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Abstract—This work deals with epipole estimation related
to egocentric camera localization in surveillance and security
applications. Matching visual features in the images provides
some evidences for various solutions, so that epipole localization
can be addressed as a fusion task with a large number of sources
including outlier ones. In order to deal with source imprecision
and uncertainty, we rely on the belief function theory and a 2D
framework suited for our application. In this framework, we
address the challenges introduced by a large number of sources
with a strategy based on clustering and intra-cluster fusion. The
proposed method exhibits more robustness in terms of accuracy
and precision when compared on real data with the standard
algorithms which provide single solution. Since we provide a
Basic Belief Assignment as a result, our strategy is particularly
adapted for the prospective combination with additional sources
of information.

Index Terms—Egocentric camera localization, epipole uncer-
tainty, large number of sources, belief function theory 2D

I. INTRODUCTION

The relative pose estimation between two cameras is a
fundamental task in computer vision, and is an integral part
of other algorithms addressing more complex tasks such as
3D reconstruction [1]–[3], localization [4] or navigation [5].
Although relative pose estimation has been studied extensively
for more than 30 years, there is still ongoing work in order to
improve its performance in adverse conditions introduced by
wide baselines, large non-salient areas or repetitive structures
specific to urban settings. In order to solve the pose estimation
problem, the established approach is to rely on keypoint
associations between the two views [6]. Among these matches,
a minimal number of them denoted as a minimal set, typically
seven [7] or eight [8], are required in order to solve for
a pose. However, the entire set of observations contains in
practice a significant ratio of outlier matches which skew the
solution if included in the estimation. Since it is outright
infeasible to analyze exhaustively the consensus among all the
available minimal sets due to the combinatorial nature of the
problem, stochastic sampling is widely used [9], and typically
the solution is obtained from the most consensual sample set.

The relative pose is composed of a 3D rotation-translation
pair exhibiting six degrees of freedom. A visual interpretation
of a solution may be derived by projecting the second camera
location in the first camera image plane. The projected point is
called the epipole, and it is of particular interest in surveillance
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and localization applications. Therefore, a pose proposal is
associated to an epipole along with an elliptic uncertainty area
provided by the covariance matrix of its location. Now, the
epipole location suffers from the same sensitivity to outliers
which represents even more of an issue that, for some applica-
tions (surveillance, planning in drone or vehicular networks)
which rely on the joint localization of static and mobile camera
wearers, wrong epipole identification has a detrimental effect
and additional techniques must be used in order to provide
reliable solutions. In this work, we assume that imprecision is
preferable to unreliability. It means that we relax the constraint
of single localization in favor of a few solutions provided they
include the true location.

In order to handle the uncertainty introduced by a significant
ratio of spurious observations, we model the input of our prob-
lem and perform the main steps of our algorithm in the Belief
Function Theory (BFT) framework. This formalism was made
popular by various real-world applications [10] for which
it provides an efficient modelling of imprecise information,
allowing for fairer and more consistent decisions. However,
for some applications, scalability remains a challenge, either
in terms of the size of the discernment frame or in terms of
the number of sources to be combined.

Firstly, regarding the size of the Discernment Frame (DF),
the issue is that belief functions (mass, plausibility, etc.) are
defined on the DF powerset, so that for a DF denoted Ω
whose cardinality is |Ω|, there are potentially 2|Ω| hypotheses
to consider and to enumerate. Such an issue arises typically in
localization applications in which DF corresponds to possible
positions of the considered target, i.e typically |Ω| = 106 if
we require a spatial resolution equal to 10 × 10 cm2 within
an area of 100× 100 m2. First solutions, e.g. [11], use some
tricks (e.g. conditioning) to consider only a subpart of DF at
once. Then, [12]–[14] propose a solution where 2Ω elements
(singleton and compound hypotheses) are no longer labelled
(as for enumeration) while each element of the focal set
(that is usually a small subset of 2Ω) is handled through its
own description. Specifically, in [12], [13], the handled focal
elements are described as sets of rectangles (tiles) similarly to
the representation used in Interval Analysis [15], whereas [14]
provides a more general representation of any 2D shapes using
polygons. In both cases, belief function operators based on set
relationships (intersection, union etc.) have to be redefined in
an efficient way.

