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Fig. 1. Our dataset consists of rough sketches (a, top) collected from the wild along with redundantly cleaned versions by professionals (a, bottom). Each

sketch is manually vectorized into shape and auxiliary layers (b) and professionally cleaned by multiple artists to create a ground truth (c). We use our dataset
to evaluate state-of-the-art rough sketch cleanup algorithms and identify open problems (d). Pipe image © Patrick Murphy CC-BY-2.0.

Sketching is a foundational step in the design process. Decades of sketch
processing research have produced algorithms for 3D shape interpretation,
beautification, animation generation, colorization, etc. However, there is a
mismatch between sketches created in the wild and the clean, sketch-like
input required by these algorithms, preventing their adoption in practice.
The recent flurry of sketch vectorization, simplification, and cleanup algo-
rithms could be used to bridge this gap. However, they differ wildly in the
assumptions they make on the input and output sketches. We present the
first benchmark to evaluate and focus sketch cleanup research. Our dataset
consists of 281 sketches obtained in the wild and a curated subset of 101
sketches. For this curated subset along with 40 sketches from previous work,
we commissioned manual vectorizations and multiple ground truth cleaned
versions by professional artists. The sketches span artistic and technical
categories and were created by a variety of artists with different styles. Most
sketches have Creative Commons licenses; the rest permit academic use. Our
benchmark’s metrics measure the similarity of automatically cleaned rough
sketches to artist-created ground truth; the ambiguity and messiness of
rough sketches; and low-level properties of the output parameterized curves.

Authors’ addresses: Chuan Yan, cyan3@gmu.edu, George Mason University; David
Vanderhaeghe, vdh@irit.fr, IRIT CNRS Université de Toulouse; Yotam Gingold, George
Mason University, ygingold@gmu.edu.
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Our evaluation identifies shortcomings among state-of-the-art cleanup algo-
rithms and discusses open problems for future research.
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1 INTRODUCTION

Sketching is a foundational step in the design process. The design
funnel [Kriebel 2017; Newman 2002] begins with broad latitude
for idea generation. As the funnel narrows, ideas are refined and
evaluated, until a finished artifact emerges. Sketches can be created
quickly and inexpensively, but play only an indirect, inspirational
role in later design stages of the design process. In contrast, the later
stages are time-consuming, tedious, and costly.

Decades of research into sketch processing have produced a large
literature of algorithms for tasks such as 3D inference [Andre and
Saito 2011; Bessmeltsev et al. 2015; Kaplan and Cohen 2006; Lipson
and Shpitalni 1996; Shao et al. 2012, 2013; Shtof et al. 2013; Xu et al.
2014; Zheng et al. 2016], UI design [Landay and Myers 1995], and
in-between animation [Whited et al. 2010; Yang et al. 2018]. These
research works remain underused in practice since they typically

ACM Trans. Graph., Vol. 39, No. 6, Article 163. Publication date: December 2020.
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expect clean, sketch-like input rather than the rough, messy sketches
found in the wild.

Algorithms for vectorization, rough sketch cleanup, and simpli-
fication have the potential to bridge this gap, by vectorizing and
cleaning rough sketches for further algorithmic processing. Such
algorithms have been explored in the past [Barla et al. 2005; Or-
bay and Kara 2011]. In the last five years, there has been a flurry
of work [Bessmeltsev and Solomon 2019; Favreau et al. 2016; Liu
et al. 2018, 2015; Noris et al. 2013; Parakkat et al. 2018; Simo-Serra
et al. 2018a,b]. These works differ substantially in the assumptions
they make on the input and output sketches. Some take vectorized
input (parametric curves), some take raster input with clean back-
grounds, and some take raster input with no explicit restrictions on
the background e.g. paper texture. Most output parametric curves,
some output in raster form. Most do not consider shading or texture
strokes. As ground truth cleaned sketches are unavailable, each
approach demonstrates its output on a small set of ad-hoc exam-
ples.! This presents two problems: (1) The examples do not reflect
the variety of rough sketches found in the wild; and (2) comparing
approaches is difficult without a common dataset.

Contributions. We introduce a benchmark for rough sketch clean-
up, with the goal of bridging the gap between sketches in the wild
and sketch-processing algorithms (Figure 1):

o A collection of 281 sketches gathered from the wild. The
sketches cover a diverse set of intended uses and styles. The
vast majority of rough sketches have Creative Commons li-
censes allowing derivative works and commercial uses; the
remaining 18 sketches come with explicit permission for aca-
demic use.

A curated subset of 101 sketches along with 40 sketches
from previous work which we professionally vectorized and
cleaned. The cleaned sketches form a ground truth for sketch
cleanup. Each sketch was cleaned by 3-5 artists. The curated
sketches have a balanced distribution of uses and styles. We
professionally vectorized the rough sketches for algorithms
which require vectorized input. We commissioned a total of
526 professional derivative works (vectorizations and clean-
ings).

Computational metrics for evaluating sketch cleanup algo-
rithms and analyzing properties of our dataset. Our met-
rics evaluate the similarity of automatically cleaned rough
sketches to artist-created ground truth; the ambiguity and
messiness of rough sketches; and low-level properties of the
output parameterized curves.

e An analysis of the cleanup performance of seven recent al-
gorithms and two pipelines composed of a vectorization fol-
lowed by a cleanup algorithm.

A clear problem statement that identifies desiderata for down-
stream applications, characteristics of sketches found in the
wild, and open challenges.

!See Figures 4, 7, and 8 for examples from StrokeAggregator [Liu et al. 2018] marked
©Enrique Rosales. See Figure 10 for examples from Favreau et al. [2016]. See Figure
15 (a,f) for examples from Liu et al. [2015]. Additional examples can be seen in the
supplemental materials.
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Our benchmark assesses the state of algorithmic sketch cleanup,
provides directions for future research, and will directly benefit
data-driven cleanup algorithms. Future algorithms capable of clean-
ing our benchmark may bridge the gap between real-world design
processes and decades of sketch-processing algorithms.

2 RELATED WORK

Rough sketch cleanup/line drawing simplification. Barla et al. [2005]
were the first to present an algorithm for line drawing simplification,
in which a complex, vector graphic drawing is “redrawn” with fewer
strokes. They do this by clustering strokes and then replacing each
cluster with a single representative curve. Numerous later works
have been proposed following this same basic cluster-and-replace
framework for vector graphics [Liu et al. 2018, 2015, 2019; Ogawa
etal. 2016; Orbay and Kara 2011; Shesh and Chen 2008]. Another line
of work simultaneously vectorizes and simplifies a raster image of a
sketch [Bessmeltsev and Solomon 2019; Donati et al. 2019; Favreau
et al. 2016; Kim et al. 2018; Noris et al. 2013; Parakkat et al. 2018].
This is a more challenging problem, as parametric data is unavailable
for the input curves. Recently, Simo-Serra et al. introduced a series
of data-driven rough sketch cleanup approaches using convolutional
neural networks [Simo-Serra et al. 2018a,b, 2016]. Unlike the other
approaches, Simo-Serra et al’s work outputs a raster sketch rather
than a parametric vector graphic. This area has received substantial
interest in recent years; 12 of 16 of these works were published in
the last five years.

