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ABSTRACT

Morphological characterization of porous media is of paramount interest, mainly due to the connections
between their physicochemical properties and their porous microstructure geometry. Heterogeneity can
be seen as a geometric characteristic of porous microstructures. In this paper, two novel topological
descriptors are proposed, based on the M-tortuosity formalism. Using the concept of geometric tortuosity
or morphological tortuosity, a first operator is defined, the H-tortuosity. It estimates the average variations
of the morphological tortuosity as a function of the scale, based on Monte Carlo method and assessing the
heterogeneity of porous networks. The second descriptor is an extension, named the H-tortuosity-by-iterative-
erosions, taking into account different percolating particle sizes. These two topological operators are applied
on Cox multi-scale Boolean models, to validate their behaviors and to highlight their discriminative power.

Keywords: geodesic distance transform, heterogeneity, Monte Carlo algorithms, morphological tortuosity,
multi-scale porous network.

INTRODUCTION

Porous media are of paramount interest for various
applications in fields as diverse as heterogeneous
catalysis (Raybaud and Toulhoat, 2013), energy
research (Neumann et al., 2019) and pharmaceutical
sciences (Barman, 2019). Industrial processes
require increasingly high performance of materials,
which have consequently a complex microstructure.
Morphological characterization becomes more and
more crucial, mostly because of the connections
between use properties of porous media and their
microstructure geometry (Dullien, 1979). Numerical
description of the morphology of such porous
structures is made possible thanks to the technological
progress in the last decades, both in terms of imaging
devices and computing capacity (Adler, 1992).
Therefore, characterizing such media to predict their
behavior, by means of numerical operators named
descriptors, is still a current challenge. Moreover,
classical descriptors are not sufficient for some specific
applications. Consequently, new numerical descriptors
have to be proposed to overcome this limit.
The concept of tortuosity is one of the foremost
descriptor of materials (Carman, 1937; Clennell, 1997;
Ghanbarian et al., 2013a), closely linked to percolation

theory (Balberg et al., 1984; Newman and Ziff, 2001;
Grujicic et al., 2004; Jeulin and Moreaud, 2006;
Ghanbarian et al., 2013b) and constrictivity concept
(Petersen, 1958; Van Brakel and Heertjes, 1974;
Holzer et al., 2013; Bini et al., 2019; Neumann et
al., 2019). This paper focuses on a specific definition
of the concept of morphological tortuosity (Decker
et al., 1998; Peyrega and Jeulin, 2013); ratio of the
geodesic distance (Lantuéjoul and Beucher, 1981) to
the Euclidean distance between two distinct points of
the porous network. Chaniot et al. (2019) have defined
topological descriptors, named M-tortuosity and M-
tortuosity-by-iterative-erosions, of which the aim is
to assess the morphological tortuosity of the overall
porous microstructure, and to extend this definition to
take into account different probe sizes (Vogel, 2002;
Ohser et al., 2012), respectively. These approaches
describe the global porous network, but are not focused
on the local features.
Heterogeneity is a major characteristic of porous
media (Hollewand and Gladden, 1995; Rigby and
Gladden, 1996; Adler and Thovert, 1998). This is a
common feature of the microstructure of industrial
and natural porous media. Indeed, different works in
distinct fields deal with the concept of heterogeneity
over various physical phenomena (Graham, 1957;
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Warren and Price, 1961; Jeulin, 1993; Karimpouli
and Tahmasebi, 2019). From a geometrical viewpoint,
heterogeneity can be seen of several ways. Hereafter,
heterogeneity is directly related to aggregation as
in Jeulin (2010), and is then directly connected to
local variations of porosity. Solid aggregates, of
higher density, induce heterogeneity and influence the
structure topology.
The question we address in this paper is: is it possible
to use the M-tortuosity formalism to assess the
variation of the morphological tortuosity with the
spatial scale? Indeed, the fact that morphological
tortuosity is scale-dependent allows a numerical
characterization of the microstructure’s heterogeneity,
and in particular its topology. Our goal is to quantify
the geometric heterogeneity by assessing its impact
over the morphological tortuosity.
First, notations are given and, the distance transform
and the geodesic distance transform are defined. These
transforms, quantifying the paths by their length, are at
the very basis of the following descriptor definitions.
Secondly, as a reminder, the M-tortuosity and the M-
tortuosity-by-iterative-erosions estimators are defined,
and their specificities are discussed. The third part
presents the deterministic definitions of the H-
tortuosity, followed by its estimator, characterizing a
certain scale heterogeneity. An extension is proposed,
the H-tortuosity-by-iterative-erosions, similarly to
Chaniot et al. (2019), which considers various probe
sizes in order to promote bottleneck effects. Finally,
their behavior is analyzed on Cox multi-scale Boolean
models (Jeulin, 2010), evidencing their discriminative
power.

METHODS

NOTATIONS

Overall notations

We mainly adopt the notations used in Criminisi et
al. (2010) and Lohou and Bertrand (2005).
Let I be a binary function, I : R3 → {0, 1}. Feature
points are defined by the set X = {x ∈ R3; I(x) = 1},
where X is a bounded set. The complementary set of
X is Xc = {x ∈ R3; I(x) = 0}. Let I be a bounded
subset of R3, defined as a convex subset such that
X ⊂ I, and ∂I the boundaries of I. Practically, due
to the computer architecture, I will be a cube. Let I be
a 3D binary image defined by I and I, I : I→ {0, 1}.
In other words, I is an observation window of I such
that X is completely included in that window. These
notations are illustrated in Fig. 1. Let c ∈ R3 be the
center of mass of X . Let S = {pi}i∈[[0, N−1]] be a set of

N distinct sampled points such that ∀i ∈ [[0, N − 1]],
pi ∈ X .

Fig. 1: Illustration of the notations used: X the feature
subset, Xc its complementary set, I a convex subset
such as X ⊂ I, ∂I its boundaries, and the image I.

In this article, when Boolean models are
considered, as below in the Results section, X
represents the interconnected porous microstructure,
the complementary set of the grains union, and Xc the
solid phase, the grains union, both constrained by I;
Xc is different from the union of grains.

Distance Transform

The distance transform (Rosenfeld and Pfaltz,
1968; Borgefors, 1986) is a numerical operation which
aims to assess the Euclidean distance between a set
of points Sc and S, named hereafter the source points
set and Sc its complementary set. For each x ∈ Sc, the
distance transform D(.,S) from S is defined as

D(x,S) = min
{x′∈S}

d(x,x′) (1)

with,

d(x,y) = inf
Γ∈γx,y

∫ x

y
ds (2)

where γx,y is the set of all possible paths in R3, between
y, starting point, and x, ending point. Γ is one of these
paths, and s ∈ [0,L(Γ)] its curvilinear abscissa, with
L(Γ) the length of the path Γ.
D(S) is the 3D distance map and, ∀x ∈ X , D(x,S) is
the distance transform value at point x from S. In the
specific case of a singleton, S = {y}, D(x,y) stands for
D(x,{y}).

