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Abstract:  

An in situ microscope (ISM) device is utilised in this study to monitor hybridoma cells 

concentration in a stirred bioreactor. It generates images by using pulsed illumination of the liquid 

broth synchronised with the camera frame generation to avoid blur from the cell’s motion. An 

appropriate image processing isolates the sharp objects from the blurred ones that are far from the 

focal plane. 

As image processing involves several parameters, this paper focuses on the robustness of the results 

of the cells counting. This stage determines the applicability of the measuring device and has 

seldom been tackled in the presentations of ISM devices. Calibration is secondly performed for 

assessing the cell-concentration from the cell automated numeration provided by the ISM. Flow 

cytometry and hemacytometer chamber were used as reference analytical methods. These measures 

and the output of the image processing allow estimating a single calibration parameter: the 

reference volume per image equal to 1.08.10-6 mL. In these conditions, the correlation coefficient 

between both reference and ISM data sets becomes equal to 0.99. A saturation of this system during 

an ultrasonic wave perfusion phase that deeply changes the culture conditions is observed and 

discussed. Principal component analysis (PCA) is used to undergo the robustness study and the ISM 

calibration step. 

Introduction 

The real time measurement of cell-concentration is commonly accepted as a key-point for the 

development of new monitoring and control strategies in biotechnological processes [Douglas 90]. 

This is particularly an on-going problem in animal-cell cultures [Konstantinov 94]. Indeed, an on 

line accurate cellular concentration estimation enables the monitoring of the specific growth rate 

which is a critical metabolic parameter. 



 3 

Among all the methods developed for determining the cell-concentration, optical techniques have 

been increasingly applied [Marose 99] [Ulber 03]. Direct optical technique based on computer 

imaging were used for offline cell counting and sizing of cell culture sample [Pons 99][Sierachi 98 

]. The automation of those systems involves circulation loops to take the sample to the microscope 

focus plane. Automated sampling is not only a complex technique, it is also a risk factor for 

contamination. In addition, the stress due to the sampling and slide preparation may modify the 

cells morphology. 

In situ microscopes are well suited for in line measurement because they are not invasive and not 

destructive. They avoid all the microbiological risks relied to sampling. Their design addresses the 

problem of cell motion due to the broth agitation. Bittner et al. proposed a system that mechanically 

isolates and stops a small volume of broth [Bittner 98]. This system is used within the frame of 

CHO cell concentration monitoring [Joeris 02]. 

Suhr et al. [Suhr 91][Suhr 95] presented an ISM mounted directly in a port of a bioreactor to 

generate in situ images from the agitated broth using pulse illumination. The sampling volume is 

now a virtual volume defined by the characteristic of the microscope and the parameters of the 

associated image processing algorithm. A new version of this ISM has been evaluated on BALB/c 

mice/mice hybridoma [Guez 2002] and on a yeast strain [Camisard 2000], [Camisard 2002]. The 

online signal of the cell-concentration provided by the ISM was proved to match with the results of 

other reference counting methods. 

This paper presents results on the estimation of hybridoma cell-concentration during a monoclonal 

antibody production process. It first gives technical specifications for the in situ microscope and 

details the culture conditions and the analytical methods used to evaluate cell concentration. The 

second part exhibits the current different stages of the image processing. The third part proposes a 

PCA to evaluate the robustness of the ISM cell concentration results in relation to the parameters of 

the image-processing algorithm. Robustness being accessed and the best parameter set being 

chosen, calibration is performed by using analytical results.  
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Material and Method 

The in situ microscope 

The in situ microscope [IMV Inline Microvision GmbH, Heidelberg, http\\ism.fh-mannheim.de] 

includes a water-immersion objective with a magnification 40 and with a numerical aperture 0.75. 

The microscope tube is enclosed into an 25-mm outer tube with an optical window at the front end. 

This end is submerged into the broth through the vessel wall in an 25-mm standard port. The port 

location should correspond to a mixing zone where the broth velocity is optimal so that the sample 

can be considered as representative of the broth. The location of the port should also take into 

account  bubble of the oxygen supply which can interfere with the images acquired during the 

process. The submerged end supports an illumination unit with a LED as light source. This entire 

outer device can sustain the conditions of standard “wet-steam” sterilisation. 

Flash illumination with light pulses of about 300 ns in duration avoids blur from cell motion. The 

pulses are synchronized with a standard CCD camera frame.  

The CCD camera (KP- Mi Hitachi 2/3 « CCIR s/x ») has squared 9 m x 9 m pixels. Because of 

the objective magnification 40, each pixel covers an object area of 0,225 m x 0,225 m. Hence, 

an image of a spherical cell that is 10 m in diameter consists of about 1540 pixels. 

