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Abstract

Problems to solve nowadays have never been so complex and are continuously
increasing in complexity. In this context Systems of Systems (SoS) may be a so-
lution but the study of such systems is far from over. An SoS is a complex system
characterized by the particular nature of its components: the latter, which are
systems, tend to be managerially and operationally independent as well as ge-
ographically distributed. This specific characterization led to re-think research
fields of classic systems engineering, such as definition, taxonomy, modelling,
architecting, etc. SoS architecting focuses on the way independent components
of an SoS can be dynamically structured and can autonomously and efficiently
modify their interactions in order to fulfil the goal of the SoS and to cope with
the high dynamics of the environment.

This paper contributes to the multi-agent and SoS research fields by propos-
ing a new generic SoS model called SApHESIA which considers the SoS main
characteristics found in the literature and extends the notion of environment and
interactions between component systems. It also proposes a new SoS architect-
ing procedure based on the Adaptive Multi-Agent System (AMAS) approach
that advocates full cooperation between all the components of the SoS through
the concept of criticality. This criticality is a measure, local to each component,
expressing its difficulties to reach its local goals. In this procedure, the SoS
architecture evolves to self-adapt to the dynamics of the environment in which
it is plunged, while considering the respective local goals of its components. An
instantiation of SApHESIA to two distinct cases studies from different domains
(logistics and exploratory missions) is done to obtain two SoSs. These two SoS
are then coupled to form a new SoS at an upper level. Evaluations of these SoSs
show that their cooperation make each of them more efficient.
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1. Introduction

Problems to solve have never been so complex and are continuously increas-
ing in complexity. To design useful systems in this context, more and more often
are used a combination and/or an aggregation of heterogeneous systems that
have been independently designed but that are interdependent. Computer sci-
entists have already begun to work on new theoretical foundations, new method-
ologies and engineering tools in order to face the complexity of designing this
kind of systems. After 20 years of research, the study of SoS and all research
fields in SoS are still widely open. In 2008, [23] argues that “no engineering field
is more urgently needed in tackling SoS problems than SE. On top of the list of
engineering issues in SoS is the engineering of SoS, leading to a new field of Sys-
tems of Systems Engineering (SoSE). How does one extend Systems Engineering
(SE) concepts like analysis, control, estimation, design, modelling, controllabil-
ity, observability, stability, filtering, simulation and so on”. More recently, [20]
referenced 113 research fields: concept, definition, taxonomy, model, simulation,
etc. They argue that “the highly, and increasingly, connected nature of modern
society means that the existence of SoS is an unavoidable factor of modern life,
driving the need for better techniques to analyze, design for, manage, and retire
SoS and the individual systems that contribute to SoS”. Indeed, all classical SE
concepts have to be re-thought to match with new challenges of SoSE. Further-
more, in 2015, [2] argued that even after 3000 papers and 20 years of research:
“[...] there are signs of immaturity within the research field, with only limited
use of systematic empirical methods those are common in other domains, and
also that new research results are not building systematically on previous re-
search”. Current research on SoS focuses on a large variety of problems [27] to
develop new methods of engineering or architecting the SoS parts.

Generic SoS models exist but have some limitations concerning the definition
of the SoS environment and the interactions of the SoS parts (called Component
Systems - CSs). SoS architecting consists in finding how CSs can work together
and change their interactions to fulfil the SoS goals efficiently and effectively.
According to [8], the challenges in architecting SoS come from the managerial
and operational independence of CSs. These CSs are not designed to fulfil the
global goal of the SoS but the combination of individual CSs may lead to the
emergence of unexpected behaviours. The independence of the CSs leads to re-
think the methodologies of architecting: contrary to SE where the architecting
of a system was mostly static, in an SoS this one is dynamic.

SoS literature shows that Agent-Based Modelling and Simulation are a nat-
ural way to develop this new kind of architecture [3] [16] as they enable to
describe and test new architecture dynamics by varying the behaviour of CSs
in the SoS. [3] proposes a set of principles for efficient SoS architecting based
on open systems such as the open interface principle stating that “open sys-
tems have permeable boundaries that allow them to exchange mass, energy, and
information with other systems” or the synergism principle stating that “the co-
operative interaction between CSs has a greater effect in their combined efforts
than the sum of their individual parts. Essentially, this is what gives rise to
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emergence”. Several architecting solutions exist but, to our knowledge, none is
based on cooperation between CSs.

This work fits in the field of Systems of Systems (SoS) and Adaptive Multi-
Agent Systems (AMAS). Section 2 offers an overview of the principles of AMAS
and describes related works regarding definitions and characteristics of SoS as
well as existing generic models for SoS, architecting and SoS architecting heuris-
tics. A new generic SoS model called SApHESIA (SoS Architecting HEurIStIc
based on Agents) as well as a new heuristic based on the AMAS for SoS ar-
chitecting are detailed in section 3. Section 4 contains two instantiations of
SApHESIA model to two distinct cases studies in order to obtain two SoSs.
Each of these SoSs is then individually evaluated. These two SoSs are then a
little bit modified in order to become interdependent. They are then coupled
using our cooperative heuristic in order to form a new SoS at an upper level,
and to evaluate our proposition to the problem of SoS architecting. Finally, we
conclude and plan some future works in section 5.

2. Context and Related Works

This section explains the main principles of the AMAS approach as well as
the issues that still remain to be solved. These issues being tightly linked with
the SoS problematic, an overview of this field is then given.

2.1. Principles of AMAS Approach and Context

Beyond the power of computers, the complexity of computer applications
has been growing for several decades. This is due to the combination of several
characteristics such as the number of interacting components, the distribution
of control and processing, the presence of non-linearities between these compo-
nents, the openness of the systems, as well as the dynamics of their environ-
ments. Designing systems that self-organize during their activity is a promising
approach to guarantee robustness and adaptation to complex systems integrat-
ing the previous characteristics. Researchers have long been inspired by the
self-organization of natural systems which leads to emerging phenomena. Cur-
rently, much research in multi-agent systems focuses on the discovery of relevant
self-organization solutions guiding the agent’s behaviour at the micro-level, to
obtain at the macro-level the system behaviour desired by the designer.

2.1.1. Principles of the AMAS Approach

The AMAS approach [15] is used to design adaptive multi-agent systems
enabling to solve complex problems that can be incompletely specified and
for which an a priori known algorithmic solution does not exist. It is a self-
organizing approach that considers the system as composed of parts (i.e. agents).
It focuses on the local behaviour of each of these agents to make them adap-
tive (to their local environment), while ensuring that the collective behaviour
emerging from interactions between agents is the expected one. Each agent has
a local perception of its environment, limited reasoning skills as well as local
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capacities for acting in its environment. An agent is autonomous and has a local
goal to achieve.

To this end, in the AMAS approach, each agent pursuing a perceive-decide-
act lifecycle must have a local and cooperative behaviour. The definition of
cooperation is not a conventional one that considers resource sharing or working
together. It is based on the notion of criticality, defined as the “distance between
the current situation and the local goal of the agent” [18]. Thus, the further the
agent is from its goal, the more critical it considers its current situation to be.
Each agent type locally computes its criticality thanks to a domain-dependent
function. As the overall function provided by the AMAS cannot always be for-
mally defined due to the complexity of the system to be designed, the criticality
does not directly depend on this overall function. An agent is cooperative if it
acts to help the most critical agent (with the highest criticality) of its neigh-
bourhood. Thus, all agents in an AMAS attempt to continually reduce the
criticality of the agent that, in their neighbourhood and according to their local
point of view, is the most critical (possibly itself). At the same time, they simul-
taneously prevent another agent from being more critical than the most critical
one. If an agent is not able to help the most critical agent of its neighbourhood,
it may help the immediately less critical agent. Thus, doing so, it hopes that
the reduction of the criticality of this agent will lead it to help the most critical
agent. Specifically, agents try to always remain in a cooperative state from their
point of view allowing the overall system to converge to a cooperative state in its
environment: the system is then functionally adequate. The presented process
corresponds to a typical decision process of a generic AMAS agent. But the
definition of non-cooperation situations that can occur, their detection and the
actions that agents must take to resolve them, are not generic. Depending on
the problem to be solved, the designer of an AMAS has (i) to identify the agents
in the system (the entities possibly facing non-cooperative situations), then (ii)
determine the ideal cooperation (nominal behaviour) from their local point of
view and (iii) define their cooperative behaviour. The cooperative behaviour
consists in finding the non-cooperative situations agents may face during their
functioning as well as defining the actions that they must take to return to a
cooperative state.