Morphological geodesic erosion

The morphological geodesic erosion is computed
using the distance transform from Xc in X , and by
thresholding it, as defined below.
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Let εr(X) be the eroded set (Serra, 1982) of X by a
sphere of radius r ∈ N, defined by

εr(X) = {x ∈ X ,D(x,Xc)> r} (3)

with D(x,Xc) the value of the distance transform to the
complementary set of X , at point x ∈ X .

Geodesic Distance Transform
The geodesic distance transform (Rutovitz, 1968)

is the equivalent of the distance transform in a
non-Euclidean space. Geodesy could be seen as the
restriction of the distance transform to a subset of the
image (Lantuéjoul and Beucher, 1981).
Hereafter, S is a subset of X . The binary geodesic
distance transform DG(.,S;X) of each point x ∈ X ,
from the set S, restricted to the support X is defined
as

DG(x,S;X) = min
{x′∈S}

dX(x,x′) (4)

with
dX(x,y) = inf

Γ∈γx,y;X

∫ x

y
ds (5)

where γx,y;X is the set of all possible paths in R3

constrained by X , between y ∈ X , starting point, and
x ∈ X , ending point. Γ is one of these paths, and s ∈
[0,L(Γ)] its curvilinear abscissa, with L(Γ) the length
of the path Γ.
DG(S;X) is the 3D geodesic distance map and, ∀x∈ X ,
DG(x,S;X) is the geodesic distance transform value
at point x from S, restricted to X . In the specific
case of a singleton, S = {y}, DG(x,y;X) stands for
DG(x,{y};X). DG(x,y;X) "is the greatest lower bound
of the lengths of the arcs in X ending at points x and
y, if such arcs exist, and +∞ if not" (Lantuéjoul and
Beucher, 1981). In this article, we use the convention
"1/∞ = 0", on which the definitions of the following
descriptors are based.

M-TORTUOSITY ESTIMATOR
The notations are the same as used in Chaniot et al.

(2019), where the M-tortuosity was formally defined.
In a first step, the homotopic skeleton Sk (Saha et al.,
2016) of the porous network X is computed using the
method of Lohou and Bertrand (2005). The starting
points set, S ⊂ Sk \ {c}, is defined by a stratified
sampling method (Neyman, 1934); N ∈ N∗ \ {1,2}
points are sampled, S = {pn}n∈[[0;N−1]], with for all
n ∈ [[0;N−1]], pn ∈ Sk.

Morphological tortuosities
The morphological tortuosity (Decker et al., 1998;

Peyrega and Jeulin, 2013), normalization of the binary
geodesic distance (Lantuéjoul and Beucher, 1981),

between pn ∈ S and pm ∈ S, m 6= n, denoted τn,m, is
defined as

τn,m =
DG(pm, pn;Sk)

D(pm, pn)
(6)

with DG(pm, pn;Sk) the geodesic distance restricted
to Sk, and D(pm, pn) the Euclidean distance, both
between pn, starting point, and pm, ending point
(Rosenfeld and Pfaltz, 1968; Borgefors, 1986).

M-coefficients

For n ∈ [[0,N− 1]], an estimated M-coefficient Ĉn,
attached to pn, is defined using the harmonic mean of
the morphological tortuosities.

Ĉ−1
n =

N−1

∑
m=0,m6=n

1
DG(pm, pn;Sk)

N−1

∑
m=0,m6=n

1
DG(pm, pn;Sk).τn,m

if,
N−1

∑
m=0,m6=n

1
DG(pm, pn;Sk).τn,m

6= 0

(7)

The harmonic mean is defined by the reciprocal of
the arithmetic mean of the reciprocals of the values,
here the morphological tortuosities. The weighing,
using geodesic distances (Berrocal et al., 2016), is
justified as follows: the longer is the path, the more
representative it is of the overall porous structure
tortuosity.

M-scalar

The final scalar value, the M-scalar τ̂M, is defined
as

τ̂M =

N−1

∑
n=0

1
D(pn,c)

N−1

∑
n=0

1
D(pn,c).Ĉ−1

n

if,
N−1

∑
n=0

1
D(pn,c).Ĉ−1

n
6= 0

(8)

The idea behind this second weighing is close to the
previous one: the farther a point is from the center
of mass of the network, the higher is the probability to
get long paths in its corresponding M-coefficient value.
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M-tortuosity specificities

The M-tortuosity descriptor, T̂M , provides a single
scalar value, τ̂M , gathering topological information to
characterize the overall microstructure of interest, as
for porous media or for any phase of a multiphasic
material. This is a scalable descriptor, i.e., information
of various dimensions is available by means of
3D maps, histograms and scalar values. Moreover,
as shown in Chaniot et al. (2019), this estimator
is translation, rotation and homothety invariant, as
well as stable when the pattern is periodical. The
complexity is approximately in O(NI), with NI the
number of discrete points of the image I.
Thanks to the use of harmonic means, T̂M can
be applied to complex disconnected networks. To
be more specific, the proposed descriptors handle
disconnections and promote long geodesic paths.
Therefore, in order to average the different view points
from a random location, i.e., the different tortuosities
associated with a specific source point in the definition
of the M-coefficient (Eq. 7), and to respect the
above constraints too, the harmonic mean seems to
be an ideal candidate. This definition of the M-
coefficient enables to handle disconnections between
points belonging to distinct connected components of
the microstructure. The second harmonic mean, in
the definition of the M-scalar, allows to avoid the
consideration of isolated points, by attributing to their
M-coefficient a zero weight.
The M-tortuosity has been built so as to be directly
computable on the microstructure of interest X .
Nevertheless, when it is appropriate, the homotopic
skeleton of the microstructure Sk can be used. We refer
the reader to Chaniot et al. (2019), for the conditions
under which the skeleton is chosen to be used, with an
analysis of its impact on the results.
The situation "when at least two points are connected"
is considered. If this is not the case, our descriptor
is not suitable. In this context, the use of a Monte
Carlo method is justified in Chaniot et al. (2019), as
the specific conditions are fulfilled. First, the subset
is bounded. Secondly, the descriptor is integrable and
positive ; therefore, it belongs to L1 space ; it also
belongs to L2 space of square integrable functions.
According to Caflisch (1998), these conditions place
our estimator and its variance, on a firm theoretical
ground. Finally, the stabilisation of Nσ2 as a function
of N highlights the existence of the asymptotic domain,
reached around N equal to 50, with N the number of
random points and σ2 the variance of the M-tortuosity
values, the M-scalars, over realizations of a given
stochastic model.