Datasets. The data-driven approaches by Simo-Serra et al. [2018a;
2018b; 2016] use a dataset that was created in reverse: artists created
rough sketches for existing clean sketches. This approach does not
capture rough sketches found in the wild, particularly the ambigu-
ity that can exist and lead to differing clean interpretations. This
dataset is purely raster-based, yet downstream sketch-processing
algorithms require parametric curves (vector graphics). In contrast,
our dataset was created in the natural direction, by cleaning rough
sketches found in the wild. Our dataset is also available as vector
graphics.

The OpenSketch dataset [Gryaditskaya et al. 2019] contains prod-
uct design sketches of 12 carefully chosen objects drawn in a con-
trolled environment in order to capture parametric strokes with
time accuracy. The drawings are all rough, not clean. We did not
include them as rough sketches in our dataset, because they were
created in “domesticated” conditions. Our dataset is composed of
sketches in the wild—drawn in uncontrolled environments—in order
to capture the diversity of real-world practice.

The QuickDraw [Ha and Eck 2018], Eitz et al. [2012], and Sangkloy
et al. [2016] datasets contain a large quantity of novice sketches.
Since they are drawn by novices, the sketches do not reflect the
complexity of sketches that many sketch-based algorithms intend
to process. The vast majority of sketches in our dataset were drawn
by skilled artists. The Manga109 [Matsui et al. 2017] and Danbooru
[Branwen 2019] datasets contain a large quantity of professional and
amateur manga-style drawings. The drawings are polished, unlike
the rough sketches in our dataset. Moreover, none of these datasets
contain pairs of rough and cleaned sketches.



Beautification. Algorithmic beautification applies aesthetic ideals
to an existing drawing. Pavlidis and Van Wyk [1985] introduced
this problem statement and an algorithm for beautifying figures
as a post-process. The idea of improving a geometric model with
aesthetic constraints dates back to Sketchpad [Sutherland 1963].
Several approaches proposed to create clean hand-drawn sketches
by beautifying rough strokes on the fly during drawing [Bae et al.
2008; Fiser et al. 2016; Frisken 2008; Grimm and Joshi 2012; Igarashi
et al. 1998]. These approaches require artists to change their tools.
They cannot be applied as a post-process to an existing sketch.
In contrast, we focus on rough sketch cleanup as a post-process
that allows artists to continue drawing with their preferred tools.
Beautification of higher-level goals, such as straight lines, parallel or
perpendicular angles, and even spacing, may result in global changes
to a drawing and are out of scope for rough-sketch cleanup. High-
level beautification is a potential downstream sketch processing
application for cleaned sketches.

3 MOTIVATION

The motivation for our benchmark is to bridge the gap between
sketches created in the wild and input requirements for sketch
processing algorithms. Downstream sketch processing algorithms
include activities as straightforward as filling regions with color
and as complex as inferring 3D geometry. We design our problem
statement around this purpose. Unlike the “domestic” examples
often used in previous work, sketches in the wild are ecologically
valid. They were created by artists for their own needs and reflect
artists’ natural tools, environments, and purposes. This avoids many
sources of bias present when data is created or commissioned with
the intention of being suitable for an algorithm. As a result, they
can be used to cross-validate sketch processing algorithms.

Many recently proposed algorithms are relevant to this problem,
despite having differently stated goals. These algorithms variously
categorize themselves as vectorization (converting a raster image
into a vector representation, with complexity stemming from han-
dling ambiguities in the raster data), simplification (“in which a
smaller set of lines is created to represent the geometry of the origi-
nal lines” [Barla et al. 2005]), and cleanup or consolidation (cluster-
ing raw strokes into aggregate curves). A researcher or practitioner
is likely to consider any of these approaches when seeking to solve
the bridging problem.

Downstream sketch processing algorithms typically expect sketch-
like input in the form of clean, parametric curves rather than raster
images. Curves should meet precisely at junctions. Regions should
be watertight. A continuous curve should not be stored as multi-
ple independent, shorter curves. See, for example, Figure 2. These
properties are often assumed by downstream sketch processing
applications, or else they spend considerable effort relaxing this as-
sumption. 2D-to-3D lifting algorithms often assume that continuity
and junctions in the 2D artwork imply continuity and junctions
in the 3D shape [Andre and Saito 2011; Bessmeltsev et al. 2015;
Kaplan and Cohen 2006; Lipson and Shpitalni 1996; Xu et al. 2014;
Zheng et al. 2016]. In-betweening algorithms similarly assume that
continuity and junctions should be preserved during interpolation
[Whited et al. 2010; Yang et al. 2018]. Filling a region with color may
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Fig. 2. Top: Example rough sketches in the wild. Sketches in the wild are
typically raster and contain redundant, loose, and messy strokes; strokes
which are not part of the shape of the object (e.g. shading, scaffold, tex-
ture); strokes which are ambiguous without global context; strokes varying
thickness and weight; paper texture; and global inaccuracies. Bottom: Pro-
fessionally cleaned sketches serve as ground truth for our dataset. Shape
strokes only are shown. Cleanup does not include correcting inaccuracies
with global effect, such as the tilted minarets or asymmetric domes. Animal
image ©AP CC-BY-SA-3.0, royal palace image ©Jinho Jung CC-BY-SA-2.0.

require watertightness, particularly if the boundary of the region is
composed of multiple disconnected curves.

3.1 Characteristics of sketches in the wild

Various characteristics of sketches in the wild distinguish them
from more straightforward or idealized examples often considered
in the literature. As shown in our evaluation (Section 5), these
characteristics present challenges and remain open problems for
rough sketch cleanup algorithms. See Figure 2 for illustrations.

Raster Format. Rough sketches in the wild are often stored in
raster form. Based on our experience collecting our dataset (Sec-
tion 4 File Formats) and a survey of 56 artists, designers more fre-
quently draw using raster-based software or scan their work from
the physical world. Ambiguities arise from repeated strokes, gaps,
and short overlapping strokes. Strokes often over- or undershoot
junctions. These ambiguities are exacerbated in raster input. When
scanned from the physical world, paper texture and environmental
lighting may be visible. See Figure 2 for labeled examples of rough
and cleaned sketches.

Varying thickness and weight. Artists often draw strokes with
varying thickness and weight. This is deliberate and contributes to
the aesthetic appeal of a sketch. Cleanup algorithms should consider
or preserve such properties, though it is rare that they do. (Barla
et al. [2005] is a notable exception.)

ACM Trans. Graph., Vol. 39, No. 6, Article 163. Publication date: December 2020.
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Non-shape strokes. Several kinds of non-shape strokes or marks
appear in sketches in the wild:

e Shaded regions (which could be solid regions of color or
hatched) frequently occur. Shading can provide information
about lighting or surface normals.

o Texture is sometimes drawn, like stone or grass.

o Scaffold strokes or construction lines which are intermediate
strokes created to aid in drawing the final shape strokes. Scaf-
fold lines depict regular shapes (such as straight, parallel lines
or axis-aligned boxes) that can serve as global beautification
cues.

o Text annotations sometimes appear. We manually removed
text annotations from our dataset.

