
HAL Id: hal-02939356
https://hal.science/hal-02939356v3

Submitted on 29 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Min-sup-min robust combinatorial optimization with
few recourse solutions

Ayşe Nur Arslan, Michael Poss, Marco Silva

To cite this version:
Ayşe Nur Arslan, Michael Poss, Marco Silva. Min-sup-min robust combinatorial optimization
with few recourse solutions. INFORMS Journal on Computing, 2022, 34 (4), pp.1841-2382.
�10.1287/ijoc.2021.1156�. �hal-02939356v3�

https://hal.science/hal-02939356v3
https://hal.archives-ouvertes.fr

Vol. 00, No. 0, Xxxxx 0000, pp. 000–000

issn 0000-0000 |eissn 0000-0000 |00 |0000 |0001

INFORMS
doi 10.1287/xxxx.0000.0000

© 0000 INFORMS

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Min-sup-min robust combinatorial optimization with
few recourse solutions

Ayşe Nur Arslan
IRMAR, INSA de Rennes, Rennes, France, ayse-nur.arslan@insa-rennes.fr,

Michael Poss
LIRMM, University of Montpellier, CNRS, France, michael.poss@lirmm.fr,

Marco Silva
CEGI, INESCTEC, Porto, Portugal, marco.c.silva@inesctec.pt,

In this paper, we consider a variant of adaptive robust combinatorial optimization problems where the

decision maker can prepare K solutions and choose the best among them upon knowledge of the true data

realizations. We suppose that the uncertainty may affect the objective and the constraints through functions

that are not necessarily linear. We propose a new exact algorithm for solving these problems when the

feasible set of the nominal optimization problem does not contain too many good solutions. Our algorithm

enumerates these good solutions, generates dynamically a set of scenarios from the uncertainty set, and

assigns the solutions to the generated scenarios using a vertex p-center formulation, solved by a binary search

algorithm. Our numerical results on adaptive shortest path and knapsack with conflicts problems show that

our algorithm compares favorably with the methods proposed in the literature. We additionally propose a

heuristic extension of our method to handle problems where it is prohibitive to enumerate all good solutions.

This heuristic is shown to provide good solutions within a reasonable solution time limit on the adaptive

knapsack with conflicts problem. Finally, we illustrate how our approach handles non-linear functions on an

all-or-nothing subset problem taken from the literature.

Key words : robust optimization, combinatorial optimization, vertex p-center, scenario generation

History :

1. Introduction

Robust optimization is an approach for handling uncertainty in optimization where the

possible values of the parameters are described through uncertainty sets. In robust opti-

mization, constraints are imposed for all realizations whereas the objective function is

1

Author: Article Short Title
2 00(0), pp. 000–000, © 0000 INFORMS

evaluated for the worst-case realization within the uncertainty set. As such, in applications

where the effects of uncertainty can be catastrophic, robust optimization presents itself as

a viable modeling approach. Further, static robust optimization models with polyhedral or

convex uncertainty sets lead to deterministic equivalent formulations that are often in the

same complexity class as their deterministic counterparts. For these reasons, robust opti-

mization has been enjoying a growing attention from the research community. Advances

in static robust optimization are presented in Gabrel et al. (2014), Ben-Tal et al. (2009),

Bertsimas et al. (2011), Buchheim and Kurtz (2018b).

The static robust optimization framework was extended to combinatorial optimization

problems in Kouvelis and Yu (2013). Given the feasibility set of a combinatorial optimiza-

tion problem, the framework considers that the cost vector can take any value in a given

uncertainty set and seeks a solution that is optimal under the worst-case realization over

this set. Assuming that the uncertainty set is a polytope described by a constant number

of inequalities (such as the budgeted uncertainty set from Bertsimas and Sim (2003)), the

static robust combinatorial optimization problem is not much harder than its deterministic

counterpart, since solving it amounts to solve a polynomial number of problems for differ-

ent cost vectors (Bertsimas and Sim (2003), Lee and Kwon (2014), Poss (2018)). However,

when the uncertainty set is defined by a non-constant number of inequalities, or is simply

defined by a non-constant list of possible cost vectors, the robust counterpart is typically

harder than its deterministic variant (Aissi et al. (2009), Kouvelis and Yu (2013)).

Static robust combinatorial optimization problems are often considered too conservative

since no recourse action can be taken to undermine the effect of uncertainty. A natural

extension, coined the min-max-min robust combinatorial optimization problem, has there-

fore been proposed by Buchheim and Kurtz (2017, 2018a) allowing the decision maker to

choose K solutions before the realization of uncertainty, and then, to select the best among

them when the uncertain parameters materialize, thus mitigating the adverse effects. The

min-max-min robust combinatorial optimization problem models the situation where the

decision maker can prepare the ground for K solutions (e.g. training drivers, repairing

roads, configure routing protocols) and choose the best among them upon full knowledge

of the uncertain parameters. For instance, if the feasible set contains paths in a given

graph, the problem seeks to prepare K different routes that can be used to evacuate citi-

zens or transport relief supplies in case of a hazardous event (Hanasusanto et al. (2015)).

Author: Article Short Title
00(0), pp. 000–000, © 0000 INFORMS 3

Another relevant example is related to parcel delivery companies, which would be unwill-

ing to reschedule their delivery tours from scratch everyday. As an alternative, drivers are

trained only for a small set of route plans that are to be executed in case of road closures

and heavy deviations (Eufinger et al. (2019), Subramanyam et al. (2019)).

While several studies (e.g., Eufinger et al. (2019), Hanasusanto et al. (2015), Subra-

manyam et al. (2019)) have illustrated the practical relevance of the min-max-min robust

combinatorial optimization problem, exact solution algorithms have stayed behind, and

the problem has remained extremely difficult to solve, even for small instances. So far, only

two algorithms are able to solve min-max-min problems with a polyhedral uncertainty set

exactly: Hanasusanto et al. (2015) reformulates the problem through linear programming

duality resulting in a monolithic formulation involving bilinear terms that are linearized

using the McCormick linearization, and Subramanyam et al. (2019) introduces an ad-hoc

branch-and-bound algorithm based on generating a relevant subset of uncertainty realiza-

tions and enumerating over their assignment to the K solutions. Unfortunately, these two

approaches can hardly solve the shortest path instances proposed by Hanasusanto et al.

(2015) as soon as the graph contains more than 25 nodes. A third paper has had more

success with these instances, solving all of them to optimality (the largest having 50 nodes)

in the special case K ∈ {2,3} (Chassein et al. (2019)). Yet this latter approach requires

the uncertainty set to be the budgeted uncertainty set from Bertsimas and Sim (2003)

and hardly handles any instance when K grows above 3. The theoretical complexity of

the problem with budgeted uncertainty has also been investigated in Goerigk et al. (2020)

(for the discrete variant) and Chassein and Goerigk (2020) (for its continuous variant). In

addition, Goerigk et al. (2020) proposes heuristic algorithms with no performance guar-

antee. It should be noted that Hanasusanto et al. (2015) and Subramanyam et al. (2019)

address, in fact, the more general K-adaptability paradigm, in which first-stage decisions

can be taken in addition to the K different second-stage decisions. The paradigm of K-

adaptability is strongly related to two-stage robust optimization with discrete recourse, a

topic having witnessed a significant amount of work in the past few years (e.g. Bertsimas

and Dunning (2016), Bertsimas and Georghiou (2018), Arslan and Detienne (2020)).

Our contribution The purpose of this work is to propose a novel algorithm for solving

the generalization of the min-max-min robust combinatorial optimization problem with

constraint uncertainty and non-linear dependency on the uncertain parameters. Because

Author: Article Short Title
4 00(0), pp. 000–000, © 0000 INFORMS

of the constraint uncertainty, the adversarial problem’s objective function may be discon-

tinuous, so the maximization over the uncertainty set needs to be replaced by a supre-

mum. We denote the resulting optimization problem as min-sup-min. Borrowing an idea

from Chassein et al. (2019), our algorithm enumerates good feasible solutions. However,

unlike Chassein et al. (2019) that relies on a purely enumerative scheme tailored for the

budgeted uncertainty set from Bertsimas and Sim (2003), the approach presented in this

paper models the problem with a generic compact uncertainty set as a variant of the p-

center problem, assigning a relevant subset of scenarios to at most K different solutions. We

solve the resulting problem by combining a row-and-column generation algorithm, binary

search, and dominance rules.

We numerically compare our approach to the four algorithms available in the litera-

ture for solving linear min-max-min problems: the row-and-column generation algorithm

from Goerigk et al. (2020), the enumeration scheme from Chassein et al. (2019), the mono-

lithic reformulation from Hanasusanto et al. (2015) and the branch-and-bound algorithm

from Subramanyam et al. (2019). We remark that the approach from Chassein et al. (2019)

is restricted to problems where Ξ is the budgeted uncertainty polytope (Bertsimas and Sim

(2003)), and cannot handle constraint uncertainty. Furthermore, none of these approaches

is able to handle non-linear functions, in contrast with the algorithm proposed in this

paper.

Our results illustrate that we are able to optimally solve many open instances from Hana-

susanto et al. (2015) when K grows above 3. Our approach is not impacted by the complex-

ity of the nominal counterpart of the problem, unlike Goerigk et al. (2020), Hanasusanto

et al. (2015) and Subramanyam et al. (2019). This property is illustrated numerically on

the min-max-min counterpart of the knapsack problem with conflicts, for which our algo-

rithm compares even more favorably against the approaches from Hanasusanto et al. (2015)

and Subramanyam et al. (2019), including in the case of constraint uncertainty.

We additionally propose a heuristic variant of our algorithm based on a partial enu-

meration of good feasible solutions that can be used when enumerating all solutions is

computationally prohibitive. The latter is compared numerically to the heuristic variant

of the branch-and-bound algorithm from Subramanyam et al. (2019) on the the knap-

sack problem with conflicts. The results indicate that our heuristic provides slightly better

quality solutions for the larger values of K.

Author: Article Short Title
00(0), pp. 000–000, © 0000 INFORMS 5

Finally, we also illustrate the numerical promise of our algorithms when the objective

function is non-linear, on an all-or-nothing subset problem borrowed from Goldberg and

Rudolf (2020).

The source code of the algorithms presented in this paper is available here.

Structure of the paper The rest of the paper is organized as follows. In Section 2, we for-

mally define the min-max-min combinatorial optimization problem, and present the main

components of our solution scheme, based on a dynamic scenario generation procedure

combined with a p-center formulation solved through binary search. Section 3 further elab-

orates on the algorithm, explaining how to reduce the number of solutions and perform the

binary search efficiently, as well as presenting a heuristic variant. In Section 4, we present

the numerical results comparing our solution scheme to the well established methodologies

from the K-adaptability and min-max-min literature on the shortest path problem and

the knapsack problem with conflicts (with and without weight uncertainty), as well as

illustrating it on a problem where the objective function is non-linear. We conclude the

paper in Section 5.

Notations Throughout the paper, we use the short-hand notations [n] = {1, . . . , n} for

any positive integer n, and x = (x1, . . . , xK) where xi for i∈ [K] is a feasible solution of the

set X. We also define the cartesian product ×k∈[K]X as XK .

2. Methodological development

In this section, we formally define the min-sup-min robust combinatorial optimization

problem. We then present the different components of the solution scheme we propose.