M-TORTUOSITY-BY-ITERATIVE-
EROSIONS ESTIMATOR

Definition

Extension of T̂M, by using iterative erosions of
X , allows to take into account of bottleneck effects
by quantifying their impact over the morphological
tortuosity, as illustrated in Fig. 2. T̂M,r assesses the
tortuosity of the accessible porous part for a given
spherical probe size, r. This estimator is connected to
the constrictivity concept (Petersen, 1958; Holzer et
al., 2013; Neumann et al., 2019).

Fig. 2: Illustration of bottleneck effects on the
morphological tortuosity between the two points p1
and p2, both belonging to X (colored part). Each shade
of orange represents a step. From left to right; at r = 0
the geodesic path between p1 and p2, Γg, is straight,
at r = 1 the situation is unchanged, but at r = 2 the
bottleneck is closed, represented by a red cross, and Γg
is not straight anymore, the morphological tortuosity
increases.

The M-tortuosity descriptor is applied on the
eroded set of X, εr(X), by a sphere of radius r (Eq.
3). T̂M,r is defined for any integer r by

T̂M,r(X) = T̂M(εr(X)). (9)

M-tortuosity-by-iterative-erosions
specificities

The use of iterative morphological operations
decreasing step by step the porous volume, has been
already investigated, as in Vogel (2002); Wernert et al.
(2010); Ohser et al. (2012).
In Vogel (2002), successive morphological openings
are applied to the porous microstructure. The
morphological opening consists of a morphological
erosion followed by a morphological dilation of
the network (Serra, 1982). The opening assesses
the volume where the structuring element can be
fully included inside the porous phase. Nevertheless,
the disconnections are highlighted by the erosion,
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assessing the volume where the center of the
structuring element can be located such that the
structuring element is fully included inside the porous
phase. Hereafter, only the morphological erosion is
kept, as in Ohser et al. (2012), for computation time
efficiency purposes.
Papers dealing with percolation (Jeulin and Moreaud,
2006) often consider a given propagation direction.
Our descriptors are free from propagation directions
thanks to the random sampling, and then do
consider the percolation in a more stochastic manner.
Percolation assesses the existence of paths between
entries and exits. Usually, when images are considered,
a face is defined as the entry and the opposite one as
the exit. Here, the random points are the entries and
the exits, which can be useful when arbitrary entries
and exits are too artificial.
Despite these differences, the idea behind the
proposed descriptors is similar. The tortuosity and
the constrictivity, originally defined for simple pores,
a sinuosidal cylinder with a constant radius and a
straight cylinder with varying radii, respectively, are
extended to the overall microstructure, as for the M-
tortuosity-by-iterative-erosions.
These articles attest the interest of considering
various particle sizes for topological characterization,
allowing the analysis of transport properties using
their connections with structural features, in particular
in Wernert et al. (2010) where experimental
investigations are carried out.

Global topological characterization of the overall
structure is made possible thanks to these two
descriptors, but local information is not clearly
highlighted. The H-tortuosity aims to provide
information about local features by quantifying
topological variations as a function of the scale. First,
the deterministic operator is defined, then estimators
are proposed.

H-TORTUOSITY

Peripheral subsets

Let Px,d ⊂ X defined by Px,d = {yx,d ∈
X ;D(yx,d ,x) = d, d ∈ R∗}, with D(yx,d ,x) the
Euclidean distance between x and yx,d . Px,d is a sphere
of radius d centered in x.

Morphological tortuosities

For each x ∈ X \{c}, the morphological tortuosity
between x and yx,d , named τx,yx,d , is defined as the ratio
of the geodesic distance, length of the shortest path,
to the Euclidean distance, length of the straight path,

between these two points (Decker et al., 1998).

τx,yx,d =
DG(yx,d ,x;X)

D(yx,d ,x)
(10)

with DG(yx,d ,x;X) and D(yx,d ,x), the geodesic
distance constrained by X and the Euclidean distance,
respectively, both between x, the starting point, and
yx,d , the ending point.

H-coefficients

Given x ∈ X \ {c}, the H-coefficients associated
with x, Cx(d), with d ∈ R∗, are defined using the
harmonic mean of the morphological tortuosities
τx,yx,d , yx,d ∈ Px,d , weighted by the inverse of the
respective geodesic distance DG(yx,d ,x;X).

C−1
x (d) =

∫
Px,d

1
DG(yx,d ,x;X)

dyx,d∫
Px,d

1
DG(yx,d ,x;X).τx,yx,d

dyx,d

if,
∫

Px,d

1
DG(yx,d ,x;X).τx,yx,d

dyx,d 6= 0

(11)

This weighing has the advantage to keep the same
weighing as for the M-tortuosity, and increases
the discriminative power of the final descriptor, by
lowering the influence of straight paths. The harmonic
mean allows to handle disconnections, where the
geodesic distance is equal to infinity. The denominator
is equal to zero only if, for a given d, all the yx,d are
disconnected to x. In this case, we impose Cx(d) = 0.

H-scalars

The H-scalars, τH(d), are defined as the harmonic
mean of {C−1

x (d)}x∈X\{c}, weighted by the inverse of
the respective Euclidean distance from c, D(x,c).

τH(d) =

∫
X\{c}

1
D(x,c)

dx∫
X\{c}

1
D(x,c).C−1

x (d)
dx

if,
∫

X\{c}

1
D(x,c).C−1

x (d)
dx 6= 0

(12)

The purpose of this second weighing is to have the
same weighing as with the M-tortuosity. The integral
of the denominator is equal to zero only if, for a
given d, each point of X \ {c} is disconnected from
the others.

The deterministic definition of the H-tortuosity
descriptor, TH , is not suitable for large volumes
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processing, as in Chaniot et al. (2019). An estimator
of the H-tortuosity, T̂H , based on Monte Carlo method
(Caflisch, 1998), allows such processing. This will
be done using a skeletonization step (Saha et al.,
2016) and a point sampling approach. The next section
introduces the successive steps giving rise to T̂H , the
H-tortuosity estimator.

H-TORTUOSITY ESTIMATOR

Skeletonization (optional)

The homotopic skeleton Sk of the porous network
X is computed, and then characterized instead of
X , for the same reasons than the ones presented in
Chaniot et al. (2019). Nevertheless, the H-tortuosity
can be computed on X , without the homotopic skeleton
computation. The skeletonization introduces a desired
bias, this has been shown partly in Chaniot et al.
(2019). The homotopic skeleton seems to be a good
candidate to decrease the computation time, and
increase the discriminative power (Chaniot et al.,
2019). A direct characterization of the interconnected
complex porous network is impaired by the high
number of non relevant straight paths. In other words,
using the skeleton allows to decrease the number of
paths which do not characterize the global topology of
the overall microstructure.
In this paper, the thinning method of Lohou and
Bertrand (2005), using the notion of P-simple point,
is chosen. The obtained skeleton, named Sk, is the
smallest homotopic subset of X .