Secondly, regarding the number of sources, a first difficulty



is related to the used combination rule. In particular, using
the very popular conjunctive rule proposed by Smets [16],
the mass on the empty set (m(∅)), usually called conflict,
is an increasing function with respect to the number N of
combined BF: m(∅) → 1 when N → +∞. Note that
this rule was proposed to avoid evidence modelling issues
(e.g. as in the case of the Zadeh example) hidden by mass
normalization as performed in the original Dempster’s rule
or orthogonal sum [17]. Considering alternative rules would
not solve the issue. Indeed, some hybrid rules (e.g., those
proposed by Yager [18] or Dubois and Prade [19]) performing
a dispatching of the conflict are not associative, which in turn
may raise additional issues about the combination ordering of
the sources. Instead of searching alternatives to the conjunctive
combination rule, some authors proposed to discount the Basic
Belief Assignments (BBAs) to combine so that the conflict
remains under control [20], [21].

Besides the choice of a tailored combination rule, a large
number of sources raises the issue of the presence of unreliable
ones. Indeed, the higher the number of sources, the more
likely is the fact that one or some of them are unreliable.
Such sources are called ‘outliers’ for the combination since
they are incompatible/inconsistent with the remainder of the
sources. Some authors have proposed algorithms to handle
sets of sources including outliers, either by extending the q-
relaxation [22] proposed for the Interval Analysis to BFT [20],
or by extending RANSAC [9] to BF [13]. In the first case, the
combination rule is modified to be robust to the presence of
outliers, making it however intractable in the case of a large
number of outliers (the q parameter being usually in the range
of a few units). In the second case, having explicitly estimated
a set of inliers (conversely to q-relaxation), the conjunctive rule
is used however with a number of sources ranging in the tens.

Finally, [23] propose to handle a large number of sources
by clustering BBAs and firstly combining the BBAs that
belong to a same cluster. In their work, using the canonical
decomposition, clusters are simply defined as sets of Simple
Support Functions (SSF) having the same focal elements so
that their combination is straightforward and also produces a
SSF. Then, intra-cluster resulting SSFs are discounted with
respect to the number of initial SSFs in the cluster. However,
such an approach assumes that the canonical decomposition of
initial BBAs involves a small set of SSFs, so that each element
may appear several times when considering the different initial
BBAs, which is clearly not the case when considering a
large 2D discernment frame. Thus, even if in this work, we
keep the general idea of BBA clustering that was already
proposed by [24], both the clustering criterion and the use
of clustering results are different. Indeed, in few words, firstly
BBA clusters are derived using a hierarchical clustering based
on Jousselme’s distance that allows for taking into account
focal element interactions. From clustering construction, these
clusters correspond to possible but incompatible solutions for
the epipole localization. Then, secondly, BBAs are combined
in a conjunctive way only within clusters to provide cluster-
BBAs that are ranked. We then show that the correct solution

is among the top ranked clusters.
The remainder of this paper is as follows: Section II recalls

the basics (including belief function tools) used for this study,
Section III describes the proposed approach that provides a
set of ordered solutions and Section IV analyzes the results
obtained on a public dataset before Section V draws the main
conclusions and perspectives of our work.

II. BACKGROUND KNOWLEDGE

In this section, we recall the BFT background notions which
are required for our study.

A. Basics on BFT

Let Ω be the considered discernment frame, i.e. the set of
mutually exclusive solutions of our problem. Belief Function
Theory allows us to handle imprecision along with uncertainty
thanks to functions defined on the Ω power set called 2Ω,
i.e. the set of Ω subsets. There are five main belief functions
that are in one-to-one relationships so that the knowledge
of one is sufficient to derive any other of them. Usually,
the mass function m is considered as the BBA representing
knowledge from a given source. It allows us to set a well-
defined BBA provided that m satisfies two constraints: (i)
∀A ∈ 2Ω,m (A) ∈ [0, 1] and (ii)

