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Abstract

Occupations measures and linear matrix inequality (LMI) relax-
ations (called the moment sums-of-squares or Lasserre hierarchy) can
be used for verification and validation (VV) of adaptive control with
piecewise polynomial dynamics and uncertain parameters. Specifically,
we investigate the susceptibility to closed-loop instability for model ref-
erence adaptive control in the presence of large parameter uncertain-
ties and/or unmodeled dynamics. In this document, we use our VV
framework to validate a linear/polynomial F-16 model with MRAC
and flexible dynamics with uncertain coupling. This is accomplished
by addressing the uncertainties explicitly in the space of occupation
measures and through exploiting sparsity for ordinary differential equa-
tions (ODEs). We show numerically that the closed-loop with simple
model reference adaptive control (MRAC) can tolerate these phenom-
ena at certain limits. This is achieved without the expense of conser-
vative Lyapunov estimates and/or complex control law modifications.
These numerical certificates guarantee finite-time convergence and the
boundedness of all trajectories constrained in compact semi-algebraic
sets. For comparison, worst-case behavior of the closed-loop is also
obtained using Monte-Carlo simulations.
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1 Introduction

It is well established that model reference adaptive control (MRAC) is sus-
ceptible to closed-loop instability in the presence of system uncertainties
and unmodeled dynamics [1]. To address this phenomenon, the authors
of [2, 3, 4, 5, 6] proposed the use of “intelligent adaptive control”. See also
[7, 8, 9] where the authors propose an MRAC which can maintain closed-loop
stability in the presence of uncertain parameters and unmodeled dynamics
with respect to a set of initial conditions or under the assumption of persis-
tency of excitation. Recently, the authors of [10, 11, 12, 13, 14] utilized an
MRAC modification that permitted closed-loop stability in the presence of
large uncertainties.

Using moment sum-of-squares (SOS) hierarchies with off-the-shelf-software
technique is a state-of-the-art for verification and validation (VV) in aerospace.
In particular, this approach is advantageous over Monte-Carlo when there
are large uncertainties in the state space or when traditional VV methods are
impermissible [15]. The authors of [16, 17] focus on polynomial dynamical
models and polynomial SOS Lyapunov candidate functions. This methodol-
ogy has also been applied to robust control law validation for SAFE-V [18]
and validation of model reference adaptive control (MRAC) [19].

The procedure is similar to the results in [19]. First, our validation
problem is written as a nonconvex nonlinear optimization problem over ad-
missible trajectories. This problem is then written as its equivalent in the
space of infinite dimensional measures. The problem is then relaxed by
manipulating the measures via a problem of finite moment linear matrix
inequality (LMI) relaxations. The solutions to our VV problem are primal
in the sense that we optimize directly over the system trajectories. The
well-established Lyapunov certificates can also be retrieved from the dual
SOS LP problem. Off-the-shelf-software such as [20] and SDP solvers such
as [21] or [22] can be used with our framework.

1.1 Main Contribution

Since MRAC cannot tolerate the presence large system uncertainties, they
cannot be safely neglected in the design phase. For example, the coupling
between the static and flexible modes in an aircraft is very difficult to model
precisely and can lead to instability with MRAC. Model identification of the
static and flexible modes is usually carried out separately through wind tun-
nel and vibration testing. The rest must be achieved by extensive simulation
and flight testing.
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To illustrate this problem, an F-16 model with unmodeled flexible dy-
namics and LQR + MRAC is considered. The closed-loop performance
requirements can be expressed as a VV problem of polynomial dynamical
optimization. These uncertain, bounded parameters in the unmodeled dy-
namics can be written explicitly in the space of occupation measures and do
not require improved modeling accuracy. To reduce issues with scaling, ex-
ploiting parsimony for ODEs in introduced to partition the dynamics. Then
the VV problem is solved with our framework.

The authors in [19] used polynomials to approximate the reference tra-
jectory. This required partitioning the dynamics over several intervals in
the time domain. For [23], using parsimony approximating the reference
was introduced for the first time. As far as we know, this is the first time
that a fully integrated VV framework is proposed for aircraft with flexible
dynamics and MRAC.

Monte-Carlo simulations scale very poorly with the number of these
uncertain parameters in the unmodeled system. If the state-space is not
sufficiently explored for all uncertain parameters, there is good chance the
simulations will not reveal unexplored, unsafe trajectories. This point is
illustrated in a side-by-side comparison is made between the Monte-Carlo
simulations and our framework for the F-16.

In the numerical examples, the ability for the LQR + MRAC to maintain
acceptable command following in the presence of uncertain, unmodeled flex-
ible dynamics is reflected in a cost function. If the uncertain parameters in
the flexible dynamics are sufficiently small, it follows that the upper bound
of this cost function is sufficiently small. Conversely, a cost function with
a large upper bound is indicative of large unmodeled dynamics and unsafe
trajectories.

Unlike the results of [7, 8, 9], we do not rely on a set of initial condi-
tions or persistency of excitation. Compared to [10, 11, 12, 13, 14], control
modifications are not used to address the unmodeled dynamics. Instead,
it is demonstrated numerically that the upper tolerances of simple MRAC
configuration using our VV framework. This is achieved by exploiting par-
simony for ODEs similar to our results in [23]. Any uncertain parameters or
initial condition mismatch can be addressed explicitly with our framework.

