
HAL Id: hal-02938992
https://hal.science/hal-02938992

Submitted on 15 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Microscope: Mobile Service Traffic Decomposition for
Network Slicing as a Service

Chaoyun Zhang, Marco Fiore, Cezary Ziemlicki, Paul Patras

To cite this version:
Chaoyun Zhang, Marco Fiore, Cezary Ziemlicki, Paul Patras. Microscope: Mobile Service Traf-
fic Decomposition for Network Slicing as a Service. The 26th ACM Annual International Confer-
ence on Mobile Computing and Networking (MobiCom ’20), Sep 2020, London, United Kingdom.
�10.1145/3372224.3419195�. �hal-02938992�

https://hal.science/hal-02938992
https://hal.archives-ouvertes.fr

Microscope: Mobile Service Traffic Decomposition
for Network Slicing as a Service

Chaoyun Zhang
University of Edinburgh, UK
chaoyun.zhang@ed.ac.uk

Marco Fiore
IMDEA Networks Institute
marco.fiore@imdea.org

Cezary Ziemlicki
Orange Labs

cezary.ziemlicki@orange.com

Paul Patras
University of Edinburgh, UK

paul.patras@ed.ac.uk

ABSTRACT

The growing diversification of mobile services imposes require-
ments on network performance that are ever more stringent and
heterogeneous. Network slicing aligns mobile network operation
to this context, by enabling operators to isolate and customize net-
work resources on a per-service basis. A key input for provisioning
resources to slices is real-time information about the traffic de-
mands generated by individual services. Acquiring such knowledge
is however challenging, as legacy approaches based on in-depth
inspection of traffic streams have high computational costs, which
inflate with the widening adoption of encryption over data and
control traffic. In this paper, we present a new approach to service-
level demand estimation for slicing, which hinges on decomposition,
i.e., the inference of per-service demands from traffic aggregates. By
operating on total traffic volumes only, our approach overcomes
the complexity and limitations of legacy traffic classification tech-
niques, and provides a suitable input to recent ‘Network Slice as
a Service’ (NSaaS) models. We implement decomposition through
Microscope, a novel framework that uses deep learning to infer
individual service demands from complex spatiotemporal features
hidden in traffic aggregates. Microscope (𝑖) transforms traffic data
collected in irregular radio access deployments in a format suitable
for convolutional learning, and (𝑖𝑖) can accommodate a variety of
neural network architectures, including original 3D Deformable
Convolutional Neural Networks (3D-DefCNNs) that we explicitly
design for decomposition. Experiments with measurement data
collected in an operational network demonstrate that Microscope
accurately estimates per-service traffic demands with relative er-
rors below 1.2%. Further, tests in practical NSaaS management use
cases show that resource allocations informed by decomposition
yield affordable costs for the mobile network operator.

CCS CONCEPTS

• Networks→ Network monitoring; Network management; Mobile
networks; • Computing methodologies→ Artificial intelligence.

Conference’17, July 2017, Washington, DC, USA
© Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in The 26th Annual
International Conference on Mobile Computing and Networking (MobiCom ’20), Septem-
ber 21–25, 2020, London, United Kingdom, https://doi.org/10.1145/3372224.3419195.

KEYWORDS

Mobile network data traffic, Network slicing, Service demand esti-
mation, Traffic decomposition, Deep learning, Neural networks.
ACM Reference Format:

Chaoyun Zhang, Marco Fiore, Cezary Ziemlicki, and Paul Patras. 2020. Mi-
croscope: Mobile Service Traffic Decomposition for Network Slicing as a Ser-
vice. In The 26th Annual International Conference on Mobile Computing and
Networking (MobiCom ’20), September 21–25, 2020, London, United Kingdom.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3372224.3419195

1 INTRODUCTION

Next-generation mobile networks are expected to become a domi-
nant General Purpose Technology (GPT) and enable new services
with a trillion-dollar economic output [24], by fulfilling a growing
variety of Quality of Service (QoS) needs that range from extreme
mobile broadband (eMBB) for, e.g., ultra-high-definition stream-
ing, to ultra-reliable low-latency communication (uRLLC) for, e.g.,
autonomous driving. In fact, strong service differentiation neces-
sities are already emerging in current deployments, where, e.g.,
live video streaming must coexist with on-line gaming or shared
cloud services. An important instrument for mobile communication
infrastructures to answer such diverse necessities is the flexibility
in resource management granted by the increasing virtualization of
network functions, including dynamic spectrum allocation [7], base-
band processing [39], scheduling [3], or task containerization [54].

Network slicing andMANO. On top of these technologies, op-
erators are foreseen to deploy network slicing, by isolating dedicated
resources and providing customized logical instances of the physi-
cal infrastructure to each tenant [20]. Under emerging ‘Network
Slice as a Service’ (NSaaS) models, tenants will obtain full con-
trol of the resources and functions allocated within the slices they
hold. NSaaS will allow tenants to take advantage of their precise
knowledge of end-to-end service performance (e.g., application-
level Quality of Experience indicators for individual users) to drive
fine-grained network slice configurations (e.g., flow-level traffic
engineering) [1, 9]. In such scenarios, network operators remain in
charge of performing the management and orchestration (MANO)
of resources dedicated to each slice [12]. Critical to MANO is the an-
ticipatory provisioning of isolated capacity (e.g., spectrum, compu-
tation, storage, or transport) to each slice. This requires knowledge
of the total traffic demand generated by each mobile service at a time
granularity of minutes, i.e., the resource reallocation periodicity
supported by state-of-the-art Virtual Infrastructure Manager (VIM)
and Network Function Virtualization (NFV) architectures [52].

https://doi.org/10.1145/3372224.3419195
https://doi.org/10.1145/3372224.3419195

Conference’17, July 2017, Washington, DC, USA Chaoyun Zhang, Marco Fiore, Cezary Ziemlicki, and Paul Patras

Antenna Urban region

Service 1

Service 2

Service s

Service 1

Service 2

Service s

Antenna-level aggregated traffic

Service 1

Service 2

MEC facility aggregated traffic
C-RAN datacenter

aggregated traffic

Service s

Base station set

MTDMTDMTD

+
+

+

+
+

+

+
+

+...

===

Figure 1: Example of MTD at one antenna (left), a Mobile

Edge Computing (MEC) facility controlling a few base sta-

tions (center), and a Cloud Radio Access Network (C-RAN)

datacenter managing many Distributed Unit (DU) (right). In

each scenario, aggregate mobile data traffic (top time series)

is decomposed into demands for individual services. Note

that the scales of time series are different at each level.

Traffic classification for NSaaS. However, operators do not
have the direct visibility of the service-level traffic required to
estimate such demands, and have to resort to inference techniques.
Current common practices for extracting this information combine
two steps: (𝑖) Deep Packet Inspection (DPI) to collect packet header
metadata, e.g., by sniffing on the GPRS Tunneling Protocol user
plane (GTP-U) via probes tapping into the interfaces of the Packet
Data Network Gateway (P-GW) in 4G systems [36]; (𝑖𝑖) Flow-level
classification on such metadata to identify the associated service.

Yet, running DPI at line rate and at scale is computationally ex-
pensive, while the surge in mobile data traffic and rapid growth of
transport link speeds beyond the Terabit-per-second barrier exac-
erbate the problem. Software-only DPI methods incur substantial
latency, as they have to go through a demanding process of fetching
each packet from the interface, buffering it, passing it to the CPU,
waiting for the operating system task scheduler, and finally parsing
the multiple protocol headers. This factually limits packet capture
to 70% of the line rate, thereby disregarding a substantial fraction
of traffic [42]. On the other hand, recent hardware-based or hybrid
DPI solutions can operate close to the line rate [13], yet they come
at a very high economic cost for the operator: dedicated FPGA hard-
ware must be deployed at every collection point, and expensive
equipment updates are required whenever new classification rules
for emerging traffic categories are necessary.

Flow-level service identification on DPI-collected data also yields
significant challenges. Due to the increasing adoption of traffic en-
cryption, modern traffic classifiers rely on cleartext hostnames in
DNS queries, or revealing fields in the TLS handshake, like the
Server Name Indication (SNI) [55]. However, recent proposals for
DNS over TLS [22] or encrypted SNI in TLS 1.3 [47] will make classi-
fiers based on DNS and TLS ineffective, and oblige the development

mobile users eNodeB SGWMME PDNsPGW

Flow-level traffic classification
Mobile Traffic

Decomposition (MTD)

Aggregate traffic
volume monitoringDeep Packet Inspection (DPI)

Legacy
(complex and

expensive)
metadata

collection and
processing

Time

Overall cost
of service

demand
estimation

✓ ✘

MICROSCOPE
lightweight
metadata
collection and
processing

Periodic DPI-based ground-truth collection

Persistent
MTD

Positive MTD validation

Negative MTD validation
DPI-based ground-truth collection

MTD model
update

✓

Figure 2: Hybrid service-level demand estimation for NSaaS

capacity provisioning. DPI-based and MTDmodels are com-

bined, so that lightweight decomposition is used as the stan-

dard solution, and expensive flow-level classification is only

triggered when MTD model retraining is needed.

of more complex fingerprinting techniques [48]. Not to mention
that the design of future flow-level classification solutions will be
further challenged by privacy concerns, and will have to abide by
emerging strict regulations on personal data protection [40].

Overall, there is a concrete risk that current trends in mobile
data usage, network architecture performance, security and privacy
will render scalable on-line flow-level classification an even more
tangled and resource-intensive problem than it is already today.

Mobile traffic decomposition. In this paper, we propose an al-
ternative approach to demand estimation for sliced network MANO.
Abiding by the requirements of NSaaS, we target the inference of
service-level demands that are required for capacity provisioning
to individual slices. Our proposal builds on the novel concept of
mobile traffic decomposition (MTD), i.e., the process of breaking
down aggregate traffic time series into individual service demands,
as illustrated by the several examples in Fig. 1.

An accurate MTD can be a viable complement to legacy ap-
proaches for service-level demand inference in emerging NSaaS net-
work management models. As exemplified in Fig. 2, operators could
persistently rely on traffic estimates from MTD to drive service-
level capacity provisioning, as it is a lightweight solution based
on straightforward monitoring of total traffic volumes. Expensive
DPI-based classifiers would only be needed to collect the ground
truth needed to validate (and possibly update) the MTD models in
presence of evolution in the consumption of mobile applications.
Hence, DPI-based solutions would be only run on-demand, spo-
radically and asynchronously across services, with substantially
reduced resource requirements and operation costs.

Contributions. MTD is technically challenging, for multiple
reasons: (𝑖) the decomposition of a single signal into multiple time
series yields inherent ambiguity among a multitude of feasible solu-
tions; (𝑖𝑖) helpful complex spatial and temporal correlations exist in
mobile traffic [61, 62], but capturing these to resolve the ambiguity
is not trivial; (𝑖𝑖𝑖) traditional decomposition techniques used in
other domains, including factorial hidden Markov models [66] or
neural networks [65], work on single time series, whereas in our
case multiple input time series must be concurrently decomposed at
different network locations (e.g., diverse edge datacenters).