2.1. Problem definition

Let Ξ⊆Rn be a compact set and consider a nominal combinatorial optimization problem

characterized by its feasibility set X ⊆ {0,1}n and its objective function f :X → R : x 7→

f(x). We consider the robust counterpart of the problem, so we re-define the objective

function as f : Ξ×X→R : (ξ,x) 7→ f(ξ,x), where ξ ∈Ξ represents the uncertain parameters

and x ∈X the (binary) decision variables. Similarly, we split X into components X0 and

X1 where X0 ⊆ {0,1}n contains the combinatorial structure of X, which is not affected by

uncertainty, while X1(ξ) is defined by L constraints

g`(ξ,x)≤ b`, `∈ [L], (1)

https://github.com/mjposs/min-max-min

Author: Article Short Title
6 00(0), pp. 000–000, © 0000 INFORMS

where g` : Ξ×X → R : (ξ,x) 7→ gl(ξ,x) is the function characterizing the `-th constraint.

We assume throughout that f and g` are continuous functions. In this setting, the classical

robust counterpart of the nominal combinatorial optimization problem seeks a solution

x ∈ X0 that satisfies constraints (1) for each ξ ∈ Ξ and is optimal under the worst-case

realization over Ξ, thus solving

min
x∈X0

x∈X1(ξ),∀ξ∈Ξ

max
ξ∈Ξ

f(ξ,x). (2)

A natural extension of (2) is to allow the decision maker to choose K solutions x1, . . . , xK

in X0. Then, when the uncertain parameters ξ materialize, the decision maker selects the

solution xk ∈X1(ξ) having the smallest objective value f(ξ,xk). Historically, this variant

was introduced without uncertainty in the constraints (Buchheim and Kurtz 2017, 2018a),

resulting in the following min-max-min robust combinatorial optimization problem

min
x∈XK

0

max
ξ∈Ξ

min
k∈[K]

f(ξ,xk). (3)

In this paper, we consider a generalization of problem (3) by allowing also constraint uncer-

tainty, leading to the following min-sup-min robust combinatorial optimization problem

v(X0,Ξ) := min
x∈XK

0

sup
ξ∈Ξ

min
k∈[K]:xk∈X1(ξ)

f(ξ,xk), (4)

where we adopt the convention v(X0,Ξ) = +∞ in the case that the problem is infeasible.

We illustrate problem (4) with an example on the shortest path problem.

Example 1. Consider the shortest path instance presented in Figure 1, where Ξ con-

tains two scenarios (indicated as a tuple on each arc in Figure 1) and M is a large value

representing a hazardous event that would cause road closures, L= 0 and f is the linear

function ξ>x. Solving the classical robust problem leads to a solution of cost M + 1. In

contrast, setting K = 2 we obtain x1 = {(1,2), (2,4)}, x2 = {(1,3), (3,4)}, so under any

scenario realization, there remains an alternative route of cost 2.

We remark that (4) involves a supremum over Ξ as the adversarial objective function

Fx : Ξ→R∪{+∞}, defined by

Fx(ξ) :=

 min
k∈[K]:xk∈X1(ξ)

f(ξ,xk) if ∃k ∈ [K] such that xk ∈X1(ξ)

+∞ otherwise,
(5)

is not continuous in ξ ∈ Ξ in general. The following example, proposed by Subramanyam

et al. (2019), illustrates this point in the case where Fx(ξ) is finite.

Author: Article Short Title
00(0), pp. 000–000, © 0000 INFORMS 7

1

2

4

3

(1,M) (1,1)

(M,1) (1,1)

Figure 1 Shortest path example with X = {{(1,2), (2,4)},{(1,3), (3,4)}}. Ξ contains two scenarios that are indi-

cated as a tuple on each arc.

Example 2. Consider the following min-sup-min problem:

min
x∈{0,1}2

sup
ξ∈[0,1]

min
k∈{1,2}

{(ξ− 1)(1− 2xk) | xk ≥ ξ}.

For x = (1,0), if ξ = 0 then the optimal solution of the inner minimization is obtained for

k= 2 resulting in a value of −1, if ξ > 0 then the optimal solution of the inner minimization

problem is k= 1 resulting in a value of 1− ξ. The function Fx(ξ) is discontinuous at ξ = 0.

Further, because X0 and Ξ are bounded, we assume throughout without loss of generality

that

v(X0,Ξ)> 0, (6)

which can always be enforced by adding, in all solutions, an artificial variable equal to 1

and having cost large enough so that f(ξ,x)> 0 for any x∈X0 and ξ ∈Ξ.

Let us now discuss the type of functions f , g`, `∈ [L], and set Ξ that can be handled by

the algorithms proposed in what follows. On the one hand, the dependency of the functions

on variables x is not a critical point of our approach, as long as the following holds.

Assumption 1. We can efficiently compute a value UB∗ such that: either problem (4)

is infeasible, or UB∗ ≥ v(X0,Ξ).

For instance, if f is bi-linear in x and ξ and L= 0, UB∗ can be the optimal value of the

static problem minx∈X maxξ∈Ξ ξ
>x, or the cost provided by the more involved heuristic

described in Appendix B. Whenever complex functions g` are involved, one can always

consider a trivial relaxation of maxx∈X0,ξ∈Ξ f(ξ,x), the optimal value of which yields the

required value UB∗. On the other hand, the dependency on ξ is more critical as our

algorithms will involve frequent calls to optimization problems along variables ξ ∈ Ξ and

involving the hypographs of functions f and g`, ` ∈ [L]. Resulting optimization problems

include (i) additional real variables, and/or (ii) logical constraints and binary variables.

Author: Article Short Title
8 00(0), pp. 000–000, © 0000 INFORMS

As we discuss later in the paper, the case (ii) happens to be strongly NP-hard even when

Ξ is a polytope and f and g` are affine in ξ. In contrast, case (i), which corresponds to

L = 0, leads to a convex problem whenever f is concave and Ξ is convex. Overall, we

would like these problems to be solvable rather efficiently, typically assuming that Ξ is

defined by linear, or SOCP constraints, while f and g` are affine or concave quadratic in

ξ. Furthermore, we consider throughout that Assumption 1 holds.

2.2. Scenario generation

The algorithm developed in this paper lies in generating a subset of scenarios dynamically,

following recent line of research addressing difficult robust optimization problems, e.g. Fis-

chetti and Monaci (2012), Pessoa and Poss (2015), Agra et al. (2016), Ayoub and Poss

(2016), Bertsimas et al. (2016), Subramanyam et al. (2019), Zeng and Zhao (2013) among

others. Let Ξ̃⊆ Ξ be a subset of scenarios of finite cardinality. We consider a relaxation

of (4) where Ξ is replaced by the subset Ξ̃⊆Ξ, namely

v(X0, Ξ̃) := min
x∈XK

0

max
ξ∈Ξ̃

min
k∈[K]:xk∈X1(ξ)

f(ξ,xk), (7)

where the supremum over Ξ has been replaced by a maximization because Ξ̃ is finite. If

problem (7) is infeasible, so is (4), and Ξ̃ needs not be further extended. Otherwise, let x̃

be an optimal solution to (7), which may be infeasible or suboptimal for (4). The feasibility

and optimality of x̃ could, in theory, be verified by solving the following problem, proven

to be NP-hard (Hanasusanto et al. 2015, Theorem 3)

v(x̃,Ξ) := sup
ξ∈Ξ

Fx̃(ξ) = sup
ξ∈Ξ

min
k∈[K]:x̃k∈X1(ξ)

f(ξ, x̃k). (8)

As v(X0, Ξ̃) and v(x̃,Ξ) respectively provide lower and upper bounds on v(X0,Ξ), testing

whether v(X0, Ξ̃) = v(x̃,Ξ) would prove the optimality of x̃. Unfortunately, problem (8)

involves a supremum which is hardly tractable from the numerical perspective. Therefore,

we consider an alternative optimality criterion inspired by Subramanyam et al. (2019)

that does not involve computing v(x̃,Ξ). Introducing the shorter notation ṽ= v(X0, Ξ̃), we

define the amount of violation of the current solution, under the uncertainty realization

ξ ∈Ξ, as

S(ξ, ṽ, x̃) = min
k∈[K]

max

{
f(ξ, x̃k)− ṽ,max

`∈[L]

{
g`(ξ, x̃

k)− b`
}}

. (9)

Author: Article Short Title
00(0), pp. 000–000, © 0000 INFORMS 9

For each k ∈K, the argument of the minimization takes the maximum among f(ξ, x̃k)− ṽ,

which is the cost excess of solution x̃k for scenario ξ, and g`(ξ, x̃
k)−b`, which is the amount

of violation of constraint ` ∈ [L] by solution x̃k for scenario ξ. Therefore, a non-positive

value of S(ξ, ṽ, x̃) indicates that there exists k ∈ [K] such that x̃k satisfies all constraints

and does not exceed the value ṽ. On the contrary, a positive value for S(ξ, ṽ, x̃) indicates

that for each x̃k, ξ leads to an objective value greater than ṽ or to a violated constraint.

Since function S(ξ, ṽ, x̃) is continuous in ξ, we can define the separation problem as

S(ṽ, x̃) = max
ξ∈Ξ

S(ξ, ṽ, x̃). (10)

Proposition 1. For any x̃∈XK
0 , v(x̃,Ξ) = ṽ if and only if S(ṽ, x̃)≤ 0.

Proof. We first remark that by definitions of v(x̃,Ξ) and ṽ, we have that v(x̃,Ξ)≥ ṽ.

Further, by definition of S(ξ, ṽ, x̃), it is immediate that S(ṽ, x̃) > 0 implies that there

exists ξ̃ ∈ Ξ such that for each k ∈ [K], either f(ξ̃, x̃k) > ṽ or x̃k /∈ X1(ξ̃). As a result,

v(x̃,Ξ)≥ Fx̃(ξ̃) = mink∈[K]|x̃k∈X1(ξ̃) f(ξ̃, x̃k)> ṽ, recalling that Fx̃(ξ̃) = +∞ in the case {k ∈

[K] | x̃k ∈X1(ξ̃)}= ∅.

To prove the reverse implication, suppose v(x̃,Ξ)> ṽ so there exists ξ̃ ∈Ξ such that for

each k ∈ [K] either f(ξ̃, x̃k)> ṽ or g`(ξ̃, x̃
k)> b` for some `∈ [L]. Let us denote by K0 and

K`, `∈ [L] the corresponding partition of [K], breaking ties arbitrarily. We define

δ= min

{
min
k∈K0

f(ξ̃, x̃k)− ṽ,min
`∈[L]

min
k∈K`

g`(ξ, x̃
k)− b`

}
.

From the definition of the partition, it is clear that δ is positive. Furthermore,

S(ξ̃, ṽ, x̃) = min

{
min
k∈K0

max

{
f(ξ, x̃k)− ṽ,max

`∈[L]

{
g`(ξ, x̃

k)− b`
}}

,

min
`∈[L]

min
k∈K`

max

{
f(ξ, x̃k)− ṽ,max

`∈[L]

{
g`(ξ, x̃

k)− b`
}}}

≥min

{
min
k∈K0

f(ξ, x̃k)− ṽ,min
`∈[L]

min
k∈K`

g`(ξ, x̃
k)− b`

}
= δ > 0,

proving the result. �

Computing S(ṽ, x̃) can be done through an MILP formulation introducing indicator vari-

ables and logical implication constraints, see Appendix A for details. The overall scenario

generation scheme is provided in Algorithm 1, wherein ξ0 is any scenario from Ξ (typically

Author: Article Short Title
10 00(0), pp. 000–000, © 0000 INFORMS

Algorithm 1: Scenario generation.