The organization of this document is as follows: Section 2 illustrates our
main contribution by using a simple example, section 3 considers a closed-
loop linear F-16 model coupled with uncertain flexible dynamics and MRAC,
section 4 considers the model from [19] coupled with uncertain flexible dy-
namics, and section 5 contains a small discussion of our conclusions and
future work.
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2 Illustrative Simple Example

The proceeding problem draws directly the theoretical contributions pro-
vided in [24]. See also [19] for a practical example. The procedure for
validating our uncertain models is illustrated in the simple example below.
Consider the closed-loop linear parameter varying (LPV) system in the form
of

[
ẋ(t)
ż(t)

]
=

 0 −1+k 0 0 0
1+k −5 0 0 0

0 0.1 −10 0.1 0
0 0 0.1 −1 −0.1
0 0 0 1 −1

[ x(t)
z(t)

]
= f(t,x(t), z(t), k),

x(0) = x0,
z(0) = z0,

(1)
where x(t) = [ x1(t) x2(t) ] ∈ R2, z(t) = [ z1(t) z2(t) z3(t) ] ∈ R3, and parameter
k ∈ [−kmax kmax ], kmax ∈ R+ is uncertain. Now suppose that eq. (1) is a
closed loop model of some dynamical system such that the state trajectory
of x1(T ) reaches a smaller subset in finite time. In other words, we want find
the initial state maximizing the norm of the terminal state with the concave
quadratic term J = infx1(T )−x1(T )2 and given terminal time T = 10. There
are also the initial constraints

x(0) ∈ [−0.1 0.1 ]2 , X0,

z(0) ∈ [−0.1 0.1 ]3 , Z0,

the trajectory constraints

x(t) ∈ [−1 1 ]2 , X,

z(t) ∈ [−1 1 ]3 , Z,

and the terminal constraints

x(T ) ∈ [−1 1 ]2 , XT ,

z(T ) ∈ [−1 1 ]3 , ZT .

This overall problem description can be collectively written as the poly-
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nomial dynamical optimization problem

J = inf
x1(T )

− x1(T )2

s.t.
[
ẋ(t)
ż(t)

]
= f(t,x(t), z(t), k),

x(0) ∈ X0, x(t) ∈ X, x(T ) ∈ XT ,
z(0) ∈ Z0, z(t) ∈ Z, z(T ) ∈ ZT ,
t ∈ [ 0, T ], k ∈ [−kmax kmax ].

(2)

and is equivalent to the problem in the infinite-dimensional space of measures

J∞ = inf −
∫
x1(T )2dµT

s.t.
∂µ

∂t
+ divfµ(t,x, z, k) + µT = µ0∫
µ0 = 1

(3)

for all measures supported on [0, T ]×X×Z, {0}×X0×Z0, and {T}×XT×ZT
respectively. As discussed in [20], eq. (3) can be solved using a hierarchy of
LMI relaxations.

The main takeaway here is that an abstract problem of measures can
be manipulated by its corresponding moments generated by a finite number
of truncated sequences. To avoid large semi-definite constraints in the final
problem, a normalizing matrix D = diag(a1, . . . , a5), a1, . . . , a5 ∈ R+ is em-
ployed such that all trajectories, including the time domain, are constrained
on the interval [−1 1 ].

The procedure for expressing the validation problem in Gloptipoly 3 is no
different. The script in A can be used to solve the the polynomial dynamical
optimization problem eq. (2) with our framework using [21] as our main
SDP solver. The computed upper bounds without parsimony can be found
in Table 1. As kmax is increased, it is expected that the upper bound J
will grow with it. Since the computational difficulty scales exponentially
with the size of the largest moment SDP block, this problem cannot be
solved beyond the fourth relaxation order. This procedure is analogous to
searching the worst case eigenvalues λmax = max(re(eig(A(k)))), which can
be found in Table 2. The resulting script that solves the validation problem
in section 2, with some scaling strategies to improve numerical behavior, can
be found in A.

5



Table 1: Gloptipoly 3 + MOSEK Upper Bounds for Section 2
kmax = 0.1 kmax = 0.5 kmax = 5

Rel Ord Upper Bnd J CPU [s] Upper Bnd J CPU [s] Upper Bnd J CPU [s]

1 1.41 × 10−2 2.18 1.71 × 10−2 2.17 1 2.08

2 8.03 × 10−4 5.13 1.44 × 10−3 5.46 1 4.68

3 2.84 × 10−4 1.22 × 102 8.39 × 10−4 1.08 × 102 1 1.25 × 102

4 2.67 × 10−4 2.13 × 103 8.30 × 10−4 2.88 × 103 1 3.90 × 103

5 - - - - - -

Table 2: Largest Eigenvalues for Section 2
kmax λmax

0.1 −2.07 × 10−1

0.5 −1.55 × 10−1

5 3

2.1 Exploiting Parsimony for ODEs

The results of section 2 will now be repeated by exploiting parsimony for
ODEs. The main advantage to this approach is that it reduces the size of
the largest SDP block. Consequently, our framework can be used to validate
problems that are larger in size. First, eq. (1) can be rewritten as