The AMAS approach has been used to solve several different problems both
by their objective (problem-solving, optimization, simulation) and by the do-
mains concerned (flood forecasting, collective robotics, ontology construction,
and so on...). The encouraging obtained results have prompted us to promote
the use of this approach and to develop the ADELFE methodology [26] to design
adaptive systems according to the AMAS approach. ADELFE only concerns
applications in which self-organization allows the emergence of a solution from
the interactions between agents. It provides a tool to determine whether the
use of AMAS is relevant to the problem to be solved. If this is the case, it helps
the user to define the components of his system (here the agents) and guides
him throughout the software development cycle (from needs analysis to system
testing and validation).
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2.1.2. Context and Objectives

Some works, notably those dedicated to user assistance, have shown that
the AMAS responding to the problem is composed of several interdependent
subsystems, often designed independently, each one being in charge of a partial
implementation of this assistance (e.g. construction and maintenance of the user
profile, definition and management of the context, etc.). A lock to be lifted is
then to study the coupling of these subsystems. More precisely it is a question,
in the long term, of automating the integration of several adaptive (sub)systems
(built according to the AMAS approach), which can be either composed (vertical
dimension), associated (horizontal dimension) or both.

This paper deals with the issue of coupling AMASs which is tightly linked
with SoS problematic (autonomy of their parts, dynamic interactions between
parts, complexity of the parts, heterogeneity of the parts, the important notion
of the environment).

2.2. An overview of Systems of Systems

Even if a lot of definitions of SoS has been given from various fields ([23],
[25]), no consensual definition and common characteristics of SoS is proposed.
During these last ten years, research efforts have been put on SoS taxonomy
and theoretical foundations in order to find a generic definition [24], [22], [9].

2.2.1. Main Properties and Characteristics of SoS

Maier was the first to characterize SoS in [24]. He gave five main prop-
erties distinguishing an SoS from a traditional complex system, which were
accepted by researchers working on SoS ([22],[27]). These five properties are
operational independence, managerial independence, geographical distribution,
emergent behaviour and evolutionary development. Furthermore, Gorod [19],
Sauser [9] [5] and Bjelkemyr [7] have converged on an SoS characterization that
distinguishes classic systems from SoS. They propose the ABCDE character-
istics meaning Autonomy, Belonging, Connectivity, Diversity and Emergence.
Ballegaard Nielsen & all [6] propose a survey on model-based techniques in SoS
engineering and identify challenges for research in this field. They notably no-
tice a lack in the emergence of behaviour in modelling and simulation, and in
the evolution of SoS in simulation.

2.2.2. Existing Generic Models for SoS

To our knowledge, few generic SoS models exist in literature. Based on set
theory and ABM (Agent-Based Model), the only two following models we found
enable to have formal definitions of what is a SoS. We discuss their limitations
through the nine evaluation criteria we propose.

Finding a generic SoS model is the basis to propose a new SoS architecting
heuristic. Firstly, this section enumerates and justifies the evaluation criteria
chosen from literature to evaluate generic SoS models. Secondly, it presents two
generic SoS models found in the literature and discusses their limitations.
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Evaluation Criteria for SoS Model. We propose nine criteria to model SoS to
evaluate existing generic SoS models and show their limitations. The five first
criteria concern the ability to model the following characteristics of a compo-
nent system (that represent the Maier’s criteria): (1) heterogeneity, (2) man-
agerial independence, (3) operational independence, (4) geographical
distribution and (5) interactions between component systems. Finally,
the following criteria concern the ability to model the SoS and the environment.
(6) SoS model concerns the ability to model a SoS as an autonomous entity
with its own goals. Indeed, as in a directed or acknowledged SoS, a central
management exists, it has to be modeled. (7) Dynamic environment model
concerns the ability to model a dynamic environment. Indeed, a SoS evolves
in a dynamic environment. (8) Global expressiveness concerns the ability
to express interesting SoSs. By ”interesting”, we mean expressive enough to be
able to model concrete and relevant examples of SoS. (9) Metric definitions
concerns the ability to define useful metrics such as for example, the global
cost or the performance of the SoS. A model has to enable the evaluations of
instances created from it.

Generic Model of SoS Based on Set Theory. This model, introduced in [4],
uses set theory and first order logic. It has been created to model the five
keys characteristics developed in [9] that are autonomy, belonging, connectivity,
diversity and emergence. In this model, a component system Si is defined as a
tuple:

Si = {Ai, Gi, Ei}

with Ai a set of actions, Gi a set of goals and Ei a set of non-defined elements.
Ai, Gi are sets of atomic elements. No details are given about what are exactly
these elements but they represent respectively the available actions and the
goals of a component system. Ei is a set of undeclared elements where a subset
Ci ⊂ Ei (called the set of connectivities and composed of couples of component
systems) represents the connections between component systems.

Finally, a system of systems S∗ is defined as a set of sets:

S∗ = {S1, ..., Sn, G∗}, n ∈ N, G∗ 6= ∅

with G∗ is the set of the SoS goals and S1, .., Sn are component systems.
In this model, the characteristics, autonomy, belonging, connectivity and

diversity of each system have been formally defined [4] while emergence and
connectivity are not represented.

This generic model enables to model a component system through the set Si.
The concept of heterogeneity is represented thanks to the set of actions Ai that
can be different from component systems. Operational and managerial indepen-
dences are respectively represented by Ai and Gi. But, the concept of action is
not used and not really described to be used in an example. An action is pre-
sented as being just an ”object” without a clear definition on how to use it. The
set of connections Ci enables to model interactions. Nevertheless, connections
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are only links with another component system and are never used, for example,
in metric definitions. Moreover, it is a totally generic model and it enables to
calculate metrics as autonomy, belonging, and diversity of a component system.
It is useful to know the level of diversity of a SoS because the most a SoS shows
diversity, the most it can cope with the dynamics of the environment. Then, a
SoS model is presented but there is no environment model and this is a strong
limitation because a SoS evolves in a dynamic environment. Concerning global
expressiveness, the model is poor because the action is represented without the
notions of preconditions and/or effects of an action. Then, there is no possibility
to model action dependence between component systems.

Agent-Based Wave Model. In [1], authors propose a generic SoS model based
on ABM, which enables the use of a formation heuristic based on a genetic
algorithm. In this model, each component system Si is defined as a set of sets:

Si = {ci, pi, willingnessi, abilityi}

with ci, a capability, which is similar to an action, pi, a performance on the
capability ci, willingnessi, a metric representing the willingness of Si to co-
operate with the SoS, and abilityi, a metric representing the ability of Si to
cooperate with the SoS. willingnessi and abilityi are used in a function f that
is not described but that enables to know if Si will cooperate with the SoS (i.e.
if the component system will belong or not to the SoS). A component system
with a high abilityi tends to be more cooperative with the SoS.