Sampling

The sampling method has a central role in the
descriptor definition. It has to be chosen very carefuly,
because the analysis of the results depends on it. In
this paper, a stratified sampling is chosen (Neyman,
1934), and compared to the 1D-sampling method. Both
sampling methods are first defined and then illustrated
in Fig. 3, as in Chaniot et al. (2019).

1D-sampling:

This sampling strategy corresponds to a uniform
sampling in the pore phase skeleton. Sk can be
rewritten as Sk = {xi}i∈[[0, |Sk|−1]], which can be seen
as an indexing of Sk, with |Sk| its number of
elements. Uniform distribution U([0, |Sk|−1]) allows
to randomly draw N distinct points in Sk\{c}, defining
S.

Stratified sampling:

This sampling strategy (Baddeley and Jensen,
2005) corresponds to a uniform density of sampled
points in Sk (Neyman, 1934). Let {Wi}i∈[[0, K−1]] be

a set of K sub-images of I with K = k3, k ∈ N and
3 corresponds to the dimension of the space. If Sk∩
Wi 6= /0, as before, one point is uniformly drawn in
Sk∩Wi \ {c}. N points are sampled in Sk \ {c}, with
N ≤ K, defining S.

Fig. 3: Examples of skeleton Sk, represented by
the broken lines, with the (a) 1D-sampling and (b)
stratified sampling methods. S is the set of orange or
blue dots (pictures from Chaniot et al. (2019)).

Quantitative comparison:

In Chaniot et al. (2019), the stabilisation of Nσ2,
with N the number of random points and σ2 the
variance of the M-tortuosity value over a certain
number of realizations, is given with results over 100
images of size 2003, of a Boolean model of spheres of
radius R = 3 and volume fraction Vv = 0.7. This has
been done considering the 1D-sampling method.
The stratified sampling method has a specificity; the
requested number of random points, given by the user,
is not always equal to the final number of points
defining S. This is why in the results presented in Tab.
1 some boxes are blank.
The M-tortuosity is computed over the same set of
realizations of the same model, but considering the
stratified sampling method. For comparison purposes,
Nσ2 is computed for various values of N, not equal for
both methods, but close enough to allow a meaningful
comparison.
Whatever the value of N, the variance σ2 is lower with
the stratified sampling method. Moreover, this method
gets faster convergence (Baddeley and Jensen, 2005).
Consequently, the stratified sampling method seems
well adapted, considering the nature of the images, in
order to characterize the overall microstructure. For all
these reasons, the stratified sampling is chosen for the
results below.
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N Nσ2 (1D) Nσ2 (stratified)
5 0.0213
8 0.0037
10 0.0075
60 0.0076
64 0.0037
70 0.0103

100 0.0081 0.0027

Table 1: Nσ2 as a function of N for the both sampling
methods: 1D and stratified.

Discrete peripheral subsets

For a given pn ∈ S, let Pn,d ⊂ Sk defined
by Pn,d = {sn,d,m ∈ Sk;d < D(sn,d,m, pn) ≤ d +
1,d ∈ N∗}m∈[[0, M−1]], with D(sn,d,m, pn) the Euclidean
distance between pn and sn,d,m, and M the number of
points in Pn,d , for n and d given (Fig. 4 (a)).

Fig. 4: Examples of skeleton Sk, represented by the
broken lines, with representations of (a) the peripheral
subset Pn,d for pn ∈ S and d given, and (b) the local
probing of the microstructure around each point of S.

Morphological tortuosities

Given S, the morphological tortuosity (Decker et
al., 1998) between pn ∈ S and sn,d,m ∈ Pn,d named
τn,d,m, is defined as

τn,d,m =
DG(sn,d,m, pn;Sk)

D(sn,d,m, pn)
(13)

with DG(sn,d,m, pn;Sk) and D(sn,d,m, pn) the geodesic
distance and the Euclidean distance, respectively,
between pn, starting point, and sn,d,m, ending point.

H-coefficients estimator

Given n ∈ [[0, N − 1]] and d ∈ R∗, the estimated
H-coefficients Ĉn(d) are defined as

Ĉ−1
n (d) =

M−1

∑
m=0

1
DG(sn,d,m, pn;Sk)

M−1

∑
m=0

1
DG(sn,d,m, pn;Sk).τn,d,m

if,
N−1

∑
m=0

1
DG(sn,d,m, pn;Sk).τn,d,m

6= 0

(14)

The H-coefficients assesses the neighboring
tortuosities as a function of the point pn and the
distance d. For a given location, Ĉn(d) probes the
peripheral porous network, as shown in Fig. 4 (b).

H-scalars estimator

The estimated H-scalars, attached to d, are

τ̂H(d) =

N−1

∑
n=0

1
D(pn,c)

N−1

∑
n=0

1
D(pn,c).Ĉ−1

n (d)

if,
N−1

∑
n=0

1
D(pn,c).Ĉ−1

n (d)
6= 0.

(15)

τ̂H(d) allows to assess the average tortuosity at a
given distance d for a random point. Heterogeneity
is quantified by its impact on the average variations
of tortuosity as a function of the scale, i.e. Euclidean
distances, for a scale range limited by the volume
size. The H-tortuosity T̂H accounts for the scale
heterogeneity, the way morphological tortuosity varies
according to the measurement scale (d).
The approximate complexity of the H-tortuosity
algorithm, as the M-tortuosity algorithm, is O(NI).

H-TORTUOSITY-BY-ITERATIVE-
EROSIONS ESTIMATOR

Morphological erosion is used for defining
the H-tortuosity-by-iterative-erosions estimator, T̂H,r,
assessing the average variations of tortuosity according
to the scale, but for a spherical percolating particle of
a given size r. The idea behind this new descriptor is
to consider only the accessible porous part for a given
probe size. T̂H,r is defined by

T̂H,r(X) = T̂H(εr(X)). (16)

As for the M-tortuosity-by-iterative-erosions, T̂H,r
allows to take into account local narrowness of X ,
and especially bottleneck effects. The H-tortuosity-
by-iterative-erosions gathers the concepts of tortuosity
and constrictivity (Petersen, 1958; Holzer et al., 2013;
Neumann et al., 2019), to quantify heterogeneity.
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Moreover, as for the M-tortuosity, the M-tortuosity-by-
iterative-erosions and the H-tortuosity, the percolation
concept is considered in a non-conventional way;
existence of paths between random points.
Similarly to the previously cited descriptors, T̂H,r
can be applied to the microstructure or to its
skeleton. Contrary to Eq. 16, we choose, still for the
computation time efficiency, to use a unique random
points set S, which means there is no generation of
a new set S at each value of r. Moreover, instead
of computing the morphological erosion at each
iteration, the skeleton Sk is used and valued using
the distance map D; to each point of the skeleton
is attributed the distance value at the exact same
location. Consequently, the erosion is perceived as
a decrementation of the values of Sk. These choices
have a significant impact on the results. The same
connections are considered during the computations,
as the set of random points is generated once. The
skeleton allows to highlight, strongly, the impact of
bottlenecks: the minimal path between two points
in a bottlenecked pore remaining the same, the
tortuosity remains constant, until this specific path
is disconnected. This is not the case without the
skeletonization.