ẋ(t) = f1(t,x(t), k), y(t) = x2(t) (4)

ż(t) = f2(t, z(t), y(t)), (5)

where dynamics f1(·) ∈ R[ t x(t) k ] are autonomous and y(t) = x2(t) ∈ R
can be interpreted as a control input to f2(·) ∈ R[ t z(t) y(t) ]. Using the
same polynomial dynamical optimization problem eq. (2) and partitioned
dynamics eq. (5), the problem of measures can be written as

J∞ = inf −
∫
x1(T )2dµT

s.t.
∂µ

∂t
+ divf1µ(t,x, k) + µT = µ0

∂ν

∂t
+ divf2ν(t, z, y) + νT = ν0

πt,y#µ = πt,y#ν∫
µ0 = 1,

∫
ν0 = 1,

(6)

with marginal πt,y#µ, respectively πt,y#ν, of measure µ, respectively ν, with
respect to variables t, y. The moment LMI relaxation problem is modified
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Table 3: Gloptipoly 3 + MOSEK Upper Bounds for Section 2.1
kmax = 0.1 kmax = 0.5 kmax = 5

Rel Ord Upper Bnd J CPU [s] Upper Bnd J CPU [s] Upper Bnd J CPU [s]

1 1.41 × 10−2 1.64 1.71 × 10−2 5.32 × 10−1 1 4.00 × 10−1

2 8.03 × 10−4 1.10 1.44 × 10−3 9.17 × 10−1 1 8.29 × 10−1

3 2.87 × 10−4 2.86 8.38 × 10−4 2.61 1 2.49

4 2.67 × 10−4 9.58 8.31 × 10−4 1.01 × 101 1 8.64

5 2.67 × 10−4 4.50 × 101 8.30 × 10−4 4.88 × 101 1 5.04 × 101

accordingly. The results can be found in Table 3. As illustrated, similar
upper bounds can be achieved. Since the size of the largest moment SDP
block is reduced in this configuration, the problem size can be solved up to
the fifth relaxation order. The overall maximum problem size is reduced by
2. This property will be exploited to solve problems with a large number of
states in the proceeding sections.

The theoretical background for these results were first noted in [25]. In
the proceeding section, this methodology for exploiting parsimony for ODEs
is unchanged. If our problem can be written in the form similar to eq. (5)
and eq. (6), then it is possible to proceed by solving our VV problem in
Gloptipoly 3 using our framework.

3 Flexible Dynamics for a F-16 Linear Model

Our objective is to validate a linear F-16 short period aircraft model aug-
mented with adaptive feedback, uncertain parameters, and flexible dynamics
using our VV framework. The procedure for implementing our framework
is rather straight forward. In section 3.1 we discuss the simplified uncertain
aeroelastic model and its closed loop configuration. Although the rigid body
and flexible modes are well-defined, their coupling is not. For the coupling
uncertain, bounded parameters k1, k2, k3 ∈ [−kmax kmax ], kmax ∈ R+ are
used. After writing the problem in its compact form, control law validation
problem is explicitly stated in section 3.2. The problem is then partitioned
by exploiting parsimony for ODEs. The number of uncertain parameters
are gradually increased. Finally, the model and its uncertainties are ad-
dressed explicitly using our framework and then validated under adverse
flight conditions. In total, there are three cases:

1. k1 is uncertain, k2 and k3 are known

2. k1 and k3 are uncertain, k2 is known

3. k1, k2, and k3 are uncertain
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3.1 Closed-Loop Configuration

Consider the short-period dynamics of a linear F-16 aircraft coupled with
flexible dynamics

ẋp(t) =
[−1.0189 +0.9051

+0.8223 −1.0774

]︸ ︷︷ ︸
Ap

xp(t) +
[−0.0022
−0.1756

]︸ ︷︷ ︸
Bp

0.7︸︷︷︸
Λ

(
u(t) + δ(xp(t))

)
(7)

+
[
−0.0022k1 0
−0.1756k1 0

]
︸ ︷︷ ︸
BpH(k1)T

z(t), xp(0) = xp0 (8)

ż(t) =
[−0.5 6.3
−6.3 −0.5

]︸ ︷︷ ︸
F

z(t) +
[
k3
k2

]
︸︷︷︸

G(k2,k3)T

xp(t), z(0) = z0 (9)

where xp(t) = [ α(t) q(t) ] ∈ R2 are the short period dynamics, α(t) is the angle
of attack, q(t) is the pitch-rate, z(t) = [ z1(t) z2(t) ] ∈ R2 are states related
to the modal form of a considered dominant aeroelastic mode. Matrix F
represents a 5.2 Hz first bending mode of the aircraft [26]. There is also
measurable control input u(t) ∈ R, control effectiveness Λ ∈ R+, the in
state uncertainty

δ(xp(t)) = [−0.0468 −0.0982 ]︸ ︷︷ ︸
Kpert

xp(t), (10)

and uncertain parameters representing the coupling of the rigid body and
flexible dynamics k1, k2, k3 ∈ [−kmax kmax ].

