summarize a set of data and is ideal for comparing distributions. In this representation the box ends represent
the two middle quartiles of data measurements (between 25% and 75%), while the whiskers refer to the higher and
lower quartile (respectively, between 0% and 25%, and between 75% and 100%). Finally, the mean and the median
of the observations are represented respectively by a star and an horizontal line inside the box.

7.3.1. Hovering flight415

To characterize the performance of the three FTC schemes in handling motor failures, first we performed 10
trials of the hovering scenario using each method (STSMC, Multiplexing, Adaptive). In each experiment, the top
motors (successively 6, 2, 4 and 8) are turned off from the ground station at the same times t1 = 18.28s, t2 = 25.8s,
t3 = 32.8s and t4 = 40.8s. Position data of the different trials are collected between t = 17s and t = 45s right before
the first injection, and after the last one. The three controllers were equally stable at the beginning of the data420

collection. All the data are illustrated in Fig. 6, Fig. 7 and Fig. 8. To simplify the analysis of the performance, we
calculated the average positions of the trials for each FTC scheme, and we illustrate them in Fig. 9, tables 7 and
8. By comparing these results, it can be seen that in all cases the altitude errors are less important than the (x, y)
position errors. This is because all the eight actuators contribute to the height control in the same direction and
the loss of one motor is a loss of 1/8 of the total number of actuators in this direction. However, for the roll and425

pitch control we have 4 actuators generating positive orientations and the 4 remaining actuators generating negative
orientations, and the loss of one motor is then a loss of 1/4 of the total number of actuators contributing to the same
torque. The loss of one motor has thus more influence on the (x, y) position than on the altitude.

The altitude tracking performance of the trials averages is shown in Fig. 10.

7.3.2. Trajectory Tracking flight430

To characterize the performance of the three FTC schemes in handling motor failures when following trajectories,
we realized another flight scenario, where the coaxial octorotor has to follow a squared path starting from the initial
position (corner A ; x = 0, y = 0) as shown in Fig. 15. This is the case of a trajectory tracking problem where the
desired positions and velocities are time-dependent and the system is required to follow the squared reference and
reach successively the ABCDA corners of the rectangle as shown in Fig. 15. Again, we performed 10 trials using435

each FTC scheme, where the failures to the top motors (successively 6, 2, 4 and 8) are injected in all experiments at
the same times t1 = 18.28s, t2 = 25.8s, t3 = 32.8s and t4 = 40.8s. Data on all experiments are illustrated in Fig. 11,
Fig. 12 and Fig. 13, and the average positions and errors information are presented respectively in Fig. 14, Tables
9 and 10.

In order to generate the position and velocity of the reference trajectory, the algorithm 1 is implemented in the440

system. The desired velocity is calculated based on the predefined maximal acceleration Amax = 0.2m/s2 in our
case. Furthermore, a saturation value of Vmax = 0.3m/s is chosen in order to limit the maximum velocity of the
UAV. Also note that the desired position xd is calculated by considering timesteps of ∆T = 0.01s.

Fig. 16 and 17 show the evolution of the positions and translational velocities in the x and y directions during
the trajectory following the square path ABCDA. We can see that all experiments where conducted using the same445
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Algorithm 1: Trajectory generator for position displacement in segment AB

Data: ex, Vx: position error in the x direction between the desired position and the actual current position
and UAV translational speed in the x direction

xd, Vd: desired x position and velocity
∆T : time difference between two trajectory generation cycles.
Constant: Vmax, Amax: maximum allowable velocity and acceleration

1 begin
2 if |ex| > V 2

max/Amax then
3 if Vx < Vmax then
4 Vd = Vd +Amax ∗∆T

5 else
6 Vd = Vmax

7 else
8 Vd = Vd −Amax ∗∆T

9 xd = xd + Vd ∗∆T

reference values for the positions and velocities with respect to time. Although these references are calculated online,
the UAV’s behaviors in the different methods are still similar enough to generate the same references. Fig. 18
shows the attitude of the UAV during the experiments. We can see that the angles stayed small even after the fault
injections, respecting this particular assumption in our model. Finally, the motor speeds of the different actuators
using respectively the Adaptive, the STSMC and the Multiplexing schemes are depicted in Fig. 19, 20 and 21. These450

results show that no saturation were encountered during the flights, which means that the saturation algorithm for
the weighting matrix 53 was never activated.