1 Input: Enumerated set of solutions X0;

2 Initialization: Ξ̃ = {ξ0}, x∗ = null;

3 repeat

4 Compute ṽ= v(X0, Ξ̃) and x̃ by solving (7), set ṽ= +∞ and x̃ = null if the

problem is infeasible ;

5 if x̃ 6= null then

6 Compute S(ṽ, x̃) and ξ̃ ∈ arg maxξ∈ΞS(ξ, ṽ, x̃) by solving (10);

7 if S(ṽ, x̃)> 0 then

8 Ξ̃← Ξ̃∪{ξ̃};

9 scenario added = true ;

10 else

11 scenario added = false ;

12 x∗ = x̃;

13 end

14 end

15 else break ;

16 until scenario added = false ;

17 Return: x∗

chosen to be the nominal scenario if such a scenario exists). We notice that Algorithm 1

terminates either because problem (4) is infeasible or because S(ṽ, x̃)≤ 0, in which case

Proposition 1 proves the optimality of the solution. We next investigate the convergence

of Algorithm 1, starting with the cases in which it converges finitely.

Proposition 2. If the function Fx is continuous for x∈XK
0 , Algorithm 1 converges in

at most |X0|K iterations.

Proof. Let us denote by x̃i the i-th optimal solution to (7) computed along the

algorithm, corresponding to the set Ξ̃i, and yielding the upper bound v(x̃i,Ξ) =

maxξ∈Ξ mink∈[K]:x̃k,i∈X1(ξ) f(ξ, x̃k,i) obtained by the uncertain vector ξ̃i ∈Ξ, where the sup

operator is replaced by the max operator as a result of the continuity of Fx. Consider j > i

Author: Article Short Title
00(0), pp. 000–000, © 0000 INFORMS 11

such that x̃j = x̃i and recall that by definition of ξ̃i, v(x̃i,Ξ) = mink∈[K]:x̃k,i∈X1(ξ̃i) f(ξ̃i, x̃k,i).

Thus, ξ̃i ∈ Ξ̃j, where Ξ̃j is the uncertainty set at iteration j, implies that

v(x̃j, Ξ̃j) = max
ξ∈Ξ̃j

min
k∈[K]:x̃k,j∈X1(ξ)

f(ξ, x̃k,j) = max
ξ∈Ξ̃j

min
k∈[K]:x̃k,i∈X1(ξ)

f(ξ, x̃k,i)≥ min
k∈[K]:x̃k,i∈X1(ξ̃i)

f(ξ̃i, x̃k,i)

= v(x̃i,Ξ) = v(x̃j,Ξ),

where the last equality holds by continuity of Fx, proving the optimality of solution x̃j = x̃i.

The algorithm therefore visits every feasible solution x ∈ XK
0 in the worst case, before

proving the optimality of one of these solutions. The result follows by finiteness of X0. �

Corollary 1. If only the objective or the constraints are uncertain, Algorithm 1 con-

verges in at most |X0|K iterations.

Proof. If only the objective or the constraints are uncertain then Fx is continuous in

ξ ∈Ξ for x∈XK
0 (Subramanyam et al. 2019, Proposition B.1). �

In general however, the algorithm may not converge in finite time. Fortunately in that

case, it will converge asymptotically to an optimal solution of problem (4).

Proposition 3. If problem (4) is feasible, every accumulation point (x̂, v̂) of the solu-

tions (x̃i, ṽi) generated along an infinite repeat-loop is composed of an optimal solution x̂

of problem (4) together with its objective value v̂.

Proof. Let us denote by x̃i the i-th optimal solution to (7) computed along the algo-

rithm, corresponding to the set Ξ̃i, and yielding the value ṽi, and by ξi to the i-th optimal

solution of (10). If (x̃i, ṽi) forms an infinite sequence, then by compactness of X0 and Ξ,

there exists an accumulation point of (x̃i, ṽi) which we denote by (x̂, v̂), as well as of ξi

which we denote by ξ̂. Let us assume that (x̃i, ṽi) converges to (x̂, v̂) and ξi converges to

ξ̂, possibly considering subsequences.

We first show that solution x̂ is feasible for problem (4) and that v̂ is its objective value.

Suppose for a contradiction that (x̂, v̂) is not feasible. Then there exists ξ∗ ∈ Ξ such that

S(ξ∗, v̂, x̂) = δ > 0. This implies that for i sufficiently large we have that S(ξi, ṽi, x̃i) =

maxξ∈ΞS(ξ, ṽi, x̃i)≥ S(ξ∗, ṽi, x̃i)≥ δ/2> 0. As S is continuous, by taking limits we obtain

that S(ξ̂, v̂, x̂) ≥ S(ξ∗, v̂, x̂) ≥ δ/2 > 0. On the other hand, as ξi ∈ Ξi+1, we must have

that S(ξi, ṽi+1, x̃i+1) ≤ 0. Once again taking limits, we obtain S(ξ̂, v̂, x̂) ≤ 0, which is a

contradiction.

Author: Article Short Title
12 00(0), pp. 000–000, © 0000 INFORMS

Now suppose (x̂, v̂) is not optimal, so there exists a feasible solution (x′, v′) such that

v′ < v̂. Thus, for i large enough, v′ < ṽi. This is in contradiction with v′ ≥ v(X0,Ξ) ≥

v(X0, Ξ̃
i) = ṽi. Therefore, (x̂, v̂) must be optimal for problem (4). �

We remark that Proposition 3 implies that if problem (4) is infeasible then the algo-

rithm converges in a finite number of iterations, detecting infeasibility. Further, practical

implementations of Algorithm 1 replace condition S(ṽ, x̃) > 0 with S(ṽ, x̃) > ε for some

ε > 0. Therefore, Proposition (3) guarantees that any such implementation will converge

after a finite number of iterations, returning a solution that is feasible (if one exists) and

optimal up to error ε.

2.3. Vertex p-center formulation

One of the numerical challenges of Algorithm 1 is the efficient solution of problem (7) to

optimality. In this section, we detail how problem (7) can be cast as a vertex p−center

problem and be solved using a binary search algorithm as a result. To this end, let X0

be the enumerated set (x1, . . . , xr), meaning that the underlying nominal problem has r

different feasible solutions. We remark that r is typically very large, we will thus provide

techniques to restrict the enumeration to a relevant subset of these feasible solutions (see

Section 2.4). We also let Ξ̃ be the enumerated set (ξ1, . . . , ξm) where m denotes the number

of scenarios generated so far.

Having the aforementioned two enumerated sets in mind, problem (7) can be reformu-

lated as follows: choose at most K feasible solutions such that each scenario is assigned to

one of these K solutions and such that the worst-case assignment cost is minimized. Let

the binary decision variable zs, for s ∈ [r], equal to 1 if and only if feasible solution xs is

selected. Furthermore, for s ∈ [r] and j ∈ [m], let the binary decision variable ysj equal to

1 if the feasible solution xs is assigned to the scenario ξj, 0 otherwise. The problem then

formalizes as:

min ω (11)

s.t. ω≥
∑
s∈[r]

f(ξj, xs)ysj, ∀j ∈ [m] (12)

∑
s∈[r]

ysj = 1, ∀j ∈ [m] (13)

∑
s∈[r]

zs ≤K, (14)

Author: Article Short Title
00(0), pp. 000–000, © 0000 INFORMS 13

ysj ≤ zs, ∀ s∈ [r], j ∈ [m] (15)

ysj = 0, ∀ s∈ [r], j ∈ [m] : ∃`∈L s.t. g(ξj, xs)> b` (16)

z ∈ {0,1}r, y ∈ {0,1}r×m. (17)

We remark that the above formulation handles constraint uncertainty by setting some of

the components of y to 0, as expressed by constraints (16). Based on this formulation,

problem (7) is a vertex p-center problem (introduced in Daskin (2011)) where X0 contains

the possible centers, Ξ̃ contains the clients that need to be served, and p=K.

We next consider the decision version of this problem and look for a solution of cost not

greater than a given threshold ρ > 0 (recall assumption (6)). Since we are looking for a

solution with a cost not greater than ρ, we can disregard assignments with costs greater

than ρ, as well as those that lead to constraint violations. We model this with the help

of the 0/1 coverage matrix cov(ρ) defined as follows: given a threshold ρ > 0, s ∈ [r] and

j ∈ [m], covsj(ρ) equals 1 if and only if f(ξj, xs)≤ ρ and g(ξj, xs)≤ b` for all ` ∈ L. With

the above definitions, the optimal value of problem (7) is not greater than ρ if and only if

there exists a feasible solution to the following system (see Minieka (1970)):∑
s∈[r]

covsj(ρ) ysj = 1, ∀j ∈ [m] (18)

∑
s∈[r]

zs ≤K, (19)

ysj ≤ zs, ∀s∈ [r], j ∈ [m] (20)

y ∈ {0,1}r×m, z ∈ {0,1}r. (21)

We remark that checking the feasibility of the above system is NP-hard, and, theoret-

ically, the best one can do is to enumerate all possible assignments (Chalermsook et al.

(2017)). Herein, we solve the problem by a mixed-integer linear program (MILP), replacing

constraints (18) with ∑
s∈[r]

covsj(ρ) ysj ≥ 1−αj, ∀j ∈ [m], (22)

where α≥ 0, and minimizing the objective function∑
j∈[m]

αj. (23)

Author: Article Short Title
14 00(0), pp. 000–000, © 0000 INFORMS

If the optimal value of the resulting MILP is zero, then the optimal value of (7) is at most

ρ, so that we can reduce the threshold ρ. Otherwise, there is no feasible solution with cost

at most ρ, so we must increase the threshold to recover feasibility. This results in a binary

search on the optimal value of ρ, described in Algorithm 2 allowing to solve problem (7) to

optimality. Similar algorithms have been proposed for solving the vertex p-center problem,

e.g. Chen and Chen (2009), Contardo et al. (2019).

The above scheme can be improved by removing dominated solutions and scenarios,

where a solution s is said to be dominated if there exists s′ ∈ [r] such that covsj(ρ) ≤
covs′j(ρ) for each j ∈ [m], i.e., s′ covers not less scenarios than s, while a scenario j is said

to be dominated if there exists j′ ∈ [m] such that covsj(ρ)≥ covsj′(ρ) for each s ∈ [r], i.e.,

j′ is covered by not more solutions than j. Removing dominated elements can significantly

reduce the number of variables and constraints of the above MILP. We remark that if two

solutions dominate each other, this means covsj(ρ) = covs′j(ρ) for each j ∈ [m] and the two

solutions are indistinguishable in the covering constraints (22); we thus keep only one of

them, breaking ties arbitrarily. The same holds for any pair of scenarios that dominate

each other.

Algorithm 2: Solving (7) through binary search.

1 Input: Enumerated set of solutions X0, set of scenarios Ξ̃, an upper bound UB

and a lower bound LB on v(X0, Ξ̃) ;

2 LBbs =LB, UBbs =UB;

3 repeat

4 ρ= LBbs+UBbs

2
;

5 Test feasibility of ρ by calling Algorithm 3;

6 if ω= 0 then LBbs← ρ;

7 else UBbs← ρ;

8 until UBbs−LBbs

UBbs
≤ ε;

9 Return: ρ

An optimal solution x to problem (7) is recovered by calling Algorithm 3 with the value

of ρ returned by Algorithm 2. The solution vector z∗ has K positive components each

corresponding to a feasible solution xs ∈X0, and forming together the solution x.