Our control objective is design a control law u(t) to reject the in state dis-
turbance eq. (10) and asymptotically track the reference trajectory xr(t) =
[ αr(t) qr(t) ] generated by the dynamics

ẋr(t) = Arxr(t) +Brc(t) (11)

where c(t) ∈ R is a bounded command signal. The desired closed loop
dynamics are derived using the nominal feedback control law [27]

un(t) = [−4.7432 2.3163 ]︸ ︷︷ ︸
K1

xp(t)− 4.3396︸ ︷︷ ︸
K2

c(t), (12)

such that Ar = Ap − B1 is Hurwitz and Br = BpK2. To reject exogenous
disturbance and improve tracking performance an the adaptive feedback
control law

ua(t) = −Ŵ(t)TΦ(xp(t)) (13)
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is also included with basis function Φi(xp(t)) = (1 + expi)−1 and Ŵ(t) ∈ R2

satisfies the weight update law

˙̂W(t) = [ ε 100 ]︸ ︷︷ ︸
Γ

(
Φ
(
xp(t)

)
eT (t)PBp + 5(eT (t)PBp)2Ŵ(t)︸ ︷︷ ︸

˙̂Wm(t)

)
, Ŵ(0) = Ŵ0

(14)

where ε << 1, error dynamics e(t) = xp(t) − xr(t),
˙̂Wm(t) is the error

modification [28], and positive definite symmetric P ∈ R2×2 is the unique
solution to the Lyapunov equation

0 = ATr P + PAr + 10I2×2. (15)

The combined nominal/adaptive feedback control law can be written as

u(t) = un(t) + ua(t) (16)

which was used in eq. (8). In practice, Lyapunov analysis only informs
us about the ultimate stability of the closed-loop system if the unmodeled
dynamics are neglected. There at least exists a Lyapunov candidate func-
tion such that the longitudinal dynamics eq. (8) subject to the control and
weight update law eqs. (14) and (16) has the property limt→∞ e(t) = 0.
Consequently, learning rates of eq. (14) were tuned to reject disturbances
and achieve tracking without the flexible dynamics.

It’s of practical interest to know if the MRAC can tolerate unmodeled
dynamics and uncertain parameters of a certain magnitude. In proceeding
section it is shown numerically when the unmodeled dynamics with un-
certain parameters can be neglected without using control modifications.
These achieved upper bounds are significantly less conservative than norm
approximations found in the Lyapunov analysis.

To set up the problem for our VV framework, the compact form of
the closed-loop model can now be written by combining eq. (8), eq. (9),
eq. (11),eq. (14), and eq. (16) to get

ẋ1(t) = f1(t,x1(t), c(t)), y1(t) = αr(t), x1(0) = x10

ẋ2(t) = f2(t,x2(t), y1(t), y3(t), k1), y2(t) = xp(t), x2(0) = x20

ẋ3(t) = f3(t,x3(t),y2(t), k2, k3), y3(t) = z1(t), x3(0) = x30

(17)
where x1(t) = xr(t) ∈ R2, x2(t) = [ xp(t), Ŵ(t) ] ∈ R3, x3(t) = z(t) ∈ R2,
and y2(t) ∈ R2.
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3.2 Validation Problem & Main Results

We want to validate our closed-loop model in its compact form eq. (17) by
finding the initial state that maximizes the norm of the concave cost function
of the error dynamics J = −‖e(T )‖22 with given command signal c(t) = 0.1
and terminal time T = 20. If it can be shown that for every chosen initial
state

x1(0) ∈ [−0.2 0.2 ]2 , X10

x2(0) ∈ [−0.2 0.2 ]2 × [−1× 10−6, 1× 10−6 ] , X20

x3(0) ∈ [−0.2 0.2 ]2 , X30

all trajectories remain bounded in the box

x1(t) ∈ [−1 1 ]2 , X1

x2(t) ∈ [−1 1 ]2 × [−5, 5 ] , X2

x3(t) ∈ [−1 1 ]2 , X3

until they reach the final state belonging to the set e(T ) ∈ {J ≤ 3× 10−3} ,
X1T , then the control law is validated. The overall description can be ex-
pressed by its polynomial dynamical optimization problem

J = inf
x

− ‖e(T )‖22
s.t. ẋ1(t) = f1(t,x1(t), c(t))

ẋ2(t) = f2(t,x2(t), y1(t), y3(t), k1)

ẋ3(t) = f3(t,x3(t),y2(t), k2, k3)

x1(0) ∈ X10, x1(t) ∈ X1, x1(T ) ∈ X1T ,
x2(0) ∈ X20, x2(t) ∈ X2, x2(T ) ∈ X2,
x3(0) ∈ X30, x3(t) ∈ X3, x3(T ) ∈ X3,

t ∈ [ 0, T ], u ∈ [−kmax kmax ].