The video of the experiments can be found at https://youtu.be/Y73o4oESbIs.

8. Discussion

In this section, we will discuss and compare the different behaviors and aspects of the three FTC schemes455

considering five aspects: fault tolerance efficiency, trajectory tracking performance, development costs, computation
time and health monitoring. Those different aspects are summarized in Table 6.

8.1. Fault Tolerance Efficiency

All three FTCs give good results and successfully tolerate the four successive faults. However, it can be seen on
Fig. 10 and 15 that compared to the Adaptive method, the Multiplexing and the STSMC have a smaller response460

time in compensating for the effects of the injected faults. This is probably due to the fact that the adaptation
process of the adaptive method needs some time to converge to the required control parameters, even though the
active fault tolerance methods are applied after a detection time delay of 0.5s. Also, Fig. 19, 20 and 21 show that
the healthy actuators have similar behaviors in all methods and are able to tolerate the faults without saturation.

8.2. Trajectory Tracking Performance465

From Table 7, 8, 9 and 10, we can see that the lowest errors are recorded when using the Multiplexing method.
This is probably due to its parameters being obtained by resolving an optimization problem, while the SMTC gains
bounds the error (see equation (43)) and the adaptive gains are based on a comparison with noisy sensors outputs.
Also, the adaptive method shows slightly bigger errors than the STSMC. Fig. 16 shows that the three methods
follows a similar path with respect to time. Fig. 17 and 18 show similar behavior of the angles and translational470

velocities in the different methods.

8.3. Development cost

The Multiplexing FTC method is very costly to develop since it requires to determine the control law’s gains for
every possible faults situations. This cost becomes even greater if we take into account partial failures in addition to
complete ones. On the other hand, the STSMC and the Adaptive method can both be used to deal with all possible475

faulty scenarios without more development effort. Nevertheless, the STSMC still requires more knowledge about the
model of the system, since a thruster model identification must be done to determine the thrust and drag coefficients
of the actuator/propeller system in order to obtain the tuning law.
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STSMC Multiplexing Adaptive
Fault Tolerance efficiency + ++ +

Trajectory Tracking performance + ++ +
Ease of Development + - +

Low computation time + + -
Health monitoring + + -

Table 6: Comparison of aspects and features of the different FTC schemes

8.4. Computation time

The averages of the computation time of each FTC during an experiment (from t = 15s to t = 45s) of the480

baseline controller for each FTC scheme are given in Table 11. It shows that the STSMC and the Adaptive methods
are more expensive than the Multiplexing method in terms of computational complexity by a ratio of 1.5. This is
certainly because they involve online computation of the controller parameters while the Multiplexing method just
switch from one control law to another.

8.5. Health monitoring485

An advantage of using active fault tolerance schemes (Multiplexing and STSMC) is that we can know if the
system is getting close to its fault tolerance limit since we are monitoring the system health. This is not possible
in the case of the Adaptative method, and therefore it may not be as reliable in critical cases. Nevertheless, the
Adaptive method also adds more robustness to the system against external disturbances and does not need a FDI
mechanism. Also note than an added FDI mechanism to the Adaptative method, even if not required, would allow490

to monitor the system’s health in the same way than the two other methods.

FTC RMS ex (m) RMS ey (m) RMS ez (m)

STSMC 0.0835 0.0777 0.0453
Multiplexing 0.0621 0.0707 0.0448

Adaptive 0.0975 0.0882 0.0614

Table 7: hover flight RMS errors

FTC exmax (m) eymax (m) ezmax (m)

STSMC 0.222 0.151 0.143
Multiplexing 0.204 0.139 0.135

Adaptive 0.213 0.161 0.175

Table 8: hover flight Max errors

FTC RMS ex (m) RMS ey (m) RMS ez (m)

STSMC 0.0882 0.0909 0.0553
Multiplexing 0.0723 0.0798 0.049

Adaptive 0.0950 0.1009 0.0616

Table 9: Square Trajectory flight RMS errors
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FTC exmax (m) eymax (m) ezmax (m)

STSMC 0.224 0.249 0.155
Multiplexing 0.218 0.239 0.141

Adaptive 0.281 0.238 0.180

Table 10: Square Trajectory flight Max errors

FTC CPU clock (s)

STSMC 0.110196
Multiplexing 0.075216

Adaptive 0.115344

Table 11: Time complexity of each FTC method between t4 = 17s and t4 = 45s during an experiment.