Author: Article Short Title
00(0), pp. 000–000, © 0000 INFORMS 15

Algorithm 3: Test feasibility of ρ.

1 Input: Enumerated set of solutions X0, set of scenarios Ξ̃, objective target ρ ;

2 Compute cov(ρ);

3 Remove dominated solutions;

4 Remove dominated scenarios;

5 Compute ω := {min (23) : (19)− (21), (22), α≥ 0};

6 Return: ω, z∗

An upper bound and a lower bound on the optimal value of problem (7), v(X0, Ξ̃), are

used as input in Algorithm 2. To initialize the algorithm, we can use a lower bound of 0

(thanks to (6)) and the upper bound UB∗ mentioned in Assumption 1. We remark, that in

the case that the problem (4) is infeasible, the solution of {min (23) : (19)− (21), (22), α≥
0} after updating cov(ρ) with the value of ρ returned by Algorithm 2 prove infeasible,

indicating that problem (7) is infeasible. In this case, the algorithm terminates without an

incumbent solution, thereby concluding infeasibility.

2.4. Putting things together

The overall solution scheme, presented in Algorithm 4, is comprised of three steps. First, we

rely on Assumption 1 to compute the bound UB∗. This upper bound is used for generating

only a subset of the set X0, referred to as X0(UB
∗) in the following, in the second step. The

subset X0(UB
∗)⊆X0, represents the set of solutions whose worst case value is better than

the upper bound, and that can therefore potentially improve the current best solution.

The validity of restricting the enumeration to X0(UB
∗) as well as the details of how

this enumeration is done are given in Section 3.1. Finally, in the third step, the scenario

generation algorithm is invoked. This algorithm calls in turn Algorithms 2 and 3 with a

potentially updated lower and upper bounds each time problem (7) needs to be solved

with an updated set of scenarios Ξ̃.

We remark that the lower bound is updated with the ρ value returned by Algorithm 2

at each iteration provided that a feasible solution to problem (7) is obtained. One can

additionally update the upper bound, in the case that the function Fx(ξ) is continuous in

ξ ∈ Ξ, by solving directly problem (8) by replacing the sup operator by max, instead of

problem (10). In this case, the convergence criteria can also be changed to a relative gap

between the upper and lower bound.

Author: Article Short Title
16 00(0), pp. 000–000, © 0000 INFORMS

Algorithm 4: Complete solution procedure.

1 Heuristic: Obtain an upper bound UB∗ that is valid for v(X0,Ξ) if problem (4) is

feasible, see Assumption 1;

2 Generate solutions: Enumerate the set X0(UB
∗);

3 Initialization: Ξ̃ = {ξ0}, x∗ = null, LB = 0, UB =UB∗;

4 repeat

5 Compute ṽ= v(X0, Ξ̃) = ρ by calling Algorithm 2 with UB and LB ;

6 Compute x̃ by calling Algorithm 3 , set ṽ= +∞ and x̃ = null if ω > 0 ;

7 if x̃ 6= null then

8 LB = ρ;

9 Steps 6–13 of Algorithm 1;

10 end

11 else break ;

12 until scenario added = false ;

13 Return: x∗

3. Numerical improvements

The scenario generation algorithm described above reposes on an increasingly accurate

relaxation that is strengthened at each iteration through the solution of a separation

problem. This idea has been repeatedly used in mathematical programming within the

framework of cutting plane algorithms, Benders’ decomposition and robust optimization.

However, as it is all too common in practice, a naive implementation of this idea is often

not numerically efficient. In this section, we outline some of the algorithmic details that

improve significantly the numerical efficiency of Algorithm 1. The interested reader is

deferred to our open-source code for the full details of the implementation.

3.1. Restricting the set of enumerated solutions

The second step of our solution scheme enumerates the set of solutions X0(UB
∗) for a given

upper bound UB∗. This step is critical as enumerating the set X0 without this restriction

can be time consuming itself while the cardinality of the set of enumerated solutions affects

the complexity of the rest of the algorithm. In the following, we first prove that restricting

X0 to X0(UB
∗) in the scenario generation framework does not change the correctness of

Author: Article Short Title
00(0), pp. 000–000, © 0000 INFORMS 17

the algorithm. We then formalize the definition of the set X0(UB
∗), and detail how this set

can be efficiently generated by combining partial enumeration with bound-based filtering.

Proposition 4. Assume that |X0| > 1, let x′ ∈ X0 be such that at least one of the

following holds:

1. min
ξ∈Ξ

f(ξ,x′)≥UB∗

2. min
ξ∈Ξ

g`(ξ,x
′)> b` for some `∈ [L].

Defining X ′0 =X0 \ {x′}, we have that either v(X ′0,Ξ) = v(X0,Ξ) or v(X0,Ξ)≥UB∗.

Proof. The case v(X0,Ξ) = +∞ is trivial so we assume next that v(X0,Ξ) < +∞.

We first remark that v(X ′0,Ξ) ≥ v(X0,Ξ) since removing solutions from X0 creates a

restriction of problem (4). Let x̃ = (x̃1, . . . , x̃K) be an optimal solution to (4) and sup-

pose that v(X ′0,Ξ) > v(X0,Ξ). Then, x′ must be one of the K solutions used in x̃,

since otherwise we would have v(X ′0,Ξ) = v(X0,Ξ). Suppose, without loss of generality,

that x̃1 = x′. We define x̂ = (x̃2, x̃2, x̃3, . . . , x̃K). If 1 /∈ arg min
k∈[K]:xk∈X1(ξ)

f(ξ, x̃k) for all ξ ∈ Ξ,

then sup
ξ∈Ξ

min
k∈[K]:x̂k∈X1(ξ)

f(ξ, x̂k) = sup
ξ∈Ξ

min
k∈[K]:x̃k∈X1(ξ)

f(ξ, x̃k), proving v(X ′0,Ξ) = v(X0,Ξ). Oth-

erwise, 1∈ arg min
k∈[K]:xk∈X1(ξ)

f(ξ, x̃k) for some ξ ∈Ξ (implying point 2. does not hold and there-

fore point 1. must hold) so that v(X0,Ξ) ≥ v(x′,Ξ) = max
ξ∈Ξ

f(ξ,x′) ≥min
ξ∈Ξ

f(ξ,x′) = UB∗.

This last inequality implies that, v(X0,Ξ)≥UB∗, and therefore solving (4) will provide no

better solution than the heuristic solution already available. �

As a direct consequence of Proposition 4, we may define the set of non-dominated solu-

tions as

X0(UB
∗) =

{
x∈X0 : min

ξ∈Ξ
f(ξ,x)<UB, min

ξ∈Ξ
g`(ξ,x)≤ b`,∀`∈ [L]

}
.

The calculation of X0(UB
∗) is one of the steps of the algorithm where the structures of

X0, X1, and f play a critical role. While computing X0(UB
∗) can in general be done using

a constraint-programming or a branch-and-bound algorithm, see Chassein et al. (2019),

these solutions can typically be enumerated much more quickly by leveraging the specific

structure of the problem at hand. For instance, the non-dominated solutions of the prob-

lems presented in our numerical experiments can be efficiently computed using dynamic

programming algorithms. Each of the above algorithms (branch-and-bound, constraint pro-

gramming, dynamic programming) relies on the computation of partial solutions, which

can be defined as

Xpart(UB∗) =

{
I ⊆ [n] : ∃x∈X0 s.t. xi = 1 ∀i∈ I,min

ξ∈Ξ
f(ξ,x)<UB∗,

Author: Article Short Title
18 00(0), pp. 000–000, © 0000 INFORMS

min
ξ∈Ξ

g`(ξ,x)≤ b`,∀`∈ [L]

}
.

The constraints of Xpart(UB∗) involve a complete solution x∈X0 that is typically unknown

when partial solution I is constructed. It is therefore necessary to replace f(ξ,x) and

g`(ξ,x) by a possibly smaller expression depending only on I in order to eliminate non-

relevant partial solutions as early as possible. With this in mind, we define f(I) as a lower

bound on the cost required to complement I to a feasible solution in X0, formally,

f(I)≤ min
ξ∈Ξ,x∈X0
xi=1 ∀i∈I

f(ξ,x)− f(ξ,xI), (24)

where xI is the binary vector having I as a support. We define similarly g
`
(I) for each

`∈L such that

g
`
(I)≤ min

ξ∈Ξ,x∈X0
xi=1 ∀i∈I

g`(ξ,x)− d`(ξ,xI). (25)

Let us illustrate (24) further in the case where f is the bilinear function ξ>x (handling a

bilinear function g` lead to similar derivations). In this setting, the right-hand-side of (24)

becomes

min
ξ∈Ξ,x∈X0
xi=1 ∀i∈I

∑
i∈[n]\I

ξixi,

which is a bilinear mixed-integer optimization problem whose exact solution can be very

difficult. However, we do not need to solve this problem exactly but instead only to ensure

that f(I) is not greater than its optimal value. In general, the computation of f(I) depends

on both the structure of Ξ and X0, and is therefore problem dependent. In Section 4, we

provide examples of how this bound can be calculated in practice. Once f(I) is calculated,

the condition f(ξ,x) < UB∗ is then replaced by the weaker condition minξ∈Ξ f(ξ,xI) +

f(I)<UB, where f(I) can be computed off-line in a pre-processing step. In our numerical

experiments, we leverage these observations in order to reduce the number of solutions

enumerated and alleviate the numerical burden of the enumeration step of our algorithm.

3.2. Eliminating dominated solutions

After X0(UB
∗) has been generated, we can further reduce its cardinality by running a

pairwise comparison among its elements, in the line of the dominance checks described

in Section 2.3. Specifically, given x ∈X0(UB
∗) and ξ ∈ Ξ, we denote by L(ξ,x)⊆ [L] the

indexes of the constraints of X1(ξ) satisfied by x for ξ. We say that x is dominated by x′ if

Author: Article Short Title
00(0), pp. 000–000, © 0000 INFORMS 19

f(ξ,x)≥ f(ξ,x′) and L(ξ,x)⊆L(ξ,x′) for all ξ ∈ Ξ. Compared to the dominance between

solutions discussed in Section 2.3, here, we consider Ξ instead of Ξ̃, and we do not reduce

the objective value to threshold ρ. Unfortunately, verifying dominance for a single pair of

solutions x, x′ is already intractable, as formalized in the proposition below, the proof of

which is provided in Appendix C.

Proposition 5. Verifying whether x ∈ X0 is dominated by x′ ∈ X0 is NP-hard even

when L= 0 and f is concave quadratic in ξ for each x∈X0.

Despite the discouraging result of Proposition 5, there are some cases where this dominance

check can be performed efficiently. For instance, if L = 0 and f is linear in ξ, then the

dominance check amounts to optimizing a linear function over Ξ, specifically

min
ξ∈Ξ

f(ξ,x)− f(ξ,x′). (26)

As many pairs of x and x′ must be considered, it may also be useful to consider a superset

of Ξ in (26), such as its bounding box or its smallest enclosing ellipsoid. While the resulting

condition is only sufficient for dominance, it may be much faster to check leading to a

better trade-off from the numerical perspective. In the case L> 0 with f and g` linear in ξ

for each `, we may consider the sufficient condition f(ξ,x)≥ f(ξ,x′) and g`(ξ,x)≥ g`(ξ,x′)
for all ξ ∈Ξ.