(18)
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Its approximation in the space of infinite dimensional measures using parsi-
mony can be written as

J∞ = inf −
∫
‖e(T )‖22 dµT

s.t.
∂µ

∂t
+ divf1µ(t,x1) + µT = µ0

∂ν

∂t
+ divf2ν(t,x2, y1, y3, k1) + νT = ν0

∂ξ

∂t
+ divf3ξ(t,x3,y2, k2, k3) + ξT = ξ0

πt,y1,#µ = πt,y1,#ν

πt,y2,y3,#µ = πt,y2,y3,#ξ∫
µ0 = 1,

∫
ν0 = 1,

∫
ξ0 = 1

(19)

and its respective moment LMI relaxations problem is modified accordingly.
The same marginals of their respective measures from section 3 are also
used. In total the overall size of the problem is reduced by 5 variables using
parsimony. and its respective moment LMI relaxations problem is modi-
fied accordingly. The marginal πt,y1,#µ, respectively πt,y1,#ν, on measure
µ, respectively ν, are with respect to variables t, y1. There is also marginal
πt,y2,y3,#µ, respectively πt,y2,y3,#ξ, on measure µ, respectively ξ, with re-
spect to variables t, y2, andy3. Similar to [23], partitioning the dynamics
and approximating the reference trajectory [23] allows using a command
signal without using piecewise approximations [19]. In total the problem is
reduced by 4 variables using parsimony.

The main results can be found below. In Table 4 an uncertain k1 ∈
[−kmax kmax ] is considered with fixed k2 = −0.1, k3 = 0.1. Similar upper
bounds were achieved for all values of kmax, which indicates tolerance from
the MRAC in the presence of unmodeled flexible dynamics. Likewise, in
Table 5 let k1, k3 ∈ [−kmax kmax ] and fix k2 = −0.1. Lastly, in Table 6 there
is also k1, k3, k2 ∈ [−kmax kmax ]. The upper bounds achieved are larger than
those obtained for the one uncertain parameter case. At kmax = 10, the
upper bound violates the terminal constraint which indicates the presence
of unstable trajectories for two or three uncertain parameters.

The simulation results using Monte-Carlo can be found in Table 7 and
Figures 1 to 9. These simulations were obtained using evenly spaced initial
conditions and Newton’s Method. Red lines in the plot represent the desired
closed loop performance. The maximum costs were obtained by finding the
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Table 4: Gloptipoly 3 + MOSEK LQR + MRAC Upper Bounds for Section 3
- Uncertain k1 (k2, k3 = −0.1)

kmax = 0.1 kmax = 1 kmax = 10

Rel Ord Upper Bnd J CPU [s] Upper Bnd J CPU [s] Upper Bnd J CPU [s]

1 1.96 × 10−1 2.24 2.04 × 10−1 7.34 × 10−1 3.19 × 10−1 6.13 × 10−1

2 8.14 × 10−4 4.80 9.46 × 10−4 5.03 7.29 × 10−3 4.15

3 2.01 × 10−4 1.14 × 102 1.76 × 10−4 1.18 × 102 7.04 × 10−4 1.09 × 102

Table 5: Gloptipoly 3 + MOSEK LQR + MRAC Upper Bounds for Section 3
- Uncertain k1, k3 (k2 = −0.1)

kmax = 0.1 kmax = 1 kmax = 10

Rel Ord Upper Bnd J CPU [s] Upper Bnd J CPU [s] Upper Bnd J CPU [s]

1 3.19 × 10−1 1.90 2.08 × 10−1 1.40 1.24 6.83 × 10−1

2 7.29 × 10−3 7.54 1.09 × 10−3 7.73 1.24 5.57

3 7.04 × 10−4 1.62 × 102 1.09 × 10−3 1.41 × 102 1.24 1.25 × 102

worst case trajectories in the simulation. In Figures 6 and 9 and Table 7, the
system becomes unstable for kmax = 10. This reflects our results obtained
in Table 6. As shown in Table 7, increasing the number of uncertainties
becomes costly. Conversely, you also risk missing unsafe trajectories if your
parameter spacing is too sparse. In juxtaposition, similar upper bounds can
be achieved using our framework with equivalent or less computation time.

4 Flexible Dynamics for an F-16 Polynomial Model

A nonlinear polynomial short period F-16 aircraft model augmented with
adaptive feedback and in the presence of flexible dynamics is now considered.
The model itself and its feedback were used previously in [19]. The same
flexible dynamics from eq. (9) and the uncertain parameters k1, k2, k3 ∈
[−kmax kmax ], kmax ∈ R+ are used. The procedure remains similar. After

Table 6: Gloptipoly 3 + MOSEK LQR + MRAC Upper Bounds for Section 3
- Uncertain k1, k3, k2

kmax = 0.1 kmax = 1 kmax = 10

Rel Ord Upper Bnd J CPU [s] Upper Bnd J CPU [s] Upper Bnd J CPU [s]

