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Role of synaptic variability in spike-based neuromorphic circuits with unsupervised learning

Resistive Random Access Memory (RRAM)-based artificial Neural Networks (NNs) have been shown to be intrinsically robust to RRAM variability but no study has been done to clearly explain and quantify this robustness. In this paper, we fully characterize a 4kbit RRAM array under different programming conditions. The impact of the electrical characteristics of RRAM (resistance variability, memory window, endurance performance) on the detection rate of a NN designed for object tracking and trained with a stochastic Spike-Timing Dependent Plasticity (STDP) rule is studied. We introduce a new parameter called the Synaptic Window (SW), defined as the ratio between the arithmetic mean conductance values of the low and high resistance distributions. The network performance was found only to be sensitive to the value of the SW (a SW>100 is required to achieve the maximum NN performance). Moreover, we demonstrate that a high resistance variability increases the SW for a given window margin.

I. INTRODUCTION

Synapses play a central role in two principal tasks of the brain; information processing and information storage. Of many important synaptic properties, it has been proven that synapses are noisy devices [START_REF] Allen | An evaluation of causes for unreliability of synaptic transmission[END_REF], [START_REF] Hessler | The probability of transmitter release at a mammalian central synapse[END_REF]. In biology, variability has been observed in the postsynaptic response (if a presynaptic cell is driven repeatedly with identical stimuli, there is trialto-trial variability in the postsynaptic response). While the purpose of such variability is not completely understood, it is generally accepted that variability might offer distinct advantages (e.g. energy-saving [START_REF] Goldman | Enhancement of information transmission efficiency by synaptic failures[END_REF] or enhance sensitivity to weak signals [START_REF] Mcdonnell | What is stochastic resonance? definitions, misconceptions, debates, and its relevance to biology[END_REF]). Resistive memory devices (RRAM) or RRAM-based circuits are promising candidates to emulate the behaviour of synapses in artificial Neural Networks (NN), and in particular to reproduce their capability to learn. The synaptic connections (RRAM devices) among neurons are created, modified, and preserved accordingly to a learning model. As a result of a learning process it is possible to perform pattern detection and classification. In recent years, a variety of approaches have been considered to implement learning, such as the bio-inspired Spike-Timing Dependent Plasticity (STDP [START_REF] Vianello | Resistive memories for spike-based neuromorphic circuits[END_REF]- [START_REF] Azghadi | A hybrid cmos-memristor neuromorphic synapse[END_REF]). STDP facilities the NN to learn the synaptic weights in an unsupervised way -without a labeled dataset or external teacher. It has been demonstrated that RRAM-based NNs are robust to synaptic variability [START_REF] Vianello | Resistive memories for spike-based neuromorphic circuits[END_REF], [START_REF] Garbin | On the impact of oxram-based synapses variability on convolutional neural networks performance[END_REF]. However, a clear study explaining the origin of this robustness is still missing. In this work, a visual pattern extraction application based on a fully-connected network of Leaky-Integrate and Fire (LIF) neurons and RRAM-based synapses implementing the STDP learning rule is adopted to demonstrate the impact of RRAM electrical characteristics (variability, Memory Window, endurance) on network performance. We demonstrated that RRAM technologies with a large Memory Window (MW), defined as the ratio between the high and low resistance at 3σ of the resistance distribution, allow for improvement of the network performance. However, an increase of MW is challenging to realise with state of the art RRAM due to the large variability. Synaptic variability is beneficial in the case of NNs since it increases the dynamic range of resistance, thus reducing the constraints on the MW. The results obtained from the experimental characterization of a 4kbit RRAM array have been exploited to give general guidelines for the design of hardware-oriented neuromorphic circuits.