A SoS is represented by :

SoS = {C,W,P}

with C a set of desired capabilities ci, W a set of weights concerning the set
of desired capabilities C, and P a set of desired performances on capabilities of
the set C.

Desired capabilities are the capabilities that designer wants the SoS to
achieve. It is composed of a subset of component systems capabilities. The
P set enables to express a certain level of desired performance on desired ca-
pabilities C for the SoS. The environment is slightly addressed and detailed
by a set of external factors such as SoS funding, threats and national priorities.
These factors do not have formal descriptions. Even if it is not explicitly written
in [1], SoS funding seems to model the amount of funds allowed by stakehold-
ers for the SoS functioning. This fund is used to be compared with the global
cost of the SoS, which seems to be the sum of component systems costs (the
information of how these costs are modeled is not provided). Finally, there is
no example of use of threats and national priorities factors.

Agent-Based Wave model enables to model component system through its
operational independence (through capability) but fails with managerial in-
dependence because goals are not defined for component systems. Neverthe-
less, the model may use metrics to evaluate SoS like the performance to reach
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Generic Set Based-Waved
Theory Model Model

Component system heterogeneity ++ +
Managerial independence ++ -
Operational independence ++ ++
Geographical distribution - - - -

Interactions between component systems - - -
SoS model ++ ++

Dynamic environment model - - -
Global expressiveness - -

Metric definitions + +

Table 1: Evaluation of existing generic SoS model

(through Pi). Concerning global expressiveness, each component system is re-
duced to only one capability, which seems far from the reality of the SoS where
each component system has several capabilities. This model does not enable
to model interactions between component systems. Even if an environment is
defined, it is not possible to express its dynamics. Indeed, there is no possibility
of expressing dependencies between the actions of the component systems.
Table 1 sums up the whole criteria for both models. The legend is the follow-
ing: the evaluation criterion for the model is totally filled (++), almost partially
filled (+), almost partially absent (-), totally absent (- -).

We can see that these models have a lack concerning their realism and that
they do not meet some of our evaluation criteria. Especially the set theory model
seems hard to use to study real cases of SoS because of a lack of expressiveness.
Furthermore, the interactions between component systems in both models are
not used and the notion of environment is not mentioned (or not dynamic).
This analysis leads us to propose a new generic SoS model to fill these lacks.

2.2.3. SoS Architecture, SoS Architecting and SoS Architecting Heuristics

In the field of SoS Engineering, SoS architecture refers to the set of CSs
of the SoS and their interactions. Wang & al. [28] define SoS architecture as
“an arrangement for the set of constituent systems, rules and behaviours that
govern an individual system’s functions. Architecture also describes how these
systems’ capabilities contribute to a larger goal”. An SoS evolves in a dynamic
environment and its goals may change over time. Thus, the CSs of the SoS and
their interactions may change. That is the reason why an SoS cannot have a
static architecture: it has to adapt its own architecture during time.

In this paper, we call “SoS architecting” the process that enables to model
and simulate SoS architectures that dynamically evolve over time.

SoS architecting heuristic consists in finding how CSs can work together and
change their interactions to efficiently and effectively fulfil the SoS goals. Due to
the dynamics of the environment and to the large set of solutions fields, finding
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the optimal architecture during the time for an SoS is nearly impossible. In
other words, the time of resolution can be higher than the time of a change
in the environment. Thus, the use of heuristics in SoS architecting has been
proposed in the literature to find a satisfactory architecture for a given state of
the environment. To find such an architecture, designers can use the managerial
and operational independences of CSs to propose a decision strategy (such as
collaboration) at the CS level. For directed and acknowledged SoS, designers
use central management to coordinate and/or directly use CSs resources. For
example, central management can decide to add or remove CSs during function-
ing.

Two most developed and documented architecting heuristics for SoS can be
found in the literature. The first one is based on a collaborative SoS formation
[16]: CSs (a) act collaboratively with each other to avoid counter-productive
actions between them and (b) they are able to negotiate the gain and the con-
straints of collaboration with the SoS. To reach (a), this architecting heuristic
uses satisficing games theory and to reach (b), mechanism design and Multi-
Criteria Decision Analysis (MCDA) are used [16]. The second one is based on
Agent-Based Wave Model ([1], [17]). It aims at proposing a generic method to
find an SoS architecture satisfying constraints coming from an external envi-
ronment (SoS total cost, development time, threats and so on). To achieve this
goal, the method is composed of several steps that are repeated through waves
until a satisfying architecture is found. It is based on interviews with stakehold-
ers, fuzzy logic and a genetic algorithm. We have evaluated these two existing
SoS architecting heuristics through the seven following criteria: computation-
ality, genericity, dynamics, openness, computational cost, decentralization and
cooperation. This evaluation can be found in [10].

We can retain from this analysis that both heuristics fail regarding the to-
tal decentralization of the process thus disabling to architect collaborative and
virtual SoS. Moreover, they are based on a heavy process that makes difficult
to consider the dynamics and the openness. Finally, cooperation between CSs
is not totally represented while it is the basis for the SoS emergent behaviour.
Furthermore, to our knowledge, SoS literature does not propose generic SoS
models able to model a dynamic environment as well as interactions between
CSs ([1], [4]).

For all these reasons, we propose a fully decentralized, open SoS architecting
heuristic based on cooperation between component systems. We also propose a
new SoS model called SoS Architecting HEuriStIc based on Agents (SApHESIA),
based on the set theory and enabling to use cooperation as an architecting
heuristic. The cooperation enables agents (so, CSs) to self-organize and self-
adapt to the dynamics of the environment.

This paper considers SoSs composed of interacting systems, called compo-
nent systems (CSs). These CSs are autonomous and may evolve in a dynamic
environment. CSs and SoS have operational and managerial independences.
They may be geographically distributed and their dynamic interactions may
give rise to an emergent behaviour at the SoS level. These interactions also
adapt themselves over time to the evolution of the SoS and of the environ-
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mental constraints. Finally, an SoS is open (CSs may join or leave it during
functioning).

Next section presents the different elements of the SoS generic model we
propose.

3. Presentation of SApHESIA

This section describes the SApHESIA model as well as the heuristic we
propose to architect SoS, and briefly discusses SApHESIA tools for SoS archi-
tecting.

3.1. SApHESIA Model

SApHESIA uses the multi-agent system paradigm and enables to model an
SoS by focusing on its environment as well as on the interactions between its CSs.
It overall consists of the SoS (made of CS and goals) as well as its environment
(made of entities and rules).

3.1.1. Component System Model

A component system CS is the smallest part of an SoS and represents an
element of the second S of SoS. It is defined as CS = {T,R,Acq, L, F,G,Cost}
where T is the type of CS within the SoS.
R = {R1, ..., Rn} is the set of its resources.
Acq = {Acq1, ..., Acqq} is the set of acquaintances of CS.
L = {L1, ..., Lq} is the set of links of CS with other component systems.
F = {F1, ..., Fm} is the set of its functionalities.
G = {G1, ..., Gp} is the set of its goals.
Cost ∈ R is the cost of CS.
More precisely, the type is a string that represents a kind of a CS in the SoS.
A resource Ri is a structure Ri = {type, quantity} which represents the pas-
sive elements (i.e. without effector) in the SoS.
An acquaintance is an oriented association between two CSs (AcqCS = {CS′})
meaning that the first CS knows the second CS′.
A link is an oriented channel (LCS = (CS′, soa)) enabling exchanges (of com-
munication or resources) from CS towards CS′, where soa ∈]0, 1] is the strength
of this association (i.e. the quality of the channel). A link between CS and CS′

refers to the communication channel enabling them to directly communicate
while an acquaintance between CS and CS′ refers to the knowledge (by CS) of
the existence of CS′ without having the means to communicate with it.
A functionality F is an effector that affects (i) its own resources and/or the
ones of other CSs as well as (ii) the links between CSs. F = {f, t, p} where t
is the execution time of F , p ∈ [0, 1] is the performance (i.e. the probability of
success) of F and f = Conditions → Effects is a function of F . Conditions
is a set representing (i) a certain quantity of resources or (ii) the existence of a
link between two CSs or (iii) the existence of a CS enabling f to be executed.
Once f is executed, Effects is applied. Effects is a set representing either a
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certain quantity of resources or the existence of a link between two CSs affecting
the SoS or the environment. The SoS designer needs to define functionalities
that are so considered as inputs of the SoS.