These are typically not expected by downstream algorithms. See
Figures 1-3 for examples from our dataset.

Physical artifacts. Paper texture and environmental lighting may
be present. This is often considered a separate pre-processing step
for algorothmic sketch clean-up. More attention should be paid
to this step. It is critical to robustly ignore them. Rough sketches
virtually always come in raster form (all of our dataset), either
scanned from the physical world (34% and 39% of our full and curated
datasets, respectively) or drawn in a raster graphics program (the
remainder). It strongly influences the quality of algorithmic cleanup.

Global context. Correctly interpreting a stroke in one part of a
shape may require global context. This is the case for a stroke which
is the continuation of a partially occluded stroke. This is also the
case for a stroke which has two local interpretations but clearly
forms part of a perceptual whole, such as the bottom hem of the
shirt in Figure 2.

Deliberately non-smooth strokes. How much smoothing or straight-
ening should be applied to deliberately messy strokes? In some
architectural sketches in our dataset (e.g. Figure 2), the strokes have
a deliberately shaky appearance.

3.2 Problem Statement

We seek an algorithmic solution to rough sketch cleanup, in which
a sketch from the wild (in raster or vector format) is converted into
a neatened parametric vector graphics representation:

o Strokes that are loose and messy should be consolidated into
a single clean stroke. Redundant and errant strokes should
be removed.

o Strokes should meet precisely at junctions.

e Stroke thickness and color should be close to the original
sketch.

e Decorative strokes, such as shading and texture, should be
identified and treated separately.

e Scaffold or construction lines should be identified, separated,
and themselves cleaned.

e Cleanup should not add detail not present in the original
sketch or replace, for example, a hat in the input with a more
fashionable one (Figure 4). Every stroke in the output should
be a cleaner or neater version of strokes present in the input.

ACM Trans. Graph., Vol. 39, No. 6, Article 163. Publication date: December 2020.

Due to ambiguities in a rough sketch, global context and high-
level perception may be required to correctly interpret a rough
stroke. However, rough sketch cleanup does not include operations
with global effect, like correcting inaccurate perspective, imperfect
ellipses, or adjusting the overall angle of a shape such as a leaning
tall building. Even small changes with global effect may require
warping the entire sketch.

Rough sketch cleanup can be easily performed by humans with a
few caveats. Ambiguous regions in a sketch will lead to inconsistent
cleanup. It is difficult for humans to create junctions with perfect
as opposed to visual precision. It is difficult for humans to match
stroke thickness and color.

4 DATASET

To evaluate and focus research into rough sketch cleanup, we gath-
ered a dataset of rough sketches obtained in the wild. Our dataset
consists of 281 sketches, from which we curated a subset of 101
sketches with a more even distribution of genre, style, and artist.
The curated subset is also a trade-off reflecting the manual effort in-
volved in ground truth creation. To curate the set, we independently
marked at most five sketches per artist to “definitely” include in the
subset and an unlimited number of additional sketches to include
“if needed.” By marking no more than five sketches per artist, we
prevented any artist from dominating their genre. Sketches deemed
less suitable were left unmarked. The curated subset consists of
those images which the majority marked as “definitely” and the
others marked as “if needed”

4.1 Sketch Collection

We collected sketches by searching publicly available online sources
(e.g. Flickr, DeviantArt, forums, blogs, artist web pages) for Creative
Commons artwork, via direct outreach to personal and professional
contacts and indirect outreach by asking our contacts to distribute a
link to an online submission form, by scanning a book for which we
could obtain suitable permission, and by paying artists on UpWork
to license some of their existing drawings under a Creative Com-
mons license. We sought sketches that were primarily line drawings,
not colorful or shaded. (We found it impossible to avoid shading
entirely, particularly among design sketches.) We sought sketches
that exhibited some amount of roughness. We sought sketches, not
novice doodles, reflecting some amount of expertise gained by delib-
erate practice. We provide a web interface for browsing and filtering
these sketches in our supplemental materials.

We also collected ground truth data for 40 sketches used in previ-
ous work. We do not count these 40 in our dataset, as they are not
from the wild. Moreover, they are copyrighted by the artist or jour-
nal with all rights reserved. In contrast, the sketches in our dataset
have licenses allowing their use (nearly all Creative Commons; see
License, below).

Genres. Sketches in our dataset are organized into two overall
categories, industrial and artistic. Industrial sketches are further
divided into the genres fashion, product, and architecture. Product
sketches are sometimes called CAD or concept sketches. Artistic
sketches are divided into the genres freeform and logo. Freeform
sketches include cartoons and drawings or illustrations not meant to
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industrial

architecture fashion

Fig. 3. A sample from our dataset for various categories. From top to bottom: rough sketches from the wild; thresholded raster sketches to remove the
background; manually vectorized rough sketches; professionally cleaned sketches (one of multiple), i.e. ground truth. From left to right: dog image ©Preston
Blair, running man image ©Graham Wilson CC-BY-4.0, girl image ©David Revoy CC-BY-4.0, girl image ©Anton Gulic CC-BY-4.0, logo image ©Jakub Steiner
CC-BY-SA 2.0, book logo image ©Anna A CC-BY-NC 2.0, architecture image ©Alexander Strugach under CC-BY-2.0, fashion image ©Myriam Lasserre
CC-BY-SA-4.0, camera image ©Akshay Sharma CC-BY-SA, shoe image ©Graham Wilson CC-BY-4.0.

satisfy technical constraints or an industrial application. Examples
of each can be found in Figure 3. We consider style to be synonymous
with authorship. Within each genre, we have 4-13 different authors.
See Table 1 for the distribution of authors and sketches in each
genre.

Tags. Sketches are tagged with the following information:
e Genre
Author (name, preferred attribution, contact information)
Where the drawing was obtained from
License
Has shading strokes
Has scaffold lines
Has texture strokes
Background (clean or paper texture from a scanned drawing)
Curated (professionally vectorized, cleaned, and evaluated)
Ambiguity: degree to which cleanup artists agree
o Messiness: ratio of rough to clean stroke coverage

Table 1 summarizes the tag statistics for our dataset. Ambiguity

and Messiness are described in detail in Section 5.

License. The vast majority of sketches in our dataset have Cre-
ative Commons licenses: 94% of the full dataset and curated subset
(Table 1). We allow any Creative Commons license except those with
a “No Derivatives” clause, since any sketch-processing algorithm
creates a derivative work. The non-Creative Commons sketches
come with explicit permission from the rights holder for inclusion
in our benchmark. There are 18 such sketches in the full dataset
and 6 in the curated subset.