Microscope: Mobile Service Traffic Decomposition for Network Slicing as a Service Conference’17, July 2017, Washington, DC, USA

To tackle these challenges and achieve effective and scalable
MTD, we design a dedicated deep learning framework. We rely on
deep learning due to its demonstrated effectiveness in discovering
knowledge from time series under spatial correlations [8], and in
operating on large-scale mobile traffic in real time [64]. This leads
to the following contributions:

I. We introduce the original concept of mobile network traffic
decomposition (MTD), and prove that it can be a low-cost yet effec-
tive solution for the real-time inference of the demands generated
by individual mobile services.

II.We proposeMicroscope, a framework that solves the MTD
problem effectively by feeding suitably transformed mobile net-
work traffic to interchangeable deep neural network architectures,
including a new class of deformable convolutional neural networks
that is explicitly designed for decomposition.

III.We experiment with metropolitan-scale measurement data
collected in a production network serving a major European city,
and show thatMicroscope can infer per-service traffic demands
with relative errors below 1.2%.

IV.Weprovide a quantitative analysis of howMicroscopewould
affect practical network operations, showing that resource alloca-
tions based on per-service demands estimated via MTD entail costs
that are are on par with those incurred when perfect knowledge of
per-service traffic is available.

2 MOBILE TRAFFIC DECOMPOSITION

We provide a formal definition of theMTD problem in Sec. 2.1. Then,
we outline the high-level structure of the Microscope framework
we propose to solve such a problem in Sec. 2.2.

2.1 Problem Formulation

Let us consider a geographical region where mobile network cov-
erage is provided by a set A of antennas,1 which accommodate
traffic generated by a set S of mobile services. We denote by 𝑑𝑠𝑎 (𝑡)
the traffic demand (expressed in Mbps) accommodated by antenna
𝑎 ∈ A for a specific service 𝑠 ∈ S at time 𝑡 . The sum of demands
over all services gives the aggregate demand at antenna 𝑎 and time
𝑡 , 𝑑𝑎 (𝑡) =

∑
𝑠∈S 𝑑𝑠𝑎 (𝑡). A mobile network traffic snapshot is the set

of demands recorded at all antennas in the target region at a specific
time. This applies both to individual services, leading to a service
snapshot 𝐷𝑠 (𝑡) =

{
𝑑𝑠𝑎 (𝑡) |𝑎 ∈ A

}
, and to traffic aggregates over all

services, obtaining an aggregate snapshot 𝐷 (𝑡) = {𝑑𝑎 (𝑡) |𝑎 ∈ A}.
The MTD problem is formally defined as that of inferring the ser-

vice snapshots 𝐷𝑠 (𝑡) of all services 𝑠 ∈ S at current time 𝑡 , by only
knowing the aggregate snapshots up to𝑇 previous time instants, i.e.,
{𝐷 (𝑡−𝑇+1), . . . , 𝐷 (𝑡)}. If we denote by D𝑠 (𝑡) = {𝐷𝑠 (𝑡) |𝑠 ∈ S} the
set of current service snapshots, the solution to the MTD problem
can be expressed as

D̃𝑠 (𝑡) := argmax
D𝑠 (𝑡)

𝑝
(
D𝑠 (𝑡) | {𝐷 (𝑡−𝑇+1), . . . , 𝐷 (𝑡)}

)
, (1)

where D̃𝑠 (𝑡) denotes the estimated current traffic demands disag-
gregated over the service set S for all antennas in A, and 𝑝 (·) is
the probability of the argument. The MTD results are restricted by

1An eNodeB may serve users present in one or multiple sectors, each covered by a
co-located antenna with a different azimuth. We refer to a single radio front-end unit
as one ‘antenna’ hereafter.

two obvious constraints in the system i.e.,

𝑑𝑠𝑎 (𝑡) ≥ 0, ∀𝑎 ∈ A,∀𝑠 ∈ S,∀𝑡, (2)∑
𝑠∈S

𝑑𝑠𝑎 (𝑡) = 𝑑𝑎 (𝑡), ∀𝑠 ∈ S,∀𝑡 . (3)

The expression in (2) enforces that all estimated traffic demands
are positive, while (3) implies that the sum of the per-service traffic
must be equal to the aggregate traffic.

We stress that MTD is a fundamentally different problem from
prediction, as it assumes knowledge of the aggregate measurement
data at the current time instant 𝑡 , and aims at inferring information
relative to that same time instant. In fact, MTD is a one-to-many
problem that seeks to decompose one aggregate trafficmeasurement
into the underlying |S| per-service snapshots: D𝑠 (𝑡) includes |S|
snapshots, each featuring the same cardinality as 𝐷 (𝑡). Iteratively
solving this problem over time ultimately leads to the reconstruc-
tion of per-service demand time series at each antenna from the
aggregate traffic, as originally illustrated in Fig. 1.

2.2 Microscope in a Nutshell

Microscope is a novel machine learning framework that is specif-
ically designed for MTD. Here, we provide an overview of the
framework, discussing the functionality and integration of the mod-
ules it comprises; the following Sec. 3–5 give full details about the
implementation of each component.

As shown in Fig. 3, there are three main elements inMicroscope.
The first is a traffic snapshot transformation block, which receives the
current aggregate mobile network traffic measurement data 𝐷 (𝑡)
and converts them into a format that is suitable for the following
analysis. Specifically, this component limits the spatial distortion
of antenna locations as they are fed to the neural network, by
solving an opportune association problem. This transformation is
critical to generalizing the framework, since it allows Microscope
to accommodate any antenna deployment layout with minimum
loss of geographical information. Details are in Sec. 3.

The second component implements a deep neural network model,
whose goal is learning abstract spatiotemporal correlations that are
unique ofmobile traffic, as needed to solve theMTDproblem. To this
end, the model takes as input the transformed measurement data
corresponding to the aggregate traffic recorded during most recent
𝑇 time instants. The framework can accommodate different neural
network architectures, and we test a number of variants, including
a novel 3D deformable convolutional neural network (3D-DefCNN)
specifically designed for decomposition. Details are in Sec. 4.

The third component is concerned with the loss function used
to drive the learning process. Also in this case, we consider and
compare different options with properties that include (𝑖) suitable
output normalization, (𝑖𝑖) preservation of the total traffic across
all service demands, and (𝑖𝑖𝑖) overall accuracy in solving the MTD
problem. The final outputs are the estimated service snapshots
D̃𝑠 (𝑡) as per (1). Details are in Sec. 5.

3 MOBILE TRAFFIC TRANSFORMATION

Microscope relies on deep neural network models, and can ac-
commodate a variety of architectures. Among those, convolutional
neural networks (CNNs) are especially adapted to MTD, as they

Conference’17, July 2017, Washington, DC, USA Chaoyun Zhang, Marco Fiore, Cezary Ziemlicki, and Paul Patras

Traffic snapshot

transformation

(Hungarian algorithm)

Neural Network Model

(MTD Inference)
Loss function

(Fraction + Normalization

+ Cross-entropy)
Antennas (Point cloud)

Aggregated traffic (Grids)

t-T

t

...

Service 1 Service 2

Service s

...

Figure 3:Microscope framework. The pipeline performs transformation of mobile traffic snapshots (left), traffic decomposi-

tion via a neural network model (center), and learning driven by a dedicated loss function (right).

can take advantage of spatiotemporal correlations in mobile net-
work traffic to improve the decomposition accuracy. Indeed, previ-
ous studies have repeatedly demonstrated the existence of spatial
and temporal interrelationships between the demands generated
by mobile users [14], which have proven essential in performing
data-driven networking tasks. For instance, cell load forecasting is
enhanced by harnessing information from adjacent sites, exploiting
the fact that the mean of spatial conditional entropy varies with the
number of considered adjacent cells [32]. Similarly, traffic super-
resolution is improved when taking advantage of long-timescale
correlations present in temporal sequences of traffic consumption
snapshots [63]. In order to leverage these properties for MTD, the
majority of models in Sec. 4 use convolutional entry layers.

However, convolutional layers require an input in matricial form.
In our case, the input matrix must describe an aggregate snapshot
𝐷 (𝑡) of mobile network traffic, as explained in Sec. 2.1. The con-
straint on the input format creates the problem ofmapping antennas
to matrix elements. Radio access infrastructure deployments typi-
cally have irregular spatial distributions that are driven by the area
topography and varied density of subscriber presence, hence are not
easily matched to a matrix. This is illustrated in Fig. 4 (left), which
portrays the real-world antenna arrangement in the metropolitan-
scale network we consider in our experiments. We present our
strategy to address this problem in Sec. 3.1, while we discussed its
performance and alternative options in Sec. 3.2.

3.1 Minimum Displacement Grid Mapping

We solve the mapping problem by constructing a regular grid that
has the same number of points as the number of antennas, and per-
forming a one-to-one antenna-to-point association that minimizes
the displacement of the original antenna locations. The rationale for
this design is twofold: (𝑖) it produces a regular grid, i.e., an inherent
matricial form; and, (𝑖𝑖) it aims at preserving spatial correlations in
traffic that convolutional layers can take advantage of, by linking
geographically close antennas to adjacent points of the grid.

3.1.1 Regular Grid Design. To preserve spatial correlations within
mobile network traffic, the grid should (𝑖) overlap with the coverage
of the antennas as much as possible, and (𝑖𝑖) help limiting spatial
displacements after the mapping procedure. Given the target set A
of antennas, our grid design follows the logic below.
(1) We project the locations of all antennas to an Euclidean space,

determine the extreme values on 𝑥 and 𝑦 axes, i.e., 𝑥min, 𝑥max,
𝑦min, 𝑦max, and compute the aspect ratio of the overall coverage
region as 𝜌 = (𝑥max − 𝑥min)/(𝑦max − 𝑦min);

(2) We dimension the grid so that it best reflects such an aspect
ratio, with 𝑛𝑟 =

√
|A|/𝜌 rows and 𝑛𝑐 = 𝑛𝑟 /𝜌 columns;

Antennas Antennas with grid points Association

Figure 4: Illustration of the minimum displacement grid

mapping in the network deployment used for our experi-

ments. Antennas positions (left) are used to design a grid

layout (center). The mapping via the Hungarian algorithm

is shown by arrows that denote the displacement from each

original antenna position to the assigned grid point (right).

(3) We assign geographical coordinates to the regular grid, by su-
perposing the grid to the antenna positions, and then scaling
distances by a factor^ to account for the heterogeneous antenna
density typical of urban areas.

The center plot of Fig. 4 portrays the regular grid obtained with the
technique above, in the case of the antenna deployment in the left
plot of the same figure. In this scenario, we employed ^ = 0.25 after
extensive tests, and obtained a 33 × 24 grid.