II. 4KBIT RRAM ARRAY FABRICATION AND ELECTRICAL

CHARACTERIZATION

A 4kbit RRAM array was fabricated using a 130 nm CMOS front-end process [START_REF] Grossi | Fundamental variability limits of filament-based rram[END_REF]. The RRAM devices are composed of a TiN/HfO 2 /Ti/TiN stack, where both HfO 2 and Ti layers are 10 nm thick and are integrated on the top of the fourth metal layer. The cross section of a 300nm diameter RRAM device is shown in Fig. 1 (Left). The cell configuration is the 1T-1R presented in Fig. 1 (Right). RRAM devices switch between two distinct resistance states, a Low Resistance State (LRS) and a High Resistance State (HRS), when Forming/Set and Reset conditions are applied respectively. Forming and Set operations are performed by applying a voltage pulse on the RRAM top electrode (V Set ), whereas Reset is performed by applying a voltage pulse on the drain of the NMOS transistor (V Reset ). The compliance current (I cc ) is fixed by the voltage applied on the gate of the transistor (V g ). tion; therefore the most important parameter is the Memory Window (MW). The variability in the high resistance state reduces the MW, hindering the use of this technology for large memory arrays. In neuromorphic applications the RRAM devices define the weight of the connection between two neurons. Therefore they have different requirements than standard memory applications. In the following section, we will study the impact of RRAM electrical characteristics on the performance of a NN for object tracking. We introduce a new parameter, the Synaptic Window (SW), defined as the ratio between the arithmetic mean conductance values of LRS (G LRS ) and HRS (G HRS ). The resistance variability in both LRS and HRS is estimated as the standard deviation of the log 10 of the resistance distribution [START_REF] Garbin | Hfo2-based oxram devices as synapses for convolutional neural networks[END_REF]. MW, SW, endurance performance and variability of both LRS and HRS depend on the programming conditions and they cannot be decoupled (see Fig. 3 (a)). Fig. 3 (b) shows the link between resistance variability and median resistance values obtained with different programming conditions. Variability increases with median resistance value and saturates for resistance values higher than 13 kΩ [START_REF] Grossi | Fundamental variability limits of filament-based rram[END_REF]. Moreover, it has been demonstrated that a tradeoff exists between MW and endurance performance: higher MW implies lower endurance [START_REF] Vianello | Resistive memories for ultra-low-power embedded computing design[END_REF]. Fig. 3 (a) summarizes the programming conditions used in the following section to study the impact of RRAM performance on a NN by means of simulation:

• A: best compromise between endurance and MW (the most suited condition for standard memory applications);

• B1 and B2: low power consumption, high variability in both LRS and HRS and low MW (cannot be used for memory applications due to the low MW);

• C: highest MW among the 4 conditions, high power consumption and low endurance.

III. IMPACT OF RRAM PROGRAMMING CONDITIONS ON A NEURAL NETWORK FOR OBJECT TRACKING

A. Network Topology

We performed full system-level simulations of a visual pattern extraction application with our special purpose eventbased N2D2 simulator tool [START_REF] Bichler | Design exploration methodology for memristor-based spiking neuromorphic architectures with the xnet event-driven simulator[END_REF]. The neuron circuits are modeled with behavioral equations as in [START_REF] Bichler | Unsupervised features extraction from asynchronous silicon retina through spike-timing-dependent plasticity[END_REF]. The effects of both We use the F1-score as a metric to assess network performance:

F 1 = 2T P 2T P + F N + F P (1) 
F1 ranges from 0 to 1, with F1 = 1 being the best performance.

Each output neuron becomes sensitive to one lane. Since there are 60 output neurons and only 6 lanes, several neurons become sensitive to the same lane. As more cars pass on the lanes 4 and 5, more neurons are sensitive to these lanes than to the lane 6, the least active lane. To assess network performance, only the most sensitive neuron for each lane is considered.

The RRAM cells presented in Section II are intrinsically binary devices: they switch between two distinct states, LRS and HRS. The use of only two resistance levels per synapse, with respect to the multi-level approach, can be insufficient to achieve good performance in neuromorphic systems designed for complex applications [START_REF] Bill | A compound memristive synapse model for statistical learning through stdp in spiking neural networks[END_REF]. In [START_REF] Garbin | Hfo2-based oxram devices as synapses for convolutional neural networks[END_REF] we proposed n binary RRAMs operating in parallel as artificial synapse (Fig. 4 (b)). Since parallel conductances add up, the equivalent synaptic weight spreads from the sum of n condutances in HRS to n conductances in LRS, with n+1 distinct conductance levels. This allows for the implementation of an analog synapse with binary devices: when we have an LTP (LTD) event, every device has a probability p LTP (p LTD ) to switch to the LRS (HRS).