∑
A∈2Ω m (A) = 1. Note that

the set of hypotheses having a non null mass value is called
the focal set or set of focal elements. Apart from m, the plau-
sibility (Pl) and commonality (q) functions are widely used,
for decision and for computation respectively. They are related
to m as follows: ∀A ∈ 2Ω, Pl (A) =

∑
B∈2Ω,A∩B 6=∅m (B),

q (A) =
∑

B∈2Ω,A⊆B m (B).
Different kinds of criteria have been proposed to compare

two BBAs, m1 and m2. Firstly, several orderings have been
established between BBAs: pl-ordering (m1 vpl m2 ⇔
∀A ∈ 2Ω, P l1 (A) ≤ Pl2 (A)), q-ordering (m1 vq m2 ⇔
∀A ∈ 2Ω, q1 (A) ≤ q2 (A)), s-ordering and w-ordering [17].
Secondly, various distances or dissimilarity measures between
BBAs have been proposed [25]. In this study, we will consider
the Jousselme’s one for its simplicity, understandable behavior
and well-established mathematical properties. It is based on
the scalar product definition given by Eq.(1): denoting by |H|
the cardinality of any Ω subset H , ∀ (i, j) ∈ {1, 2}2,

〈mi,mj〉J =
∑
A∈2Ω

∑
B∈2Ω

|A ∩B|
|A ∪B|

mi (A)mj (B) , (1)

such that Jousselme’s distance dJ (m1,m2) between m1 and
m2 is equal to

√
1
2 (〈m1,m1〉J + 〈m2,m2〉J − 2〈m1,m2〉J).

Whenever several sources of information are available, they
are generally combined in a conjunctive way that boils down
to assuming that every source is reliable, and to corroborating
themselves in order to decrease the imprecision and the
uncertainties. Among the most popular conjunctive rules, we
can quote the Smets’ conjunctive rule [16] (cf. Eq.(2)), its
normalized version [17], and Denœux’s cautious rule [26].



The first two rules assume cognitive independence between
sources whereas the last one can handle correlated sources.

∀A ∈ 2Ω,m1∩2 (A) =
∑
B∈2Ω

∑
C∈2Ω,
B∩C=A

m1 (B)m2 (C) . (2)

As combinations are performed, the belief becomes more
fragmented across more focal elements (FE). Then, mainly for
numerical reasons, the BBA has to be approximated to keep
a controlled number of FEs. This process is often called BBA
simplification, and in the perspective of further combination,
approaches providing a generalization of the initial BBA are
favored, in particular those aggregating some FEs that follow
the least commitment principle. Among the many methods
proposed to choose the elements to be aggregated, iterative
aggregation techniques [27] are based on a selection criterion
involving a quantitative measure of the BF approximation: e.g.,
precision measure [28] is used in [27] whereas Jousselme’s
distance is used in [11]. This latter case boils down to choosing
the two FEs of a given BBA minimizing Eq. (3)

d2
J (A,B | m) =

(
1− |A|
|A ∪B|

)
m2 (A) +(

1− |B|
|A ∪B|

)
m2 (B) .

(3)

Then, for BBA approximation, a pair of hypotheses is
chosen iteratively and their masses are aggregated until the
desired number of FEs is reached. Note that, if performed
along with BBA combination, such a simplification process
breaks unfortunately the associativity (if it existed) of the
combination.

Finally, after having combined all sources through their
BBAs, a decision can be taken. It is generally done in the
discernment frame Ω, i.e. only considering singleton elements
so that two widely used criteria are (i) the contour function
(that is given by the plausibility function restricted to Ω ele-
ments and normalized) and (ii) the pignistic probability [29]:

∀H ∈ Ω, BetP (H) =
1

1−m (∅)
∑

A∈2Ω,H∈A

m (A)

|A|
. (4)

B. The case of a 2D discernment frame

The open source1 library 2CoBel [14] has been developed in
the applicative context of crowd monitoring. Indeed, for such
application, the localization has to be all the more precise
that the crowd is dense. Therefore, a fully scalable library has
been developed for 2D discernment frames, in which FEs are
represented by polygons. Specifically, FEs are represented by
sets of vertices, allowing both for FEs having multiple con-
nected components and for FEs having holes (distinguishable
by the ordering of the vertices). Besides, using a hashing table
allows for fast identification of FEs already encountered when
performing summations in combination rules or uncertainty
propagation operators.