1 1.96 × 10−1 1.75 2.14 × 10−1 9.82 × 10−1 1.24 8.14 × 10−1

2 7.49 × 10−4 8.72 1.93 × 10−3 9.17 1.24 8.89

3 1.03 × 10−4 2.55 × 102 3.10 × 10−4 2.18 × 102 1.24 2.97 × 102
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Table 7: Monte-Carlo Upper Bounds for Section 3
Uncertain κ Uncertain κ, ζ Uncertain κ, η, ζ

kmax Upper Bnd J CPU [s] Upper Bnd J CPU [s] Upper Bnd J CPU [s]

0.1 3.75 × 10−8 4.09 × 101 3.75 × 10−8 1.76 × 102 3.75 × 10−8 8.81 × 102

1 4.00 × 10−8 4.08 × 101 4.36 × 10−8 4.99 × 102 5.40 × 10−8 9.21 × 102

10 7.70 × 10−8 4.06 × 101 6.82 × 10−1 2.58 × 102 1.13 8.77 × 102
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Figure 1: Monte-Carlo Worst Case for Section 3 - Uncertain k1 - (k1 = 0.1,
k2 = −0.1, k3 = −0.1)
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Figure 2: Monte-Carlo Worst Case for Section 3 - Uncertain k1 - (k1 = 1,
k2 = −0.1, k3 = −0.1)
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Figure 3: Monte-Carlo Worst Case for Section 3 - Uncertain k1 - (k1 = 10,
k2 = −0.1, k3 = −0.1)
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Figure 4: Monte-Carlo Worst Case for Section 3 - Uncertain k1, k3 - (k1 =
0.1, k2 = −0.1, k3 = 0.1)
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Figure 5: Monte-Carlo Worst Case for Section 3 - Uncertain k1, k3 - (k1 = 1,
k2 = −0.1, k3 = −1)
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Figure 6: Monte-Carlo Worst Case for Section 3 - Uncertain k1, k3 - (k1 =
10, k2 = −0.1, k3 = −10)
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Figure 7: Monte-Carlo Worst Case for Section 3 - Uncertain k1, k2, k3 -
(k1 = 0.1, k2 = −0.1, k3 = −0.1)
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Figure 8: Monte-Carlo Worst Case for Section 3 - Uncertain k1, k2, k3 -
(k1 = 1, k2 = −1, k3 = −1)
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Figure 9: Monte-Carlo Worst Case for Section 3 - Uncertain k1, k2, k3 -
(k1 = 10, k2 = −10, k3 = −10)
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problem is presented in its compact form, it is written as a polynomial
dynamical optimization problem, and then as its approximated partitioned
form in the space of infinite measures using parsimony. Lastly, the model
and its uncertainties are addressed explicitly using our framework and then
validated under adverse flight conditions. In total, there are two cases:

1. k1 is uncertain, k2 and k3 are known

2. k1 and k3 are uncertain, k2 is known

4.1 Closed-Loop Configuration

Now consider a polynomial F-16 model with flexible dynamics

ėα(t) = α(t)− c(t) (20)

ẋp(t) = fp(t,xp(t),Λu(t)) +BpH(k1)T z(t) (21)

ż(t) = Fz(t) +G(k2, k3)Txp(t) (22)

where xp(t) = [ α(t), q(t) ] and polynomial fp(t,x(t),Λu(t)) ∈ R2[ t, xp ] are
taken from [19]. The same matrices from section 3.1 Bp, F , H(k1), and
G(k2, k3) were used. The same uncertain parameter k1, k2, k3 ∈ [−kmax kmax ]
and reduced control effectiveness Λ = 0.7 were also used.

Our control objective is similar. We want to asymptotically track the
reference dynamics eq. (11) and command signal c(t). With the augmented
AOA tracking dynamics eq. (20), the new nominal control law becomes

un(t) = − [−10.0000 −10.8756 −6.0565 ]︸ ︷︷ ︸
K

xp(t) (23)

and was obtained using the LQR method [29]. Likewise, Ar = Ap −BpK is

Hurwitz, Bp = [ 0 Bp ]T and Br = [−1 0 0 ]T for eq. (11). A similar adaptive
feedback law ua(t) = Ŵ(t)TΦ(xp(t)) is also used

˙̂W(t) =
[
ε
ε

100

]
︸ ︷︷ ︸

Γ

(
Φ(xp(t))e(T )TPB), Ŵ(0) = Ŵ0 (24)

where positive definite P is the unique solution to the Lyapunov equality

0 = ATr P + PAr +
[

100
10

0.1

]
︸ ︷︷ ︸

Q

. (25)

22



Like before the MRAC is tuned for the longitudinal dynamics eq. (21) while
neglecting the unmodeled dynamics. The polynomial uncertainties from
the dimensionless coefficients do not satisfy the matching condition. Com-
bined with the unmodeled dynamics, the ultimate stability properties of the
MRAC cannot be derived using Lyapunov. In the proceeding section, it is
shown numerically that the MRAC can tolerate both. With the combined
nominal/adaptive control law u(t) = un(t) + ua(t) the new closed loop dy-
namics eq. (20), eq. (21), eq. (22), and eq. (24) can now be written in their
compact form

ẋ1(t) = f1(t,x1(t), c(t)), y1(t) = αr(t), x1(0) = x10

ẋ2(t) = f2(t,x2(t), y1(t), y3(t), k1), y2(t) = xp(t), x2(0) = x20

ẋ3(t) = f3(t,x3(t),y2(t), k2, k3), y3(t) = z1(t), x3(0) = x30

(26)

where x1(t) = xr(t) ∈ R2, x2(t) = [ eα(t), xp(t), Ŵ(t) ] ∈ R3, x3(t) = z(t) ∈
R2, and y2(t) ∈ R2.