A goal is a special state that CS tries to reach with a given priority. This
state can be (i) to own a defined quantity of a type of resources or (ii) to
create a link between two CSs. A goal g ∈ G is defined as g = {Re Op Qu,Pr}
where Re is a type of resource, Qu ∈ R is the quantity of resource of type Re
the component system wants to own, Op ∈ {=, 6=, <,>,6,>} is the comparison
operator in order to compare Qu to the current quantity of Re and Pr ∈ N+

is the priority of the goal enabling to model the relative importance of a goal.
The higher the priority is, the more important the goal is.
A cost, associated with each CS, represents its own charge and the charge for
the SoS when it uses it. This charge depends on the problem. The cost indicates
how much is the use of a particular CS functionality relatively to the other CSs.

As a CS may join/leave an SoS anytime, acquaintances are not static. An
acquaintance indicates that a CS knows another one but we clarify that a CS
does not need to know all the CSs of the SoS. Indeed, a CS knows the CSs of
its neighbourhood, which themselves know other CSs of their own neighbour-
hood. The neighbourhood may be defined by the perception field of a CS. The
perception field of a CS is all the entities (active or passive) the CS can locally
observe in its environment. Even if openness has not been addressed in our
experimentation this issue can be implemented using the restricted relaxation
[14] . It is a cooperative routing protocol that is able to learn the existence of
unknown agents. It consists in re-transmitting information to a neighbour who
may be interested in that information (or if it is a request, likely to respond to
it) without modifying the original sender. In other words, the re-transmitting
agent plays the role of a simple relay: it is not an intermediary. The receiver
can thus learn of the existence of a peer that is interested by (or in search of)
a particular piece of information and so increases its acquaintances.

3.1.2. SoS Model

We propose to model an SoS as SoS = {S,G} where S is the set of CSs and
G is the set of goals that may be a subset of the goals of the CSs of S according
to the type of management of the SoS (centralized or not).

3.1.3. Environment Model

An environment is defined as E = {Entities,Rules}
where Entities is the set of the entities that represent active independent
objects able to affect the environment or the SoS itself and Rules is the set of
rules that model exterior constraints (out of the SoS) that apply to the SoS.

An entity is an active independent object that does not belong to the SoS.
It is defined as Ei = {TE , RE , AcqE , LE , FE , GE} where
TE is the type of Entities.
RE = {RE1, ..., REq} is the set of resources,
AcqE = {AcqE1, ..., AcqEr} is the set of acquaintances,
LE = {LE1, ..., LEs} is the set of links.
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FE = {FE1, ..., FEt} is the set of functionalities.
GE = {GE1, ..., GEu} is the set of goals.
An entity can be linked to another entity or to a CS contrary to CS that can
only be linked with each other.

A rule (Rule = {Conditions → Effects}) models how the environment
reacts, evolves and interacts with the SoS. A rule affects some the entities in
the environment some CSs of the SoS that fulfil the Conditions.
The environment model differs from the SoS one as it represents all the entities
being outside the SoS and possibly impacting it. For example, in a ”military”
SoS, the opponents are considered as the environment, as well as the mountains
in which a vehicle may hide.

3.2. A Heuristic based on Criticality to Architect SoS

This section presents our decentralized decision algorithm based on the
Adaptive Multi-Agent System (AMAS) approach that uses cooperation as a
social behaviour between agents [15]. We propose to model a CS as an au-
tonomous entity (agent) that has to choose the most cooperative action (here a
functionality).

3.2.1. Criticality as a Metric of Cooperation

A generic and computable definition of criticality is presented as a function
taking as inputs, a subset of perceptions and its goals concerning these per-
ceptions [13]. Perceptions enable the agent to decide the action(s) to execute
(during its perceive-decide-act life-cycle) to reach its goal. The perception field
of an agent is predefined by the designer and domain-dependent. Formally, the
criticality C of an agent i at time t is

Ci(t) = f(p1(t), ..., pn(t), Sgoal) (1)

where {p1(t), ..., pn(t)} is a subset of the current perceptions of the agent i and
Sgoal is the final state the agent i wants to reach.

To know the result of one of its actions on its own criticality, an agent needs
to compute the anticipated criticality of this action. Formally, the anticipated
criticality of an agent i for an action a is defined as:

CAi(t, a) = Ci(t) + Effi(a) (2)

with Ci(t) the criticality of i at time t. Effi(a) is a function that computes the
impact of the action a if the agent i performs a. The anticipated criticality can
be then calculated for a sequence of actions A = {a1, a2, ..., an} as:

CAi(t, A) = Ci(t) + Σj∈[1,n]Effi(aj). (3)

The definition of this concept has been adapted to SApHESIA according to
the resources and goals of a CS. The current state of a CS is represented by the
perceptions of its current resources and the state it wants to reach is represented
by its goals. A criticality for each goal g in the set of goals G of the CS represents
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the distance of fulfilment of g. For example, if the goal g concerning the resource
Re is to reach a given quantity Qu (g.Op ∈ {=}), then the criticality of g has to
be high if Re is ’far’ from the objective and low otherwise. In the same way, if
the goal g concerns a resource Re that has to be greater than a given threshold
quantity Qu (g.Op ∈ {>,=>}), then the criticality of g has to be high if the
resource is smaller than the threshold and low if the resource is greater than the
threshold. Thus, the criticality Cg(t) of the goal g at time t can be defined by :

Cg(t) =


(a) : 1− 1

eα×∆g(t)
(c) :

atan((α×∆g(t)) +
Π

2
Π

(b) :
1

eα×∆g(t)
(d) : 1−

atan((α×∆g(t)) +
Π

2
Π

(4)

(a) the goal g has to be equal to a given quantity Qu of Re (resource).
(b) the goal g has to be different from a given quantity Qu of Re.
(c) the goal g has to be smaller or equal to a given quantity Qu of Re.
(d) the goal g has to be greater or equal to a given quantity Qu of Re.
So each goal has a criticality function, which depends on the operator of com-
parison (=, 6=, < or ≤ and, > or ≥) associated with the goal.

∆g(t) is the difference between the given quantityQu and the current amount
of resource Re of the CS. α is a coefficient influencing the shape of the curve.

These sigmoid functions have been chosen as their shapes correspond to the
meaning of each goal. The shape of these functions can be changed according
to the variation of the parameter α. It enables to control how the goal value
is important to reach or to avoid. An example for two values of α (α = 0.01,
α = 0.03) is given on figure 1. The red functions represent decreasing criticality
when reaching objective (g.Op ∈ {=}). A high α parameter value for the red
function lead a component system to stay really critical even if it is close to its
goal.