1Implementation available at: https://github.com/MOHICANS-project/
2CoBel

Note also that distances between BBAs can be very easily
derived thanks to clipping operators that compute areas or
intersection or union between two polygons.

Besides this geometrical representation allowing for han-
dling precise shapes of 2D hypotheses of interest, 2CoBel [14]
provides an useful and compact representation of the inter-
actions between FEs under the form of a Directed Acyclic
Graph (DAG). In brief, any intersection between FEs can
be represented by a path on the DAG. Now, there are two
main cases in which the analysis of all the FE intersections
is useful: (i) the definition of an equivalent 1D discernment
frame for canonical decomposition (that we just mention since
we do not use it), (ii) the computation of the decision criterion.
Let us specify this last point. Both maximizations of the
contour and BetP functions boil down to comparing mass
accumulation on paths of maximal length. Indeed, denoting
by F the set of FEs, ∀ (P, P ′) ⊆ 2F × 2F such that P ⊂
P ′ and ∩Ai∈P = ∩Ai∈P ′ , we have Pl (P ′) = Pl (P ) +∑

Ai∈P ′\P m (Ai) > Pl (P ) and BetP (P ′) = BetP (P ) +
1

1−m(∅)
∑

Ai∈P ′\P
m(Ai)
|Ai| > BetP (P ). Therefore, decisions

have to be taken among paths representing non empty in-
tersections and having maximal length on the DGA. Now,
since the systematic exploration of the whole graph may be
numerically expensive, [14] provides some tricks for efficient
exploration, in particular early avoiding non maximal length
paths (by detection of subpath features).

A keypoint is that the maximal length paths corresponding
to non-empty intersections are the most precise hypotheses
that we can consider given the BBA m. They are among the
singleton hypotheses when considering the equivalent 1D dis-
cernment frame used for instance for canonical decomposition
as proposed by [14]. Then, we are able to decide in favor of
compound hypotheses of a 2D discernment frame, maximizing
the BetP criterion (or the contour function) in an equivalent
1D discernment frame.

C. Basics on epipole computation

Let us recall the usual way one computes the epipole
localization and its uncertainty. The principle of RANSAC
is to subsample the whole solution space (to reduce explo-
ration complexity). In [9], the sampled solution correspond
to exact solutions only considering a randomly drawn subset
of observations. Then, at the end, the solution selected by
RANSAC is the one that is the most consensual, i.e. that
induces the highest number of inliers defined as measurements
presenting noise level lower than a given threshold (that is a
parameter of the algorithm). Applied to our problem, it means
that providing the set of putative matches I, at iteration i,
RANSAC will sample a 8-tuple of pixel matches from I,
derive the fundamental matrix Fi (provided that the 8-tuple
does not correspond to a degenerated system), and evaluate
the consensus degree associated to this solution Fi, before
reiterating independently. The output of RANSAC includes
thus (i) the inlier set having greatest cardinality along with
(ii) the corresponding solution (F̂ ). Usually, this latter is
re-estimated from the whole inlier set. However, in some
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Fig. 1: Overview of the proposed method. First, p sources for epipole uncertainty estimation are generated based on the
observations, then clustered by aggregation in l groups. Each group provides a solution as a combined BBA in a set which is
ranked according to the pignistic probability BetP. In our application, we select the top k solutions.

applications (such as ours), it is preferable to keep the initial
estimation (from which the consensus degree was evaluated).

Then, for any solution of the fundamental matrix F , its
covariance matrix ΣF is derived as in [8]. The epipole location
e as well as its covariance matrix Σe are then derived based
on the constraint Fe = 0 and singular value decomposition
(SVD) [30]. Geometrically, the epipole location uncertainty
has the shape of an ellipse whose axes are defined by eigen-
vectors and eigenvalues such that (x− e)T Σ−1(x− e) = k2,
with k defined by the considered confidence level.