3.1.2 Antenna-to-Point Mapping. We aim to minimize the overall
displacement when performing the one-to-one association between
antennas and grid points. We define the displacement 𝑐𝑎,𝑝 as the
Euclidean distance between the geographical positions of antenna
𝑎 and grid point 𝑝 . We construct a cost matrix 𝐶 := {𝑐𝑎,𝑝 } |A |×|A |
to represent the distances between antennas and grid points. We
further define a binary matrix 𝑋 := {𝑥𝑎,𝑝 } |A |×|A | , where 𝑥𝑎,𝑝 = 1,
if and only if the antenna 𝑎 is assigned to the grid point 𝑝 . Hence,
we formulate the association problem as:

min
𝑥

∑
𝑎∈A

|A |∑
𝑝=1

𝑐𝑎,𝑝 · 𝑥𝑎,𝑝 , (4)

s.t.
∑
𝑎∈A

𝑥𝑎,𝑝 = 1, ∀𝑝 ≤ |A|;
|A |∑
𝑝=1

𝑥𝑎,𝑝 = 1, ∀𝑎 ∈ A, (5)

where constraints enforce that one antenna will be assigned to only
one grid point, and vice versa.

The expressions in (4)–(5) define an assignment problem that is
efficiently solved via the Hungarian algorithm [29]. The algorithm
has a polynomial complexity 𝑂 (|A|3), hence runs efficiently in
practical cases. For the antenna deployment used in our experi-
ments, in Fig. 4, it returns the mapping in the right plot. We observe
that only antennas on the outskirts of the urban area are subject to
significant spatial shifts, and movements are otherwise small.

Microscope: Mobile Service Traffic Decomposition for Network Slicing as a Service Conference’17, July 2017, Washington, DC, USA

Longitude

La
tid

ut
e

0 5 10 15 20 25 30
x-axis

0

5

10

15

20

y-
ax

is
1 2 3 4 5 6

Displacement [KM]

Figure 5: Heatmaps of the spatial displacement incurred by

our grid mapping, with respect to the original antenna loca-

tions (left), and projected on the regular grid space (right).

3.2 Comparison with Other Mapping Strategies

We provide an in-depth view of the proposed minimum displace-
ment grid mapping’s performance in Fig. 5. The heatmaps illustrate
the displacement incurred by antennas in the network considered
for our experiments, upon traffic transformation. In the left plot,
the displacement information is associated to the original antenna
positions: this highlights how antennas at the conurbation borders
may be shifted by 2 to 6 km, while displacements are below 1 km
otherwise. The right plot associates displacement values to the final
grid points, and offers an even clearer outlook of the mapping qual-
ity: the vast majority of antennas undergoes shifts below 500 m,
hence preserving substantial spatial relationships in the traffic.

Although it works reasonably well, our transformation is not the
only possible approach to the generation of input traffic matrices.
An alternative design could replace the regular grid tessellation of
space with a different one, e.g., based on the triangular or hexagonal
tiling that is traditionally adopted in ideal network deploymentmod-
els. Such tessellations, however, are not immediately translated to
a matricial form, and introduce one step in the transformation pro-
cess, thus incurring in higher displacement and weakened spatial
correlations. For instance, we experiment with a Voronoi tessella-
tion commonly adopted to mimic the coverage areas of antenna
sites [16, 44]. By this, we move antennas to the barycenter of their
corresponding Voronoi polygon, and then employ the approach in
Sec. 3.1.2. This design yields a very similar traffic matrix to that
obtained with our method: 88% of the antennas are mapped to the
exact same grid point, and differing elements are 1.66 cells apart (i.e.,
shifted to a neighboring grid point) on average. Still, the Voronoi
design above leads to an average displacement of antenna original
locations increased to 1.29 km from 1.22 km in our transformation.

A different solution to reconciling real-world antenna deploy-
ments with the input requirement of CNNs could be spatial su-
persampling [4]. This involves approximating the coverage area of
each antenna (e.g., via the Voronoi tessellation above), assuming the
traffic recorded at each antenna to be uniformly distributed within
the associated coverage area, and superposing a dense grid to the
resulting continuous traffic map. Then, each matrix element can be
easily filled with the traffic in the underlying map. However, this
option has significant shortcomings, since (𝑖) it introduces strong
unrealistic assumptions about the coverage and spatial distribution
of users, and (𝑖𝑖) in the case of dense grids, it artificially increases
the size of the matrices and the computational cost of the CNN.

Table 1: Legacy neural networks configuration.

Class Configuration

MLP Legacy MLP, with 5 hidden layers, and 1,000 hidden units per
layer

CNN Fig. 8, without the 3D convolutional block
LSTM Legacy LSTM, with 3 stacks, and 500 units per stack
ConvLSTM Legacy ConvLSTM, with 3 stacks, and 108 channels per stack
ZipNet Fig. 8, with the 3D deformable convolutional layers in the first

block replaced by legacy 3D convolutional layers
DefCNN Same as ZipNet, with the convolutional layers in the last block

replaced by 2D deformable convolutional layers

4 DEEP NEURAL NETWORK MODELS

The core of Microscope is a deep learning architecture. The frame-
work is flexible, and can accommodate a variety of neural network
models. We experiment with a number of different architectures
proposed in the machine learning literature, which are summarized
in Tab. 1, and detailed in Sec. 4.1. In addition, we design a novel
3D deformable convolutional neural network (3D-DefCNN) that is
tailored to MTD in especially complex scenarios: it compensates
for the spatial displacement in network traffic snapshots, discovers
spatiotemporal correlations in aggregate traffic, and exploits them
for decomposition, as thoroughly discussed in Sec. 4.2.

We remark that the openness to various deep learning architec-
tures is an important feature of theMicroscope framework. Indeed,
our performance evaluation results, presented later in Sec. 6, indi-
cate that there is not a single neural network that works best for
all decomposition tasks, but different models should be adopted
depending on the target network management scenario.

4.1 Legacy Architectures

We consider a comprehensive set of five legacy deep learning mod-
els among the many options available in the vast machine learning
literature. (𝑖) The multi-layer perceptron (MLP) is the simplest neu-
ral network class [17] and we consider it as a baseline solution.
(𝑖𝑖) Convolutional neural networks (CNNs) are commonly used for
imaging applications [28]. (𝑖𝑖𝑖) Long Short-Term Memory (LSTM) is
frequently exploited for modelling sequential data [21], e.g., speech
signals and natural language. (𝑖𝑣) Convolutional LSTM (ConvLSTM)
is a dedicated model for spatiotemporal data forecasting [59]. (𝑣)
Deep zipper networks (ZipNets) were originally proposed for mo-
bile traffic super resolution tasks with remarkable results [63].

A sixth variant for the neural network model integrated in
Microscope is the (𝑣𝑖) deformable convolutional neural network
(DefCNN) [10] originally proposed for computer vision application,
such as image classification [67], object detection and semantic seg-
mentation [45]. Whilst classic CNNs apply fixed geometric transfor-
mations to a 2D space, DefCNN architectures perform deformable
convolutions over the same input. This allows flexible transforma-
tions that can compensate for distortions in the 2D input space.

As discussed in Sec. 3, we adopt a traffic snapshot that mitigates
but cannot completely remove the displacement of antenna loca-
tions into a regular grid. Therefore, aggregate snapshots recorded in
the 2D geographical space are distorted, with a risk that spatial cor-
relations in the original data are misrepresented in the input matrix.
DefCNN can reduce such a risk, by enabling convolutional filters
to access any element of the input matrix. These connections are
dynamically tailored to the input, and can be learned jointly with

Conference’17, July 2017, Washington, DC, USA Chaoyun Zhang, Marco Fiore, Cezary Ziemlicki, and Paul Patras

Offset

prediction

3D CNN 3 offset maps

Offset

prediction

Input map

Deformed convolutional filter at

Deformable

convolution

Output map

Output point

Applied

offsets

Convolutional filter

at location

Input map

Figure 6: Graphical illustration of 3D deformable convolutional operation.

the other synapses via gradient descent. The approach is equivalent
to letting the neural network re-organize the 2D spatial structure
of the input data. In our context, this allows identifying and ex-
ploiting spatial correlations in the mobile network traffic that the
transformation may weaken.

4.2 3D-DefCNN

We propose an additional (𝑣𝑖𝑖) 3D-DefCNN model, which is an
enhancement of the DefCNN. The 3D-DefCNN design stems from
an original 3D deformable convolution operation, which is detailed
next, along with the overall network architecture.

4.2.1 3D Deformable Convolution. Legacy DefCNNs perform de-
formable convolution over 2D input matrices. In MTD, the data fed
to the network includes time, thus it is three-dimensional. Specifi-
cally, the input consists of the aggregate snapshot set {𝐷 (𝑡−𝑇+1),
. . . , 𝐷 (𝑡)} (Sec. 2.1), which is transformed into 𝑇 subsequent 2D
matrices (Sec. 3.1.2). Hence, we extend the deformable convolution
operation to the temporal dimension. In doing so, we account for
the fact that not all last 𝑇 input snapshots have the same relevance
to MTD at the current time instant, and weight in an adaptive
manner the different 2D input matrices.

To achieve our objective, we combine the DefCNN model with
3D convolution, a technique previously used for action recogni-
tion [26], which operates over both time and a bidimensional space.
Essentially, 3D convolution performs summation over an input map
x weighted by a filter matrix w, which results in an output map y.2
Each convolutional filter w has a receptive field G, which defines
the spatiotemporal extent of connectivity between different loca-
tions in the input. As an example, the receptive field of a 3 × 3 × 3
convolutional filter can be defined as G = {(−1,−1,−1), (−1,−1, 0),
. . . , (1, 1, 0), (1, 1, 1)}. For each location 𝒑𝑦 of the output y, the 3D
convolution performs the following calculation:

y(𝒑𝑦) =
∑

𝒑𝐺 ∈G
w(𝒑𝐺) · x(𝒑𝑦 + 𝒑𝐺), (6)

where 𝒑𝐺 is a 3D vector in G. For instance, if 𝒑𝑦 = (1, 2, 3) and
𝒑𝐺 = (−1, 1, 0), then x(𝒑𝑦 + 𝒑𝐺) is the x value at (0, 3, 3).

Our proposed 3D-DefCNN extends (6) above with deformability,
by adding an offset Δ𝒑𝐺 to each 𝒑𝐺 :

y(𝒑𝑦) =
∑

𝒑𝐺 ∈G
w(𝒑𝐺) · x(𝒑𝑦 + 𝒑𝐺 + Δ𝒑𝐺 (𝒑𝑦)) . (7)

2In action recognition tasks, x and y are four-dimensional tensors: the first three
are the spatiotemporal dimensions; the fourth is the RGB channel dimension. This
allows defining dedicated filters on each channel. In our case, we employ a single filter
shared across all channels of the input. Our neural network will still produce multiple
channels throughout the hidden layers, which do not have a direct physical meaning,
but rather provide intermediate outputs that aid extracting abstract features. The final
layer making predictions has however one output channel for each mobile service.