Figure 1: Example of a goal criticality:
reach a value (g.Op ∈ {=}) with two values
of α

Figure 2: Examples of a goal criticality: (1)
to reach a value (g.Op ∈ {=}); (2) to avoid
a value (g.Op ∈ {6=}); (3) to be equal to or
greater than a value (g.Op ∈ {>,=>});
(4) to be equal to or less than a value
(g.Op ∈ {<,=<})
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In figure 2 (where α = 0.03), the blue function represents an increasing crit-
icality when reaching an unwanted value g.Op ∈ {6=}. The light green one rep-
resents a decreasing criticality when a resource is greater than a given threshold
g.Op ∈ {>,=>}. The dark green one represents a decreasing criticality when
a resource is less than a given threshold g.Op ∈ {<,=<}. In our evaluations
(cf. section 4), alpha is equal to 1.

To calculate the criticality CCS(t) of a component system CS from the
criticalities of its goals G (given by each Cg(t), with g ∈ G), we calculate the
weighted average of all its goals criticalities:

CCS(t) =

∑
g∈G(Cg(t)× g.Pr)∑

g∈G(g.Pr)
(5)

with g.Pr, the priority of goal g (cf. 3.1.1).
Finally, this formula of the criticality for component systems is adequate

with the first definition of the criticality (1): we compare the current state of
a component system (represented by its resources) with the state it wants to
reach (represented by its goals). This calculation is central in the cooperative
decision algorithm presented in the next section.

Algorithm 1 Cooperative Decision Algorithm of CSi
Require: a CS CSi, its functionality set Fi
Require: its acquaintance set Acqi, its links set Li

1: for all f ∈ Fi do
2: for all CSj ∈ Li ∪Acqi do
3: CoopTable(f)(CSj) += askAnticipatedCrit(CSj , f)
4: for all CSk ∈ (Li ∪Acqi) do
5: CoopTable(f)(CSj) += askAnticipatedCrit(CSj , f)
6: end for
7: Sort CoopTable(f)(CSj)
8: end for
9: end for

10: return minmaxFunc(CoopTable) {Choose f that minimizes the maximum
of the criticalities stored in CoopTable}

3.2.2. Cooperative Decision Algorithm for Component Systems

We propose to model a CS as an autonomous entity (agent) having a perceive-
decide-act life-cycle. Each agent must be cooperative with its neighborhood
and, for this, it must choose the most cooperative action. That is why, the
proposed decision algorithm (Algorithm 1) allows to choose the most cooperative
action (here a functionality) during a CS’s decision phase. Concretely, each
component system CSi = {Ti, Ri, Acqi, Li, Fi, Gi, Costi} has to construct its
cooperative table and to choose the most cooperative functionality. Lines of
the cooperative table to be built contain the anticipated criticalities for the
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neighbourhood of CSi (given by Li∪Acqi) depending on the potential execution
of each functionality f of CSi.

Each CSi asks for the anticipated criticality of its neighborhood (in Acqi
and Li) for each available functionality f ∈ Fi. This request is made by the
function askAnticipatedCrit(CSj , f) (line 3 of algorithm1). This function has
a component system CSj and a functionality f as inputs and returns the value
of the anticipated criticality of CSj if CSi applies f on CSj . This antici-
pated criticality is then saved in a new line (identified by a couple (CSj , f)) of
the cooperative table (CoopTable). Then, the anticipated criticalities of other
component systems (including CSi) are added to this line through the func-
tion askAnticipatedCrit(CSj , CSk, f). This function returns the anticipated
criticality of CSk if CSi applies f on CSj (line 5). The lines of CoopTable
contain the anticipated criticalities of its entire neighborhood (including CSi)
if CSi applies f on CSj . Finally, all the table lines are sorted from the high-
est criticalities to the lowest one (line 7). Once the cooperative table is built,
CSi chooses the functionality to carry out is the most cooperative in terms of
criticality: the one that minimizes the maximum of the anticipated criticalities
thanks to the minmaxFunc(CoopTable) function that returns the functional-
ity f to apply. The reader may consult [10] for more details concerning the
minmaxFunc(CoopTable) function.

3.3. Outlines of SApHESIA Tools for SoS Architecting

As SoS architecting tools are domain-dependent and/or not available in the
public domain, we propose a set of tools in order to model and run easily SoS
experiment through the SApHESIA model. This set is mainly composed of two
elements :

• the SoS and Environment Generator that consists of a SML Parser &
Compiler and a GUI generator which jointly enable the user to manually
create and/or modify a SoS and/or its environment.

• the SApHESIA core architecting that consists of SApHESIA Engine and
Viewer which respectively runs a loaded SApHESIA model and visualizes
results of the tests.

Without going into the details, the GUI generator and the language called
SML (SApHESIA Modeling Language) enable to translate a SApHESIA model
into a computable model usable by our tools. The GUI generator also enables
to change dynamically the SoS composition by adding or removing component
systems or entities and also by changing the different properties of a component
system (resources, links, etc.). Thanks to the viewer, user can display useful data
to validate our cooperation-based SoS architecting heuristic through different
scenarios.

SML is the XML-based language used to save and load SoS experiments
through the SML Parser & Compiler. It enables to declare each type of elements
(component system, entity, rule and so on) of the SApHESIA model. Each
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element of the model is presented through a hierarchical tree where each node
represents a XML keyword usable to declare a property of a SApHESIA element.

SApHESIA has been implemented in JAVA language because it is a well-
maintained programming language based on the Object paradigm close to the
agent paradigm. Indeed, the Object paradigm owns the concept of properties
and methods enabling to represent the Perceive − Decide − Act cycle of an
agent. The main classes used to implement SApHESIA tools as well as details
of these tools can be see in [10].

This set of tools has been used for implementing the whole of our experiments
on SoS Architecting.

4. Instantiation of SApHESIA and Coupling Evaluation

This section presents experimentation about reuse and interdependency be-
tween existing SoSs. The aim is to evaluate that two SoSs independently built
using SApHESIA can serve each other (cooperate) and then together increase
their own efficiency. As we did not find any case studies with real and usable
data to evaluate our propositions, we evaluate them through a case study that
we developed and another one found in the literature. The first case study
(CoCaRo) is a resources transportation system we have defined to validate two
contributions: (i) the use of SApHESIA to define an agent and (ii) the met-
ric of criticality enabling cooperation between agents. The second case study
concerns the Missouri Toy problem, a communication transportation problem.
It has been chosen because (i) it has already been studied in the SoS field and
(ii) it is a good starting point for testing our heuristic concerning its robustness
and its capacity to be functionally adequate. The implementation of these two
case studies with the AMAS approach as well as their evaluations have already
been published in [11] and [12]. The novelty of this paper concerns the trans-
formation of both of these AMAS into SoS as well as the coupling of these two
SoSs.

The first two subsections focus on the adaptation of each case study (Co-
CaRo and UAV) in order to be able to obtain two SoSs and then on their
coupling to form a third SoS. The third subsection presents this coupling.

4.1. Adaptation of CoCaRo problem as a Robots SoS

CoCaRo (Color Carrier Robot) is a system that models and simulates a
resources transportation system by mobile robots.

4.1.1. Description

To stay alive, a robot (possibly red, blue or green) has to find and pick up
a box (also being red, blue or green) and then to drop it in the area (called
the nest) of the same colour than the box. Each robot has an initial amount
of energy that it consumes at each movement. However when it drops a box
in the appropriate nest, it receives a reward of energy to remain longer alive.
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The value of the energy reward depends on the colours of the dropped box and
of the robot: it is maximum when the robot and the dropped box both have
the same colour. The instantiation of SApHESIA to this case study as well as
obtained experimental results dealing with the evolutionary part of the system’s
behavior can be found in [11].