III. THE PROPOSED ALGORITHM

In the proposed application, a major issue comes from the
presence of outliers (in the keypoint matches) that prevents
the correct estimation of the epipole. Various outlier rejection
techniques fail in difficult configurations where, for instance,
outliers have a strong majority. Then, the basic idea of our
approach is to introduce a mutual validation test for any
potential solution, based on the consistency among several
solutions obtained independently, for instance using either
different algorithms or, as in this case, different observations.
Note that this idea is the very core of ensemble approaches.

In this work, we propose to obtain several evidences of
the solution by considering various solutions provided by
RANSAC (instead of retaining only the most consensual).
Specifically, let SF = {F1, F2, . . . , Fi, . . . , Fn} be the set of
the n tested solutions ranked in decreasing order according
to their consensus value (namely the size of their inlier set
Ii). Recall that these solutions have been obtained indepen-
dently by random drawing of 8-tuple in I (cf. Section II-C).
Following [31], we will consider the p first elements in SF

with p derived with respect to threshold θ ∈ (0, 1) such that
|Ip|
|I1| ≥ θ >

|Ip+1|
|I1| . Then, for each Fi ∈ {F1, . . . , Fp}, we

derive the associated epipole location along with its uncer-
tainty ellipse. Firstly, note that these additional steps do not
increase the RANSAC complexity, since in basic RANSAC
we also perform these draws and evaluate them; what differs

here is the fact that instead of discarding them (except the best
one) we save them for further processing. Due to the presence
of erroneous keypoint matches, some of these ellipses do not
include the true epipole location. In the following, we call
outlier evidences such ellipses.

Then, our purpose is to provide as accurately as possible
an estimation of the epipole location by combining epipole
location evidences despite the presence of outliers. Among
these p solutions, some of them exhibit consistency in terms
of epipole location and others not. Furthermore, there may be
different groups of consistent solutions. A direct accumulation
of all these solutions does not allow to capture these character-
istics. In this work, we propose to first cluster all considered
solutions into different groups in terms of consistency and then
explore the fusion strategy within each group. To respect the
consistency inside the group and to highlight the inconsistency
between different groups, the core idea is to keep individual
solutions provided by each group instead of imposing a final
fusion between different groups. The overview of the proposed
method is illustrated in Fig. 1.

We use the 2CoBel library introduced in Section II-B
for modelling epipole location evidences in terms of be-
liefs associated to 2D polygones (approximation of ellipses).
Specifically in this work, each individual ellipse leads to a
consonant BBA having two nested focal elements correspond-
ing respectively to two uncertainty levels (95% and 50% in
our case). Note that we chose these uncertainty levels in a
consistent way with respect to previous works [32], [33]. Mass
values associated to these focal elements will be discussed
along with the experiments (Section IV). Each of these BBAs
is very little committed so that the precise epipole location
will comes from their combination.

A. Clustering
Given a set of BBAs M = {m1,m2, ...,mp}, we aim to

cluster them without prior knowledge about the number of
clusters. In this study, we focus on hierarchical clustering [34]
for its agglomerating feature. This latter is based on distances



between samples (to cluster) or between samples and clusters
so that samples/clusters are gathered according to increasing
distance order. Note that, for the cluster distance, different
criteria have been proposed: simple [35], average [36], com-
plete [37].

Regarding BBA handling, we consider Jousselme’s dis-
tance so that the pre-computed distance matrix Dp×p, where
Dij = dJ(mi,mj). Besides, in the perspective of conjunctive
combination of BBAs belonging to a given cluster, we consider
complete linkage which uses the max operator for computing
the distance between two clusters from the distance values
between samples. The theoretical threshold guarantying that
two BBAs have at least one pair of focal elements intersecting
(avoiding total conflict) can be computed as

dth =

√
1

2
(〈mi,mi〉+ 〈mj ,mj〉)