The switching probability can be governed by the RRAM itself (internal switching probability): Set and Reset conditions can be tuned to control the probability to switch the memory as shown in [START_REF] Werner | Experimental demonstration of short and long term synaptic plasticity using oxram multi k-bit arrays for reliable detection in highly noisy input data[END_REF]. Another possibility, that allows finer tuning of the switching probability, at the expense of increasing the circuit complexity, consists of using stronger programming conditions (i.e. internal switching probability is equal to one) and extrinsic stochasticity. Extrinsic stochasticity is obtained using an external Pseudo Random Number Generator circuit block, which provides tunable switching probabilities. We used extrinsic stochasticity, with p LTP = 0.13 and p LTD = 0.2.

In the following, we will present the impact of the characteristics of RRAM-based synapses (number of synaptic levels, memory window, variability, endurance) on the network performance. In order to account for the RRAM variability, each point has been averaged over 20 simulations.

B. Impact of the RRAM-based synapse characteristics (number of synaptic levels, MW, variability) on the NN performance

First, we investigated the impact of the number of synaptic levels and the RRAM memory window on the NN perfor- The improvement of the NN performance for a large synaptic dynamic range is due to the fact that, in order to achieve high performance after the training phase, the majority of the synaptic weights have to be weak (RRAM in HRS), with a tail of stronger connections (RRAM in LRS). In order to reach the maximum NN performance (F1≈0.96), the number of RRAM cells with resistance higher than 50 kΩ, n OFF , has to be 50 times more numerous than the number of synapses with resistance lower than 10 kΩ, n ON .

To quantify this result we studied the impact of the SW, defined in Section II as the ratio between the arithmetic mean conductance values of LRS and HRS, on the NN performance. SW increases with both MW and variability. Fig. 6 (a) reports F1 as a function of the SW for the nine combinations of resistance variability presented in Fig. 5 (b). For the sake of clarity, only three combinations are shown, the result is the same with the nine combinations. The network performance is independent of the synaptic variability, F1 is defined by the SW. As expected, F1 increases with the dynamic range and saturates at 0.96 for SW higher than 100. For a given MW=10, an increase in both LRS and HRS variability (red curve in Fig. 6 (b)) allows to increase the SW and consequently the F1-score of about 10%, with respect to the case with low variability (blue curve in Fig. 6 (b)). Finally, we linked the experimental data measured on the 4kbit array in Section I with the simulation results. Fig. 7 (Top) reports F1 for the four studied programming conditions (Fig. 3). It is worth noting that even with weak programming conditions (B1, F1=0.953) we have a score as good as with strong ones (C, F1=0.959). Condition B1 works well for neuromorphic applications whereas it cannot be used in a memory application due to its high LRS variability. However, for condition B2, RRAM works neither for memory nor neuromorphic applications. A decrease in F1 is observed with standard programming conditions (A) but is still acceptable (F1=0.946) if we can tolerate a loss of performance with an increase in endurance. These results confirm that the most important requirement for the RRAM-based synapses is a large dynamic range while resistance variability is less critical.

C. Impact of the RRAM-based synapse characteristics on the learning time

We studied the impact of the RRAM programming conditions on the learning time. The learning time has been defined as the time at which F1 reaches its maximal value ±1% for a given RRAM programming condition. Fig. 7 (Bottom) reports the learning time for the four studied programming conditions. Learning time is degraded only for the condition B2 with reduced SW.

D. Impact of the RRAM aging with endurance on the NN performance

We extracted from the simulations the number of switching events during the learning phase. For A, B1 and C a synapse undergoes a maximum of 20 Set and 40 Reset pulses in the worst case. With an endurance ranging from 10 2 cycles (C) up to 10 6 (A) we could truly consider using these programming conditions for a real hardware neural network. Another potential problem is the evolution of the MW and variability during endurance. We extracted the resistance distribution during cycling for the condition A (Fig. 2 (b)) and we used these data to evaluate the impact of RRAM aging on F1. The results are shown in Fig. 8. We can maintain a constant F1-score of 0.95 until 10 5 cycles after which F1 plummets. The degradation of F1 at 10 6 cycles is not due to the increase in resistance variability and decrease of MW but to the dead cells (broken cells stuck in LRS).