Figure 7: Example of trilinear interpolation, where {x(𝒖00𝒑),
x(𝒖01𝒑), x(𝒖10𝒑), x(𝒖11𝒑)} are first computed via linear interpola-

tion, then {x(𝒖0𝒑), x(𝒖1𝒑)} are derived, and x(𝒑) is obtained.

Note that: (𝑖) for each location 𝒑𝑦 a different Δ𝒑𝐺 (𝒑𝑦) may be
applied; (𝑖𝑖) for each location, we have |G| three-dimensional offsets,
which can be globally seen as 3|G| maps of offsets on the input grid,
or one |G| map for each (spatial or temporal) dimension; (𝑖𝑖𝑖) all
Δ𝒑𝐺 (𝒑𝑦) offset maps are learned by an additional 3D-CNN layer
that takes x as input.

We illustrate the principle of 3D deformable convolution in Fig. 6.
As mentioned above, we first apply a 3D-CNN structure (3 layers)
onto the original convolutional filter (which is compact) to predict
3|G| offset maps Δ𝒑𝐺 (𝒑𝑦). These offset maps essentially seek to
alter the position of the filter elements, in order to scan, at each
step, locations in the input that are not necessarily adjacent. The
offsets are learned and shared across the different input channels.
Subsequently, we apply these offsets to the original convolutional
filter, to construct a deformed convolutional filter. Finally, by per-
forming convolution between input and deformed filter, we obtain
the output at location 𝒑𝑦 via (7). Since 3D deformable convolu-
tion operations are fully differentiable, the offsets to be applied
can be learned through standard back-propagation. As such, 3D-
DefCNNs grant convolutional filters complete freedom to query any
location in the input maps. This significantly improves the model
flexibility and enables to adapt to any spatial displacement (spatial
deformation) and diverse importance of historical data (temporal
deformation).

A complication introduced by equation (7) is that the sample
positions 𝒑 = 𝒑𝑦 + 𝒑𝐺 + Δ𝒑𝐺 can be fractional. Indeed, while 𝒑𝐺
and 𝒑𝑦 are indices of G and y, and thus integer values, Δ𝒑𝐺 may
not be integer, as it is estimated by a CNN. To solve the issue, we
compute the deformed input in (7) as:

x(𝒑𝑦 + 𝒑𝐺 + Δ𝒑𝐺) = x(𝒑) =
∑

𝒖𝒑 ∈𝑼 𝒑

Tri(𝑼𝒑,𝒑) · x(𝒖𝒑), (8)

where 𝑼𝒑 = {𝒖000𝒑 , 𝒖001𝒑 , . . . , 𝒖111𝒑 } are the locations of the eight in-
put samples around 𝒑, and Tri(·) denotes the trilinear interpolation
operator [46], whose principle we show in Fig. 7.

Microscope: Mobile Service Traffic Decomposition for Network Slicing as a Service Conference’17, July 2017, Washington, DC, USA

Stacks of convolutional layers + BN + LReLU

Global

 Skip-connection

Staggered skip-

connections

Zipper convolutional blocks3D convolutional blocks

(3D deformable convolutional

layers + BN + LReLU)×6

Service-wise

traffic snapshots

3D tensors of

aggregated

traffic snapshots

Stacks of Convolutional

layers + BN + LReLU

Convolutional blocksInputs Outputs

Figure 8: Overall structure of the 3D-DefCNNmodel, consisting of 3D deformable convolutional blocks (left), zipper convolu-

tional blocks (middle), and standard 2D convolutional blocks (right).

4.2.2 Overall 3D-DefCNN Structure. We embed the 3D deformable
convolutional operations above in the complete 3D-DefCNN struc-
ture shown in Fig. 8. Our architecture design encompasses three ma-
jor components: (𝑖) 3D deformable convolutional blocks, (𝑖𝑖) zipper
convolutional blocks, and (𝑖𝑖𝑖) 2D convolutional blocks.

The 3D deformable convolutional blocks consist of stacks of 3D
deformable convolutional layers, batch normalization (BN) lay-
ers [25], and leaky rectified linear unit (LReLU) activation lay-
ers [34]. As previously detailed, 3D deformable convolutions are
employed to mitigate the spatial displacements and perform adap-
tive weighting over historical observations; in addition, they extract
important spatiotemporal patterns in mobile network traffic. BN
layers perform normalization over a batch of output of each layer.
This effectively reduces output’s variance and can significantly ac-
celerate the model training. LReLUs perform as activation functions.
They improve the model non-linearity and representability, which
enables the model to extract even more abstract features.

The zipper convolutional blocks receive the output of the 3D
deformable convolutional blocks and are responsible for feature
extraction. The structure of these blocks is inspired by that of
deep zipper networks (ZipNets) originally proposed for mobile
data traffic super-resolution [63], which work demonstrably well
in extracting spatiotemporal correlations hidden in this type of
measurement data. More precisely, global and multiple skip con-
nections are employed within these blocks, to perform effective
residual learning [19], which is known to make the model more ro-
bust by constructing an ensembling system of neural networks with
different depths [56]. Skip connections also significantly smoothen
the loss surface, which enables faster convergence of the model
training [31].

Upon processing by the zipper convolutional blocks, the mobile
network traffic data is transformed into highly abstracted repre-
sentations, ready for the final MTD inference. This is performed
by standard 2D convolutional blocks. Compared to the previous
blocks, these are configured with a larger number of feature maps,
so as to provide sufficient information for the inference process.
The last layer of this block has |S| channels, i.e., feature maps, each
corresponding to the decomposed traffic volume of an individual
mobile service.

5 DRIVING THE LEARNING PROCESS

We explore three different methods to train theMicroscope neural
network so that it solves the MTD problem in (1). Namely, we test
(𝑖) regression, (𝑖𝑖) ratio prediction trained with Mean Square Error
(MSE), and (𝑖𝑖𝑖) ratio prediction trained with Cross-Entropy (CE).

(1) The Regression method trains neural networks with a loss func-
tion over the traffic volume that aims at minimizing the differ-
ence between 𝑑𝑠𝑎 (𝑡) and 𝑑𝑠𝑎 (𝑡), i.e.,

L(𝑡) = 1
|S| · |A|

∑
𝑠∈S

∑
𝑎∈A

| |𝑑𝑠𝑎 (𝑡) − 𝑑𝑠𝑎 (𝑡) | |2 . (9)

Due to model imperfections, the output obtained with this ap-
proach may violate the constraints (2) and (3).

(2) The ratio prediction method based on Mean Square Error (MSE)
seeks to infer the fraction of traffic consumed by each service
relative to the corresponding aggregate, i.e., 𝑟𝑠𝑎 (𝑡) = 𝑑𝑠𝑎 (𝑡)/𝑑𝑎 (𝑡).
Clearly,

∑
𝑠∈S 𝑟𝑠𝑎 (𝑡) = 1,∀𝑎 ∈ A,∀𝑠 ∈ S,∀𝑡 . A softmax function

allows an equivalent transformation for the estimated service
demand:

𝑟𝑠𝑎 (𝑡) =
exp(𝜒𝑠𝑎 (𝑡))∑

𝑠∈S exp(𝜒𝑠𝑎 (𝑡))
. (10)

Here 𝜒𝑠𝑎 (𝑡) denotes the intermediate (unnormalized) output of
the neural network. In essence, by the above we map a vec-
tor output with elements of arbitrary values onto a probability
vector where the elements are in the (0,1) range [6]. The expres-
sion of 𝑟𝑠𝑎 (𝑡) in (10) satisfies both (2) and (3). The network is
trained to minimize the MSE between 𝑟𝑠𝑎 (𝑡) and 𝑟𝑠𝑎 (𝑡), with a
loss function:

MSE(𝑡) = 1
|S| · |A|

∑
𝑠∈S

∑
𝑎∈A

| |̃𝑟𝑠𝑎 (𝑡) − 𝑟𝑠𝑎 (𝑡) | |2 . (11)

Note that the actual mobile service demand can be easily re-
trieved from the output ratio as 𝑑𝑠𝑎 (𝑡) = 𝑟𝑠𝑎 (𝑡) · 𝑑𝑎 (𝑡). We refer
to this approach as𝑀𝑆𝐸 in the following.

(3) The cross-entropy (CE) loss function is formally:

CE(𝑡) = 1
|A|

∑
𝑎∈A

∑
𝑠∈S

−𝑟𝑠𝑎 (𝑡) log(𝑟𝑠𝑎 (𝑡)). (12)

for the service snapshot estimated at time 𝑡 . The overall CE
for a given time span T can then be computed as the average
over all time instants 𝑡 ∈ T . This expression is minimized
when the estimated and actual traffic demand ratios match, i.e.,
𝑟𝑠𝑎 (𝑡) = 𝑟𝑠𝑎 (𝑡),∀𝑎 ∈ A,∀𝑠 ∈ S,∀𝑡 . This maps to minimizing the
Kullback–Leibler (KL) divergence between the model and target
distribution, under the assumption that the ratio 𝑟𝑠𝑎 (𝑡) follows a
multinomial distribution [38]. Training a neural network with
CE usually finds a better optimum than other loss functions
when the output is normalized [15], as in our case. This will be
later confirmed by comparative evaluations.

Conference’17, July 2017, Washington, DC, USA Chaoyun Zhang, Marco Fiore, Cezary Ziemlicki, and Paul Patras

Supercell
WhatsAppTwitter Google Spotify Snapchat

Instagram
Facebook

YouTube

Service

10 1

100

101

Tr
af

fic
 fr

ac
tio

n
[%

]

0.
02

%

0.
47

%

1.
46

%

2.
42

%

4.
2%

4.
53

%

6.
01

%

9.
83

%

13
.9

9%

Gaming
Messaging

Social Nets
Streaming

Figure 9: Overview of the traffic generated by services in the

set S considered in our study.

6 EXPERIMENTS

We implementMicroscope using the open-source Python libraries
TensorFlow [2] and TensorLayer [11]. We train and evaluate the
framework on a high-performance computing cluster with two
NVIDIA Tesla K40M GPUs with 2280 cores. The model parameters
are optimized using the popular Adam stochastic gradient descent-
based optimizer [27].

The evaluation is organized as follows. we first present in Sec. 6.1
the reference scenario used to run our experiments, and then in-
troduce in Sec. 6.2 the metrics used to assess the accuracy of Mi-
croscope. We perform in Sec. 6.3 a comprehensive comparative
evaluation of MTD performance on mobile network traffic recorded
at the antenna level, which corresponds to end-to-end NSaaS set-
tings where each network slice enjoys dedicated spectrum [35].
In Sec. 6.4, we investigate how such performance vary at different
network levels, including MEC facilities, C-RAN or core network
datacenters where network slices are also to be implemented. Fi-
nally, we comment on the complexity of the different models used
in Microscope, discuss accuracy-complexity trade-offs, and inves-
tigate the importance of the temporal deformation operation for
the overall system performance in Sec. 6.5.

6.1 Reference Scenario

We conduct our experiments on real-world 3G/4G mobile network
traffic data collected by Orange, a major European mobile operator,
in a largemetropolitan area during 85 consecutive days. Eachmobile
network traffic snapshot consists of the total demand accumulated
over a 5-minute time interval at 792 different antenna sectors, for
different mobile services separately.