=

√
a2 + (1− a)2 + 2a(1− a)

k2
50

k2
95

,

(5)

where k95 corresponds to a confidence level equal to 95% in
ellipse derivation (cf. Section II-C) and k50 to 50% confidence
level, a and (1 − a) are the values of masses associated
with the focal elements at 50% and 90% confidence levels,
respectively. In our experiments, we set the maximum distance
for clustering slightly below the theoretical value (namely,
dth−0.05) in order to increase the consistency between BBAs
in the same cluster. In addition, since even a complete linkage
cannot guarantee that there is a common intersection for all
BBAs in the same cluster (since only pairs of BBAs are
considered), we set as a supplementary constraint that the
intersection between all the largest focal elements of the BBAs
within a given cluster is not empty (called “non empty BBA
intersection” by language shortcut).

Finally, the clustering criterion boils down to the minimisa-
tion of both the cluster number and the intra-cluster distance
under two constraints, namely the intra-cluster distance be-
ing lower than dth − 0.05, and the non empty intersection
between cluster elements. In the following, let l denote the
number of obtained BBA clusters and {M1, ...,Mi, ...,Ml}
the set of clusters. This latter is a partition of M, namely it
satisfies (i) Mi ∩Mj = ∅,∀ (i, j) ∈ {1, . . . , l}2 , i 6= j and
(ii) ∪i∈{1,...,l}Mi =M.

B. Fusion strategies

We now aim to combine the BBAs within each cluster
using the conjunctive rule [16]. However, for clusters including
more than a few ten BBAs, a step of BBA approximation has
to be implemented (cf. Section II) to control computational
complexity. Specifically, we introduce a step of BBA approx-
imation each time the number of focal elements is larger than
20 in order to decrease it to 10. The used BBA approximation
process is the same as in [11].

However, one issue introduced by the BBA approximation
is the loss of the associativity of the combination. Let us then
discuss the combination order since the result will depends on

it. On the one hand, it may appear as more natural to gather
first the closest BBAs (still according to Jousselme’s distance)
so that combination ordering follows distance one. On the
other hand, one may remark that, since BBA approximation
decreases BBA commitment, the BBAs combined in the end
may have a greater impact in the final BBA. One can also
wonder whether it is worth recomputing the distance with
updated cluster BBA after each combination or if a preordering
can be defined from the initial BBA distances.

In this study, we have experimented those different strate-
gies and the two more efficient are presented in Section IV.
They correspond to updated minimal (respectively maxi-
mal) distance ordering. Let F(mi) denotes the set of fo-
cal elements of a BBA mi and let F(mi) ∩ F(mj) =
{A ∩B}(A,B)∈F(mi)×F(mj). Then, fusion ordering is per-
formed as follows. The two first BBAs to combine are:

(i∗, j∗) = arg min
(i,j)∈F(mi)×F(mj)
F(mi)∩F(mj)6=∅

dJ(mi,mj);
(6)

whereas the next BBA to combine to the current BBA com-
bination result m̃ is

j∗ = arg min
(j∈F(mj)

F(m̃)∩F(mj)6=∅

dJ(m̃,mj);
(7)

Equations (6) and (7) correspond to min ordering. The max
ordering is obtained replacing arg min by arg max in them.

After the fusion step, we have derived l cluster BBAs
{m̃i}i∈{1,...,l} that can be ranked according to their maximum
BetPi value (maxA∈F(m̃i)BetPi (A)). Recalling that our aim
in this study is to provide a set (as small as possible) of
solutions (possibly under the form of BBA) including the
ground truth, for result evaluation, we consider the k first
cluster BBAs as the proposed solution set.

Finally, note that our approach differs from [23], in which
the cardinality of a given cluster is used as an index of
reliability (the higher the cardinality, the more reliable the
cluster is assumed). For our application, such an assumption
cannot be justified so that we will evaluate each cluster
independently of their cardinality.

IV. EXPERIMENTS AND RESULTS

To evaluate the performance of the proposed method, we
selected 128 pairs of images with various pose variations
from the public dataset used in [38]. The number of inliers
between each pair of image is at least larger than 15 and above
20% of putative matches. We obtain the ground truth epipole
location from the calibration information provided with the
dataset, which was computed using Structure From Motion.
We compare the proposed method with the standard RANSAC
method based on traditional features (SIFT-RANSAC) and
based on the learned features (NN-RANSAC [38]).