To be able to experiment with the coupling of these SoSs, CoCaRo needs to
be modified in order to be an SoS and to have interdependencies with a second
SoS. That is why, a robot is now just a resource of the robots group that will
be used in a functionality to create energy. So a robot is not an active entity
anymore. The robots are aggregated into colour groups, each of them being a
CS. So three CSs have been defined (red, blue and green). Each CS consumes
a certain rate of energy per time unit and can use boxes directly to create en-
ergy. As the aim is to study the interdependencies between SoSs, the dynamic
of exchange between robots are not needed in this simulation.

The Robots Group CS model is defined as

CSRG = {Tr, Rr, Acqr, Lr, Fr, Gr, Costr} (6)

where

• Tr = {Red,Green,Blue} is the type set and represents respectively the
red, green or blue group of robots.

• Rr is the resource set defined as: Rr = {RTurn, RRobot, REnergy, RBoxRate,
REC , RBox, RHighV alue, RLowV alue}, where RTurn is used to save the cur-
rent simulation step. RRobot represents the number of active robots in the
group. REnergy represents the global energy level of a CSRG. RBoxRate
represents the rate of boxes apparition in a CSRG, the boxes appearing
randomly in the environment. REC represents the energy consumption of
a CSRG. RBox represents the number of available boxes in a CSRG, i.e.
the number of boxes that are perceived and brought back by the CSRG.
Finally, RHighV alue and RLowV alue are respectively the high reward value
and the low reward value when the CSRG uses a box (in CoCaRo, the
reward depends on the colour of the dropped box and the colour of the
robot).

• Acqr starts empty and does not evolve over time because each group of
robots are linked to others; Acqr = {∅};

• Lr = {CSRG} is the set of links; as the links connect all the CSRG (each
robot can exchange boxes or information whatever their colors) and Lr
subsumes Acqr, Acqr is empty.

• Fr = {FCreateEnergy, FGiveBox} is the set of functionalities. FCreateEnergy
represents the ability of the CSRG to transform boxes into energy. The
CSRG is able to create energy if it owns at least one box and one robot
({RBox > 1}, {RRobot > 1}). FGiveBox represents the capacity of a CSRG
to give boxes to another CSRG.
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• Gr = {GBox, GEnergy} is the set of goals. GBox represents the goal for a
CSRG to own as much boxes as possible. GEnergy represents the goal for
the CSRG to maximize energy.

• Costr represents how much is the use of a CSRG. In this case study the
SoS is closed (there is no entry / no exit of new CSRG) so Costr = 0.

The CoCaRo SoS model is defined as

SoSCoCaRo = {Red,Green,Blue,GBox, GEnergy} (7)

where Red, Green and Blue are CSRG (RG means Robots Group). The goals
of the CoCaRo SoS (GBox and GEnergy) are to keep all its CSRG alive, which
means that they must have roughly an identical criticality.

The CoCaRo SoS environment model does not contain any entity (be-
cause boxes are directly considered as resources). It only consists of 4 rules that
simulate the boxes apparition and the energy consumption. It is defined as :

Ec = {RuleApparition, RuleGreenConsumption,
RuleBlueConsumption, RuleRedConsumption}.

(8)

The rule RuleApparition enables to generate new boxes in the CSRG. Basi-
cally, at each turn of the simulation, if a randomly generated number is lower
than the RBoxRate resource, the resource RBox increases. The three other rules
enable to change the consumption of energy of each CSRG (robots group) in
order to introduce dynamics in the environment.

4.1.2. Cooperative Behaviour

As we previously saw in the CSRG model, the CoCaRo SoS goal Gr consists
of two goals for a CSRG: GBox = {RBox > 0} (to have as much available
boxes as possible) and GEnergy = {REnergy > 201} (to have as much energy as
possible). In accordance with 3.2.1, the criticalities of the two goals of a CSRG
at time t are both defined by the formula 4 (d). Furthermore, a priority of 1
was given to GEnergy and a priority of 0.01 was given to GBox. A low priority
has been associated with the GBox goal so that CSRG do not spend their time
picking up boxes.

The criticality of a CSRG can be then calculated with the weighted average
of all its goals criticalities (formula (5)). According to SApHESIA, each CSRG
is cooperative and pursues the cooperative decision algorithm 1 (section 3.2.2).

4.1.3. Experimentations

In this new version of CoCaRo, the robots are not active entities, conversely
to [11]; their actions (bringing back boxes and convert boxes into energy) are

120 has been chosen arbitrarily, but a value superior to 0 is important because if component
system has no more energy, this one is considered as ’dead’ and cannot be used anymore.
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Table 2: Initialization of the three CSRG

Green Blue Red
RTurn 0 0 0
RRobot 20 20 20
REnergy 60 60 60
RBoxRate 1 1 1
REC RLowV alue RLowV alue RHighV alue
RBox 0 0 0

modeled with the functionality FCreateEnergy. The aim of this first CoCaRo SoS
experimentation is to show that the dynamics of this system (without active
robots) is the same than the system CoCaRo with cooperation presented in [11]
(with active robots).

Three CSRG have been instantiated: Green, Red, Blue. Each of them has
been initialized with the different values that are summed up in the table 2. In
this table, RLowV alue = 0.015 and RHighV alue = 0.04. These values have been
chosen arbitrarily. The idea is to begin with the Red CSRG with a high value
of energy consumption and validate that the two other CSRG will help it by
giving extra boxes.

In the scenario given in [11], in order to make comparisons, we experimented
the system in an ’hostile’ environment where the boxes that appear have all the
same color during a fixed period of time. It enabled to test the robustness of
CoCaRo by giving, during a fixed period of time, only boxes that are efficient for
only one kind of robots. The aim, here, is to reproduce the hostile environment.
Thus each CSRG has, during a fixed period of time, only boxes that are efficient
for it. During the first 1000 steps of the simulation, the Red CSRG has a high
value of energy consumption (REC = RHighV alue) (representing that there is
no red boxes in the environment). Then, during the next 1000 steps of the
simulation (steps 1000 to 2000), the Green CSRG will have a high value of
energy consumption (REC = RHighV alue) and Red CSRG will come back to a
low consumption (thanks to the rule RuGreenComsumption). Finally, during the
last 1000 steps of the simulation (steps 2000 to 3000), the Blue CSRG will have
a high value of energy consumption (REC = RHighV alue) and Green will come
back to a low consumption (thanks to the rule RuBlueComsumption).

Obtained results can be seen in figure 3 and especially in the graphs 1 & 2.
The graph 2 shows that the dynamics of the environment impacts the function-
ing of each CSRG during time. For example, from cycle 0 to cycle 1000, the
REnergy resource is lower for the Red component system because of the initial-
isation of REC to RHighEnergy. This is the same reasoning for Green and Blue
respectively between cycles 1000 and 2000 and between cycles 2000 and 3000.
Secondly, the dynamics of the system CoCaRo with cooperation presented in
[11] is always present. Indeed, each CSRG tends to balance the mean level of
energy of each other. This fact can be seen with the REnergy and criticality
graphs(graphs 1 & 2 in fig.3). Even if a CSRG is more constrained by the
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environment, the two others, thanks to the cooperation algorithm, are able to
help it. The second graph in figure 3 also shows that all the CSRG finish the
simulation by having a very low level of energy.

4.2. Adaptation of UAVs as a UAVs SoS

The Unmanned Aerial Vehicles (UAVs) case study aims at avoiding hazards
while reaching targets.

4.2.1. Description

In this case study, several UAVs have to fly through an environment that
owns targets (T) and hazards (H). Each UAV has to avoid the hazards and go
through the targets. It cannot go to the same place than another UAV and has
to respect a maximum distance between itself and other UAVs. The instantia-
tion of SApHESIA to this case study as well as obtained experimental results
dealing with the evolutionary part of the system’s behavior can be found in [12].
In this new version of UAV SoS, the aim of the experimentation is to present
the global functioning of an independent SoS using the cooperation mechanism.
Conversely to [12], UAVs have to cooperatively take boxes to convert them into
energy. In this adaptation, the SoS is composed of 3 CSs (UAV1, UAV2 and
UAV3) representing UAVs that are able to navigate to boxes and to convert
them into energy (such as a robots in CoCaRo).