The measurement data is collected via DPI at the P-GW, and
proprietary traffic classifiers are used to associate flows to specific
services. Due to confidentiality constraints, we do not disclose the
target urban region, or operation details of the classifiers. However,
internal performance assessments by the operator report a typical
flow-level classification accuracy at around 90%. We remark that
all measurements were carried out in compliance with applicable
local and European regulations, under the supervision of the com-
petent national privacy agency. In particular, the dataset employed
in our study only contains information on mobile service traffic
accumulated at the antenna level, and does not hold any personal
information about individual subscribers.

The set of services S considered in our analysis includes mobile
games (Clash Royale and Clash of Clans, grouped under the Super-
cell label), messaging apps (Snapchat and WhatsApp), social media
(Facebook, Twitter, Instagram), video (YouTube) and audio (Spotify)
streaming platforms, as well as Google services. Fig. 9 illustrates

the fraction of total traffic induced by each service. The rationale
for selecting these nine services is that they are reasonable can-
didates for the allocated of dedicated network slices. Indeed, they
have clear Quality of Service (QoS) requirements, and are heavy
hitters, i.e., generate sizeable amounts of network traffic: owing
to the well-known Zipfian distribution of the demand across ser-
vices [36], these services are in fact responsible for more than 42%
of the total mobile data traffic in the target region. In addition, the
set S encompasses a variety of application types, whose demands
yield strongly dissimilar temporal dynamics [36]; as such, these
services provide a challenging but realistic ground for MTD.

The neural network is trained and validated on data collected
by the operator in the first 68 days (60%), and tested on the traffic
observed during the last 17 days (20%). In these conditions, the
training process converges at the tenth epoch, taking around 48
hours in total. Performing MTD inference in the considered large-
scale scenario requires less than 1 second per instance.

6.2 Performance Metrics and Benchmarks

We evaluate the performance of Microscope by means of two com-
plementarymetrics, i.e., mean absolute error (MAE) and Normalized
MAE (NMAE). MAE is a commonly employed measure of predic-
tion accuracy, and is known to be stable and mostly insensitive to
large error values [58]. It is formally defined as:

MAE(𝑡) = 1
|S| · |A|

∑
𝑠∈S

∑
𝑎∈A

|𝑑𝑠𝑎 (𝑡) − 𝑑𝑠𝑎 (𝑡) |. (13)

In addition, we explain the relative significance of the error via
NMAE, which normalizes MAE by the range of ground truth traffic
measurements. Formally, it is expressed as:

NMAE(𝑡) = 1
|S| · |A|

∑
𝑠∈S

∑
𝑎∈A

|𝑑𝑠𝑎 (𝑡) − 𝑑𝑠𝑎 (𝑡) |
max𝑡 𝑑𝑠𝑎 (𝑡) −min𝑡 𝑑𝑠𝑎 (𝑡)

. (14)

Note that in both (13) and (14), the set of antennas A shall be
replaced by the set of facilities or datacenters, depending on the
network level at which MTD is performed.

6.3 MTD at radio access

At radio access, network slicing can provide high QoS guarantees
by isolating spectrum or even dedicated antenna sites for specific
mobile services [49, 50]. To fulfill this vision, resource management
decisions need to be made as close as possible to the user, which
in turn calls for fine-grained spatial estimates of mobile service
traffic. Our first scenario for evaluation of MTD is thus one where
decomposition is carried out at the antenna sector level.

6.3.1 Comparative analysis. As MTD is a completely novel prob-
lem, there is no previous solution (neither based on deep learning,
nor on other approaches) that we can directly use as a benchmark.
Our modus operandi to a comparative evaluation is thus that of
assessing how the different neural network models in the literature
listed in Sec. 4 perform once integrated inMicroscope.

Fig. 10 gives an overview of such a comparative performance
evaluation in the RAN setting, under all training methods listed in
Sec. 5. We emphasize in bold the error yielded by the best model
with each loss function, while the overall best performance is high-
lighted in red. Overall, the results are very promising. Under all

Microscope: Mobile Service Traffic Decomposition for Network Slicing as a Service Conference’17, July 2017, Washington, DC, USA

0
0.2
0.4
0.6
0.8

1

M
AE

 [M
bp

s]

0.
22

7

0.
20

2

0.
17

9

0.
16

4

0.
20

3

0.
18

3

0.
16

8

0.
29

9

0.
16

8

0.
17

5

0.
16

5

0.
16

8

0.
17

5

0.
15

5

0.
36

8

0.
16

8

0.
17

5

0.
16

3

0.
16

7

0.
17

4

0.
15

2

Regression MSE CE

0
0.2
0.4
0.6
0.8

NM
AE

 [%
]

0.
31

5

0.
28

1

0.
24

9

0.
22

9

0.
28

3

0.
25

5

0.
23

30.
41

6

0.
23

3

0.
24

3

0.
22

9

0.
23

3

0.
24

4

0.
21

50.
51

1

0.
23

3

0.
24

3

0.
22

7

0.
23

2

0.
24

2

0.
21

2

MLP CNN LSTM ConvLSTM ZipNet DefCNN 3D-DefCNN
Model

1
10

100
1000

Ad
de

d
er

ro
r

 o
ve

r b
es

t [
%

]

49
.0

32
.9

17
.7

8.
0 33

.5

20
.5

10
.096

.4

10
.3

14
.9

8.
3 10
.0

15
.2

1.
7

14
1.

6

10
.2

14
.7

7.
2 9.
8 14
.2

0.
0

Figure 10: MTD performance in terms of MAE, NMAE, and

added percent error over the best solution, across all combi-

nations of architectures and loss functions. Results are aver-

aged over all services and all antennas.

configurations, Microscope decomposes the total traffic recorded
at one antenna into individual service-level demands with a 0.5%
relative error, or lower. The corresponding MAE is always below
0.37 Mbps, which is a very reasonable inaccuracy for, e.g., spectrum
resource allocation to slices.

A closer look at the performance of individual schemes reveals
that training with the CE loss function on traffic demand ratios
leads to better estimates than using Regression or MSE. While this
holds in the vast majority of cases, the improvement brought by
CE over the benchmark loss functions is especially consistent for
the 3D-DefCNN architecture, where it allows performance gains
up to 10% in terms of MAE over the competing loss functions. This
confirms that the normalization and its combination with CE indeed
improve the MTD accuracy of Microscope.

As far as neural network architecture are concerned, MLP deliv-
ers the poorest MTD performance among all approaches considered,
as it lacks blocks capable of extracting spatial features. As such,
the added estimation error introduced by MLP with respect to
3D-DefCNN can be as high 141%. In contrast, LSTM can effectively
model the temporal correlations inherent to mobile traffic, which
leads to much improved results. Smaller but further improvements
are then granted by convolutional architectures that can leverage
spatial correlations. The performance of CNN, ConvLSTM, Zip-
Net, DefCNN and 3D-DefCNN are fairly aligned. Still, 3D-DefCNN
yields error reductions over all other convolutional approaches that
range between 7% and 33%.

The results indicate that: (𝑖) both spatial and temporal features
are important to solve the MTD problem; (𝑖𝑖) the spatial deforma-
tion operations help reorganizing the geographical displacements
in the aggregate snapshots provided as input; (𝑖𝑖𝑖) incorporating
temporal deformation into the model enables scanning of historical
data with frequencies that are tailored to their importance, equiv-
alently to a attention-like mechanism [60] that samples relevant
information more frequently; (𝑖𝑣) a 3D-DefCNN deep learning ar-
chitecture trained using a CE loss function allowsMicroscope to
attain the highest accuracy, although performance only slightly
worsen, and stay very good, under other schemes.

Supercell
WhatsApp

Twitter
Google

Snapchat
Spotify

Instagram
Facebook

YouTube

Service

0.00

0.15

0.30

0.45

0.60

0.75

M
AE

 [M
bp

s]

0.
00

1

0.
02

6

0.
07

4

0.
06

7

0.
12

8

0.
16

6

0.
21

6

0.
20

8

0.
46

9

Gaming
Messaging

Social Nets
Streaming

0.0

0.3

0.6

0.9

1.2

1.5

NM
AE

 [%
]

1.
2

0.
1

0.
74

0.
1

0.
91

0.
29

0.
66

0.
58

0.
61

Figure 11: Microscope performance, in terms of MAE (left

bars) and NMAE (right bars) for all services in S. Results are
averaged over all antennas.

0
20
40
60
80

100

Tr
af

fic
 fr

ac
tio

n
[%

] Aggregated traffic
Input

0
5

10
15
20

Spotify
Ground Truth
Prediction

1 2 3 4 5 6 7
Day

0
5

10
15
20

Tr
af

fic
 fr

ac
tio

n
[%

] Facebook
Ground Truth
Prediction

1 2 3 4 5 6 7
Day

0
5

10
15
20

Snapchat
Ground Truth
Prediction

Figure 12: Example ofMTDon the aggregate traffic recorded

at one antenna (top left) and decompositions for three repre-

sentative services by Microscope. All traffic is normalized

to the aggregate activity peak.

6.3.2 Service-level performance of Microscope. We now focus on
the best-performing combination of 3D-DefCNN and CE loss func-
tion, and shift our attention to the MTD performance on a per-
service basis. Fig. 11 offers a breakdown of MAE (left bars) and
NMAE (right bars) across the nine services in our reference set S.
There exists some apparent variability in the estimation quality
across services. For instance, streaming services (i.e., YouTube and
Spotify), which consume a large fraction of the total traffic, are also
subject to higher MAE. However, this does not necessarily lead
to high relative error: in fact, their NMAE is as low as 0.61% and
0.29%, respectively. In contrast, MTD works very well for gaming
traffic (i.e., Supercell), due to the smaller volume of data generated
by such apps. The associated NMAE is the highest recorded among
all services, yet it stays at a very reasonable 1.2% figure. Overall,
the MTD performance of Microscope is again remarkable, as the
inference errors are well below 1% for high-demand services.

An illustrative example of the MTD quality granted by our fra-
mework is in Fig. 12, which shows the inferred time series of the
demand for three representative services, i.e., Spotify, Facebook,
and Snapchat, based on the sole input provided by the aggregate
traffic (top left subplot). The result focuses on one test week at a
random single antenna. Observe that although the Spotify demand
exhibits frequent fluctuations, our framework still captures well
the overall traffic profile (top right). As for Facebook and Snapchat,
the predicted traffic is very close to the ground truth. This confirms
that Microscope yields precise MTD, irrespective of service type.

Conference’17, July 2017, Washington, DC, USA Chaoyun Zhang, Marco Fiore, Cezary Ziemlicki, and Paul Patras

Figure 13: Assignments of antennas in the target metropoli-

tan scenario to ten Core datacenters (left) and thirty C-RAN

datacenters (right), fulfilling load balancing and latency re-

quirements. Different colors denote clusters of antennas as-

sociated to same datacenter. Figure best viewed in color.