The images are acquired by a standard framegrabber synchronized with the image processing 

software (WIT, logical vision/Coreco Inc, Canada). Averaging cell numbers over sets of 50 images 

taken every two hours allows reducing the variability of the calculated cell number per image. 

Indeed cell number follows a Poisson’s law of parameter m (m being the expected cell number per 

image). Standard deviation of the mean number of cells per image is thus kept below m 50 . 

Real-time image processing is then carried out for each image through appropriate algorithms 

detailed below. 
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Culture Conditions 

The hybridoma cell line tested throughout this study is a BalB/c murine lymphoïd cell fused with 

P3-X63-Ag8.653 murine myeloma. Morphologically, this hybridom can be considered as an almost 

perfect spherical object. The robustness of our cell recognition algorithm based on the iterative 

search of circles in the image will be tested through the recognition of these nearly spherical 

objects. The average diameter of the studied hybridoma is 13 m and confirms the values found in 

literature [Hong 98] [Harada 99]. We notice that in case of heterohybridoma as human/mice, the 

cells are less regular spherical objects because of the mixed origin of the cellular membrane. 

The strain is grown at 37°C in a stirred-tank bioreactor (Discovery 100) with a working volume of 5 

litres. Two pitched blades ensure the agitation of the broth. The culture medium is the Dulbecco’s 

Modified Eagle's Media added with 3% heat-inactivated foetal calf serum. Stirring is kept at 40 

RPM and pH is controlled at 7.2 by carbon dioxide addition. To prevent contamination and foam 

formation, overpressure in the vessel is ensured with a surface airflow kept at 10 L/h. Dissolved 

oxygen is controlled at 25% v/v by injection of pure oxygen. Data acquisition is performed on a 

personal computer equipped with FIX software. The inoculation rate represents 5 % of the final 

medium volume and the initial cellular concentration is about 4.105 cell/mL. A 48 hours batch phase 

is followed by a 288 hours feed phase. The perfusion rate is manually adapted from 0.2 to 0.4 d-1 

during the feed phase in order to limit lactic acid and ammonia accumulation in the broth and thus 

the cell viability decrease. High frequency ultrasonic waves are then used so that the cellular 

concentration can reach high values within bioreactor. The perfusion rate is set at 0.8 d-1 during this 

48 hours phase. The steam-sterilisable resonance chamber (Biosep ADI1015, ApplisSens) is 

mounted on the top of the reactor on a standard 12-mm port (Figure 1). An acoustic resonance field 

causes an active cell aggregation in the separation chamber of the resonator. Two peristaltic pumps 

are required for harvesting the clarified culture and recirculating the cell suspension. Aggregates of 

cells sediment to the bioreactor and are suspended again by stirring. To maintain stable thermal 
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conditions in the separation chamber, cooling is ensured with insufflating air at 10-L/min. This 

system was already applied successfully on hybridoma cells [Trampler 94] [Phylis 95] [Bierau 98]. 

Cell concentration. 

Two different methods of assessing cell concentration are used. First, a routine procedure is carried 

out using the Trypan blue exclusion principle. 100 μL of the sample is diluted with 100 μL of 

Trypan blue and cells are numerated on a Malassez counting chamber after a 5 minutes incubation 

period at 20°C. Second, a fluorescence-based method is used. (Live/Dead® Viability/Cytotoxicity 

assay kit, Molecular Probes). The kit provides a two-color fluorescence assay based on the 

simultaneous determination of live and dead cells so that the total number of cells can be measured. 

Two probes, calcein AM and ethidium homodimer are used to estimate respectively: intracellular 

esterase activity and plasma membrane integrity [Hayes 1994]. Prior to the assay, samples are 

washed by centrifugation at 700 g for 15 minutes. Washing is performed with sterile tissue culture-

grade D-PBS (KCl (0.2 g/L), KH2 PO4 (0.2 g/L), NaCl (8 g/L) and Na2HPO4 (1,15 g/L)) to remove 

serum because serum esterases can cause some increase in extracellular fluorescence by 

hydrolyzing calcein AM. Cell staining is carried out with optimised dye concentration determined 

with a conventional fluorescence microscope (Optiphot, Nikon). We determined an optimal 

concentration of 0.1 μM for calcein AM and 8 μM for ethidium homodimer. A recommended range 

of 1,0.106 to1,5 106 single-cells is incubated in 1 mL D-PBS and 100 µL of each reagents for 10 

minutes at room temperature. Samples are injected in a Facscalibur flow cytometer (Becton 

Dickinson) working at a high flow rate (60 μL/min). Cell Quest software performs data processing 

and classical quadrant statistics. A defined number of events are counted upon time in order to 

calculate the cellular concentration. 