The UAV CS model is defined as

CSUAV = {Tu, Ru, Acqu, Lu, Fu, Gu, Costu} (9)

where

• Tu = UAV ,

• Ru = {REnergy, RBox, REC , RDistToBox} is the set of resources where
REnergy represents the energy level of the CSUAV . RBox represents the
number of available boxes for the CSUAV . REC represents the global
energy level. RDistToBox represents the distance of the CSUAV to a box.

• Acqu = {∅} is the set of acquaintances; it is empty because each CSUAV
is linked with all the other CSUAV .

• Lu is the set of links. It depends on the considered CSUAV : an CSUAV
has two links towards the two other CSUAV .

• Fu = {FCreateEnergy, FGiveBox, FMoveToBox, FTakeBox} is the set of func-
tionalities, where FCreateEnergy represents the capacity of an CSUAV to
convert a box into energy. FGiveBox represents its capacity to give a box
to another CSUAV . FMoveToBox represents its capacity to go to a box and
decreases the resource RDistToBox. FTakeBox represents the capacity to
take a box when RDistToBox is equal to 0.
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• Gu = {GBox, GEnergy, GDistToBox} is the set of goals. GBox = {RBox >
0} represents the goal for the CSUAV to own as much boxes as possible.
GEnergy = {REnergy > 0} represents the goal for the CSUAV to maximize
energy. GDistToBox = {RDistToBox == 0} represents the goal to minimize
the distance of the CSUAV to a box.

• Costu represents how much is the use of a CSUAV ; as this case study is
closed, (no CS may enter or exit the SoS), Costu = 0.

The UAV SoS model is defined as

SoSUAV = {UAV1, UAV2, UAV3, GBox, GEnergy, GDistToBox}, (10)

where UAV1, UAV2, UAV3 are CSUAV . Each CS represents a drone that de-
tects, takes and converts boxes into energy. It aims at maintaining its energy
level high enough to continue working; furthermore it is able to give boxes to
other CSUAV if necessary. The goal of the SoSUAV (through GBox, GEnergy
and GDistToBox) is to keep all its CSUAV alive, which means that they must
have roughly an identical criticality.

The UAV SoS environment is defined as

Eu = {Boxes,RuleDetectBox} (11)

where Boxes is a set of boxes and RuleDetectBox is a rule explained hereafter.
An entity box is defined as

Boxi = {Tb, Rb, Acqb, Lb, Fb, Gb} (12)

with

• Tb = Box.

• Rb = {RAvailability} represents the availability of the box for the CSUAV .

• Acqb, Lb, Fb, Gb are empty sets.

The resource RAvailability is used as a threshold to simulate the detection of
a box by a CSUAV thanks to the rule RuleDetectBox. If the condition part of
this rule is checked, the CSUAV has detected this box and it saves its distance
in its resource RDistToBox.

4.2.2. Cooperative Behaviour

As we previously saw in the CSUAV model, the UAV SoS goal Gr consists
of three goals for a CSUAV : GBox = {RBox > 0} (to own as much boxes as
possible), GEnergy = {REnergy > 0} (to have as much energy as possible) and
GDistToBox = {RDistToBox == 0} (to minimize the distance of the CSUAV to
a box). In accordance with 3.2.1, the criticalities of the two first goals of a
CSUAV at time t are both defined by the formula 4 (d). The criticality of the
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Table 3: Initialization of the three CSUAV

UAV 1 UAV 2 UAV 3
REnergy 60 60 60
RBox 0 0 0
REC 0.08 0.015 0.015

RDistToBox 0 0 0
RDistToRG 0 0 0

third goal is defined by the formula 4 (a). Furthermore, a priority of 10 was
given to GEnergy, a priority of 1 was given to GBox and a priority of 0.1 was
given to GDistToBox.

The criticality of a CSUAV can be then calculated with the weighted average
of all its goals criticalities (formula (5)). According to SApHESIA, each CSUAV
is cooperative and pursues the cooperative decision algorithm 1 (section 3.2.2).

4.2.3. Experimentations

The aim of this UAV SoS experimentation is to present the global functioning
of an independent SoS using the cooperation approach we propose. UAVs can
cooperate with each other by using the FGiveBox functionality. For the UAV
SoS, three CSUAV have been instantiated: UAV1, UAV2 and UAV3.

Each of the CSUAV has been initialized with the different values that are
summed up in the table 3. The values have been chosen arbitrarily. UAV1 is
less effective than others because REC (representing the energy consumption) is
the highest. This lack of effectiveness enables to add some diversities in the SoS
and to check the relevance of the cooperation mechanism carried out through
the algorithm 1 within this SoS.

Obtained results can be seen in figure 3 and especially in the graphs 3 & 4.
The level of energy of UAV 1 (graph 4) decreases quicker than others (because
of the higher value of REC). Because of the goal GEnergy, a quick increase of
the UAV 1 criticality from cycle 0 to cycle 650 is visible. But, after cycle around
650, the cooperation algorithm makes UAV 2 and UAV 3 help UAV 1 by giving
boxes. The result of this cooperative behavior is the increase of the criticality
of UAV 2 and UAV 3, because they do not use their boxes for creating energy
anymore. Nevertheless, a stabilization of the level of energy of UAV 1 is visible
from cycle around 650. Then, the levels of energy of UAV 2 and UAV 3 are
decreasing until cycle 5000 because these two UAVs continue to help UAV 1 to
survive. Finally, after cycle 5000 the criticality and the energy level are balanced
and stable for the three component systems. The final stabilization comes once
again from cooperation algorithm. Indeed, as UAV 1 shows that it has the same
level of criticality than other, it starts to bring back boxes too and share it with
others UAVs.

4.3. Coupling two SoSs

This subsection is devoted to the coupling of CoCaRo SoS and UAVs SoS.
The aim is to study how it is possible to make two interdependent SoSs coop-
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erate. To create dependencies in terms of functionalities, the two previous SoSs
need to be slightly modified.

4.3.1. Description

The two SoSs to be coupled are close to those described in the previous
subsections. We still have

• 3 robots groups (CSRG) instantiated in SoSRG = {Red,Green,Blue}

• 3 UAVs (CSUAV ) instantiated in SoSUAV = {UAV1, UAV2, UAV3}.

The CSUAV have been modified to create interdependencies (dependencies in
both ways) between SoSRG and SoSUAV . Thus, a CSUAV is still defined by
formula given in equation 9. Only Ru and Fu are impacted in the following way
(other elements of the set are unchanged):

• Ru = {REnergy, RBox, REC , RDistToBox, RDistToRG}
• Fu = {FCreateEnergy, FGiveBox, FMoveToBox, FTakeBox, FMoveToRG, FDrop}.

RDistToRG has been added to represent the distance of one CSUAV from a
CSRG. Thanks to the two new functionalities FMoveToRG and FDrop, the
CSUAV is now able to share boxes with a CSRG :

• FMoveToRG enables a CSUAV to go to a CSRG by decreasing the resource
RDistToRG. When a CSRG gets a box from a CSUAV , it receives extra
REnergy.

• FDrop enables a CSUAV to give a box to a CSRG when RDistToRG is equal
to 0. The use of FDrop (giving the possibility to drop a box for the CSRG)
also rewards the CSUAV by giving extra REnergy.