Table 1. Tag statistics for the 281 sketches in our entire dataset and 101
sketches in our curated subset. Other than the Authors column, the val-
ues represent the number of sketches with the property (license, presence
of layers, scanned from the physical world). Sketches without a Creative
Commons license (Not) are included in our dataset with explicit permission
from the copyright holder. All sketches are in raster format. Sketches with
a clean background were created in digital drawing software, rather than
scanned from the physical world.

Creative Commons Layers

Genre Sketches Authors BY BY-NC BY-NC-SA BY-SA Not Shading Scaffold Texture Physical
All 281 39 123 60 19 61 18 187 71 75 95
Art: Freeform 86 16 23 32 2 11 18 53 11 23 19
Art: Logo 29 6 18 4 0 7 0 28 0 2 7
Ind.: Architecture 26 6 7 0 10 9 0 12 10 13 15
Ind.: Fashion 40 4 1 22 5 12 0 17 0 16 22
Ind.: Product 100 8 74 2 2 22 0 77 50 21 32
Curated 101 35 48 15 8 24 6 76 35 24 39
Art: Freeform 33 1311 8 2 6 6 30 6 8 7
Art: Logo 12 6 7 3 0 2 0 12 0 2 5
Ind.: Architecture 12 6 5 0 2 5 0 6 6 4 9
Ind.: Fashion 11 4 1 4 3 3 0 7 0 5 4
Ind.: Product 33 7 24 0 1 8 0 21 23 5 14

4.2 Ground Truth

We hired seven professional artists to create three ground truth
cleaned versions of each rough sketch? in our curated subset and
in the additional 40 sketches used as examples in prior work. We
recruited the seven professional artists via UpWork. The artists
were located throughout the world (Argentina, China, Colombia,
Hungary, Russia, and Serbia). Artists had 5-9 years of professional
experience. The artists worked for a total of 645 hours (including
vectorization of rough input sketches). One of the artists cleaned
every image in our dataset and created the manual vectorizations.

We designed our problem statement to be algorithmically achiev-
able. However, we did not structure the creation of ground truth data

2Two sketches were cleaned by four artists.

ACM Trans. Graph., Vol. 39, No. 6, Article 163. Publication date: December 2020.
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Rough Invented Detail Accepted Clean

Rough Artist A Artist B Artist C

Fig. 4. Examples of cleanup, taken from our interactions with artists. Top:
The cleaning process should not add detail, as shown in the inset. Acceptable
cleaning should only revise strokes already present in the put. Bottom:
Ambiguities in the rough input sketch lead to multiple acceptable choices
by the cleanup artists. We discuss a metric for ambiguity in Section 5.2.2.
Koala image ©Enrique Rosales, aircarft image ©David Revoy CC-BY-4.0.

as a perceptual experiment. Sketch cleanup was a collaborative pro-
cess between the artists and us to decide what constituted cleanup
versus changing the idea of the original artist. Our goal was to obtain
cleaned sketches that reflect artists’ professional skills and human
perception without adding details or changing what is depicted. The
cleanup task is similar to the inking step in comic book creation
[Simo-Serra et al. 2018b], in which strokes are redrawn and refined.
However, when inking, artists may add details that improve the
drawing. We provided artists with illustrated instructions, including
positive and negative examples. We encouraged them to use their
best guess in case of ambiguity (Figure 4, bottom). The instructions
can be seen in our supplemental materials. Misinterpretations were
common (e.g. Figure 4, top). Without back-and-forth communica-
tion, we would have obtained poorer quality ground truth that no
algorithm could match. Structuring this as an experiment would
not have served the benchmark to structure ground truth data col-
lection as an experiment due to the highly skilled, time consuming,
and costly demands on our artists. Our initial instructions were
refined in collaboration with the artists. As ground truth creation
progressed and artists gained more experience, artists worked more
independently.

Artists created their cleaned vector drawings atop the input image,
which was given as a background layer in Adobe Illustrator.? We
asked artists to preserve shading and texture and clean scaffolds in
their ground truth (in separate layers) for use in future research.

3 All the artists we hired used Adobe Illustrator as their vector graphics editor. Artists
could trace over the rough sketch.
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Table 2. Automatic rough sketch cleanup methods we evaluate.

Method Input  Output
TopologyDriven [Noris et al. 2013] raster  vector
FidelitySimplicity [Favreau et al. 2016] raster  vector

DelaunayTriangulation [Parakkat et al. 2018] raster  vector

PolyVector [Bessmeltsev and Solomon 2019] raster  vector
StrokeAggregator [Liu et al. 2018] vector vector
MasteringSketching [Simo-Serra et al. 2018a] raster  raster
RealTimelnking [Simo-Serra et al. 2018b] raster  raster

TopologyDriven [Noris et al. 2013] —

T t
StrokeAggregator [Liu et al. 2018] raster. vector

PolyVector [Bessmeltsev and Solomon 2019] —

T t
StrokeAggregator [Liu et al. 2018] raster. vector

We found that professional artists have trouble creating topo-
logically accurate junctions. They were all able to create junctions
which appear closed (e.g. overlapping thick strokes), but only some
typically created shared stroke endpoints or endpoints ending on
other curves at machine precision. Common vector graphic formats
(Mlustrator or SVG) cannot store topological junctions in complex
scenarios, such as when more than two curves share a junction or
when one curve starts or ends in the middle of another. An alterna-
tive data structure could solve this problem [Dalstein et al. 2014],
though it is not supported in common tools (e.g. Adobe Illustrator).
During cleanup, we asked artists to label strokes in different cat-
egories: shape strokes, shading, texture, and scaffolds. These are
stored in separate layers. The dataset also stores each layer as a
separate file to simplify future use.

Rough Sketch Vectorization. All of the 281 rough sketches are na-
tively in raster format, either because they were scanned from the
physical world or because they were created in a raster graphics
program. Some automatic algorithms take vector input, so we hired
one of the professional artists to create a faithful manual vectoriza-
tion of all 101 rough sketches in the curated subset. The artist traced
stroke centerlines where possible, and outlined shaded regions when
individual strokes were not distinguishable. These vectorized rough
sketches use a simple stroke style with constant thickness, since no
standard file format can store varying attributes like thickness, it is
difficult for a human to control, and thickness or color information
can be estimated from the raster image under each stroke. Just as
during ground truth cleanup, we asked the artist to place strokes
into different layers: shape strokes, shading, scaffolds, and texture.
The layers are stored as groups in an SVG file and, redundantly,
split into a separate SVG file per layer. The ground truth files and
manually vectorized rough input files are all provided in the same
coordinate system for evaluation.