IV. CONCLUSION

In this paper we provide guidelines to program RRAMbased synapses in a NN for object tracking applications. Multilevel conductance is not necessary, i.e. binary synapses are sufficient. We clarified the role played by synaptic variability and the robustness to variability. To achieve high performance after the training phase, the majority of the synaptic weights have to be weak (RRAM in a HRS), with a tail of stronger connections (RRAM in LRS). Consequently, a large RRAM dynamic range is required. Resistance variability increases the dynamic range for a given MW. We introduced a new parameter, the Synaptic Window, which takes into account both MW and variability. The network performance was found only to be sensitive to the value of the SW. A SW > 100 is required to achieve the maximum NN performance.
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 1 Fig. 1. (Left) SEM cross section of an integrated TiN/HfO 2 /Ti/TiN RRAM cell between M4 and M5. (Right) Schematic view of the 1T-1R cell configuration.
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 22 Fig. 2. (a) CDF of the LRS and HRS measured on the 4kbit array after 10 4 switching cycles and (b) endurance with programming condition A in Fig. 3 (a). Variability is defined as: σ R = std[log 10 (R)]. No smart algorithm is applied.
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 34 Fig. 3. (a) Programming conditions used in this work, with t pulse =100 ns. (b) Variability as a function of median resistance value for different programming conditions. Experimental measurements used in this work are highlighted.
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 5 Fig. 5. (a) NN performance (F1) as a function of the MW for different number of RRAMs per synapse. (b) Minimal MW required to achieve the maximum NN performance (F1 = 0.96) as a function of LRS and HRS variability. mance. Fig. 5 (a) shows F1-score as a function of the MW at 3σ for different number of RRAMs per synapse. We used an artificial log normal LRS and HRS distributions with σ R,LRS = σ R,HRS = 0.05, and different LRS median values to vary the MW. The NN performance is independent of the number of devices per synapse. The same result was achieved with different resistance variability values (not shown). Therefore, in the following simulations we implemented every synapse with one binary RRAM. The essential parameter to improve the network performance is the MW. F1 increases with the MW and it saturates at F1≈0.96 for MW larger than 50. Second, we studied the impact of the synaptic variability. We simulated the proposed application with nine different combinations of LRS and HRS variability. Fig. 5 (b) plots the minimal MW required to reach the maximum NN performance (F1≈0.96) for the nine different cases. A smaller MW is required for the highest LRS and HRS variability values.Improving the RRAM synaptic variability is a way to relax the constraints on the minimal MW required. A high resistance variability increases the synaptic dynamic range, i.e. the range of synaptic values that can be reached during the training phase. The improvement of the NN performance for a large synaptic dynamic range is due to the fact that, in order to achieve high performance after the training phase, the majority of the synaptic weights have to be weak (RRAM in HRS), with a tail of stronger connections (RRAM in LRS). In order to reach the maximum NN performance (F1≈0.96), the number of RRAM cells with resistance higher than 50 kΩ, n OFF , has to be 50 times more numerous than the number of synapses with resistance lower than 10 kΩ, n ON . To quantify this result we studied the impact of the SW, defined in Section II as the ratio between the arithmetic mean conductance values of LRS and HRS, on the NN performance. SW increases with both MW and variability. Fig.6(a) reports F1 as a function of the SW for the nine combinations of resistance variability presented in Fig.5 (b). For the sake of clarity, only three combinations are shown, the result is the same with the nine combinations. The network performance is independent of the synaptic variability, F1 is defined by the SW. As expected, F1 increases with the dynamic range and saturates at 0.96 for SW higher than 100. For a given MW=10, an increase in both LRS and HRS variability (red curve in Fig.
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 6 Fig. 6. (a) NN performance (F1) as a function of the SW for 3 different LRS and HRS variability combinations of Fig. 5 (b). Sim. 1: σ R,LRS,1 = σ R,HRS,1 = 0.05 ; Sim. 2: σ R,LRS,2 = σ R,HRS,2 = 0.3 ; Sim. 3: σ R,LRS,3 = 0.05 and σ R,HRS,3 = 0.3. F1 only depends on the SW. (b) CDF of LRS and HRS used for the lowest (Sim. 1, blue) and highest (Sim. 2, red) resistance variability combinations, for MW=10. Variability increases the SW and the corresponding NN performance (F1).
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 7 Fig. 7. (Top) F1 and (Bottom) learning speed as a function of the SW for the four programming conditions of Fig. 3.
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 8 Fig. 8. Impact of the RRAM aging during endurance on F1. Simulations have been calibrated using the data of Fig. 2 (b).
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