The environment of the CoCaRo and UAV SoSs is composed of the
union of the two previous environments given in equations 8 and 11:

E = {RuleApparition, RuleGreenConsumption, RuleBlueConsumption,
RuleRedConsumption, RuleDetectBox, Boxes}

(13)

4.3.2. Cooperative Behaviour

Each CS tries to reach its objectives (i.e. to have more energy) by carrying
boxes. The computation of the criticalities remains unchanged (see 4.1 and 4.2).
Basically, the CS criticality varies according to the CS energy level (the lower
is its energy, the higher is its criticality). As all the CSs have to be cooper-
ative, each of them has to help the most critical of its neighbourhood. This
cooperation can sometimes lead the CSs to exchange boxes. Thanks to the an-
ticipated criticality (described in the algorithm 1), a CS can choose locally the
most favourable action to perform from a cooperative point of view. The simul-
taneity of all the cooperative local behaviours of the different CSs, according to
the AMAS approach, must provide the collective function that is “functionally
adequate” in this environment.
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Figure 3: Results of two SoSs coupling with SApHESIA

24



4.3.3. Results of the SoSs Coupling

In order to evaluate the coupling of CoCaRo SoS and UAVs SoS, a simulation
has been done. Initialization of the CSs are summarized in tables 2 and 3.
Obtained results have been analyzed from the viewpoint of REnergy and the
criticality (fig.3 (graphs 5 & 6)).

The first observed result is that no CS dies during the simulation of 8000
cycles. More specifically, the REnergy tends to be balanced between each dif-
ferent CSRG (fig. 3, graph 6) but this resource is slightly increasing after the
cycle 1000. The criticality of the CSRG at the beginning of the simulation is
high (criticality resource on bottom curve). This is due to the fact that, at the
beginning of the simulation, no agent knows what to be cooperative means ;
it needs to learn, as it goes along, what is its most cooperative action it can
take for its neighbourhood (including itself). This learning begins to take effect
around cycle 500. The CSUAV begin to drop (with the functionality FDrop)
extra boxes to the CSRG enabling to these latter to decrease their criticality.
Thank to this cooperation and conversely to the graph 2 of fig. 3, the three
CSRG are able to function during the 8000 cycles of the simulation.

Our experiments show that the CSs tend to find naturally the best way to
solve the constraints of the environment. Indeed, the CSUAV bring back boxes
to the CSRG and they increase their energy level because giving boxes to the
CSRG rewards them with extra energy.

Furthermore, as UAV1 and Red consume more energy than the other CSs
(cf. tables 2, 3), they are the less efficient (they have a higher criticality than
the others). Despite this, their respective level of energy is equivalent to that of
the CS of their respective SoS because they are the most helped (by the others)
thanks to the CSs cooperative behavior.

From a criticality point of view we can notice on fig. 3 that the criticality of
the coupled SoSs (graph 5) is lower than the criticalities of each individual SoS
(graphs 1 and 3). Furthermore this criticality stabilizes at low values. From an
energy point of view we can notice on fig. 3 that the energy of the coupled SoSs
(graph 6) is greater than the energies of each individual SoS (graphs 2 and 4)
and it tends to increase for the CoCaRo SoS. So the two SoSs have naturally
found their interdependency and the way to solve them.

However, we have to keep in mind that, if we want to solve problems involv-
ing different SoSs built with the AMAS approach, each being independently
designed, issues may appear, especially when comparing the criticality of each
SoS2. Indeed, the criticality of an SoS A can have a different meaning than the
criticality of an SoS B as the value scale of the criticality in one SoS may be
different of the second one. Indeed a criticality 0.7 does not necessarily have the
same meaning in term of difficulty for A and for B. For example, if A criticality
varies between 0 and 1 and the one of B between 0 and 100, a criticality of 0.7
does not have the same meaning in term of difficulty for the two. Indeed from
A point of view, it is very critical whereas from B point of view, it is not.

2Every criticality used here has been manually normalized (between 0 and 1).
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5. Conclusion and Perspectives

This paper presents a new SoS generic model enabling to model the Maier’s
criteria. The notions of environment and interactions between component sys-
tems have been extended from existing SoS models. The dynamics of the envi-
ronment is taken into account through the active entities and rules that affect
the interactions of the CSs. The AMAS approach can be an interesting paradigm
to implement a new SoS architecting heuristic that respects the self-government
principles. That is why we have proposed an SoS architecting heuristic imple-
mented by an algorithm using cooperation as a social behaviour to enable CS
self-organization. Cooperation is implemented through the concept of critical-
ity that we have formalized to propose a reusable metric beyond the scope of
the SoSs. As a bottom-up approach, our heuristic is decentralized (no central
management entity needed) and enables to architect virtual and collaborative
SoSs.

As we did not find any case studies with real and/or usable data to validate
our work, we have evaluated our propositions through two experiments: one
found in the literature and the other one made by ourselves. This experimen-
tation relates to the capacity of our approach to reuse and combine existing
SoSs that are independently designed but interdependent. The results show
that the notions of cooperation and of criticality between two SoSs enable their
combination in a natural way.

Even if our work showed interesting results, it is only a tiny part, a modest
contribution with regards to what it remains to do in the vast SoS research field.
Concerning short-terms perspectives, testing our approach with more CSs will
enable to validate that our heuristic can scale-up. To this aim, for a deeply
evaluation, we could use the metrics given by [21]. A mid-terms perspectives
could be to reify every CS of an SoS into an AMAS agent in order to transform
an SoS into an AMAS. In this way, the CS model could be a basis to a formal
model of an AMAS agent. Indeed, the AMAS approach has been instantiated
in several domains and is mature to be generalized and formalized. A long-term
perspectives could be to collaborate with SoS experts to define more complex
examples with real data and real case studies.

References

[1] P. Acheson, L. Pape, C. Dagli, N. Kilicay-Ergin, J. Columbi, and K. Haris.
Understanding system of systems development using an agent- based wave
model. Procedia Computer Science, 12:21 – 30, 2012. Complex Adaptive
Systems 2012.

[2] J. Axelsson. A systematic mapping of the research literature on system-
of-systems engineering. In 10th System of Systems Engineering Conference
(SoSE), pages 18–23, May 2015.

[3] C. Azani. An Open Systems Approach to System of Systems Engineering,
pages 21–43. John Wiley and Sons, Inc., 2008.

26



[4] W. Baldwin and B. Sauser. Modeling the characteristics of system of sys-
tems. 2009 IEEE International Conference on System of Systems Engi-
neering (SoSE), 2009.

[5] W. C. Baldwin, B. J. Sauser, and J. Boardman. Revisiting the ”meaning of
of” as a theory for collaborative system of systems. IEEE Systems Journal,
11(99):2215 – 2226, 2015.

[6] C. Ballegaard Nielsen, P. Gorm Larsen, J. Fitzgerald, J. Woodcock, and
P. J. Systems of systems engineering: Basic concepts, model-based tech-
niques, and research directions. ACM Comput. Surv, 48(2):41, 2015.

[7] M. Bjelkemyr, D. Semere, and B. Lindberg. An engineering systems per-
spective on system of systems methodology. In 2007 1st Annual IEEE
Systems Conference, pages 1–7, April 2007.

[8] BKCASE Editorial Board. Guide to the Systems Engineering Body of
Knowledge. Guide to the Systems Engineering Body of Knowledge (SE-
BoK), page 945, 2014.

[9] J. Boardman and B. Sauser. System of systems - the meaning of of. In 2006
IEEE/SMC International Conference on System of Systems Engineering,
April 2006.

[10] T. Bouziat. A Cooperative Architecting Procedure for Systems Of Sys-
tems based on Self-adaptive Multi-Agent Systems. Phd thesis, Université
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