NUMERICAL METHODS

The H-tortuosity and the H-tortuosity-by-iterative-
erosions are numerical descriptors. The algorithms, or
the computational methods, are defined below using
pseudo-codes. Three main aspects of our methods
are presented too: connectivity, being a central issue
of any topological analysis, the geodesic distance
transform on which our descriptors are based, where
all the topological information is, the third one being
sampling, with its impact on the meaning of the results.

H-tortuosity

As for the M-tortuosity, the H-tortuosity is
a scalable descriptor; topological information of
different dimensions can be extracted from the
algorithm. The numerical definition below allows to
highlight this specific asset of our descriptors.
The very first computations of the H-tortuosity
algorithm are identical to the M-tortuosity algorithm.
The H-tortuosity has a certain sampling, as its
N random points are sampled in Sk, defining the
set S = {pi}i∈[[0, N−1]]. The distance map and the
geodesic distance map are computed for each point
of S, D(., pn) and DG(., pn;Sk), respectively. A
morphological tortuosity map, T(., pn;Sk), is deduced
from these two maps, for each source point.
In the following, DG(., pn;Sk), D(., pn) and T(., pn;Sk)

will be written DG(pn), D(pn) and T(pn) for brevity.
We propose to define the 3D map of mean relative
tortuosities, named T̄(.,S;Sk). For each location x ∈
Sk, we compute the average over the N morphological
tortuosity maps T(pn), but considering only the finite
values, which is the origin of the term relative. Indeed,
infinite values account for disconnections, which is not
our objective, at least for this specific map.
Subsequently, each T(pn) is probed starting from
pn considering d ∈ [[1, Dmax − 1]] and a given step,
here chosen equal to 1. Dmax is the maximal probing
distance imposed by the user. The H-coefficients are
defined for each pair (pn, d) (Eq. 13 and 14). Here
again, the H-coefficients could be used as descriptors,
more specifically of peripheral tortuosities.
Finally, the H-scalars τ̂H(d) are computed using Eq.
15.
The H-tortuosity descriptor is defined by this
computation process of which a detailed description is
given by the following pseudo-code (Algo. 1).

Algorithm 1: H-tortuosity

Result: H-scalars τ̂H(d)
Skeleton computation Sk;
Generation of S = {pi}i∈[[0, N−1]];

for n ∈ [[0,N−1]] do
Computation of:
Geodesic distance map DG(pn);
Euclidean distance map D(pn);
Morphological tortuosity map T(pn);
Computation of:
3D map of mean relative tortuosities
T̄(.,S;Sk);

for d ∈ [[1,Dmax]] do
H-coefficient computation:

Ĉ−1
n (d) =

M−1

∑
m=0

1
DG(sn,d,m, pn;Sk)

M−1

∑
m=0

1
DG(sn,d,m, pn;Sk).τn,d,m

;
end

end
H-scalars computation:

τ̂H(d) =

N−1

∑
n=0

1
D(pn,c)

N−1

∑
n=0

1
D(pn,c).Ĉ−1

n (d)

;

8
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H-tortuosity-by-iterative-erosions

The computational method of T̂H,r, as said above,
is based on iterative morphological erosions, simulated
by the decrementation of the valued skeleton. Sk is
decremented step by step, with T̂H applied on Sk at
each step, in other words for each considered value
of r. T̂H is suitable to allow the use of a unique pre-
generated random points set.
In the following pseudo-code (Algo. 2), D stands for
the distance map to the complementary set D(.,Xc)
(Eq. 1), for all x ∈ X , for brevity.

Algorithm 2: H-tortuosity-by-iterative-
erosions

Result: H-scalars τ̂H(d,r)
Computation of distance map D;
Skeleton computation Sk;
Generation of S = {pi}i∈[[0, N−1]];

r = 0 while Condition is false do
H-tortuosity computation: T̂H(Sk);
Decrementation of Sk;
r = r+1;

end

The stopping condition is arbitrary, but can be
defined using the number of connected points in S,
which could be used for promoting the consideration
of percolation theory in the definition of the H-
tortuosity-by-iterative-erosions.
In the definitions of the H-tortuosity curve and
the H-tortuosity-by-iterative-erosions curves, the
heterogeneity is seen through the porosity. The
heterogeneity of the morphological tortuosity
according to the scale, as defined in this article, can
be assessed by computing, for a given d, the standard
deviation of all the morphological tortuosities τn,d,m,
for all n and m. Heterogeneity is then seen through
morphological tortuosity.

Connectivity

3D connectivity considers either 6, 18 or 26
neighbor voxels, when a voxel’s neighbor is defined,
respectively, as a voxel sharing either a face, at least
an edge or at least a vertex only. The considered
connectivity degree has a non-negligible impact on
digital image processing, especially for topological
computation methods.
Global connectivity is defined by the choice of
the foreground and background neighborhoods. In
this paper, we take the most usual choice: N26-
neighborhood for the foreground and N6-neighborhood
for the background.

Geodesic Distance Transform
Geodesic distance transforms are a very powerful

tool for connectivity issues (Lantuéjoul and Beucher,
1981), and are at the very basis of our descriptors.
In this article, only the binary geodesic distance
transform is considered.
In Eq. 7, harmonic mean is used for turning
disconnections into zero contributions. Indeed, the
geodesic distance of two nonconnected points of
X is infinite. Consequently, using arithmetic mean,
only one disconnection would cover up all the rest
of the topological information. Using the inverse
of the geodesic distance annihilates the contribution
of disconnected paths; nonconnected points will not
interfere in the computation. Moreover, considering
the harmonic mean, this weighing allows to highlight
the long geodesic paths.
The geodesic distance map DG(pn) is computed using
the raster scanning algorithm. A similar algorithm can
be found in Toivanen (1996), for grayscale images.
Basically, raster scans of opposite directions are used
for propagating local distances named weights, until
idempotence or stabilization, as shown in Fig. 5.

Fig. 5: The two raster scans of opposite directions:
forward scan and backward scan, used in the raster
scanning algorithm for the computation of the geodesic
distance map.

The N26-neighborhood for the foreground imposes
three weights (w1,w2,w3) for direct, 2D-diagonal
and 3D-diagonal neighbors, respectively. Hereafter,
Euclidean weights are considered: (w1,w2,w3) =

(1,
√

2,
√

3).