9. Conclusion and perspectives

Based on the experimental results we obtained, it can be concluded that the proposed STSMC, the Multiplexing,
and the Adaptive fault tolerant control strategies all allow a coaxial octorotor to maintain stability after losing up
to four motors.495

Although the Multiplexing FTC scored the lowest position errors and time complexity, it is not efficient in
development cost as every possible fault scenarios must be studied both theoretically and experimentally to determine
respectively the multiplexing parameters of the control law and its gains. Meanwhile, the proposed STSMC can be
considered as a good practical alternative to the Multiplexing strategy, since it shows better performance and faster
response time compared to the Adaptive method and allows to monitor the system’s health with almost no added500

development cost.
In future works, we intend to consider partial faults and simultaneous faults/failures to conduct better analyses

and to study more extensively the advantages of each FTC strategy. We also intend to conduct the same experiments
outdoor by adding the wind compensation strategy proposed in [34]. Also, finite-time sliding mode controller [35]
will be considered as the baseline controller for the FTCs strategies in order to study how it improves the system’s505

stability during recovery. Furthermore, we intend to investigate the saturation problems which may occur after
failures in heavy maneuvers such as high speeds or sharp turns, and to extend our method with a global solution to
prevent this problem.
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Figure 6: Box and whisker plot for 10 trials of the Adaptive method after four successive failures in hover flight, showing the altitude
z(m), and position errors ex(m) and ey(m) between t=17s and t=45s.
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Figure 7: Box and whisker plot for 10 trials of the Multiplexing method after four successive failures in hover flight, showing the
altitude z(m), and position errors ex(m) and ey(m) between t=17s and t=45s.
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Figure 8: Box and whisker plot for 10 trials of the STSMC method after four successive failures in hover flight, showing the altitude
z(m), and positions x(m) and y(m) between t=17s and t=45s.
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Figure 9: Box and whisker plot for means of each FTC scheme trials after four successive failures in hover flight, showing the altitude
z(m), and positions x(m) and y(m) between t=17s and t=45s.
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Figure 10: Behavior of 10 trials means of Adaptive, STSMC, and Multiplexing methods after four successive failures injection to the
top motors in hover flight
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Figure 11: Box and whisker plot for 10 trials of the Adaptive method after four successive failures in square trajectory flight, showing
the altitude z(m), and position errors ex(m) and ey(m) between t=17s and t=45s.
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Figure 12: Box and whisker plot for 10 trials of the STSMC method after four successive failures in square trajectory flight, showing the
altitude z(m), and position errors ex(m) and ey(m) between t=17s and t=45s.
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Figure 13: Box and whisker plot for 10 trials of the Multiplexing method after four successive failures in square trajectory flight,
showing the altitude z(m), and position errors ex(m) and ey(m) between t=17s and t=45s.
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Figure 14: Box and whisker plot for means of each FTC scheme trials after four successive failures in square trajectory flight, showing
the altitude z(m), and position errors ex(m) and ey(m) between t=17s and t=45s.

Figure 15: Behavior of 10 trials means of Adaptive, STSMC, and Multiplexing methods after four successive failures injection to the
top motors in square trajectory flight in ABCDA direction
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Figure 16: Evolution of x and y positions with respect to time of 10 trials means of Adaptive, STSMC, and Multiplexing methods after
four successive failures injection to the top motors in square trajectory flight in ABCDA direction

Figure 17: Evolution of x and y translational velocities with respect to time of 10 trials means of Adaptive, STSMC, and Multiplexing
methods after four successive failures injection to the top motors in square trajectory flight in ABCDA direction
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Figure 18: Evolution of φ, θ and ψ with respect to time of 10 trials means of Adaptive, STSMC, and Multiplexing methods after four
successive failures injection to the top motors in square trajectory flight in ABCDA direction

Figure 19: Evolution of motor speeds with respect to time of 10 trials means of Adaptive method after four successive failures injection
to the top motors in square trajectory flight in ABCDA direction
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Figure 20: Evolution of motor speeds with respect to time of 10 trials means of STSMC method after four successive failures injection
to the top motors in square trajectory flight in ABCDA direction

Figure 21: Evolution of motor speeds with respect to time of 10 trials means of Multiplexing method after four successive failures
injection to the top motors in square trajectory flight in ABCDA direction
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