Image Processing 

The frame-grabber delivers 8 bits grey valued 659x494 frames (Figure 2). Most of the objects 

contained in images are far from the focus plane. Cells located between the illumination diode and 
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the focus plane can act as lenses leading to bright spots with smooth edges while the other ones are 

dark and blured. Grey scaled image pre-processing into binary image must distinguish these objects 

from the sharp ones that belong to the focal plane. It is usually based on the setting of an 

appropriate threshold in the grey levels of the image. Automatic calculation of such a threshold that 

bears on the existence of at least two peaks in the histogram of the grey levels [Sierachi 98][Vicente 

96] can not be used as the grey-level histogram in ISM-Images shows only one dominant peak. 

Indeed, grey levels do not contain pertinent information in our specific case. Therefore, an edge 

enhancement is applied to the original image through a spatial highpass filter before thresholding. 

Threshold is set in a very flat zone of the resulting histogram and thus robustness of the result is 

ensured. 

The cell recognition stage is provided with a binary image. The cell membranes are matched with 

circles of specific sizes. Our cell recognition algorithm uses the circular-Hough transformation for 

an iterative search of circles in the image. The circular-Hough transform provides, for each point 

considered as a circle center, a value indicating which proportion of the perimeter of a given radius 

circle coincides with white image-pixels. Thresholding this information allows locating the 

candidates for cell recognition. The level of the threshold indicates the level of completeness that 

must be achieved before a cell is selected. The iterative search runs from large to small diameters 

objects. 

A cell selected for a given radius contributes to the count rate of the size class corresponding to this 

radius. Then the search is performed again for the next radius. Figure 3 shows the result of the 

recognition process on the image presented in Figure 2. The size range of the search is set from 10 

to 34 pixels corresponding to particles from 4.5 to 15.3 m of diameter. 
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Robustness study 

The study aim is exhibiting the influence of the set of parameters involved in the image-processing 

algorithm on the cell concentration results. Indeed, it has to be proved before calibrating the ISM 

that these parameters only modify the scale of the concentration curves but not their shape.  

The result, for a given parameter set j, is a curve that gives at each time it  the mean number of cells 

in an image, called 
j iy (t ) . If the parameters do not influence the shape of the 

j iy (t ) - curves each 

curve can be deduced from a single time function f(ti) by using a factor “aj”: 
j i j iy (t ) a f (t ) . In this 

case, the different values of the ja  coefficients directly express how the parameters value change 

the reference volume for the cell counting. However, if the parameters do influence the shape of the 

time functions, each time function can be expressed as a specific linear combination of a set of K 

reference time functions k if (t ) . Gathering the 
j iy (t )  values in a single vector i(t )y  allows writing:  

 
K

i k i k

k 1

(t ) f (t )y a


  (1) 

The normalised vectors ka  are linearly independent. K is the dimension of the space of vectors 

i(t )y  – i.e. the number of functions k if (t )  that are needed to reconstruct all curves 
j iy (t ) . The non-

influence of parameters with respect to the curve shapes is equivalent to K = 1.  

Principal component analysis (ref) provides a very powerful tool to answer the problem of finding 

the dimension K and of estimating the corresponding fk - functions.  

Let the information be gathered in a single matrix 1 2 n(t ) (t ) (t ) 'Y y y y    . From (1) and the 

properties of the vectors ka  it can be deduced that:  

  k k 1 k 2 k n kf (t ) f (t ) f (t ) ' Ya f (2) 

This expression is the estimate of the time function whose values are the entries of the vector kf . 

PCA methods [Ramsay 97] provide the most significant functions from eigenvectors of the 'Y Y - 

matrix 
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The K-dimension is obtained from the number of eigenvalues that are considered as different from 

zero. The kf -vectors associated with these greatest eigenvalues are called principal components 

Let the F-matrix gather the principal components and the A-Matrix the corresponding eigenvectors. 

A filtered estimation Ŷ can be be substituted to Y  and is computed from the principal components 

F=YA.  

  ˆ ' Y FA Y A A  (3) 

The columns of the A’-matrix thus indicate how the principal components have to be combined in 

order to retrieve a filtered version of the original curves. Analysing of how this combination is 

performed for every curve allows coming at a conclusion about the similarity of their shapes. 

ISM calibration 

This part aims at finding the conversion coefficient that allows estimating the cell concentration 

from the number of cells per image provided by the ISM. The difficulty is that the detected objects 

belong to a virtual probe volume. The optical device and the CCD sensor size define the lateral 

borders of the probe volume, while its depth depends on the parameters of the pre-treatment 

process. This means that the algorithm discards the objects from outside of the sharpness depth. 