We implement the proposed method in three steps. For each
pair of images, we first follow the process in [31] and obtain
a number of epipole uncertainty estimations. The number of
iterations for sampling point matches during RANSAC is set
to n = 105. In our experiments, the number of considered



(a) Source image (b) All sources (c) SIFT-RANSAC (d) NN-RANSAC

(e) BetP = 0.630 (rank 1) (f) BetP = 0.626 (rank 2) (g) BetP = 0.503 (low rank) (h) BetP = 0.299 (low rank)

Fig. 2: Qualitative illustration of our method. Upper row: the source image (a), set of epipole uncertainty ellipses (b) and the
result of existing methods (c)-(d) (the ground truth is highlighted in red). (e): the top ranked cluster (ellipses, final BBA and
BetP). (f): the second ranked cluster. (g)-(h): two clusters with a low rank/BetP due to the sources being less consistent.

sources p is set to be at most 100 (as long as their inlier support
satisfies the condition depending on θ). Thus, note that p is
not a sensitive parameter since it is determined mainly by θ
(p = f(θ)). The sensitive parameters are θ and k for which
we provided some guideline on setting them according to our
experiments. Then, we compute Jousselme’s distance matrix
for all the considered sources and feed it to the Agglomera-
tiveClustering function of the module scikit-learn [39] with the
complete linkage. Note that, since this function does not allow
for applying an additional binary constraint, we introduce the
“non-empty intersection” (cf. Section III) a posteriori, namely
during the fusion step based on min distance ordering (in
order to be consistent with the clustering criterion). Then, we
apply the conjunctive combination for the evidences in each
cluster by using the library 2CoBel following the two different
fusion orders mentioned in Section III (Fusion-min/max). For
SIFT-RANSAC and NN-RANSAC, the epipole uncertainty is
derived as in [31] (“Least squares SIFT” and “Least squares
NN”).

Qualitative evaluation In Fig. 2 and 3, we illustrate some
localization results, provided by existing methods, by top-
ranked clusters and by low-ranked clusters respectively. In
difficult settings, existing methods tend to be overconfident.
Top ranked clusters exhibit a higher consistency among the

BBAs which translates into a strong ellipse alignment, and
even for challenging poses the true solution is present at the
top. Conversely, the low rank clusters consist in uncertainty
areas exhibiting less consistency.
Quantitative evaluation Since our output is in the form
of a BBA (or an ordered set of BBAs) whereas RANSAC
outputs are in the form of uncertainty ellipses (associated to
2D Gaussian distributions), for a fairer comparison, we convert
these latter in a BBA. Specifically, we derive consonant BBAs
having five equi-weighted focal elements, corresponding to the
ellipses associated with respectively 95%, 75%, 50%, 25%,
10% confidence. We consider two different ways to compare
different methods in terms of performance related to accuracy
and precision.

The first evaluation counts the number of image pairs in
which the ground truth epipole is included in at least one
focal element of the considered BBA. Specifically, for the
proposed method, if the ground truth epipole is included in
at least one focal element of one of the k first evidences, we
consider it as positive. The result is summarized in Table I
for different values of k varying from 1 to 6 which ranks
the variable number of clusters obtained for each image pair.
According to this table, choosing higher values for the θ
parameter allows for slightly better results. We interpret such



(a) Source image (b) All sources (c) SIFT-RANSAC (d) NN-RANSAC

(e) BetP = 0.791 (rank 1) (f) BetP = 0.724 (rank 2) (g) BetP = 0.567 (low rank) (h) BetP = 0.432 (low rank)

Fig. 3: Qualitative illustration of our method. Upper row: the source image (a), set of epipole uncertainty ellipses (b) and the
result of existing methods (c)-(d) (the ground truth is highlighted in red). (e): the top ranked cluster (ellipses, final BBA and
BetP). (f): the second ranked cluster. (g)-(h): two clusters with a low rank/BetP due to the sources being less consistent.