We provide each input image in its original, raster, form; as a
raster image with a manually thresholded background to eliminate
physical artifacts like paper texture and illumination; and its manual
vectorization in SVG format (with layers as groups and as separate
files).
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5 EVALUATION

We evaluated seven recent algorithms and two pipelines created
by composing two of the vectorization algorithms with a cleanup
algorithm (Table 2). Four methods take raster input and produce
vector output by applying heuristic-based optimization: PolyVector
[Noris et al. 2013], FidelitySimplicity [Favreau et al. 2016], Topolo-
gyDriven [Bessmeltsev and Solomon 2019], and DelaunayTriangu-
lation [Parakkat et al. 2018]. One method, StrokeAggregator [Liu
et al. 2018], takes vector input and produces vector output by ap-
plying perceptual principles . Two data-driven approaches based
on convolutional neural networks, MasteringSketching [Simo-Serra
et al. 2018a] and its follow-up RealTimelnking [Simo-Serra et al.
2018b], take raster input and are the only two methods which pro-
duce raster output. We use the authors’ own implementations of
their algorithms. We also evaluated two pipelines: one of two self-
described vectorization algorithms, TopologyDriven [Noris et al.
2013] or PolyVector [Bessmeltsev and Solomon 2019], followed by
StrokeAggregator [Liu et al. 2018], the cleanup method that requires
vector input.

We provide a web interface for browsing algorithmic outputs
and interacting with some of our metrics. See our supplemental
materials.

Parameters. We evaluate algorithms using the authors’ recom-
mended or default parameters. The only approach with a user-facing
parameter is FidelitySimplicity [Favreau et al. 2016], which provides
users with a parameter (1 € [0, 1]) to select the desired tradeoff
between fidelity (adherence to the rough input) and simplicity of
output curves. We evaluated it with multiple parameter settings
(A = 0.25,0.3,0.5,0.6,0.75), which are the evenly spaced values
(0.25, 0.5, 0.75) along with the values used by the authors for ex-
amples shown in their paper (0.3, 0.6). We evaluated PolyVector
[Bessmeltsev and Solomon 2019] with and without the “noisy” flag.
The parameters for DelaunayTriangulation [Parakkat et al. 2018] are
resolution dependent. We devised a simple formula to stay within
the authors’ recommended range. We set the “ len” parameter to
4% of the image diagonal, “skeleton pruning” to 3% of the image
diagonal, “smoothing” to 6% of the image diagonal or 100 (whichever
is larger), and “masking regions” to 40.

Input sketches. We evaluated the algorithms on our curated dataset
as well as the 40 rough sketches gathered from prior work. We evalu-
ated three kinds of input derived from each rough sketch: the original
image, manually thresholded, and professionally vectorized (Figure 3).
The raster-based algorithms often expect clean backgrounds, so we
manually thresholded the original images to eliminate physical scan-
ning artifacts (paper texture and lighting). We also evaluated two
variants of the professional vectorization of each input image: all
layers and only shape strokes. All layers corresponds to a version
of the original image with a clean background and uniform stroke
width. By omitting non-shape strokes, we avoid stroke types that
most cleanup algorithms weren’t designed to handle.

The scale or resolution of the input is an overlooked parameter
for some algorithms, as algorithms may have internal thresholds
with resolution-dependent units or evaluate pixels within a sliding
window of fixed, absolute size (e.g. MasteringSketching [Simo-Serra
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et al. 2018a]). To account for this, we evaluated raster images at
their original resolution, thresholded images at the same resolution
and resized to have 1000 and 500 pixels along their long edge, and
vectorized images rasterized at 1000- and 500-pixel dimensions. We
evaluate StrokeAggregator [Liu et al. 2018] only on the profession-
ally vectorized inputs (all layers and shape strokes only).

5.1 Sketch-to-Sketch Similarity

Much of our evaluation relies on measuring sketch-to-sketch simi-
larity. There are infinitely many different vector graphics representa-
tions for the same sketch. Consider, for example, that a Bézier curve
can be losslessly split into multiple, shorter curves. Two sketches
may look identical, but have different connectivity at T-junctions,
since SVGs and other common vector formats cannot represent
valence-3-or-higher junctions [Dalstein et al. 2014]. We investigated
algorithms to snap endpoints and T-junctions into a representa-
tion with richer topology. However, snapping endpoints affects the
body of the curve, potentially destroying T-junctions elsewhere. In
other places, curves run parallel to each other; after snapping, these
parts of the curve become double-covered. The issues that arise and
complexity of solutions begins to resemble sketch cleanup itself.
Therefore, we make the decision to evaluate the quality of vector
graphics representation (long, continuous versus short strokes, junc-
tions quality) independently from our evaluation of sketch-to-sketch
similarity (Section 5.2.1).

We do not need to consider registration or overall alignment.
Ground truth was created atop the rough sketch. The algorithms
we evaluate also similarly maintain the alignment of the output.

Since we have multiple ground truths for each sketch, we need
to compute the similarity of one sketch to a set of other sketches.
An algorithmic output could be similar to different ground truth
examples for different parts of the sketch. While we could measure
the distance from a point on the algorithmic output to any of the
ground truth examples, a similar adaption in the other direction
would require a correspondence between ground truths to deter-
mine whether every point on the ground truth was close to a point
on the algorithmically cleaned sketch. Unfortunately, finding cor-
respondences is an open research problem. We did not want our
evaluation to be subject to surprising correspondence problems.
Simpler metrics are more robust and easier to reason about. As a
result, we decided to use uncorresponded point-to-point similarity
to compare two images and use the maximum pairwise similarity
across all ground truth.

To compute point-to-point similarity, we compute a uniform sam-
pling of sketches in screen-space by rasterizing them. We normalize
each sketch to have uniform stroke thickness set to 0.1% of the
image’s long edge, rasterize it, and then threshold such that any
values darker than 75% are considered filled. This approximately
matches the thickness of the raster output of MasteringSketching
and RealTimelnking [Simo-Serra et al. 2018a,b] which we cannot
change and similarly threshold.

We want a symmetric similarity function. It is not enough to
measure how close e.g. each point on the algorithmic output is to
any point on the ground truth. A partial sketch should not have
equal similarity. (Table 3, “bottom.”)
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5 18 8 |8 |5

perfect  nudged  bottom dot dot only
Chamfer 0.00 0.01 0.06 0.002 0.60
F-score 0% 1.00 0.23 0.68 0.99 0.00
F-score 5% 1.00 1.00 0.73 0.99 0.00
Hausdorff 0.00 0.03 0.40 0.45 1.05
10U 1.00 0.11 0.51 0.99 0.00

Table 3. The distance between a green and purple shape according to various
distance metrics, with overlap shown in black. The first column shows a
perfect match. Chamfer and Hausdorff are distances that count up from 0.
F-score and 10U values lie in the range 0 (completely dissimilar) to 1 (perfect
match). Nudging the perfect match shows that the IOU metric and F-score
are sensitive to slight misalignments, which is undesirable in our scenario.
The F-score can be tuned with a threshold parameter, though adjusting it
can be difficult (nudged vs. bottom). Adding a distant dot shows that the
Hausdorff distance is determined by outliers, which is also undesirable in our
scenario. The Chamfer distance handles all these scenarios appropriately,
and is the most distant when expected (dot only).