3.3. Special case of objective uncertainty

We next turn our attention to the case where L= 0, that is only uncertainty involved in

the problem is in the objective function. As mentioned previously, in this case, the function

Fx(ξ) is continuous in ξ ∈Ξ, and the separation problem can be stated as:

v(x̃,Ξ) := max
ξ∈Ξ

Fx̃(ξ) = max
ξ∈Ξ

min
k∈[K]:x̃k∈X1(ξ)

f(ξ, x̃k). (27)

Problem (27) may be further rewritten as

v(x̃,Ξ) = max η

s.t. ξ ∈Ξ

η≤ f(ξ, x̃k) k ∈ [K],

which is a convex optimization problem if f is concave in ξ ∈Ξ, and Ξ is convex. As v(x̃,Ξ)

is an upper bound on the optimal value of (4), each time the separation problem is solved,

Author: Article Short Title
20 00(0), pp. 000–000, © 0000 INFORMS

the upper bound can be updated if the value v(x̃,Ξ) improves upon the current upper

bound. We remark that updating the lower and upper bound on the optimal value of (4)

is beneficial as this reduces the search space for the binary search algorithm.

The solution time of the binary search algorithm can further be reduced by realizing that

a solution can be returned even before convergence between the binary search upper and

lower bound is achieved. Indeed, at any iteration of the algorithm a feasible solution to (7)

with value UBbs is available, and can be returned as a heuristic solution to (7). Further, at

earlier iterations of the scenario generation algorithm it is less crucial to solve problem (7) to

exact optimality as the relaxation probably misses many important scenarios. The tolerance

of the binary search algorithm can therefore be adapted according to this observation, a

higher tolerance can be chosen in earlier iterations and decreased along with the global

optimality gap throughout the algorithm.

3.4. A heuristic scenario generation algorithm

The exactness of Algorithm 1 is crucially dependent on the enumeration of all relevant

solutions, that is the set of solutions X0(UB
∗) needs to contain all feasible solutions whose

worst-case value is less than or equal to the value of the best solution known, UB∗. For

combinatorial optimization problems that are loosely constrained, the cardinality of the

set X0(UB
∗) may therefore grow relatively fast, and the enumeration of this set may take

a considerable amount of computational time (even taking the improvements described

previously into account). In this case, it is desirable to devise an algorithm that can provide

good feasible solutions to problem (4) without enumerating the entire set X0(UB
∗). Such

an algorithm may be used on its own or in combination with our exact algorithm presented

in Algorithm 1 so as to reduce the cardinality of the set X0(UB
∗) (the lower the UB∗ the

smaller the cardinality of X0(UB
∗). We next describe how our algorithm can be altered in

order to work with a partially enumerated set of feasible solutions.

The main difference between this heuristic version and Algorithm 1 is the way ṽ and x̃

are obtained. While the exact algorithm enumerates set X0(UB
∗), here we assume that

only a subset of solutions X̃0 with |X̃0| ≤X0(UB
∗) is available. We therefore solve

v(X̃0, Ξ̃) := min
x∈X̃K

0

max
ξ∈Ξ̃

min
k∈[K]:xk∈X1(ξ)

f(ξ,xk). (28)

As a result of the solution of (28) with a partially enumerated set of solutions and scenarios,

one obtains a solution x̃ as in Algorithm 1. This solution is sent to the separation problem to

Author: Article Short Title
00(0), pp. 000–000, © 0000 INFORMS 21

Algorithm 5: Heuristic scenario generation.

1 Initialization: Ξ̃ = {ξ′}, X̃0 = {x′}, x∗ = null;

2 repeat

3 Compute ṽ= v(X̃0, Ξ̃) and x̃ by solving (28);

4 Compute S(ṽ, x̃) and ξ̃ by solving (10);

5 if S(ṽ, x̃)> 0 then

6 Ξ̃← Ξ̃∪{ξ̃};

7 scenario added = true ;

8 Compute x′ by solving (29), possibly heuristically;

9 X̃0← x′ ∪N(x′);

10 else

11 scenario added = false ;

12 x∗ = x̃;

13 end

14 until scenario added = false ;

15 Return: x∗

obtain a new scenario, ξ̃, as well as a potentially better upper bound and a new incumbent

solution (in the case of objective uncertainty). The set X̃0 is then enriched with the solution,

x̃∈ arg min
x∈X0∩X1(ξ̃)

f(ξ̃, x), (29)

as well as its neighbors N(x̃), which is defined in a problem specific manner. The heuristic

algorithm just described is formally presented in Algorithm 5.

Solving (29) can be time-consuming for difficult combinatorial optimization problems. As

the overall heuristic algorithm does not need an exact solution to (29), it can be convenient

to obtain instead a good feasible solution typically obtained through ad-hoc heuristic

algorithms. In the numerical results presented in Section 4.2 for a linear function f , we use a

relax-and-fix heuristic that first solves the linear relaxation of problem (29). The algorithm

then proceeds to fix the variables that take an integer value in the relaxation solution

to their current values and solve the restricted problem (29) to return an integer feasible

solution. In order to improve the quality of solutions returned by this relax-and-fix heuristic

Author: Article Short Title
22 00(0), pp. 000–000, © 0000 INFORMS

we impose that the relaxation solution should improve the best known integer solution for

scenario ξ̃ that is already in the set X̃0. To this end, we impose the constraint f(ξ̃, x)≤

minx′∈X̃0∩X1(ξ̃) f(ξ̃, x′) in solving the linear relaxation of (29). For the all-or-nothing subset

problem described in Section 4.3, which involves a non-linear objective, we first replace f by

a linear approximation and then proceed with the aforementioned relax-and-fix algorithm.

4. Computational experiments

In this section, we present numerical results, using our scenario generation algorithm to

solve three robust adaptive combinatorial optimization problems, namely, the shortest path

problem, the knapsack problem with conflicts (with and without objective uncertainty),

and the non-linear smuggler problem presented by Goldberg and Rudolf (2020). We com-

pare the numerical performance of our algorithm (denoted SG) to the existing methods

from the min-max-min and K-adaptability literature, more specifically, the direct solu-

tion of the monolithic formulation of Hanasusanto et al. (2015) by an optimization solver

(denoted M), the branch-and-bound algorithm of Subramanyam et al. (2019) (denoted

BB), the iterative algorithm from Chassein et al. (2019) (denoted IT), and the row-and-

column generation algorithm from Goerigk et al. (2020) (denoted RCG). We remark that

only the shortest path problem is solved by all approaches, as IT requires Ξ to be the

budgeted uncertainty set, which is not the case for the knapsack instances. Further, RCG

and M are not considered for the the knapsack problem with weight uncertainty as these

methods do not handle constraint uncertainty efficiently. Finally, only SG is considered the

all-or-nothing subset problem as it is the only method that can solve problems involving

nonlinear functions to exact optimality.

For each algorithm tested the time limit is set to two hours (7200 seconds). All mixed

integer linear programming and linear programming models are solved using IBM ILOG

Cplex 12.10 solver with a single thread. Our proposed scenario generation algorithm, the

monolithic formulation of Hanasusanto et al. (2015), the row-and-column generation algo-

rithm from Goerigk et al. (2020), and the iterative algorithm of Chassein et al. (2019)

are implemented with Julia 1.2.0 (Bezanson et al. (2017)) using the mathematical pro-

gramming package JuMP (Dunning et al. (2017)). The source code and all data used are

available here. The branch-and-bound algorithm of Subramanyam et al. (2019) is adapted

to each application using the authors’ implementation available here.

https://github.com/mjposs/min-max-min
https://github.com/AnirudhSubramanyam/KAdaptabilitySolver/tree/v1.0

Author: Article Short Title
00(0), pp. 000–000, © 0000 INFORMS 23

All our experiments are conducted using a 2 Dodeca-core Haswell Intel Xeon E5-2680 v3

2.5 GHz machine with 128Go RAM running Linux OS. The resources of this machine are

strictly partitioned using the Slurm Workload Manager1 to run several tests in parallel.

The resources available for each run (algorithm-instance) are set to two threads and a

20 Go RAM limit. This virtually creates 12 independent machines, each running a single

instance at a time.

4.1. Shortest path problem

Setting The first problem on which we assess our algorithm is the adaptive shortest path

problem, which has been previously studied in Chassein et al. (2019), Hanasusanto et al.

(2015) and Subramanyam et al. (2019). In this problem, K paths are prepared without

exact knowledge of the arc costs, where the shortest among them is to be implemented

once the actual arc costs are revealed. We provide numerical results on instances generated

randomly according to the procedure proposed by Hanasusanto et al. (2015). As such, we

consider a network (V,A) where the cost of each arc (i, j)∈A is characterized as c̄ij +ξij ĉij,

with c̄ij the nominal cost, and ĉij the maximal deviation. The uncertain parameter ξ can

take any value within the budgeted uncertainty set ΞΓ = {ξ ∈ [0,1]|A|
∑

(i,j)∈A ξij ≤ Γ}.

The feasibility set X is characterized by the classical flow constraints, X = {x ∈ {0,1}|A| |∑
(i,j)∈δ+(i) xij −

∑
(j,i)∈δ−(i) xij = bi,∀i ∈ V }, where bs = −1, bt = 1, and bi = 0 for i ∈ V \

{s, t}, and sets δ+(i) and δ−(i) represent the forward and backward stars of node i ∈

V , respectively. We use the heuristic solution of the bilinear formulation presented in

Appendix B as an initial step of our algorithm. Previously published results (Chassein

et al. (2019)) as well as preliminary experiments prove this heuristic to provide very good

quality solutions in a short amount of computational time. Further, to calculate f(I) where

I contains the set of arcs of a path from s to u, we consider the shortest path from u

to t using costs c̄. We remark that the shortest path from each vertex i ∈ V to t can be

calculated in polynomial time in a preprocessing step. The dominance check described in

Section 3.2 is realized by solving (26) exactly for all pairs x,x′ ∈X0(UB
∗).

Results In Figure 2, we present the percentage of instances solved to optimality by

each solution method over hundred instances. We consider three different instance sizes

|V | ∈ {20,25,30}, two different uncertainty budgets Γ ∈ {3,6}, and five different values

1 https://slurm.schedmd.com/ (accessed June 2021)

https://slurm.schedmd.com/

Author: Article Short Title
24 00(0), pp. 000–000, © 0000 INFORMS

of K ∈ {2,3,4,5,6}. From left to right, the first two graphics illustrate the evolution of

the percentage of instances solved to optimality as K increases, presented as an average

over the instance sizes, |V | ∈ {20,25,30}. The last two graphics illustrate the evolution of

the same indicator as |V | increases, presented as an average over the number of policies,

K ∈ {2,3,4,5,6}.

2 3 4 5 6
0

20

40

60

80

100

K

Γ = 3

2 3 4 5 6
0

20

40

60

80

100

K

Γ = 6

20 25 30
0

20

40

60

80

100

|V |

Γ = 3

20 25 30
0

20

40

60

80

100

|V |

Γ = 6

SG
M
BB
IT

RCG

Figure 2 Percentages of instances solved for the adaptive shortest path problem.

2 3 4 5 6

0

50

K

Γ = 3

2 3 4 5 6

0

50

100

K

Γ = 6

20 25 30

0

20

40

60

80

|V |

Γ = 3

20 25 30

0

50

100

|V |

Γ = 6

Heuristic
Computing X(UB∗)

Algorithm 1

Figure 3 Geometric averages of the percentages of the time spent in each of the three steps of the scenario

generation algorithm, considering only the instances solved to optimality.