6.4 MTD at network datacenters

Network slicing heavily relies on the capability of the operator
to dynamically orchestrate virtualized functions at the network
edge and core [20]. Similarly to the radio access case, this requires
efficient data-driven resource orchestration, fueled by service-level
demands. In order to assess the flexibility of Microscope in helping
slice management in heterogeneous edge and core network scenar-
ios, we consider three use cases: (𝑖) fifty MEC facilities deployed at
the edge, aggregating traffic from 10-20 antennas each; (𝑖𝑖) thirty
C-RAN datacenters, each providing MAC-layer functionalities for
20-40 antennas; (𝑖𝑖𝑖) ten core network datacenters implementing,
e.g., Serving Gateway (S-GW) functions [41] and accommodating
traffic generated by over 50 antennas each. To decide on the as-
sociations between antennas and MEC facilities, C-RAN and core
datacenters, we run the balanced graph 𝑘-partitioning algorithm
proposed in [35] over the Delaunay triangulation graph [30] of the
792 antenna locations. This creates a fixed number 𝑘 of antenna
clusters (50, 30 or 10, for MEC, C-RAN and core datacenters, respec-
tively) that serve comparable traffic loads, while minimizing the
latency (i.e., distance) with respect to associated antennas. Exam-
ples of partitions returned by the algorithm via the Karlsruhe Fast
Flow Partitioning (KaFFPa) heuristic [51] are provided in Fig. 13 for
the core and C-RAN datacenter scenarios.

Although the architectural settings above are arbitrary, and do
not necessarily reflect the future organization of the NVF-compliant
mobile network in the target region, they provide a reasonable ap-
proximation of such next-generation deployments, and allow us to
investigate the performance of Microscope in diverse virtualized
network scenarios. In all these cases, the geographic locations of dat-
acenters (used byMicroscope for spatial correlation inference) are
the cluster centroids. We also consider different time resolutions for
the management of NSaaS, from 5 mins to 1 h. The rationale is that
Virtual Network Functions (VNFs) and their associated resources at
datacenter level are likely to be reconfigured over longer timescales
than at radio access. Hence, varying the temporal granularity offers
a more complete analysis of the system.

Results are summarized in Tab. 2, using a CE loss function for
all models. The minimum recorded error for each combination
of network level and time resolution is highlighted in bold. The
key takeaway is that Microscope still performs very well, and
MTD allows reconstructing service-level demands with best relative
errors well below 2% in all NSaaS network management settings.

Table 2: MAE (top, in MB per NSaaS management interval)

and NMAE (bottom, in %) returned by all models over NSaaS

management intervals from 5 minutes to 1 hour. Each ele-

ment reports the mean MTD error at core datacenters (left),

C-RAN datacenters (middle) and MEC facilities (right).

Model 5 mins 10 mins 30 mins 1 h
MLP 116/53/38 213/96/69 602/263/175 5022/673/401
CNN 152/64/43 290/119/79 842/321/206 1617/589/306
LSTM 106/52/38 191/93/67 483/236/163 895/414/283
ConvLSTM 129/55/39 268/104/71 837/319/199 1026/611/345
ZipNet 149/60/41 281/110/75 699/262/185 1313/524/344
DefCNN 127/53/37 228/96/67 632/244/156 1315/491/295
3D-DefCNN 124/49/34 231/89/62 696/230/155 1194/451/292

Model 5 mins 10 mins 30 mins 1 h
MLP 1.99/1.58/1.23 1.96/1.58/1.62 1.91/1.84/1.61 8.37/2.56/1.99
CNN 2.61/1.90/1.38 2.67/1.97/1.86 2.67/2.25/1.88 2.70/2.24/1.92
LSTM 1.82/1.56/1.21 1.76/1.54/1.58 1.53/1.65/1.50 1.49/1.57/1.40
ConvLSTM 2.22/1.64/1.26 2.47/1.71/1.68 2.65/2.23/1.82 2.71/2.32/1.71
ZipNet 2.56/1.77/1.31 2.59/1.82/1.76 2.22/1.84/1.69 2.19/1.99/1.70
DefCNN 2.18/1.58/1.20 2.10/1.59/1.60 2.00/1.71/1.43 2.19/1.87/1.46
3D-DefCNN 2.13/1.47/1.08 2.12/1.48/1.47 2.21/1.61/1.42 1.99/1.71/1.45

Again, 3D-DefCNN outperforms all other architectures as long
as MTD is run at high frequency (i.e., 5 to 30 minutes) and closer to
the user (i.e., at MEC facilities and C-RAN datacenters). We remark
that these are the most challenging conditions for the estimation of
mobile service traffic. Instead, when mobile traffic is accumulated in
large volumes, by considering hourly aggregates or demands at net-
work core datacenters, LSTM yields the lowest errors. In this case,
coarse temporal granularities lead to time series that are more regu-
lar, and generally easier to decompose. Similarly, considering traffic
combined at a relatively small number of core datacenters dimin-
ishes the impact of spatial correlations between locations. Under
these settings, the complexity of 3D-DefCNN becomes unneces-
sary, whereas LSTM thrives by avoiding looking for complicate
interactions that are in fact absent in the input data. For the same
reason, the performance of all CNN-based models improves as we
move from the core to the edge of the network, where the impact
of spatial correlations increases.

Overall, our analysis indicates that: (𝑖) MTD retains high accu-
racy and is a viable approach to service-level demand estimation
also for NSaaS at the mobile network edge and core; (𝑖𝑖) different
neural network models shall be adopted within Microscope to
ensure the best performance at different network locations, as ar-
chitectures capable of extracting spatial features are important close
to the radio access, whereas temporal correlations become more
critical in the network core and at longer management timescales.

6.5 Complexity Analysis

We also evaluate the complexity of models in terms of floating point
operations (FLOPs) per inference instance, a metric frequently em-
ployed with neural networks [37]. The number of FLOPs is com-
puted by counting the number of mathematical operation or assign-
ments that involve floating-point numbers. As shown in Fig. 14, all
models that include convolution operations (i.e., CNN, ConvLSTM,
ZipNet, DefCNN, and 3D-DefCNN) are sensitive to the spatial gran-
ularity of the input data, hence their complexity varies significantly
with the mobile network level. In contrast, MLP and LSTM yield a
complexity that is not affected by the input size.

Microscope: Mobile Service Traffic Decomposition for Network Slicing as a Service Conference’17, July 2017, Washington, DC, USA

MLP CNN LSTM ConvLSTM ZipNet DefCNN 3D-DefCNN
Model

106

107

108

109

1010

1011

FL
OP

s

Core datacenter
C-RAN datacenter

MEC facility
Antenna

Figure 14: Complexity (measured in FLOPs) of all evaluated

neural network models across different network levels.

Figure 15: Example of spatiotemporal distribution of posi-

tions in one tensor input visited by the filter of a traditional

3D convolutional layer (left), and by the filter of the pro-

posed 3D deformable convolutional layer (right).

Interestingly, although LSTM yields the best accuracy at core
network datacenters, as indicated in Tab. 4, it also entails the high-
est complexity in that scenario, exceeding that of 3D-DefCNN by
more than one order of magnitude. LSTM also has very high com-
plexity when MTD is run at C-RAN datacenters or MEC facilities.
Conversely, the computational requirements of CNN-based models
surpass those of LSTM only for antenna-level MTD.

Moreover, Fig. 14 makes it clear that deformable operations do
not introduce significant additional complexity compared to plain
CNN, despite the important advantage in terms of accuracy in the
most testing scenarios that require fast management of NSaaS re-
sources located close to the user. The reason is that a 3D deformable
convolution effectively enables the scanning of historical data with
frequencies that are dependent on their importance, equivalently
to an attention-like mechanism that samples relevant information
more frequently [60]. We illustrate the effect in Fig. 15, which com-
pares the spatiotemporal distribution of the elements of one tensor
input (i.e., a set of consecutive aggregate traffic snapshots) visited
by a legacy 3D convolutional ingress layer (employed, e.g., by Zip-
Net and DefCNN) and by our novel 3D deformable convolutional
ingress layer (adopted by 3D-DefCNN). The plots also show the
density of sampled points projected onto the temporal dimension
(i.e., 𝑥 = 0 surface) as black solid lines subtending a shaded area.

The structure shown on the left is not flexible, leading to a regular
sampling in space and time, which results into a uniform distribu-
tion of points over all input matrices. Instead, the 3D deformable
convolutional layer learns which positions of the input tensor are
the most relevant: as a result, it samples elements in each input ma-
trix non uniformly, and with a higher density of samples in recent
input matrices. This way, the layer can better exploit more rele-
vant information in fresher snapshots. While Fig. 15 just provides
a visual example for one specific tensor input, the same behavior

3D Conv. blocks Zipper Conv. blocks Conv. blocks
Block

106

107

108

109

1010

FL
OP

s

Core datacenter
C-RAN datacenter

MEC facility
Antenna

Figure 16: Complexity (measured in FLOPs) of each block in

the 3D-DefCNN model across different network levels.

is observed at the input layer of 3D-DefCNNs trained in all net-
work scenarios and NSaaS management timescales. As a result,
3D-DefCNN models sample better, and not more often the input,
which explains the improved performance at equivalent complexity.

Further details on the 3D-DefCNN computational cost are pro-
vided in Fig. 16, which breaks down the complexity associated to
each block of the model in Fig. 8. The cost ratio of the three compo-
nents remains fairly comparable across all network settings, proving
that a 3D deformable convolution does not entail complexity surges
in any scenario, and thus corroborating the considerations above.

Overall, 3D-DefCNN requires around 4 × 109 FLOPs per infer-
ence instance for antenna-level MTD, which are easily handled by
modern CPUs: e.g., an Intel Core i7 980 XE can execute 1.076× 1011
FLOPs per second, and can thus fully support real-time MTD.

7 NSaaS MANAGEMENT USE CASES

We complete our evaluation of the performance of Microscope by
assessing the viability of MTD in practical case studies of NSaaS
resource management. Specifically, we take the perspective of the
mobile network operator, and assess the incurred costs whenMicro-
scope is used to determine the capacity allocated to each network
slice, solely based on aggregate traffic information.

7.1 Datacenter resource management

At network datacenters, resource management costs directly stem
from estimation errors in the decomposed demands, which may en-
tail Service-Level Agreements (SLAs) violations (if the per-service
traffic estimate is below the reference) or overprovisioning of unnec-
essary capacity to specific slices (if the same estimate is above the
reference). To assess the quality of MTD in this context, we re-train
Microscope with a recently proposed loss function that specifi-
cally aims at minimizing monetary costs for network operators [5],
hence fully integrating our framework into NSaaS management
operations. The loss function is:

L(𝑡) = 1
|S| · |A|

∑
𝑠∈S

∑
𝑎∈A

L(Δ𝑑𝑠𝑎 (𝑡)), (15)

where

L(Δ𝑑𝑠𝑎 (𝑡)) =

𝛼 − 𝜖 · Δ𝑑𝑠𝑎 (𝑡), Δ𝑑𝑠𝑎 (𝑡) ≤ 0
𝛼 − 1

𝜖 Δ𝑑
𝑠
𝑎 (𝑡), 0 < Δ𝑑𝑠𝑎 (𝑡) ≤ 𝛼𝜖

Δ𝑑𝑠𝑎 (𝑡) − 𝛼𝜖, Δ𝑑𝑠𝑎 (𝑡) > 𝛼𝜖.