We experimented with several point-to-point similarity and dis-
tance formula for comparing two binary images A and B: Intersec-
tion over Union (IOU), Hausdorff distance, F-score, and the Chamfer
distance, See Table 3 to see the behavior of these formula on simple
examples. The Intersection over Union (IOU), also called the Jaccard
index, measures the intersection between two regions (in our case,
the number of overlapping rasterized pixels), as a fraction of their
union (the union of rasterized pixels): %. Values range between
1 (perfect match) and 0. Unfortunately, the IOU is extremely sensi-
tive to local misalignments, as seen in Table 3, “nudged.” The other
distances can all be expressed efficiently by first computing the dis-
tance transform DT of each image, where DT, is an image storing
the distance to the closest pixel in A with distances normalized to
be fractions of the long edge. The Hausdorff distance computes the

“worst possible” closest distance between two sets:
Hausdorff(A, B) = max(maxi’jeA(DTB [, D), maxi’jeB(DTA[i,j]))

A perfect match has distance 0. Two maximally dissimilar images
have a distance of V2 corresponding to the image diagonal. The
Hausdorff distance is dominated by the behavior of outliers, as seen
in Table 3, “dot” This makes it a poor choice for us. The F-score
is the harmonic mean of precision and recall. Precision measures
the fraction of points of image A (e.g. an algorithm’s output) that
are within distance d of any points of image B (e.g. a ground truth
sketch).
Precision(A, B) = — Z DTg[i,j] <d

Al i,jeA

Recall measures the opposite direction. Values range between 1
(perfect match) and 0. The threshold d must be carefully chosen,
as seen in Table 3, “nudged” and “bottom.” The Chamfer distance
measures the average closest distance between any point in A to
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Fig. 5. Comparing algorithmic sketch cleanup to ground truth. Lower is
better. Above: For each rough sketch input to each algorithm, we average the
best (lowest) Chamfer distance among all variants of the image compared
to all ground truth cleanings of that image. Below: Broken down by image
variant and resolution.

any point in B, and vice versa.

Z DTg[i, j] + ﬁ Z DTali, j]

LJEA i,jeB

Chamfer(A, B) = 1
2041
The Chamfer distance has a similar range as the Hausdorff, (0 to
\/5). The Chamfer distance is not sensitive to outliers and local
misalignments and has no parameters to tweak (Table 3).

For each rough sketch, we measured the similarity among its
ground truth cleanings with all metrics (Section 5.2.2). The Chamfer
distance had the best Pearson correlation score with the other dis-
tances. Due to its good theoretical properties and for lack of a better
alternative, we focus on the Chamfer distance for our evaluation.
Other distances can be browsed in our supplemental materials.

In all of our evaluations, we compare to only the shape strokes
layer of the ground truth output. No algorithms intentionally process
or preserve shading, scaffolding, or texture strokes. Future research
may make use of them.

5.2 How well do algorithmically cleaned rough sketches
match ground truth?

A central question we wish to answer is whether a given automatic
cleanup algorithm produces results similar to ground truth.

We computed distances for each image separately and use its best
score across all input variants (resolution and original, thresholded,
vectorized all layers, vectorized shape strokes only). This represents
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Mastering Poly Vector —
Original Ground Truth Sketching

Topology Driven —  Delaunay

Stroke Aggregator Real-Time Inking Poly Vector Stroke Aggregator Topology Driven Stroke Aggregator Triangulation Fidelity Simplicity

&

distance: 0.00078 distance: 0.00095

distance: 0.00051 distance: 000052 distance: 0.00055  distance: 000066 distance: 0.00072 distance: 0.00228 distance: 0.00391
Mastering Poly Vector — Delaunay Topology Driven —
Ground Truth Sketching Real-Time Inking ~ Fidelity Simplicity  Topology Driven Poly Vector Stroke Aggregator  Triangulation Stroke Aggregator  Stroke Aggregator

A

distance: 0.00184  distance: 0.00197  distance: 0.00204  distance: 0.00216 distance: 0.00232  distance: 0.00244 distance: 0.00318 distance: 0.00337 distance: 0.00418
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distance: 0.00083 distance: 0.0009 distance: 0.00094 distance: 0.001 distance: 000124 distance: 000203 distance: 000256 distance: 0.00351 distance: 0.00415

Fig. 6. Algorithmic cleanup output for three rough sketches, ranked according to Chamfer distance from ground truth, from better to worse (left to right).
Please see the supplemental material to interact with this data. From top to bottom: animal image ©Gregory Laufersweiler CC-BY-SA-3.0, cloth image ©Rachel
Bake CC-BY-NC-2.0, car image ©Jaguar MENA CC-BY-2.0.
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Fig. 8. Fidelity vs. Simplicity [Favreau et al. 2016] is sensitive to gaps in
the input strokes. Above: The input sketch contains gaps, so the output is
missing large regions. Below: We manually close the gaps, and the output
drastically improves. Pig image ©Enrique Rosales.

Fig. 7. MasteringSketching and Realtimelnking (Simo-Serra et al. [2018a]
and [2018b], respectively) are techniques based on convolutional neural

networks (CNNs). The two algorithms consolidate repeated, rough strokes
with a different resolution dependence. MasteringSketching fails on the
image at its largest size. Penguin image ©Enrique Rosales.

a user willing to tweak parameters to obtain as high-quality an
output as possible.

Figure 5 shows the Chamfer distance for each algorithm on our
dataset. Figure 6 shows algorithmic output ranked by Chamfer

distance for three input sketches. We observe that all algorithms
performed better with 1000-pixel resolution images than 500-pixel
resolution images. This may be due to unconscious tuning by algo-
rithm designers. We also observe that manual thresholding nearly
always improved performance over the original images. We saw no
clear performance trend for algorithms based on the input sketch’s
genre.

We observed several characteristics of each cleanup algorithm.
The CNN-based approaches [Simo-Serra et al. 2018a,b] consolidate
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Rough Sketch Input len: 10 len: 2.5
Chamfer distance: 0.002

Chamfer distance: 0.0027

|

Fig. 9. The DelaunayTriangulation [Parakkat et al. 2018] method is sensitive
to the input parameters. It is difficult to find one set of parameters for all
sketches. Fashion image ©Hugo Fonseca CC-BY-NC-SA-3.0.
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Fig. 10. The TopologyDriven [Noris et al. 2013] and PolyVector [Bessmeltsev
and Solomon 2019] approaches attempt a faithful vectorization and are
better suited to sketches with low messiness. Input images from Favreau
et al. [2016].

repeated strokes with a resolution dependency (Figure 7). The reso-
lution at which they do this is different. FidelitySimplicity [Favreau
etal. 2016] performs poorly in the presence of gaps (Figure 8). Delau-
nayTriangulation [Parakkat et al. 2018] is sensitive to its input pa-
rameters (Figure 9). We chose parameters dynamically as a function
of the image long edge, but much better parameters can be found via
fine tuning. The vectorization approaches (TopologyDriven [Noris
et al. 2013] and PolyVector [Bessmeltsev and Solomon 2019]) in-
deed focus on faithful vectorization and do not group repeated
messy strokes (Figure 10). For that reason, they are better suited for
sketches with low messiness (Section 5.2.2).