Sampling
The choice of the sampling method is totally

correlated with the results meaning, and then their
analysis. Whatever the chosen sampling strategy,

9
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to avoid boundary issues with the H-tortuosity
computation, a sampling area is imposed, as shown in
Fig. 6.

Fig. 6: Examples of skeleton Sk, represented by the
broken lines, with (a) the original set of sampling
points computed by the stratified sampling method and
(b) the final set S considering the sampling area, the
purple disk.

Let (W,H,Z) ∈ N∗3, define the size of the image.
Let mW,H,Z be the integer part of the half of the minimal
value of (W,H,Z). Considering the maximal value of
d, Dmax, given by the user, a sphere centered at the
image center with radius mW,H,Z−Dmax−1 defines the
sampling area. Consequently, for any point pn ∈ S and
any value of d, the sphere centered at pn and of radius
d +1, is totally included into the image.
Concerning the sampling method, as said above,
the stratified sampling method is chosen due to its
faster convergence and to its lower variance for
similar values of N (Tab. 1). Moreover, stratified
sampling seems to be suitable to global structure
characterization (Baddeley and Jensen, 2005).
Nevertheless, with this method, the user gives a target
number of random points NT as parameter. The image
is then divided into K subimages, here cubes, but K is
contrained as K = k3, k ∈ N. Finally, the value of N is
only an approximation of NT , equal to the number of
non-empty subimages. Hereafter, we impose K > NT ,
such that even in the case of empty cubes, N is still
around NT . Obviously, this is no longer reliable in
the case of high volume fraction of solid, leading to
numerous empty subimages, which is not considered
here. The convergence of Nσ2, studied in Chaniot et
al. (2019) for the 1D-sampling, is an experimental
proof of the method’s stability. We chose N around 64,
based on the work of Chaniot et al. (2019).

RESULTS AND DISCUSSION

The usefulness of the H-tortuosity and the
H-tortuosity-by-iterative-erosions is highlighted by

applying them to Cox multi-scale Boolean models. A
brief description of such models is proposed, followed
by two specific cases with the purpose of attesting the
importance of the complementarity of the M-tortuosity
and the H-tortuosity. Finally, the H-tortuosity behavior
is validated by showing its sensitivity to geometric
heterogeneity. All these applications testify of its
discriminative power, which increases by considering
bottleneck effects using the H-tortuosity-by-iterative-
erosions.

BOOLEAN MODELS AND COX MULTI-
SCALE BOOLEAN MODELS

Boolean models
Boolean models (Matheron, 1975; Serra, 1982) are

based on a Poisson Point process (Kingman, 1993).
The number of points to be placed is a random
variable, following a Poisson distribution. Random
primary grains (overlapping allowed) are located at
Poisson points.
For more details about Boolean models, please refer to
Matheron (1975); Serra (1982); Chiu et al. (2013).

Cox multi-scale Boolean models
A multi-scale microstructure can be modelized by

using Cox multi-scale Boolean models (Jeulin, 1996;
Jean et al., 2011; Moreaud et al., 2018; Bortolussi et
al., 2018). This process is defined by intersections
and unions between objects and points, generated
by several Poisson point processes, named Cox
point processes (Jeulin, 1997; 2012). This way to
model multi-scale complex microstructures gives more
realistic results than intersections and unions of several
Boolean models (Savary et al., 1999; Moreaud et al.,
2018), in particular no grains are cut.
In this paper, the focus is mostly on two-scale models
defined by three volume fractions: Vv,INC, the volume
fraction of inclusion areas (defining aggregates), Vv,
the volume fraction of grains inside inclusion areas,
and Vv,OUT , the volume fraction of grains outside
of inclusion areas. Fig. 7 shows examples of two
realizations of two distinct Cox multi-scale Boolean
models using spheres (Fig. 7(a)) and platelets (Wang
et al., 2015), i.e. rectangular cuboid (Fig. 7(b)).

Results on Boolean models and on Cox multi-
scale Boolean models are presented in the following.
More specifically, we focus our attention on the
complementary set of the set of primary grains.
Hereafter, as Cox multi-scale Boolean models are
considered, for a model, several realizations, i.e.
images, are generated and the H-tortuosity is computed
on each of them. The results we present, are an average
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over all the realizations. In order to avoid complicated
notations, τ̂H(d), usually used for the H-tortuosity
curve, stands for the average curve of all the H-
tortuosity curves, obtained for each realization. As in
Chaniot et al. (2019), the descriptors proposed in this
article can be applied on any microstructure.

Fig. 7: Two realizations of two distinct Cox multi-
scale Boolean models of spheres (a) and platelets
(b) (Moreaud et al., 2018). Volumes generated and
rendered using "plug’im!" (2018).

The same set of starting points S is used for the M-
tortuosity, the M-tortuosity-by-iterative-erosions, the
H-tortuosity and the H-tortuosity-by-iterative-erosions
computations. This means that the sampling area,
originally imposed only for the H-tortuosity and the H-
tortuosity-by-iterative-erosions, is also used for the M-
tortuosity and the M-tortuosity-by-iterative-erosions.
The stopping condition for the M-tortuosity-by-
iterative-erosions is "when all realizations are
disconnected", which means that for each realization,
each point of S is isolated from the others. This is
the least restrictive condition. In practice, we stop
the display of curves when at least one realization
is disconnected. The stopping condition for the H-
tortuosity-by-iterative-erosions is identical to the one
used for the M-tortuosity-by-iterative-erosions. In
practice, we stop the display of curves for an arbitrary
small value of r, for a better visual analysis.
Finally, the confidence level is at 95 %; therefore the
uncertainty is defined as twice the standard deviation
over the N realizations, divided by the square root of
N.

FROM M-TORTUOSITY TO
H-TORTUOSITY

The M-tortuosity fits to characterize global
features of microstructures while the H-tortuosity
highlights local characteristics. Two cases are
considered to show the complementarity between these
two numerical descriptors.

Boolean models of spheres with varying
volume fraction
First, Boolean models of spheres of radius R = 10,

with varying volume fraction of solid phase Vv, are
generated. The 20 realizations, i.e. the images, are of
size 4003, and are defined by:

1. Vv = 0.3,

2. Vv = 0.4,

3. Vv = 0.5,

4. Vv = 0.6,

5. Vv = 0.7.

Fig. 8 shows two realizations of two distinct models,
(1) and (5).

Fig. 8: Two realizations of two distinct Boolean
models of spheres of radius R = 10, (1) Vv = 0.3 and
(5) Vv = 0.7. Volumes generated and rendered using
"plug’im!" (2018).