result as supporting the assertion that RANSAC filtering is
beneficial, even if we relax the assumption that it is optimal.
Secondly, we note the very low sensitivity of the results to the
criterion min or max in the fusion. Thirdly, concerning the
k parameter, the increasing and asymptotic behaviour of the
number of image pairs including the ground truth is clearly
visible. Note also that due to the difficulty of the geometry on
some image pairs, the upper bound for performance is equal
to 81 (i.e. we whecked that among the 128 image pairs, in
47 of them less than 2 ellipses among the p estimated from
Fi, i ∈ {1, . . . , p} solutions include the ground truth). Finally,
we specify that the results obtained using NN-RANSAC are
biased by the fact that this latter has been trained on the
same dataset and that much less performant results have been
obtained considering other datasets.

The second evaluation consists in applying the modified
metric proposed in [11] with the following definition:

ε(λ) =
∑
A∈2Ω

d(egd, A)m(A) + λ
∑
A∈2Ω

|A|m(A), (8)

where egd is the ground truth epipole location and d(egd, A)

TABLE I: Number of image pairs on which the respective
method (left column) which contains the ground truth epipole.
For the proposed fusion, we present results with consensus
threshold values θ = 0.9 and θ = 0.5.

Method #Image pairs including the ground truth
k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

SIFT-RANSAC 39 - - - - -
NN-RANSAC 63 - - - - -

Fusion-min (θ = 0.9) 31 44 55 58 63 65
Fusion-max (θ = 0.9) 30 44 55 58 64 65
Fusion-min (θ = 0.5) 23 40 47 49 56 60
Fusion-max (θ = 0.5) 23 39 48 50 56 60

is defined as

d(egd, A) =

{
0 if egd is included in A;
min
x∈CA

‖ egd − x ‖ otherwise,

(9)
where CA is the set of contour points for the focal element A.
This measure allows one to control the compromise between
the guarantee for the ground truth epipole belonging to the
set of focal elements in the considered solution, and the
imprecision related to the size of focal elements. λ is the
weighting parameter between them.

Figure 4 illustrates the different subparts of this error. From
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Fig. 4: Cumulative curves of error subparts versus ε(λ).
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(a) Consensus threshold θ = 0.9
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Fig. 5: Curve of AUC for cumulative curve, versus ε(λ).

these cumulative curves and by setting the λ value, we can
estimate empirically the ε(λ) cdf (cumulative density function)
and compute its Area Under the Curve (AUC) value. The
higher this value, the more efficient an approach is. Now, since
this value depends on the λ, in Fig. 5, we plot the AUC versus
λ. Specifically, for the proposed method, we consider the
solution with the smallest value of ε(λ) among the proposed
k solutions. It corresponds to an optimistic assumption that
an additional source (GPS, person detector for synchronized
data acquisitions) will allow for “good” cluster selection. The
results for different methods reported in Fig. 5 underline that,
as the value of k increases, the performance of the proposed
fusion method improves and outperforms others methods in
terms of (i) the guarantee to include the ground truth epipole
as well as (ii) the localization precision based on the evaluation
methods introduced above. The proposed method also exhibits
a robust behavior to the fusion order according to the similar
performance achieved by different fusion strategies (min and
max).

V. CONCLUSION

Our work explores a strategy for the fusion of a large
number of sources including outliers. We propose to mit-
igate the impact of the outlier presence by introducing a
preliminary clustering process, which organizes the sources

in coherent groups. This step allows for intra-cluster fusion to
be performed without increasing the mass on the empty set
or requiring the user to dispatch it. The resulting BBA across
the source clusters may be used afterwards for fusion with
additional sources of information. In our application, namely
the epipole localization which is closely related to the relative
pose estimation problem in computer vision, we show that the
pignistic probability related to each source cluster is a good
indicator of the estimation quality, and that the evidence we
obtain is competitive with respect to the state of the art.

In the future, we will exploit the fact that our algorithm is
less committed than the standard vision-based solutions, and
thus more favorable to the use of additional sources. We intend
to perform fusion in synchronized video streams based on the
results provided by our algorithm and on other localization
sensors (GPS or inertial data).
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