As it is clear from these graphics, the proposed scenario generation algorithm compares

favorably to the existing methods in the literature, solving on average %85 of all instances

for Γ = 3, and %52 of all instances for Γ = 6. Based on these graphics, the scenario genera-

tion algorithm is superior to all other methods as K grows beyond 4. Although the iterative

scheme of Chassein et al. (2019), which is tailored for min-max-min problems with the bud-

geted uncertainty set, manages to solve more instances for K = 2,3, it clearly reaches its

limits as K grows. On the other hand, this method solves more instances when n= 30 and

Γ = 6. We additionally observe that, among the general purpose (K−adaptability) meth-

ods, the branch-and-bound algorithm of Subramanyam et al. (2019) is the most effective,

and suffers less from increasing K.

Author: Article Short Title
00(0), pp. 000–000, © 0000 INFORMS 25

Our results in Figure 2 are complemented by the information given in Figure 3, where

we represent the percentage of total solution time allocated to each step of our solution

framework. Accordingly, the enumeration step can be done very efficiently for this problem,

with a significant amount of time spent in scenario generation iterations.

1 10 100 1,000 10,000 100,000
0

20

40

60

80

100

Not worse than x times the best

%
in

st
an

ce
s

so
lv

ed

SG
M
BB
IT

RCG

Figure 4 Performance profile for the shortest path problem.

In Figure 4, we additionally present a performance profile that shows the percentage

of instances solved not slower than the value of the abscissa times the best method. This

performance profile was obtained by aggregating all 3000 instances (100 instances for each

combination of |V |, Γ, and K). Accordingly, the scenario generation method and IT solved

a little less than 40% of all instances faster than the other algorithms, while these numbers

fall to about 7% and 12% for M and BB, respectively. The nearly flat curve for IT also

underlines that most instances that are not solved very quickly are not solved at all,

contrasting with the increasing curve for CG.

4.2. Knapsack problem with conflicts

Setting We next study an adaptive knapsack problem with conflicts that is inspired

by the capital budgeting problem and its variants studied in the K−adaptability liter-

ature (Hanasusanto et al. (2015),Subramanyam et al. (2019)). Here, the objective is to

prepare K different combinations of items that respect the capacity and conflict constraints

without exact knowledge of their profits (and weights). The most profitable among these

K combinations is to be implemented upon actual realization of the uncertain profits.

We consider two variants of the problem: in the first one, only the profits are considered

uncertain, while the second one also involves weight uncertainty.

Let N = {1, . . . , n} be the set of items considered. In this version of the problem, the

feasibility set X can be characterized in different ways, which affects the efficiency of the

Author: Article Short Title
26 00(0), pp. 000–000, © 0000 INFORMS

resulting algorithms. Let wi be the weight of an item, B be the knapsack budget and

C ⊆ N × N be the set of conflicts. Herein we consider either the conflict formulation

defined by the constraints Xconf = {x ∈ {0,1}|N | |
∑

i∈N wixi ≤B,xi + xj ≤ 1 ∀(i, j) ∈C},

or the aggregated formulation defined by the constraints Xagg = {x∈ {0,1}|N | |
∑

i∈N wixi ≤

B, |Ei|xi +
∑

j∈Ei xj ≤ |Ei| ∀i ∈N} where Ei = {j ∈N | (i, j) ∈ C or (j, i) ∈ C} is the set

of items that are in conflict with i. The latter was proposed by Hifi and Michrafy (2007)

and was used as the basis of heuristic algorithms for solving the knapsack with conflicts

problem in Hifi (2014). The uncertain profits are characterized as (1+
∑

j∈M
Φijξj

2
)p̄i, where

p̄i is the nominal profit of item i ∈ N , |M | is the number of uncertain factors, and Φ ∈

R|N |×|M | is the factor loading matrix. The i-th row of Φ, denoted Φi, is characterized by

the set {Φi ∈ [−1,1]|M | |
∑

j∈M |Φij|= 1}, whereas the uncertainty set Ξ is characterized as

[−1,1]|M |. As a result, the realized profit of each object i ∈N remains within the interval

[p̄i − p̄i
2
, p̄i + p̄i

2
]. If the weights are also considered uncertain, we consider a second factor

loading matrix Ψ ∈ R|N |×|M | such that {Ψi ∈ [−1,1]|M | |
∑

j∈M |Ψij|= 1}, and define wi =

(1 +
∑

j∈M
Ψijξj

2
)w̄i, where w̄i is the nominal profit of item i∈N .

The instances (available online) are generated randomly following the procedure pro-

posed by Hanasusanto et al. (2015). Specifically, the parameter |M | is set to 4 and we

generate 10 instances for each instance size |N | ∈ {100,150,200,250,300,350}: wi is uni-

formly generated in [0,100],B =
∑

i∈N wi/2, p̄i = ci/5, and Φ and Ψ are uniformly generated

within the sets described above. For each instance, we additionally introduce randomly

generated conflicts between items. To do so, we use conflict graphs parametrized by a given

density inspired by the instances used in Sadykov and Vanderbeck (2013) in the context of

the bin packing problem with conflicts. In this context, the density of a graph G= (N,E)

is defined as the ratio between |E| and the cardinality of the edge set of the complete graph

having the same number of vertices. In our numerical experiments, we consider conflict

graphs with density 0.5.

Regarding f(I), a strong lower bound of the bilinear mixed-integer problem that can

be computed efficiently is not immediately available, because the set [−1,1]|M | does not

have a clear dominated scenario, unlike the aforementioned budgeted uncertainty set. For

this reason, we only perform the optimality check when the full solution x is known. In

this case, f(I) = 0 and x∈Xpart(UB∗) only if minξ∈Ξ f(ξ,x)≤UB∗. For the case without

constraint uncertainty, the dominance check is realized by solving (26) exactly for all

https://github.com/mjposs/min-max-min/blob/master/data/KP.zip

Author: Article Short Title
00(0), pp. 000–000, © 0000 INFORMS 27

pairs x,x′ ∈X0(UB
∗). This is extended to the case with uncertainty in the constraints by

considering the sufficient condition f(ξ,x)≥ f(ξ,x′) and g1(ξ,x)≥ g1(ξ,x
′) for all ξ ∈Ξ.

Results for the exact algorithms for cost uncertainty only We test all four methods

for the two formulations Xconf and Xagg on the aforementioned instances. We use the

heuristic version of the scenario generation algorithm presented in Section 3.4 in order to

obtain UB∗ (see Appendix D for details). In Figure 12, we present the number of instances

solved to optimality by each solution method over ten instances. The graphic on the left

illustrates the evolution of the number of instances solved to optimality as K increases,

presented as an average over the instance sizes, |N | ∈ {100,150,200,250,300}. The graphic

on the right illustrates the evolution of the same indicator as |N | increases, presented as

an average over the number of policies, K ∈ {2,3,4,5,6}.

2 3 4 5 6
0

20

40

60

80

100

K

100 150 200 250 300
0

20

40

60

80

100

|N |

SG-agg
M-agg
BB-agg

RCG-agg
SG-conf
M-conf
BB-conf

RCG-conf

Figure 5 Instances solved for the adaptive knapsack problem.

2 3 4 5 6

0

20

40

60

80

K

100 150 200 250 300

0

20

40

60

80

|N |

Heuristic
Computing X(UB∗)

Algorithm 1

Figure 6 Geometric averages of the percentages of the time spent in each of the three steps of the scenario

generation algorithm based on the aggregated formulation, considering only the instances solved to

optimality.

As illustrated by these results, the comparative efficiency of the four algorithms is not

impacted by the underlying formulations. The monolithic approach M, and the row-and-

column generation approach RCG, were able to solve only a small percentage of the smallest

Author: Article Short Title
28 00(0), pp. 000–000, © 0000 INFORMS

instances with 100 items, regardless of the underlying formulation. The branch-and-bound

algorithm BB was more effective and more sensitive to the underlying formulation than M.

Its implementation with Xconf solved %72 of all instances with K = 2, while it failed to scale

with increasing values of K. When comparing formulations, BB was able to solve more

instances in each category coupled with the conflict formulation Xconf than the aggregated

formulation Xagg. The scenario generation algorithm was able to solve all instances up to

|N |= 300 regardless of the underlying formulation.

Figure 6 presents the percentage of total solution time allocated to each step of our solu-

tion framework for this problem with the aggregated formulation (results for the conflict

formulation are similar). As it is clear from this graphic, the combination of the heuristic

and enumerative steps makes up almost all of the solution time. In contrast, for BB, the

difference between the strengths of the two formulations has an important effect, as evi-

dent from the superior performance of this method with Xconf. These results highlight the

particularities of branch-and-bound and scenario generation algorithms. The scenario gen-

eration algorithm is more sensitive to the time spent in the heuristic step and the quality

of the upper bound obtained as this affects directly the number of solutions that should be

enumerated. On the other hand, the branch-and-bound algorithm is more sensitive to the

mathematical formulation, the strength of its linear relaxation and the required solution

time being important factors.

1 10 100
0

20

40

60

80

100

Not worse than x times the best

%
in

st
an

ce
s

so
lv

ed

SG-agg
M-conf
BB-conf
RCG-agg

Figure 7 Performance profile for the knapsack problem.

In Figure 7, we additionally present a performance profile that shows the percentage

of instances solved not slower than the value of the abscissa times the best method. This

performance profile was obtained by aggregating all 250 instances (10 instances for each

combination of N and K) for the best formulation for each algorithm, that is, SG-agg,

M-conf, BB-conf, and RCG-agg.

Author: Article Short Title
00(0), pp. 000–000, © 0000 INFORMS 29

Results for the exact algorithms for cost and weight uncertainty Figures 8 and 9

present the counterparts of Figures 12 and 7 for the variant of the problem with constraint

uncertainty. The conclusions are similar to the case without weight uncertainty, SG-agg

and SG-conf solving nearly all instances within the time limit, while BB-conf solves about

20% and is much slower than SG-agg.

2 3 4 5 6
0

20

40

60

80

100

K

100 150 200 250 300
0

20

40

60

80

100

|N |

SG-agg
BB-agg
SG-conf
BB-conf

Figure 8 Instances solved for the adaptive knapsack problem with constraint uncertainty.

1 10 100
0

20

40

60

80

100

Not worse than x times the best

%
in

st
an

ce
s

so
lv

ed

SG-agg
BB-conf

Figure 9 Performance profile for the knapsack problem with constraint uncertainty.

4.3. All-or-nothing subset

Setting Our last application is inspired by the utility-maximizing evader who wishes to

select a subset of illicit activities that are being monitored. The evader receives a positive

value only if he or she successfully completes all activities without being exposed Goldberg

and Rudolf (2020). Many variants can be considered for this problem, depending on the

constraints linking the feasible sets of illicit activities. In what follows, we consider that the

smuggler may choose up to B ∈Z activities which must be free of any conflicts. We remark

that the objective function in this problem is non-linear, so, to the best of our knowledge,

approaches from the literature cannot solve it to exact optimality. The purpose of our

experiments is therefore only to illustrate the capability of our algorithm for handling

non-linearities.