(16)

Here Δ𝑑𝑠𝑎 (𝑡) = 𝑑𝑠𝑎 (𝑡)−𝑑𝑠𝑎 (𝑡), 𝛼 controls the cost of an SLA violation,
and 𝜖 is a small constant. The expression accounts for the cost of SLA
violations (a fixed fee paidwhenΔ𝑑𝑠𝑎 (𝑡) ≤ 𝛼𝜖) and overprovisioning
(growing as additional resources are erroneously reserved, when

Conference’17, July 2017, Washington, DC, USA Chaoyun Zhang, Marco Fiore, Cezary Ziemlicki, and Paul Patras

Table 3: Total SLA violation cost and overprovisioning cost

determined by MTD at different network levels.

Use case SLA violation

[MB/s (%)]

Overprovisioning

[MB/s (%)]

MEC facility 247.95 (136.31) 203.38 (111.80)
C-RAN datacenter 25.82 (14.20) 106.59 (58.60)
Core datacenter 15.54 (8.55) 61.71 (33.92)

Table 4: Mean additional costs of antenna-level MTD.

Throughput Subcarriers Spectrum cost CPU time

6.114 Mbps 110 3 MHz 7.5%

Δ𝑑𝑠𝑎 (𝑡) > 𝛼𝜖), so thatMicroscope can perform MTD by trying to
balance them. We configure 𝛼 = 1 and 𝜖 = 0.01, as suggested in [5].

We testMicroscopewith this configuration in three case studies:
(𝑖) MTD at MEC facilities on traffic aggregated at every 30 minutes;
(𝑖𝑖) MTD at C-RAN datacenters on traffic aggregated at every 30
minutes; and (𝑖𝑖𝑖) MTD at core datacenters on traffic aggregated
at every hour. Exclusively in the last scenario, we choose LSTM as
the neural network architecture, according to the results in Sec.6.

The costs incurred by the operator in the datacenter scenarios
(𝑖)–(𝑖𝑖𝑖) above are listed in Tab. 3. The table expresses costs in MB/s,
which can then be translated into actual monetary values based
on the price of the technology implementing such capacity at each
network level. For overprovisioning, the cost maps to proper ad-
ditional MB/s of allocated capacity beyond what strictly required;
for SLA violations, each infringement has the same cost as allocat-
ing additional capacity to cover 𝛼 times the peak demand, as per
(15). In both cases, results are reported as the total over all MEC
(respectively, C-RAN and network core) nodes in the target region.

At C-RAN and core datacenters, Microscope carries percent
costs in the range from 8% to 58%, computed with respect to the
true demand. These are in fact comparable to the equivalent costs
for capacity allocation to network slices at the same network levels,
incurred when the operator has perfect knowledge of the traffic
demand associated to each mobile service. Indeed, using a state-of-
the-art one-step predictor in these conditions yields costs up to 30%
for SLA violations and up to 18% for overprovisioning [5]. When
pushing Microscope at MEC facilities, performance degrade sensi-
bly: strong fluctuations in the traffic make a MTD-based estimation
of the per-service demand less suitable to capacity allocation.

7.2 Radio access resource management

When MTD is performed at antenna level, a relevant metric are the
extra subcarriers/spectrum resources required to support the unnec-
essary capacity overprovisioned at each antenna to every slice [43].
We can also quantify those resources in terms of CPU time, based
on experimental models obtained with open LTE stacks [18]. Tab. 4
reports Microscope results under such models. When MTD is per-
formed at antenna level, just 6 Mbps of additional throughput are
needed per antenna, which yields a 3 MHz spectrum cost and re-
quires 7.5% additional CPU time with respect to the case where
perfect knowledge of service traffic is available.

These results, jointly with those for network datacenter use cases
above, let us conclude that MTD can be a viable low-cost approach
to service-level demand estimation in practical NSaaS management
cases, where it enables effective network resource allocations.

8 RELATEDWORK

Relevant to our study are works on (𝑖) mobile traffic analysis, and
(𝑖𝑖) machine learning solutions for time series decomposition.

Mobile traffic analytics are becoming increasingly vital to mo-
bile operators and a number of directions are being explored. For
instance, Shafiq et al. carried out seminal work on the geospatial
correlations of traffic volume and application usage in cellular net-
works [33, 53]. Wang et al. proposed models that combine location
information, time dimension, and the traffic frequency spectrum,
to extract traffic patterns in urban settings [57]. Furno et al. in-
vestigated traffic signatures to classify mobile demands across 10
different cities [14]. Marquez et al. revealed strong heterogeneity
in the demand of mobile services, by employing correlation and
clustering [36]. Traffic demand in narrowly localized regions was
inferred from coarse aggregates using a neural network in [63].
However, to the best of our knowledge, the problem of mobile net-
work traffic decomposition (MTD) that we tackle in this work has
not been addressed to date.

Time series decomposition is traditionally posed as a single-
channel blind source separation problem and solved using Indepen-
dent Component Analysis (ICA) [23]. However, this approach only
works on short sequences. Machine learning tools implementing
additive factorial hidden Markov models (AFHMMs) circumvent
this problem in the context of energy consumption disaggrega-
tion [66]. More recently, CNNs were proposed as alternatives that
perform sequence-to-point learning using a sliding window ap-
proach on very long time series [65]. Both these approaches are
limited to single time series decomposition and, unlike the proposed
3D-DefCNN that we propose for use withMicroscope, they do not
exploit spatiotemporal correlations in the input data.

9 CONCLUSIONS

We introduced Microscope, a dedicated framework for aggregate
Mobile Traffic Decomposition (MTD) into service-level demands,
intended to assist resource allocation to network slices in NSaaS
environments. The framework feeds suitably transformed traffic
data to a flexible deep learning model, whose architecture can
be adapted to the NSaaS management location or timescale. Per-
formance evaluations with measurement data demonstrate that
Microscope provides accurate traffic inference in real-time, and
we show that a resource allocation based on decomposition yields
affordable costs for the operator. As a result, MTD via Microscope
provides a means to complement and limit the need for extensive
deep packet inspection (DPI) in traffic collected at different levels of
the network. As such, our approach has the potential to practically
solve computationally intensive traffic analytics, which is essential
to agile provisioning of resource in 5G mobile networks.

Acknowledgments

The authors would like to thank the HPC@POLITO academic com-
puting initiative (http://hpc.polito.it) for providing the computa-
tional resources that supported this research. Paul Patras acknowl-
edges the support received from Cisco Systems, Inc. through the
University Research Program Fund, gift no. 2019-197006. This work
was supported by the ANR CANCAN project (ANR-18-CE25-0011).
The authors are grateful for the reviewers’ constructive feedback,
and for the shepherd’s guidance during the revision process.

http://hpc.polito.it

Microscope: Mobile Service Traffic Decomposition for Network Slicing as a Service Conference’17, July 2017, Washington, DC, USA

REFERENCES

[1] 3GPP TS Group Services and System Aspects; Telecommunication management.
2018. Study on management and orchestration of network slicing for next
generation network. TR 28.801 V15.1.0.

[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. TensorFlow: A System for Large-Scale Machine Learning.. In OSDI, Vol. 16.
265–283.

[3] Arjun Anand, Gustavo de Veciana, and Sanjay Shakkottai. 2018. Joint Scheduling
of URLLC and eMBB Traffic in 5G Wireless Networks. Proc. IEEE INFOCOM
(2018), 1970–1978.

[4] Gianni Barlacchi, Marco De Nadai, Roberto Larcher, Antonio Casella, Cristiana
Chitic, Giovanni Torrisi, Fabrizio Antonelli, Alessandro Vespignani, Alex Pent-
land, and Bruno Lepri. 2015. A multi-source dataset of urban life in the city of
Milan and the Province of Trentino. Scientific Data (2015).

[5] Dario Bega, Marco Gramaglia, Marco Fiore, Albert Banchs, and Xavier Costa-
Perez. 2019. DeepCog: Cognitive Network Management in Sliced 5G Networks
with Deep Learning. In Proc. IEEE INFOCOM.

[6] C. Bishop. 2006. Pattern Recognition and Machine Learning. Springer.
[7] Hanna Bogucka, Paweł Kryszkiewicz, and Adrian Kliks. 2015. Dynamic spectrum

aggregation for future 5G communications. IEEE Comm. Mag. 53, 5 (2015), 35–43.
[8] C. Zhang et al. 2019. Deep Learning in Mobile and Wireless Networking: A

Survey. IEEE Comms Surveys & Tutorials (2019).
[9] L. M. Contreras and D. R. López. 2018. A Network Service Provider Perspective

on Network Slicing. IEEE Softwarization (Jan 2018).
[10] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen

Wei. 2017. Deformable Convolutional Networks. In IEEE International Conference
on Computer Vision (ICCV). 764–773.

[11] Hao Dong, Akara Supratak, Luo Mai, Fangde Liu, Axel Oehmichen, Simiao Yu,
and Yike Guo. 2017. TensorLayer: A Versatile Library for Efficient Deep Learning
Development. In Proc. ACM onMultimedia Conference (Mountain View, California,
USA). 1201–1204.

[12] ETSI. 2018. Open Source MANO Release FIVE Technical Overview.
[13] A. Fiessler, C. Lorenz, S. Hager, B. Scheuermann, and A. W. Moore. 2017. HyPaFil-

ter+: Enhanced Hybrid Packet Filtering Using Hardware Assisted Classification
and Header Space Analysis. IEEE/ACM Transactions on Networking 25, 6 (2017),
3655–3669.

[14] A. Furno, M. Fiore, R. Stanica, C. Ziemlicki, and Z. Smoreda. 2017. A Tale of
Ten Cities: Characterizing Signatures of Mobile Traffic in Urban Areas. IEEE
Transactions on Mobile Computing 16, 10 (Oct 2017), 2682–2696. https://doi.org/
10.1109/TMC.2016.2637901

[15] Pavel Golik, Patrick Doetsch, and Hermann Ney. 2013. Cross-entropy vs. squared
error training: a theoretical and experimental comparison.. In Interspeech, Vol. 13.

[16] Marta C. Gonzalez, Cesar A. Hidalgo, and Albert-Laszlo Barabasi. 2008. Un-
derstanding individual human mobility patterns. Nature 453, 7196 (June 2008),
779–782. https://doi.org/10.1038/nature06958

[17] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press.

[18] Francesco Gringoli, Paul Patras, Carlos Donato, Pablo Serrano, and Yan Grunen-
berger. 2018. Performance Assessment of Open Software Platforms for 5G Proto-
typing. IEEE Wireless Communications 25, 5 (2018), 10–15.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition.