4.2 Validation Problem & Main Results

We want to validate our closed-loop model in its compact form eq. (26)
by finding the initial state that maximizes the norm of the concave cost
function of the tracking error J = −(α(T ) − c(t))2 with given command
signal c(t) = 10 π

180 and terminal time T = 10. If we can show that for every
chosen initial state

x1(0) ∈ [−1× 10−6, 1× 10−6 ]3
π

180
, X10

x2(0) ∈ [−5, 5 ]3
π

180
× [−1× 10−6, 1× 10−6 ] , X20

x3(0) ∈ [−0.01, 0.01 ]2 , X30

all trajectories remain bounded in the box

x1(t) ∈ [−30, 30 ]2
π

180
× [−60, 60 ]

π

180
, X1

x2(t) ∈ [−30, 30 ]2
π

180
× [−60, 60 ]

π

180
× [−5, 5 ] , X2

x3(t) ∈ [−3, 3 ]2 , X3
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until they reach the final state belonging to the set α(T ) ∈ {J ≤ 3× 10−3} ,
X1T , then the control law is validated. This general description can be
expressed by its polynomial dynamical optimization problem

J = inf
x

− (α(T )− c(t))2

s.t. ẋ1(t) = f1(t,x1(t), c(t))

ẋ2(t) = f2(t,x2(t), y1(t), y3(t), k1)

ẋ3(t) = f3(t,x3(t),y2(t), k2, k3)

x1(0) ∈ X10, x1(t) ∈ X1, x1(T ) ∈ X1T ,
x2(0) ∈ X20, x2(t) ∈ X2, x2(T ) ∈ X2,
x3(0) ∈ X30, x3(t) ∈ X3, x3(T ) ∈ X3,

t ∈ [ 0, T ], u ∈ [−kmax kmax ].

(27)

Its approximation in the space of infinite dimensional measures using parsi-
mony can be written as

J∞ = inf −
∫

(α(T )− c(t))2dµT

s.t.
∂µ

∂t
+ divf1µ(t,x1) + µT = µ0

∂ν

∂t
+ divf2ν(t,x2, y1, y3, k1) + νT = ν0

∂ξ

∂t
+ divf3ξ(t,x3,y2, k2, k3) + ξT = ξ0

πt,y1,#µ = πt,y1,#ν

πt,y2,y3,#µ = πt,y2,y3,#ξ∫
µ0 = 1,

∫
ν0 = 1,

∫
ξ0 = 1

(28)

Like the results in [23], main advantage of this parsimony approach
The upper bounds for the F-16 polynomial model, coupled flexible dy-

namics, and combined LQR + MRAC control law can all be found in Ta-
bles 8 and 9. The upper bounds obtained using Monte-Carlo can be found
in Table 10. The figures for the worst case Monte-Carlo can be found in
Figures 10 to 15. The procedure for finding the maximum upper bound is
the same as in section 3.

The increased damping inherent from the polynomial model allows for
more uncertainty in the unmodeled dynamics. The only case where where
the LQR + MRAC cannot tolerate the unmodeled dynamics is when k1 =
200, k3 = −200.
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Table 8: Gloptipoly 3 + MOSEK LQR Upper Bounds for Section 4 - Un-
known k1 (k2 = −0.1 k3 = 0.1)

kmax = 0.1 kmax = 1 kmax = 200

Rel Ord Upper Bnd J CPU [s] Upper Bnd J CPU [s] Upper Bnd J CPU [s]

1 1.78 1.25 × 101 1.78 9.56 1.78 9.32

2 1.72 × 10−4 5.22 × 102 1.60 × 10−4 5.52 × 102 9.78 × 10−4 6.92 × 102

3 1.00 × 10−5 1.74 × 104 1.03 × 10−5 1.80 × 104 1.06 × 10−5 1.81 × 104

Table 9: Gloptipoly 3 + MOSEK LQR + MRAC Upper Bounds for Section 4
- Uncertain k1, k3 (k2 = −0.1)

kmax = 0.1 kmax = 1 kmax = 200

Rel Ord Upper Bnd J CPU [s] Upper Bnd J CPU [s] Upper Bnd J CPU [s]

1 1.42 1.13 × 101 1.42 8.77 9.07 × 10−1 1.17 × 101

2 9.23 × 10−4 7.98 × 102 9.29 × 10−4 7.45 × 102 9.07 × 10−1 4.68 × 102

3 1.51 × 10−5 1.82 × 104 1.52 × 10−5 1.59 × 104 6.42 × 10−1 1.73 × 104
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Figure 10: F-16 Polynomial Monte-Carlo Worst Case for Section 4 - Uncer-
tain k1 - (k1 = −1, k2 = −0.1, k3 = 0.1)
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Figure 11: F-16 Polynomial Monte-Carlo Worst Case for Section 4 - Uncer-
tain k1 - (k1 = −10, k2 = −0.1, k3 = 0.1)