Author: Article Short Title
30 00(0), pp. 000–000, © 0000 INFORMS

Let N = {1, . . . , n} be the set of activities considered and C ⊆N ×N be the set of con-

flicts. We associate to each activity a reward ri and a success probability pi, where success

probabilities are assumed independent. For any i∈N , binary variable xi indicates whether

activity i is carried out. Following Goldberg and Rudolf (2020), we wish to maximize the

product of the overall probability with the total reward, leading to the deterministic objec-

tive function
∑

i∈N rixi
∏

j∈N p
xj
j . In the context of this paper, we suppose the rewards are

uncertain and belong to the intersection of a box and an ellipsoid Ξ = {ξ |
∑

j∈N

(
ξi−r̂i
r̂i

)2

≤

Ω, ri ≤ ξi ≤ ri ∀i ∈N}, where Ω> 0 is a given radius and r ≤ r̂ ≤ r are given vectors, so

the objective function is given by

f(ξ,x) =
∑
i∈N

ξixi
∏
j∈N

p
xj
j .

Function f(ξ,x) is linear in ξ, which makes the separation problems tractable.

We consider the feasibility set Xagg = {x ∈ {0,1}|N | |
∑

j∈N xj ≤ B, |Ei|xi +
∑

j∈Ei xj ≤

|Ei| ∀i∈N} where Ei = {j ∈N | (i, j)∈C or (j, i)∈C} is the set of activities that are in

conflict with i.

For each |N | ∈ {20,40,60} we generate 10 instances as follows: for each i ∈ N , p̂i is

uniformly generated in [0.5,1.0], r̂i is uniformly generated in [0,1000], ri = (1− ρ)r̂i, and

ri = (1+ρ)r̂i with ρ= 0.5. The conflict graph is generated as in Section 4.2, using a density

of 0.5. Finally, the budget B is equal to 5 and Ω to 1.

The initial heuristic solution is obtained by replacing the non linear function f(ξ,x)

with the linearized function f ′(ξ,x) =
∑

i∈N ξixi and solving exactly the min-max robust

counterpart of the resulting optimization problem. Additionally, we replace (29) by a relax-

and-fix heuristic optimizing the linear function f ′(ξ̃, x) within the context of our heuristic

algorithm. As in the case of the knapsack problem, a strong lower bound f(I) is not

immediately available and we only perform the optimality check when the full solution x

is known. Finally, the dominance check described in Section 3.2 is realized by solving (26)

for the enclosing ellipsoid Ξ′ = {ξ |
∑

j∈N

(
ξi−r̂i
r̂i

)2

≤Ω}.

Results We report on Figure 10 the average solution times for the different values of

|N | ∈ {20,40,60} and K ∈ {2,3,4,5,6}. We see that the impact of |N | is significantly more

marked than that of K. Figure 11 complements the picture by providing the number of

solutions in X0(UB
∗) before and after the dominance check, as well as the percentage

Author: Article Short Title
00(0), pp. 000–000, © 0000 INFORMS 31

of total solution time allocated to each step of our solution framework. These results

illustrate the significant impact of performing dominance comparisons on the number of

solutions. Moreover, they show that most of the time is spent in the enumeration step,

which includes the time spent in dominance comparisons. Overall, our results underline that

the non-linearity present in the objective function seems to cause no particular problem,

the difficulty lying mostly in the generation of a large number of good solutions for the

problem. Unreported results indicate the heuristic algorithm does not provide a sufficiently

low UB∗, which is not surprising given that it ignores the non-linear part of f . The results

could possibly be improved by further refining the heuristic algorithm.

2 3 4 5 6
0

200

400

K

20 40 60
0

500

1,000

|N |

Figure 10 Average solution times for the all-or-nothing subset problem.

20 40 60

0

2

4

6

·104

|N |

before dominance
after dominance

2 3 4 5 6

0

50

100

K

20 40 60 80

0

50

100

|N |

Heuristic
Computing X(UB∗)

Algorithm 1

Figure 11 Number of solutions in X(UB∗) before and after dominance checks (left), and percentages of the

times spent in each of the three steps of the scenario generation algorithm (center and right).

5. Concluding remarks

In this paper, we present a new exact algorithm for solving the min-sup-min robust com-

binatorial optimization problem, possibly involving constraint uncertainty and non-linear

functions. The algorithm combines the enumeration scheme presented in Chassein et al.

(2019) with a scenario-based relaxation, reformulated as a p-center problem and solved

through a binary-search algorithm. The algorithm proposed herein scales reasonably well

Author: Article Short Title
32 00(0), pp. 000–000, © 0000 INFORMS

with K and is able to solve more instances to optimality than the state-of-the-art algo-

rithms from the K−adaptability literature (Hanasusanto et al. (2015), Subramanyam et al.

(2019)) and min-max-min literature (Chassein et al. (2019), Goerigk et al. (2020)), in

particular for large values of K. The main advantage of our approach is that it is lit-

tle impacted by the complexity of solving the underlying deterministic problem. This is

illustrated for the knapsack problem with conflicts, with and without uncertainty in the

constraints, for which our algorithm can solve nearly all instances with up to 300 items. In

contrast, Goerigk et al. (2020), Hanasusanto et al. (2015) and Subramanyam et al. (2019)

can only solve a small part of the instances with up to 100 and 250 items, respectively,

when the constraint is certain, and Subramanyam et al. (2019) obtain similar results with

an uncertain constraint. We additionally propose a heuristic variant of our algorithm based

on a partial enumeration of good feasible solutions that can be used when enumerating

all good feasible solutions is computationally prohibitive and it is hard to optimize over

the set X0. On the one hand, when optimizing over X0 is easy, as for the shortest path

problem, our new heuristic cannot compete with the one from Chassein et al. (2019). On

the other hand, the new heuristic behaves well for harder problems and even compares

favorably to the heuristic variant of the branch-and-bound algorithm from Subramanyam

et al. (2019) on the knapsack problem with conflicts for the larger values of K (the heuris-

tic from Chassein et al. (2019) being able to cope only with the smallest instances for

that problem). Finally, our results on the all-or-nothing subset problem illustrate how our

approach is able to solve a problem featuring a non-convex objective function with up to

60 binary variables.

References

Agra A, Santos MC, Nace D, Poss M (2016) A dynamic programming approach for a class of robust opti-

mization problems. SIAM Journal on Optimization 26(3):1799–1823.

Aissi H, Bazgan C, Vanderpooten D (2009) Min-max and min-max regret versions of combinatorial opti-

mization problems: A survey. Eur. J. Oper. Res. 197(2):427–438.

Arslan A, Detienne B (2020) Decomposition-based approaches for a class of two-stage robust binary opti-

mization problems Available at https://hal.inria.fr/hal-02190059/.

Ayoub J, Poss M (2016) Decomposition for adjustable robust linear optimization subject to uncertainty

polytope. Comput. Manag. Science 13(2):219–239.

Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization, volume 28 (Princeton University Press).

Author: Article Short Title
00(0), pp. 000–000, © 0000 INFORMS 33

Bertsimas D, Brown DB, Caramanis C (2011) Theory and applications of robust optimization. SIAM review

53(3):464–501.

Bertsimas D, Dunning I (2016) Multistage robust mixed-integer optimization with adaptive partitions. Oper.

Res. 64(4):980–998.

Bertsimas D, Dunning I, Lubin M (2016) Reformulation versus cutting-planes for robust optimization. Com-

put. Manag. Science 13(2):195–217.

Bertsimas D, Georghiou A (2018) Binary decision rules for multistage adaptive mixed-integer optimization.

Math. Program. 167(2):395–433.

Bertsimas D, Sim M (2003) Robust discrete optimization and network flows. Math. Program. 98(1-3):49–71.

Bezanson J, Edelman A, Karpinski S, Shah VB (2017) Julia: A fresh approach to numerical computing.

SIAM review 59(1):65–98, URL https://doi.org/10.1137/141000671.

Buchheim C, Kurtz J (2017) Min–max–min robust combinatorial optimization. Mathematical Programming

163(1):1–23.

Buchheim C, Kurtz J (2018a) Complexity of min–max–min robustness for combinatorial optimization under

discrete uncertainty. Discrete Optimization 28:1–15.

Buchheim C, Kurtz J (2018b) Robust combinatorial optimization under convex and discrete cost uncertainty.

EURO J. Comput. Optim. 6(3):211–238, URL http://dx.doi.org/10.1007/s13675-018-0103-0.

Chalermsook P, Cygan M, Kortsarz G, Laekhanukit B, Manurangsi P, Nanongkai D, Trevisan L (2017)

From gap-eth to fpt-inapproximability: Clique, dominating set, and more. 2017 IEEE 58th Annual

Symposium on Foundations of Computer Science (FOCS), 743–754 (IEEE).

Chassein A, Goerigk M (2020) On the complexity of min–max–min robustness with two alternatives and

budgeted uncertainty. Discrete Applied Mathematics .

Chassein AB, Goerigk M, Kurtz J, Poss M (2019) Faster algorithms for min-max-min robustness for combina-

torial problems with budgeted uncertainty. European Journal of Operational Research 279(2):308–319.

Chen D, Chen R (2009) New relaxation-based algorithms for the optimal solution of the continuous and

discrete p-center problems. Computers & Operations Research 36(5):1646–1655.

Contardo C, Iori M, Kramer R (2019) A scalable exact algorithm for the vertex p-center problem. Computers

& OR 103:211–220.

Daskin MS (2011) Network and discrete location: models, algorithms, and applications (John Wiley & Sons).

Dunning I, Huchette J, Lubin M (2017) Jump: A modeling language for mathematical optimization. SIAM

Review 59(2):295–320, URL http://dx.doi.org/10.1137/15M1020575.

Eufinger L, Kurtz J, Buchheim C, Clausen U (2019) A robust approach to the capacitated vehicle routing

problem with uncertain costs. INFORMS Journal on Optimization To appear.

https://doi.org/10.1137/141000671
http://dx.doi.org/10.1007/s13675-018-0103-0
http://dx.doi.org/10.1137/15M1020575

Author: Article Short Title
34 00(0), pp. 000–000, © 0000 INFORMS

Fischetti M, Monaci M (2012) Cutting plane versus compact formulations for uncertain (integer) linear

programs. Math. Program. Comput. 4(3):239–273.

Gabrel V, Murat C, Thiele A (2014) Recent advances in robust optimization: An overview. European Journal

of Operational Research 235(3):471–483.

Goerigk M, Kurtz J, Poss M (2020) Min-max-min robustness for combinatorial problems with discrete

budgeted uncertainty. Discrete Applied Mathematics In press.

Goldberg N, Rudolf G (2020) On the complexity and approximation of the maximum expected value all-or-

nothing subset. Discrete Applied Mathematics 283:1–10.

Hanasusanto GA, Kuhn D, Wiesemann W (2015) K-adaptability in two-stage robust binary programming.

Operations Research 63(4):877–891.

Hifi M (2014) An iterative rounding search-based algorithm for the disjunctively constrained knapsack prob-

lem. Engineering Optimization 46(8):1109–1122.

Hifi M, Michrafy M (2007) Reduction strategies and exact algorithms for the disjunctively constrained

knapsack problem. Computers & operations research 34(9):2657–2673.

Kouvelis P, Yu G (2013) Robust discrete optimization and its applications, volume 14 (Springer Science &

Business Media).

Lee T, Kwon C (2014) A short note on the robust combinatorial optimization problems with cardinality

constrained uncertainty. 4OR 12(4):373–378.

Minieka E (1970) The m-center problem. Siam Review 12(1):138–139.