Vv is a global feature, consequently the M-
tortuosity seems to be adapted to characterize and
discriminate such models. Fig. 9 shows the M-
tortuosity values (Fig. 9(a)), i.e. the M-scalars, and the
M-tortuosity-by-iterative-erosions values (Fig. 9(b)),
for each model.
For this case, the M-tortuosity is sufficient to
discriminate the models, and the M-tortuosity-by-
iterative-erosions enhances the discriminative power,
by considering bottleneck effects.

Boolean models of spherocylinders with
varying anisotropy
The second case considers Boolean models

of spherocylinders with varying anisotropy. A
spherocylinder (Fig. 10) is a cylinder with two
hemispherical caps at each end, thus defined by
two parameters: L the length of the cylinder and R
the radius of the hemispheres. The anisotropy A of
spherocylinders is defined as the ratio between their
length, L+2R, and their width, 2R.
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Fig. 9: (a) τ̂M , the M-tortuosity value, as a function
of Vv, the solid volume fraction of Boolean models
of spheres of radius R = 10, and (b) M-tortuosity-by-
iterative-erosions, τ̂M(r), for each model defined by Vv.
Confidence intervals, with confidence level at 95 %,
are represented by vertical bars.

Fig. 10: Representations of the spherocylinder (left),
defined by L and R, and of the five models (right) with
fixed morphological diameter L+ 2R, defined by the
spherocylinder’s anisotropy A.

Five models are considered with various
anisotropy and fixed morphological diameter L+ 2R,
as shown in Fig. 10. The volume of the spherocylinder
V is indicated too. They are defined by:

1. A = 1.1, L = 2, R = 10 and V ' 4817,

2. A = 1.375, L = 6, R = 8 and V ' 3351,

3. A = 1.83, L = 10, R = 6 and V ' 2036,

4. A = 2.75, L = 14, R = 4 and V ' 972,

5. A = 5.5, L = 18, R = 2 and V ' 260.

20 realizations of size 4003 and Vv equal to 0.5, are
generated for each model, i.e. each value of A. Fig. 11

shows two realizations of two distinct models, (1) and
(3).

Fig. 11: Two realizations of two distinct Boolean
models of spherocylinders, (1) A = 1.1 and (3)
A = 1.83. Volumes generated and rendered using
"plug’im!" (2018).

Anisotropy of grains is a local feature of such
microstructures. Consequently, we can assume that
the M-tortuosity fails to discriminate between the five
models. Fig. 12(a) shows this limit.
In contrast, the H-tortuosity fits this specific case (Fig.
12(b-c)). Moreover, the local aspect of the grains
anisotropy is highlighted. Indeed, Fig. 12(c) is an
enlargment of Fig. 12(b), over small distances d, which
is the key interval to discriminate models.

H-TORTUOSITY FOR HETEROGENEITY
CHARACTERIZATION
The H-tortuosity is sensitive to local topological

variations. Consequently, it fits for heterogeneity
quantification, which is the origin of its name. To
promote the H-tortuosity sensitivity to geometric
heterogeneity, Cox multi-scale Boolean models of
platelets are used (Wang et al., 2015).
The platelets, i.e. rectangular cuboids, are defined by
three parameters: length l, width L and height H.
Hereafter, these parameters are fixed to l = L = 13 and
H = 3.
In this specific case of Cox multi-scale Boolean
models, geometric heterogeneity η can be defined as

η =
Vv

Vv,OUT
. (17)

We propose another parameter Dη to enhance the
geometric heterogeneity quantification. Dη is defined
as

Dη =Vv−Vv,OUT . (18)

Two distinct cases are considered. The first one is
composed of three Cox multi-scale Boolean models
with Vv,OUT , Vv,INC and RINC fixed, equal to 0.2, 0.5 and
20, respectively. The different models are then defined
by:
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Fig. 12: (a) M-tortuosity value, τ̂M, (b) H-tortuosity
curve, τ̂H(d), of each models defined by the anisotropy
A, and (c) zoom of (b) over small distances d.
Confidence intervals, with confidence level at 95 %,
are represented by vertical bars.

1. Vv = 0.2,

2. Vv = 0.5,

3. Vv = 0.8.

The first model is a Boolean model, homogeneous,
defined by η = 1 and Dη = 0. The two other models
are defined by η = 2.5 and Dη = 0.3, and η = 4
and Dη = 0.6. Fig. 13 shows two realizations of two
distinct models, (1) and (3). The indices are the same
as the ones used in Fig. 14.
As expected, in Fig. 14(a-b) the higher the imposed
geometric heterogeneity, the higher the morphological
tortuosity, whatever the distance. This is mostly due
to the fact that with Cox multi-scale Boolean models,
the first scale, aggregation scale, prevails over the
grain scale. Moreover, for each model, tortuosity
reaches a maximum, at a certain value d, displaying,
further on, a kind of stabilization. In this case, the

maximal tortuosity and its corresponding abscissa
discriminate the three models. The stabilization value,
corresponding to the asymptotic tortuosity, could
probably discriminate the models, but the maximal
distance is not long enough in the present simulation
to highlight this point. Finally, the analysis of these
results highlights the local and global influence of
geometric heterogeneity over topology variations.

Fig. 13: Two realizations of two distinct Cox multi-
scale Boolean models of platelets (l = L = 13 and H =
3), (1) Vv = 0.2 and (3) Vv = 0.8. Volumes generated
and rendered using "plug’im!" (2018).

Fig. 14: H-tortuosity curves, τ̂H(d), as a function of
the distance d, for the three models considered and
defined above (a), and (b) a zoom over local distances.
Confidence intervals, with confidence level at 95 %,
are represented by vertical bars.

The second case is composed of three Cox multi-
scale Boolean models with Vv,OUT , Vv,TOT and RINC
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fixed, equal to 0, 0.2 and 20, respectively. Vv,TOT is
defined as

Vv,TOT =Vv.Vv,INC +Vv,OUT .(1−Vv,INC). (19)

The different models are then defined by:

1. Vv = 0.25 and Vv,INC = 0.8,

2. Vv = 0.5 and Vv,INC = 0.4,

3. Vv = 1 and Vv,INC = 0.2.

In this case, η is equal to the infinity. The three
models are defined by Dη equal to 0.25, 0.5 and 1,
respectively. Fig. 15 shows two realizations of two
distinct models, (1) and (3). The indices are the same
as the ones used in Fig. 16.

Fig. 15: Two realizations of two distinct Cox multi-
scale Boolean models of platelets (l = L = 13 and
H = 3), (1) Vv = 0.25, Vv,INC = 0.8 and (3) Vv = 1,
Vv,INC = 0.2. Volumes generated and rendered using
"plug’im!" (2018).