5.2.1  Vector Path Quality. We measure two characteristics of the
vector representation itself. The two CNN-based methods we evalu-
ate [Simo-Serra et al. 2018a,b] cannot participate in this evaluation,
because they output raster images. The sketches created by human
artists (ground truth and manual vectorizations) can participate.

ACM Trans. Graph., Vol. 39, No. 6, Article 163. Publication date: December 2020.

We measured the arc length of continuous paths represented in
each algorithmic cleanup’s SVG output. It is preferable to store a
visually continuous curve as a single, long path rather than multi-
ple shorter ones placed end-to-end but topologically disconnected.
A downstream algorithm will likely expect that separately stored
paths in the SVG typically correspond to visually separate paths.
Statistics about path arc lengths for the algorithms we evaluate
can be seen in Figure 12. StrokeAggregator [Liu et al. 2018] had
far superior curves than the other algorithms, on par with rough
human sketches. The ground truth artists produced paths whose
arc lengths were typically many times longer than any algorithmic
output.

We also measured the quality of junctions between curve end-
points. SVG’s and other common vector graphics formats cannot
represent 3-way (or higher) junctions, so any T-junctions must nec-
essarily cause a discontinuity in how the paths are stored where
there is none visually. However, if the distance between the end-
point of a curve and all other curves is zero, then the junction is
stored in the best way possible. For this reason, and to correct for
short paths as described above, downstream applications often as-
sume that coincidence implies connectivity. We sum the minimum
distance between every curve endpoint and every other curve in
the SVG, normalized such that the image’s long edge has length 1.
Figure 11 plots statistics about the total minimum distance and the
number of endpoints whose minimum distance to another curve
was over 0.1% of the image’s long edge. We use the total minimum
distance rather than the average minimum distance, because that
would benefit algorithms that store long, visually continuous paths
as topologically disconnected short paths. StrokeAggregator [Liu
et al. 2018] also had the best performance in this metric, though
many algorithms created higher quality junctions than humans as
expected (Section 4.2).

Timing and Failure Rate. We measure the time each algorithm
took to complete (Figure 13). We also measure the fraction of rough
sketches an algorithm was able to successfully process. An algo-
rithm which took longer than 30 minutes or more than 40GB or
RAM was terminated and considered as a failure. Running all al-
gorithms for all inputs took 25 days of CPU time. This does not
count time taken when algorithms failed to complete. Due to the
intense computational requirements and differing operating sys-
tem requirements, we ran the algorithms on several machines with
different specifications. Machine A had an Intel Core i7-6700 3.4
GHz CPU with 4 cores and 48 GB of RAM. Machine B had an Intel
Core i7-7700HQ 2.80 GHz CPU with 4 cores and 16 GB of RAM. All
algorithms except those mentioned below ran on Machines A and B.
In particular, any algorithms which failed due to high memory use
ran on Machine A. Machine C had an Intel Core i5-5287U 2.90GHz
CPU with 2 cores and 16 GB of RAM. Machine C was used solely for
DelaunayTriangulation [Parakkat et al. 2018]. MasteringSketching
and RealTimelnking [Simo-Serra et al. 2018a,b] ran on remote GPU
clusters for which we do not have precise machine specifications.
We did not run algorithms in parallel, so that parallel algorithms
could have uncontested access to all CPU cores.

The CNN-based approaches [Simo-Serra et al. 2018a,b] were by
far the fastest to run, finishing in just a few seconds. Other methods
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Fig. 11. Top: The minimum distance from a path’s endpoint to any other

path provides a simple way to measure gaps at junctions between paths.

Lower is better. We sum the minimum distance for all endpoints in a sketch
to estimate the openness of its curves. Algorithm performance is far better
than that of humans. Bottom: We count the number of open endpoints per
output. Lower is better. An open endpoint is defined as having a closest path
farther away than 0.1% of the image’s long edge.
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Fig. 12. The average length of a topologically continuous path. Higher is
better. A visually continuous path should be stored as a long, continuous path
rather than as multiple shorter paths placed end-to-end but topologically
disconnected. We compare algorithm and human performance. Human
ground truth falls off the plot, as a handful of sketches have average arc
lengths distributed up to 3.1.
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Fig. 13. Average running time in seconds for each genre of input. Logos
tend to be simpler and hence run faster. The pipelines were built atop the
output of PolyVector and TopologyDriven; the dashed regions correspond
to this first stage.

took between a minute or two (DelaunayTriangulation [Parakkat
etal. 2018]) and over ten minutes (StrokeAggregator [Liu et al. 2018]).
Logos are the simplest sketches in our dataset and took the least
time to run.

We measured the strict and overall failure rate of each algorithm
(Figure 14). An algorithm failed if it did not produce output for a
rough sketch across all (overall) or any (strict) tested algorithm pa-
rameters and image variants, within our time and memory bounds.
RealTimelnking [Simo-Serra et al. 2018b] was the only method
which never failed. The other CNN-based method (MasteringSketch-
ing [Simo-Serra et al. 2018a]) failed for images whose resolution
was over 8002. StrokeAggregator [Liu et al. 2018] had the highest
failure rate, though it has the fewest chances to succeed since there
are only two vector variants for each rough sketch. It was the only
algorithm to have any overall failures. All other algorithms were
able to produce some output for some image variant or resolution.
When run as a pipeline atop the algorithms PolyVector [Bessmeltsev
and Solomon 2019] and TopologyDriven [Noris et al. 2013], their
failure rates decrease.

5.2.2  Ambiguity and Messiness.

How ambiguous is a rough sketch? A given rough sketch may be
more or less ambiguous. Our multiple ground truth cleanings of
each sketch allow provide us with data to obtain such a measure-
ment. We define the ambiguity of a rough sketch as the average
pairwise distance between all ground truth cleanings. As with all
of our evaluations, we compute ambiguity using only the shape
strokes layer of the ground truth. Examples of ambiguity can be
seen in Figure 15. See the supplemental materials for per-sketch
ambiguity. Ambiguity may be caused by densely repeated strokes,
gaps in a stroke, or semantic ambiguity (when context changes the
interpretation of strokes). Ambiguity may also be due to different
high-level decisions about the cleanup process, such as whether a
stroke is scaffold, shading, or texture versus a shape stroke, and
whether to apply some amount of global beautification.
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Fig. 14. Failure rates for the algorithms. An algorithm was considered to
have failed if it did not produce output within 30 minutes and 40 GB of RAM
across all (strict failure rate) or any (overall failure rate) parameter settings,
image variants, and resolutions. The overall failure rate for all algorithms
except StrokeAggregator and its pipelines was 0%.

Messiness. A messier sketch has more strokes or markings that
are removed during cleanup than a less messy sketch. Figure 15
depicts several examples. We define a rough sketch’s messiness
as the ratio of covered area removed during cleanup. Messiness
compares all layers of the input image, since that is how it is given,
to the shape strokes of the ground truth, since that is the desired
output. Practically, we compute this as the ratio of the number of
pixels in all layers of the vectorized rough sketch S to the average
number of pixels in the shape strokes of each ground truth G;. Using
the vectorized input avoids physical artifacts.