[20] Peter Hedman. 2016. NGMN 5G Requirements & Architecture WS End-to-End
Architecture – Description of Network Slicing Concept.

[21] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[22] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. Hoffman. 2016.
Specification for DNS over Transport Layer Security (TLS). RFC 7858.

[23] Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. 2004. Independent component
analysis. Vol. 46. John Wiley & Sons.

[24] IHS Economics/Technology. 2017. The 5G economy: How 5G technology will
contribute to the global economy. (2017).

[25] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International Conference
on Machine Learning. 448–456.

[26] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 2013. 3D convolutional neural
networks for human action recognition. IEEE transactions on pattern analysis
and machine intelligence 35, 1 (2013), 221–231.

[27] Diederik Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimiza-
tion. In Proc. International Conference on Learning Representations.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet classifi-
cation with deep convolutional neural networks. In Proc. NIPS.

[29] HaroldW Kuhn. 1955. The Hungarian method for the assignment problem. Naval
Research Logistics (NRL) 2, 1-2 (1955), 83–97.

[30] Der-Tsai Lee and Bruce J Schachter. 1980. Two algorithms for constructing a
Delaunay triangulation. International Journal of Computer & Information Sciences

9, 3 (1980), 219–242.
[31] Hao Li, Zheng Xu, Gavin Taylor, and Tom Goldstein. 2018. Visualizing the Loss

Landscape of Neural Nets. NIPS (2018).
[32] R. Li, Z. Zhao, X. Zhou, J. Palicot, and H. Zhang. 2014. The prediction analysis of

cellular radio access network traffic: From entropy theory to networking practice.
IEEE Communications Magazine 52, 6 (2014), 234–240.

[33] M. Z. Shafiq et al. 2012. Characterizing geospatial dynamics of application usage
in a 3G cellular data network. In Proc. IEEE INFOCOM. 1341–1349.

[34] Andrew LMaas, Awni Y Hannun, and Andrew Y Ng. 2013. Rectifier nonlinearities
improve neural network acoustic models. In Proc. ICML, Vol. 30. 3.

[35] Cristina Marquez, Marco Gramaglia, Marco Fiore, Albert Banchs, and Xavier
Costa-Perez. 2018. How Should I Slice My Network?: A Multi-Service Empirical
Evaluation of Resource Sharing Efficiency. In Proc. ACM MobiCom.

[36] Cristina Marquez, Marco Gramaglia, Marco Fiore, Albert Banchs, Cezary Ziem-
licki, and Zbigniew Smoreda. 2017. Not All Apps Are Created Equal: Analysis
of Spatiotemporal Heterogeneity in Nationwide Mobile Service Usage. In Proc.
ACM CoNEXT.

[37] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. 2017.
Pruning convolutional neural networks for resource efficient inference. In ICLR.

[38] Kevin P Murphy. 2012. Machine learning: a probabilistic perspective. MIT press.
[39] Navid Nikaein. 2015. Processing Radio Access Network Functions in the Cloud:

Critical Issues and Modeling. In Proc. Intl Workshop on Mobile Cloud Computing
and Services. 36–43.

[40] Official Journal of the European Union. 2016. Regulation (EU) 2016/679 of the
European Parliament and of the Council of 27 April 2016 on the protection
of natural persons with regard to the processing of personal data and on the
free movement of such data, and repealing Directive 95/46/EC (General Data
Protection Regulation).

[41] ONF. 2019. Converged Multi-Access and Core (COMAC). https://www.
opennetworking.org/comac/

[42] P. Orosz, T. Tóthfalusi, and P. Varga. 2019. FPGA-Assisted DPI Systems: 100 Gbit/s
and Beyond. IEEE Communications Surveys & Tutorials 21, 2 (2019), 2015–2040.

[43] Prashant Panigrahi. 2015. How to Calculate LTE Data Rate – Downlink Through-
put. http://www.3glteinfo.com/lte-data-rate-throughput/. [Online; accessed
Feb-2019].

[44] Utpal Paul, Anand Prabhu Subramanian, Milind M. Buddhikot, and Samir R. Das.
2011. Understanding traffic dynamics in cellular data networks. In Proc. IEEE
INFOCOM.

[45] H Qi, Z Zhang, B Xiao, H Hu, B Cheng, Y Wei, and J Dai. 2017. Deformable
convolutional networks–COCO detection and segmentation challenge 2017 entry.
In ICCV COCO Challenge Workshop.

[46] DA Rajon and WE Bolch. 2003. Marching cube algorithm: review and trilinear in-
terpolation adaptation for image-based dosimetric models. Computerized Medical
Imaging and Graphics 27, 5 (2003).

[47] Eric Rescorla, Kazuho Oku, Nick Sullivan, and ChristopherWood. 2018. Encrypted
Server Name Indication for TLS 1.3. Internet-Draft draft-ietf-tls-esni-02. IETF
Secretariat.

[48] S. Rezaei and X. Liu. 2019. Deep Learning for Encrypted Traffic Classification:
An Overview. IEEE Comm. Mag. 57, 5 (May 2019), 76–81.

[49] P. Rost, C. Mannweiler, D. S. Michalopoulos, C. Sartori, V. Sciancalepore, N.
Sastry, O. Holland, S. Tayade, B. Han, D. Bega, D. Aziz, and H. Bakker. 2017.
Network Slicing to Enable Scalability and Flexibility in 5G Mobile Networks.
IEEE Communications Magazine 55, 5 (May 2017), 72–79. https://doi.org/10.1109/
MCOM.2017.1600920

[50] O. Sallent, J. Perez-Romero, R. Ferrus, and R. Agusti. 2017. On Radio Access
Network Slicing from a Radio Resource Management Perspective. IEEE Wireless
Communications 24, 5 (October 2017), 166–174. https://doi.org/10.1109/MWC.
2017.1600220WC

[51] Peter Sanders and Christian Schulz. 2013. Think Locally, Act Globally: Highly
Balanced Graph Partitioning. In Proc. International Symposium on Experimental
Algorithms (SEA) (LNCS, Vol. 7933). Springer, 164–175.

[52] V. Sciancalepore, K. Samdanis, X. Costa-Perez, D. Bega, M. Gramaglia, and A.
Banchs. 2017. Mobile traffic forecasting for maximizing 5G network slicing
resource utilization. In Proc. IEEE INFOCOM.

[53] M. Zubair Shafiq, Lusheng Ji, Alex X. Liu, and Jia Wang. 2011. Characterizing and
Modeling Internet Traffic Dynamics of Cellular Devices. In Proc. SIGMETRICS.

[54] T. Taleb, A. Ksentini, and R. Jantti. 2016. ’Anything as a Service’ for 5G Mobile
Systems. IEEE Network 30, 6 (Nov. 2016), 84–91.

[55] Martino Trevisan, Danilo Giordano, Idilio Drago, Marco Mellia, and Maurizio
Munafo. 2018. Five Years at the Edge: Watching Internet from the ISP Network.
In Proc. ACM CoNEXT ’18 (Heraklion, Greece). 1–12.

[56] Andreas Veit, Michael J Wilber, and Serge Belongie. 2016. Residual networks
behave like ensembles of relatively shallow networks. In NIPS.

[57] Huandong Wang, Fengli Xu, Yong Li, Pengyu Zhang, and Depeng Jin. 2015.
Understanding Mobile Traffic Patterns of Large Scale Cellular Towers in Urban
Environment. In Proc. ACM IMC.

[58] Cort J Willmott and Kenji Matsuura. 2005. Advantages of the mean absolute
error (MAE) over the root mean square error (RMSE) in assessing average model

https://doi.org/10.1109/TMC.2016.2637901
https://doi.org/10.1109/TMC.2016.2637901
https://doi.org/10.1038/nature06958
https://www.opennetworking.org/comac/
https://www.opennetworking.org/comac/
http://www.3glteinfo.com/lte-data-rate-throughput/
https://doi.org/10.1109/MCOM.2017.1600920
https://doi.org/10.1109/MCOM.2017.1600920
https://doi.org/10.1109/MWC.2017.1600220WC
https://doi.org/10.1109/MWC.2017.1600220WC

Conference’17, July 2017, Washington, DC, USA Chaoyun Zhang, Marco Fiore, Cezary Ziemlicki, and Paul Patras

performance. Climate research 30, 1 (2005).
[59] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and

Wang-chun Woo. 2015. Convolutional LSTM network: A machine learning
approach for precipitation nowcasting. In Proc. NIPS.

[60] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. 2018.
Generative Image Inpainting with Contextual Attention. In Proc. IEEE CVPR.

[61] Chaoyun Zhang, Marco Fiore, Iain Murray, and Paul Patras. 2019. CloudLSTM:
A Recurrent Neural Model for Spatiotemporal Point-cloud Stream Forecasting.
preprint arXiv:1907.12410 (2019).

[62] Chaoyun Zhang, Marco Fiore, and Paul Patras. 2019. Multi-Service Mobile Traffic
Forecasting via Convolutional Long Short-Term Memories. In IEEE International
Symposium on Measurements & Networking (M&N).

[63] Chaoyun Zhang, Xi Ouyang, and Paul Patras. 2017. ZipNet-GAN: Inferring Fine-
grained Mobile Traffic Patterns via a Generative Adversarial Neural Network. In

Proc. ACM CoNEXT. 363–375.
[64] Chaoyun Zhang and Paul Patras. 2018. Long-Term Mobile Traffic Forecasting

Using Deep Spatio-Temporal Neural Networks. In Proc. ACM MobiHoc.
[65] Chaoyun Zhang, Mingjun Zhong, Zongzuo Wang, Nigel Goddard, and Charles

Sutton. 2018. Sequence-to-point learning with neural networks for nonintrusive
load monitoring. In AAAI.

[66] Mingjun Zhong, Nigel Goddard, and Charles Sutton. 2014. Signal aggregate
constraints in additive factorial HMMs, with application to energy disaggregation.
In Advances in Neural Information Processing Systems.

[67] Jian Zhu, Leyuan Fang, and Pedram Ghamisi. 2018. Deformable Convolutional
Neural Networks for Hyperspectral Image Classification. IEEE Geos. & Remote
Sens. Let. (2018).

	Abstract
	1 Introduction
	2 Mobile Traffic Decomposition
	2.1 Problem Formulation
	2.2 Microscope in a Nutshell

	3 Mobile Traffic Transformation
	3.1 Minimum Displacement Grid Mapping
	3.2 Comparison with Other Mapping Strategies

	4 Deep Neural Network Models
	4.1 Legacy Architectures
	4.2 3D-DefCNN

	5 Driving the learning process
	6 Experiments
	6.1 Reference Scenario
	6.2 Performance Metrics and Benchmarks
	6.3 MTD at radio access
	6.4 MTD at network datacenters
	6.5 Complexity Analysis

	7 NSaaS Management Use Cases
	7.1 Datacenter resource management
	7.2 Radio access resource management

	8 Related Work
	9 Conclusions
	References