The H-tortuosity is applied on each model, the
results are presented in Fig. 16. As previously,
in Fig. 16(a-b) the higher the imposed geometric
heterogeneity, the higher the morphological tortuosity,
whatever the distance. Here again, the maximal
tortuosity and its corresponding abscissa discriminate
the three models. This correlation between tortuosity
and heterogeneity, highlighted by the two previous
application cases, is in good agreement with the
conclusions of Hollewand and Gladden (1995). The
stabilization value could probably discriminate the
models too, but the stabilization is not reached at d =
100.
The conclusions are pretty much the same. The main
difference between the two cases is Vv,TOT , which
increases with geometric heterogeneity in the first
case, and is fixed in the second one. This highlights
the fact that, geometric heterogeneity has an influence
over global characteristics. Indeed, in Fig. 14, we could
think that the distinct stabilization values are due only
to the various values of Vv,TOT .

Fig. 16: H-tortuosity curves, τ̂H(d), as a function of
the distance d, for the three models considered and
defined above (a), and (b) a zoom over local distances.
Confidence intervals, with confidence level at 95 %,
are represented by vertical bars.

Bottleneck effects are then considered for
characterization of such models using the H-tortuosity-
by-iterative-erosions. The results are shown in Fig.
17. The display is arbitrarily limited to r < 4,
for readability purposes. This value is sufficient to
highlight bottleneck effects.
Considering constrictivity in the local variations of the
topology brings additional information. As expected,
the H-tortuosity-by-iterative-erosions increases the
discriminative power. Indeed, the three models react
differently to the iterative erosions. At constant
Vv,TOT and Vv,OUT , the more heterogeneous the
microstructure, the smaller Vv,INC, the less bottleneck
effects contribute to an increasing of the average
local tortuosities. This is due to the fact that, outside
aggregates, bottleneck effects are less.
We can also notice that the confidence intervals
increase with r, the radius used for the erosions
corresponding to the size of the percolating particle.
This effect is linked to the concept of representative
volume element (RVE) (Hill, 1963; Kanit et al., 2003).
Using the duality between morphological erosion
and dilation, the erosion of the porous phase is
equivalent to the dilation of the solid phase. A looser
statement is that a dilated realization can be seen as a
realization of the same model but with bigger grains
and lower porosity. Consequently, the more eroded the
porous phase, the bigger the RVE. This comment also
applies to the M-tortuosity-by-iterative-erosions, in
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Fig. 9(b), and is in good agreement with the results of
Neumann et al. (2020), showing, among other things,
the increase in the variance of the probability density
distributions of tortuosity, as a function of the size of
the percolating particle.

Fig. 17: H-tortuosity-by-iterative-erosions curves,
τ̂H(d,r), as a function of the distance d and the radius
r, for the three models considered and defined above
(1), (2) and (3). Confidence intervals, with confidence
level at 95 %, are represented by vertical bars.

CONCLUSION AND
PERSPECTIVES

Heterogeneity is a common characteristic of many
microstructures, especially for real and industrial
porous media. The H-tortuosity, based on the M-
tortuosity formalism, assesses the impact of geometric
heterogeneity over the microstructure topology. For
this purpose, the H-tortuosity estimator computes the
average variations of the morphological tortuosity
as a function of the Euclidean distance, by probing

the peripheral microstructures of random points.
This descriptor quantifies the scale heterogeneity
of the microstructure. Like the M-tortuosity, the H-
tortuosity can be applied to complex porous networks
and manages disconnections. Both descriptors
are complementary, which has been highlighted
by considering Boolean models of spheres and
spherocylinders.
While the M-tortuosity focuses on characterizing the
global porous network, the H-tortuosity is committed
to the evolution of morphological tortuosity with
scale. Cox multi-scale Boolean models of platelets are
then used for highlighting the H-tortuosity sensitivity
to geometric heterogeneity. Two cases have been
presented to validate the descriptor behavior.
The H-tortuosity-by-iterative-erosions is an extension
of the H-tortuosity, similar to the M-tortuosity-by-
iterative-erosions. This second descriptor takes into
account bottleneck effects, and assesses the local
variations of the microstructure topology as seen by
a spherical particle of given size. The H-tortuosity is
closely connected to percolation concept and the H-
tortuosity-by-iterative-erosions is futhermore linked
to the constrictivity concept. Its behavior has been
validated on the final case of Cox multi-scale Boolean
models.
The perspectives of this work are multiple. The
theoretical perspectives include comparison with
theoretical values and with the state-of-art for
morphological tortuosity assessment, analysis of
relevant applications, assessment of the limits of use
with consideration of extreme cases, and study of the
impact of the skeleton, partly done in Chaniot et al.
(2019).
There is no difficulty to apply the definitions to random
closed sets, and it has been used as such for a long time
in previous publications, given in the list of references.
The challenge is to provide theoretical estimations
of this descriptors for given random sets models. For
instance, in Gouéré and Théret (2017) the positivity of
the geodesic distance is proved for the Boolean model,
in connection to percolation. In Willot (2015), upper
bounds of geodesic distances are given in 2D and 3D
porous Boolean and multiscale Boolean models, for
vanishing pore volume fractions.
Instead, the present paper was focused on algorithms
to estimate the morphological tortuosity, from some
random samplings of points in the microstructure,
and on applications to simulations of some models
of random closed sets, like Boolean and Cox multi-
scale Boolean models.
Finally, extensions of the M-tortuosity and the H-
tortuosity to the functional case will be defined for the
characterization of grayscale images, and with detailed
analysis of their behavior.
The logical next step is the application perspectives.
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The original purpose of the definitions of the M-
tortuosity and the H-tortuosity, is to provide numerical
descriptors for the characterization of binary images,
representing complex microstructures. The complexity
can be seen in the interconnected network itself, but
in the nature of the image too, as it is the case for
catalysts, imaged using electron tomography (Tran
et al., 2014). More specifically, γ-aluminas will be
considered.
This imaging technology provides 3D images with
high resolution and very complex structure, i.e. shape
of the sample, as shown in Fig. 18. The specificities
of our descriptors make the characterization of such
numerical microstructures possible. Indeed, defining
representative entries and exits in such materials is
a delicate task. Our descriptors, based on Monte
Carlo method, can handle this issue. Moreover,
high resolution for high precision yields big size
images, with a long processing time. Our algorithms
provide the possibility of computation time efficiency
thanks to the unique sampled points set S. This
choice takes us away from the realm of random
variables, but decreases the number of distance maps
to be computed, which is the key point to improve
computation time efficiency.

Fig. 18: A sample of a specific γ-alumina, obtained
by electron tomography, reconstructed, filtered, and
segmented. The porous volume is in yellow, the solid
phase and the surrounding void are transparent.

Finally, a deterministic numerical definition of the
M-tortuosity is proposed in Batista et al. (2020), where
S is imposed and represents the locations of particles at
the surface of the catalyst support, a porous medium.
A similar extension for the H-tortuosity would allow
a more detailed analysis of the impact of structural
features on the transport properties.
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