#pixels(S)
average({#pixels(Gi)})

The average messiness per genre can be
seen inset right. Messiness for individ-
ual sketches varies from approximately ss
one to ten depending on an artist’s style.
Messiness also varies by category. Prod-
uct sketches tend to have more scaf-
fold lines and shadows while the fashion 20
sketches we collected are closer to their
cleaned versions. See the supplemental
materials for per sketch messiness. High
ambiguity typically corresponds to high s
messiness, but the opposite is not always
true (Figure 15-g).

Messiness(S, {Gi}) =

4.0

3.0

2.5

¥ fashion logo  product
architecture freeform

5.2.3  Perceptual Study. We performed a pilot perceptual study with
naive subjects on Amazon Mechanical Turk. We summarized our
problem statement (Section 3) and asked subjects to “mark the de-
gree to which each of the following drawings is a high-quality
neatened version of the above rough drawing” with a 5-point Likert
scale. We performed the experiment with two rough sketches, one
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freeform and one architectural, for which all cleanup algorithms, in-
cluding the pipelines, succeeded. For each rough sketch we obtained
ratings from N = 20 subjects for all nine algorithmic outputs and the
three professional artists’ ground truth outputs. The (twelve) neat-
ened drawings were arranged in randomized order in a 3 X 4 gallery.
The perceptual study itself (what subjects saw, the ratings for each
output, and analysis) can be seen in the supplemental materials.

Our pilot study obtained inconsistent results. The Chamfer dis-
tance was highly correlated with mean Likert scores for the architec-
ture input (Pearson’s r = —0.87, p = 0.0002)—more so than all other
metrics except F-score with a particular threshold. The Chamfer dis-
tance was not as highly correlated for the freeform image (r = —0.33,
p = 0.30), and was less correlated than other metrics. We discuss a
confounding factor below. Tukey’s Honestly Significant Difference
(HSD) test determined that, for each of the two inputs, some neat-
ened drawings received significantly different mean Likert scores
from others. However, a Wilcoxon signed-rank test determined that
the ranking of each neatener (algorithm or artist) was significantly
different (inconsistent) between the two inputs (p = 0.18). Rank-
ings were based on mean Likert scores. Anecdotally, subjects rated
the output of MasteringSketching [Simo-Serra et al. 2018a] highly
for both inputs (ranked best or second-best). It was rated above
all-but-one ground truth and the follow-up work by the same au-
thors [Simo-Serra et al. 2018b]. There may be a confounding factor:
MasteringSketching [Simo-Serra et al. 2018a] output thicker lines
than the other approaches, including its follow-up work. Since those
two approaches output raster images, we cannot simply normalize
the line thickness as we can for SVG output. Excluding the Likert
scores of MasteringSketching [Simo-Serra et al. 2018a], the Cham-
fer distance’s correlation with human ratings increases. It becomes
the most highly correlated metric for both the architectural input
(r = =0.90, p = 0.0001) and freeform input (r = —0.56, p = 0.07).

The above analysis is based on a small sample (two example
sketches and twenty ratings per output). It may be that scaling our
study up to large numbers of subjects and inputs would produce
consistent, significant results. However, to conduct a successful per-
ceptual study, it may be that subjects with expertise or additional
training or more focused questions are required. For example, Xu
et al. [2019] asked subjects to rate the aesthetics, conformity, and
tidiness separately. A two-alternative forced choice (2AFC) experi-
ment may be able to determine whether outputs are significantly
different with fewer queries.

6 CONCLUSION

Rough sketch cleanup has the potential to bridge the gap between
sketches made in practice and a large literature of sketch processing
algorithms. To succeed, cleanup algorithm must be able to process
sketches as they are in the wild. We introduced a dataset which
reflects the variety and reality of sketches in the wild. The accompa-
nying professionally vectorized and cleaned derivatives we acquired
identify weaknesses and open problems with existing cleanup al-
gorithms, and provide future research a scaffold for progress. Our
ground truth similarity metric serves as a benchmark challenge. Au-
tomatic algorithms should aim to produce results as close to ground
truth as the multiple ground truth images are to each other. We



a)Medium Ambiguity (0.003)
Medium Messiness (3.77)

b) High Ambiguity (0.004)
High Messiness (5.18)

=]
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L

¢)High Ambiguity (0.005)
High Messiness (9.36)

f) High Ambiguity (0.006)
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d)High Ambiguity (0.009)
High Messiness (5.11)

h) Low Ambiguity (0.0003)
Low Messiness (1.36)

Fig. 15. Ambiguity versus Messiness. Ambiguity may be due to thick regions of repeated strokes (a, b), gaps (c), or semantic ambiguity (d). Ambiguity may
also be due to different decisions regarding the cleanup process, such as which strokes are scaffold/shading/texture versus shape strokes (b), whether occluded
contours should be kept (e), or whether to apply global beautification (f). All but global beautification correspond to higher messiness. Some messy drawings
have low ambiguity (g). In the absence of global beautification, drawings with low messiness typically have low ambiguity (h). Author/copyright information
for the sketches: a and f) from Liu et al. [2015], b) Patrick Murphy, CC-BY-2.0. c) Maria Fiddler, CC-BY-NC-SA-4.0. d) Trip lvey, CC-BY-4.0. ¢) Akshay Sharma,
CC-BY-SA. g) Alexander Strugach, CC-BY-2.0. h) Preston Blair, explicit permission.

Tterated Our Ground Truth

Fig. 16. A comparison of the original artist’s iteration on their (thresholded)
rough sketch and one of the ground truth cleaned versions created by an
independent professional for our dataset (shape strokes only). Top row rough
and iterated images © Anastasia Majzhegisheva CC-BY-4.0. Bottom row
rough and iterated images © Jinho Jung CC-BY-SA-2.0.

plan to publish our evaluation scripts, providing future researchers
a simple way to automatically evaluate their algorithms on our
benchmark.

Limitations and Future Work. We defined our problem statement
for rough sketch cleanup (Section 3) narrowly with the hope that
multiple ground truth cleanings by professional artists would agree
(low ambiguity) and that a similar result could be achieved algo-
rithmically in the future. An alternative problem statement could
define the next “iteration” of the artwork, such as inking [Simo-Serra
et al. 2018b]. Our dataset does not consider this more ambiguous

problem statement. For two of our rough sketches, we have the orig-
inal artist’s own refinement. Figure 16 compares our professionally
cleaned sketches to the original artist’s own refinement.

In the future, we would like to explore end-to-end evaluations on
specific downstream sketch processing tasks like 3D reconstruction
[Xu et al. 2014] or animation in-betweening [Whited et al. 2010;
Yang et al. 2018]. We would also like to resolve imperfections in
human-created ground truth related to junctions and stroke thick-
ness and color. Imperfect junctions could possibly be resolved with a
semi-automated snapping routine and a non-standard data structure
capable of representing n-way junctions and curves which termi-
nate in the middle of others [Dalstein et al. 2014]. Stroke thickness
and color could be estimated from the underlying raster image;
again, semi-automation and a non-standard data structure would
be needed.
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