Table 10: F-16 Polynomial Monte-Carlo Upper Bounds for Section 4
Uncertain k1 Uncertain k1, k3

kmax Upper Bnd J CPU [s] Upper Bnd J CPU [s]

0.1 2.61 × 10−8 4.82 × 101 2.61 × 10−8 1.82 × 103

1 2.62 × 10−8 4.54 × 101 2.70 × 10−8 2.35 × 103

200 2.86 × 10−8 4.54 × 101 1.70 × 10−11 7.23 × 103
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Figure 12: F-16 Polynomial Monte-Carlo Worst Case for Section 4 - Uncer-
tain k1 - (k1 = 200, k2 = −0.1, k3 = 0.1)
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Figure 13: F-16 Polynomial Monte-Carlo Worst Case for Section 4 - Uncer-
tain k1, k3 - (k1 = −1, k2 = −0.1, k3 = −1)
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Figure 14: F-16 Polynomial Monte-Carlo Worst Case for Section 4 - Uncer-
tain k1, k3 - (k1 = 10, k2 = −0.1, k3 = 10)
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Figure 15: F-16 Polynomial Monte-Carlo Worst Case for Section 4 - Uncer-
tain k1, k3 - (k1 = 200, k2 = −0.1, k3 = −200)
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5 Conclusion

We validated both a linear and polynomial F-16 model coupled with un-
certain flexible dynamics and MRAC using our VV framework. The state
dynamics were approximated and partitioned by exploiting parsimony for
ODEs. These results were compared to the upper bounds obtained using
traditional Monte-Carlo simulation. This approach allows engineers to ad-
dress explicitly MRAC interacting with unmodeled dynamics without using
costly Monte-Carlo simulations or complex controller modifications. In the
future, we hope to use this same framework for validation of a full nonlinear
F-16 model complete with MRAC and in-state uncertainties.
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A Validation Script

% inputs
r = input('Relaxation order r = '); T = input('Terminal time T = ');

ki = 0.1; % uncertain parameter u upper bound

TScaled = 1; % normalized time

xmax = 1 * ones(2,1); x0max = 0.1 * ones(2,1);
zmax = 1 * ones(3,1); z0max = 0.1 * ones(3,1);

Dx = diag(1./xmax); Dxinv = inv(Dx);
Dz = diag(1./zmax); Dzinv = inv(Dz);

xmax = Dx * xmax; x0max = Dx * x0max; % normalize all states
zmax = Dz * zmax; z0max = Dz * z0max;

mpol('x1', 2); mpol('z1', 3); mpol('k1', 1); % dynamics

mpol('x0', 2); mpol('z0', 3); mpol('k0', 1); % initial
mpol('xT', 2); mpol('zT', 3); mpol('kT', 1); % terminal

mpol('t1', 1); % measures depend on time
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m1 = meas([x1; z1; k1; t1]); % occupation measures

m0 = meas([x0; z0; k0]); mT = meas([xT; zT; kT]); %initial/terminal measures

% dynamics
x = Dxinv * x1; z = Dzinv * z1; u = k1; t = t1;

A = [0 -1+u 0 0 0; 1+u -5 0 0 0; 0 0.1 -10 0.1 0; 0 0 0.1 -1 -0.1; 0 0 0 1 -1];

f1 = T * blkdiag(Dx, Dz) * A * [x; z];

d = 2*r; % order of relaxation

p1 = genpow(8,d); p1 = p1(:,2:end); % powers

g1 = mmon([x1; z1; k1; t1],d); % bkild test functions

y10 = ones(size(p1,1),1)*[x0; z0; k0; 0]'; % unknown moments of initial measure
y10 = mom(prod((y10.ˆp1)')');

y1T = ones(size(p1,1),1)*[xT; zT; kT; TScaled]'; % unknown moments of terminal measure
y1T = mom(prod((y1T.ˆp1)')');

cost = mom(xT'*xT); % input LMI moment problem

A1y = mom(diff(g1,[x1;z1])*f1) + mom(diff(g1,t1)); % linear regime

% bounds on states
X0 = [x0.ˆ2 <= x0max.ˆ2; z0.ˆ2 <= z0max.ˆ2];
XT = [xT.ˆ2 <= xmax.ˆ2; zT.ˆ2 <= zmax.ˆ2];
B = [x1.ˆ2 <= xmax.ˆ2; z1.ˆ2 <= zmax.ˆ2];

% bounds on time variables [normalized]
Tlim = [t1 >= 0, t1 <= TScaled];

% bounds on uncertain parameter
K0 = k0.ˆ2 <= ki.ˆ2; KT = kT.ˆ2 <= ki.ˆ2; K = k1.ˆ2 <= ki.ˆ2;

tic % timer
P = msdp(max(cost),...

mass(m0) == 1,...
A1y - y1T + y10 == 0,...
X0, XT, B, K, K0, KT, Tlim);

% solve LMI moment problem
[status,obj] = msol(P);
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