Pessoa AA, Poss M (2015) Robust network design with uncertain outsourcing cost. INFORMS J. Comput.

27(3):507–524.

Poss M (2018) Robust combinatorial optimization with knapsack uncertainty. Discrete Optimization 27:88–

102.

Sadykov R, Vanderbeck F (2013) Bin packing with conflicts: a generic branch-and-price algorithm. INFORMS

Journal on Computing 25(2):244–255.

Sahni S (1974) Computationally related problems. SIAM Journal on computing 3(4):262–279.

Subramanyam A, Gounaris CE, Wiesemann W (2019) K-adaptability in two-stage mixed-integer robust

optimization. Mathematical Programming Computation 1–32.

Zeng B, Zhao L (2013) Solving two-stage robust optimization problems using a column-and-constraint gen-

eration method. Operations Research Letters 41(5):457–461.

Appendix A: Separation problem when L> 0

Let zk` be a binary variable for each k ∈K ad `∈ [L]∪{0}. Following Subramanyam et al. (2019), the value

of S(ṽ, x̃) can be computed by solving

max η

Author: Article Short Title
00(0), pp. 000–000, © 0000 INFORMS 35

s.t.

L∑
`=0

zk` = 1, ∀k ∈K

zk0 = 1 =⇒ η≤ f(ξ, x̃k)− ṽ, ∀k ∈K

zk` = 1 =⇒ η≤ g`(ξ, x̃k)− b`, ∀k ∈K,`∈L

ξ ∈Ξ

z ∈ {0,1}K×(L+1).

Observation 3 from Subramanyam et al. (2019) proves the validity of the above reformulation in the case

f and g` are linear functions. One readily extends their reasoning to the more general context considered

herein.

Appendix B: Dualization

We present next the dualized reformulation proposed by Hanasusanto et al. (2015) as well as its heuristic

variant first suggested by Chassein et al. (2019). Let us define Ξ as the polytope Ξ := {Aξ ≤ b, ξ ≥ 0}. Then,

applying an epigraph reformulation to problem (4), we have

min
x∈XK

{
max η : ξ ∈Ξ, η≤ f(ξ,xk), k ∈ [K]

}
. (30)

Introducing the vectors of dual variables α and β for the constraints Aξ ≤ b and η ≤ f(ξ,xk), k ∈ [K], we

can dualize the inner linear program of (30) to obtain

min b>α

s.t. α>A−
∑
k∈[K]

βkx
k ≥ 0

∑
k∈[K]

βk = 1

x1, . . . , xK ∈X

α,β ≥ 0.

The above non-linear mixed-integer linear program is addressed heuristically in Chassein et al. (2019), by

iteratively optimizing over (α,x) and (α,β) until no further improvement is obtained. Alternatively, Hana-

susanto et al. (2015) apply the McCormick linearization to each product βkx
k to obtain an exact MILP

reformulation.

Appendix C: Proof of Proposition 5

We adapt the reduction from the subset sum problem proposed by Sahni (1974). Specifically, given the set

of integers {si, i= 1, . . . , n}, and the integer M , the subset sum problem asks whether there exists a subset

of integers that sums up to M . The reduction considers

f(ξ,x) =−M∗δ(x,x′)− δ(x, x̄)

∑
i∈[n]

ξi(ξi− 1) +
∑
i∈[n]

siξi

 ,

where function δ(x, y) = 1 if x = y and 0 otherwise, M∗ = M − min
i∈[n]

si−1
s2
i

, and Ξ ={
ξ ∈ [0,1]n :

∑
i∈[n] siξi =M

}
. We observe that f(ξ,x′) =−M∗ and f(ξ, x̄) =−

∑
i∈[n] ξi(ξi−1)−

∑
i∈[n] siξi,

the latter verifying the property below.

Author: Article Short Title
36 00(0), pp. 000–000, © 0000 INFORMS

Lemma 1. Let z be the optimal objective value of

max

∑
i∈[n]

ξi(ξi− 1) +
∑
i∈[n]

siξi :
∑
i∈[n]

siξi =M,0≤ ξ ≤ 1

 ,

where all si are integers. Either z =M or z ≤M −min
i∈[n]

si−1
s2
i

.

Proof. The objective function is strictly convex so the maximum is reached on one of the extreme points.

Furthermore, any extreme point has at most one fractional component. Thus, if there exists one extreme

point ξ∗ with no fractional component,
∑

i∈[n] ξ
∗
i (ξ∗i − 1) = 0 and the corresponding objective value is M .

Otherwise, let i be the fractional component. As all si are integer, siξ
∗
i must also be integer to satisfy the

constraint
∑

i∈[n] siξi =M , so that ξ∗i ∈ {1/si, . . . , (si − 1)/si}. Thus, the objective value of that solution is

at most M − si−1
s2
i

, proving the result. �

Now, x̄ is dominated by x′ if and only if f(ξ,x′)≤ f(ξ, x̄) for all ξ ∈ Ξ. As −f(ξ,x′) =M∗, the previous

equality is equivalent to

M∗ ≥max

∑
i∈[n]

ξi(ξi− 1) +
∑
i∈[n]

siξi :
∑
i∈[n]

siξi =M,0≤ ξ ≤ 1

 .

To conclude the reduction, we notice that the answer to the subset sum instance is yes if and only if

maxξ∈Ξ f(ξ, x̄) = M >M∗, which happens if and only if x̄ is not dominated. Furthermore, thanks to the

above lemma, the answer to the subset sum instance is no if and only if maxξ∈Ξ f(ξ, x̄)≤M∗ meaning that

x̄ is dominated.

Appendix D: Heuristic results

We present in this section an evaluation of different heuristic approches that can be used as the first step

of our algorithm. Our preliminary results showed that the heuristic resolution of the bilinear formulation

presented in Appendix B was too slow for this problem, taking nearly two hours of computational time for

instances with 100 items only. This behavior is due to the optimization over variables x, which takes too

much time as N grows. We therefore focus on the two other approaches: the heuristic version of our algorithm

presented in Section 3.4, and the heuristic version of the branch-and-bound algorithm of Subramanyam et al.

(2019) where k−adaptability problems are solved in sequence for k = 1, . . . ,K, and the optimal solution of

the (k− 1)−adaptable problem is fixed in the k−adaptable problem.

For this comparison, we consider the scenario generation algorithm SG and the branch-and-bound algo-

rithm BB, with two formulations Xagg and Xconf. For each of the four methods, we compare the relative

distance of the upper bound provided by the algorithm to the true optimal value of each instance obtained

through our exact algorithm SG. In Figure 12, we represent a scatter plot with this relative gap along with

the solution time of each algorithm for each value of K ∈ {2,3,4,5,6} and |N |= 300. The detailed results for

instances of size |N | ∈ {100,150,200,250,300} are given in Tables 1 and 2. Comparing the results of the two

formulations for BB displayed on Figure 12, we realize that while the solution times may differ based on the

formulation, the solution obtained does not change. Similar results were obtained for smaller instances and

the details of hBB are provided with Xconf, which is faster than Xagg, on Tables 1 and 2. This behavior is

Author: Article Short Title
00(0), pp. 000–000, © 0000 INFORMS 37

due to the fact that hBB solves an MILP to exact optimality at every iteration, so in the absence of multiple

optima the same optimal solutions are returned irrespective of the formulations used. On the other hand,

the heuristic variant of the scenario generation algorithm solves (29) heuristically and therefore the solution

quality depends on the linear relaxation of the respective formulation.

0 1,000 2,000 3,000 4,000 5,000

0

2

4

6

K = 2

hSG-agg
hBB-agg
hSG-conf
hBB-conf

0 0.2 0.4 0.6 0.8 1

·104

0

2

4

K = 3

hSG-agg
hBB-agg
hSG-conf
hBB-conf

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

0

1

2

3

K = 4

hSG-agg
hBB-agg
hSG-conf
hBB-conf

0 0.5 1 1.5

·104

0

1

2

K = 5

hSG-agg
hBB-agg
hSG-conf
hBB-conf

0.2 0.4 0.6 0.8 1 1.2

·104

0

0.5

1

1.5

2

K = 6

hSG-agg
hBB-agg
hSG-conf
hBB-conf

Figure 12 Solution times (horizontal axis) and ratio to the best solution (vertical axis) for the instances with

300 items.

The results presented in Figure 12 lead to the conclusion that the heuristic scenario generation algorithm

with the formulation Xconf, hSG-conf, leads to better quality solutions, especially as K increases. However,

this algorithm is costly in terms of computation time which prohibits its utilisation for larger instances.

Further, among the remaining three methods, hBB-conf and hSG-agg, are compatible in terms of the solution

time required, while the solution time for hBB-agg increases significantly with K. Therefore, hBB-conf

and hSG-agg, emerge as computationally viable heuristic methods as N and K increase. Among these two

methods hSG-agg provides consistently good quality solutions.

A
u
t
h
o
r
:

A
r
tic

le
S
h
o
r
t
T
itle

3
8

0
0
(0

),
p
p
.
0
0
0
–
0
0
0
,
©

0
0
0
0
IN

F
O
R
M

S

100 150 200 250 300
K hSG-agg hSG-conf hBB-conf hSG-agg hSG-conf hBB-conf hSG-agg hSG-conf hBB-conf hSG-agg hSG-conf hBB-conf hSG-agg hSG-conf hBB-conf
2 9 20 2 52 94 8 149 311 32 474 1649 120 1130 4574 439
3 10 24 3 73 132 17 182 402 66 539 2450 258 1416 6968 894
4 10 26 5 96 181 25 207 505 101 685 3236 399 1564 9410 1403
5 10 25 7 89 170 35 206 565 139 638 3687 577 1565 10621 1855
6 10 25 8 78 172 44 198 529 187 625 3196 730 1537 8292 2365

Table 1 Average solution time for each heuristic algorithm in seconds.

100 150 200 250 300
K hSG-agg hSG-conf hBB-conf hSG-agg hSG-conf hBB-conf hSG-agg hSG-conf hBB-conf hSG-agg hSG-conf hBB-conf hSG-agg hSG-conf hBB-conf
2 1.0 0.7 1.8 2.5 2.2 1.9 1.2 1.2 1.4 1.3 2.3 1.1 2.1 1.8 1.5
3 0.5 0.3 1.3 1.4 1.0 1.9 0.2 0.4 1.0 1.0 1.0 1.3 0.7 0.8 1.6
4 0.5 0.0 0.5 0.4 0.3 1.4 0.3 0.2 0.5 0.6 0.3 0.8 0.6 0.1 1.3
5 0.5 0.0 0.1 0.2 0.0 0.7 0.2 0.0 0.3 0.3 0.0 0.4 0.3 0.0 1.0
6 0.5 0.0 0.0 0.4 0.0 0.2 0.2 0.0 0.1 0.3 0.0 0.2 0.3 0.0 0.8

Table 2 Average relative optimality gap obtained with each heuristic algorithm.

	Introduction
	Methodological development
	Problem definition
	Scenario generation
	Vertex p-center formulation
	Putting things together

	Numerical improvements
	Restricting the set of enumerated solutions
	Eliminating dominated solutions
	Special case of objective uncertainty
	A heuristic scenario generation algorithm

	Computational experiments
	Shortest path problem
	Knapsack problem with conflicts
	All-or-nothing subset

	Concluding remarks
	Separation problem when L>0
	Dualization
	Proof of Proposition 5
	Heuristic results