This can be expressed as c(t) = a y(t)  where c(t) is the cell concentration (cell/ml) and y(t) the ISM 

measurement (cell/image). The coefficient “a” can be interpreted as the inverse of the reference 

volume expressed in ml/image and is the ISM calibration parameter. 

Finding the conversion coefficient needs alternate measurements on cell concentrations to be 

performed. Cell concentration analyses are carried out during the cell culture. They provide at each 

time a vector that gives the references of the cell concentration. These vectors are gathered in the 

matrix [ ]1 j m(t ) (t ) (t ) '=X x x xK K . 

The calibration procedure aims at finding the global calibration factor “a” that takes into account 

the both analysis results. Therefore, the calibration procedure is divided into three main stages:  
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- data processing in order to handle missing analysis data and to estimate the ISM responses 

at times 
jt because the times it  and 

jt  do not correspond exactly; 

- estimation of the first principal components from PCA to reduce influence of discrepancies 

between the analytical results; 

- computation of the regression factor with respect to the correlation between ISM results and 

filtered analysis. 

The first stage is achieved by linear interpolation procedures. In the second stage X is filtered from 

PCA (by keeping a reduced number of principal components) to give the better estimate of the cell 

concentration from analytical results. In the third stage, factor ‘a’ of the regression model is 

obtained from the least square estimation procedure between the filtered X-values and the mean cell 

numbers calculated with parameter k. 

Results and Discussion 

The algorithm used for the cell counting involves three parameters. The first one is the size of the 

high pass filter that enforces the shape detection. The second one is the value of the threshold used 

after the Hough transformation to decide the matching with a circle. The third one is the number of 

circles examined, beginning from 15,3 m diameter circles and decreasing iteratively 0.9 m by 0.9 

m until the last circle diameter is reached. 

Table 1 gives the values of these parameters and the corresponding number of parameter sets.  

Figure 4 presents the curves of the mean cell numbers that are obtained with the chosen parameter 

sets.  

Figure 5 shows the projections of the yj(ti) curves in the first principal plane. The co-ordinates in 

this plane are the columns of the matrix A’ restricted to dimension 2. For each point labelled by a 

number j, they give the combination of the two first principal components that are needed to 

recompose a filtered version of the original curve yj(ti) associated with the parameter set j. A 

projection close to the unit circle indicates that two principal components are sufficient to well 
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regain the curve and thus the dimension K is equal to 2. It can be noticed that the projections of the 

parameters sets from 1 to 5 corresponding to 5x5 filter size are farther from the unit circle 

indicating the need of a third principal component. This is why these parameter sets are excluded 

for the rest of the study. The other parameter sets projections are close to the unit circle. 

The closer the projections are, the more similar the original shapes are. Taking this into account, we 

can analyse the group of parameter sets exhibited in figure 5 as follows: the filter size has almost no 

influence on the shape of the curve. The parameter sets that are only distinguished by the value of 

this parameter (by example 6-15, 7-16) belong to the same group. The two groups 11-20-12-21 and 

8-17-10-19 correspond to a strategy that compensates a more demanding threshold by an increase of 

the number of circles used in the Hough transformation. However, all these influences are weak and 

can be considered as negligible. At this stage, we can conclude about the influence of the parameter 

sets that:  

- The filter size exerts no influence if its value is limited between 10 and 20. 

- Threshold and number of circles have a weak influence in the ranges that have been 

explored and lead to variations in the curves shape that are insignificant regarding the 

dispersion of the acquired data. 

Now let us consider the calibration stage. Figure 6 gives the cell concentration obtained from both 

kinds of analysis. As we have only two kind of analysis only one principal component as to be kept 

and then it is the mean value of the curves. In figure 5, this principal component is projected (bold 

circle) onto the same principal plane than the ISM data. It can be deduced that the shape 

corresponding to the reference analyses is very close to the shape corresponding to the curves given 

by parameter sets 9 -18 and 10-17. For the parameter set 9 (k=9) chosen among these points, figure 

7 exhibits the regression expressed in between analysis data estimated as the first principal 

component and corresponding ISM data. It shows that the last data point at maximum concentration 

is far from the linear regression model. Hence, the linear model may not be the best calibration 

model if the maximum concentration is included. Excluding this last analysis, the projection onto 
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the first principal plane of ISM results becomes closer to the parameter sets 7 and 16 (diamond in 

Figure 5). 

With this restricted set of analyses, results of the regression with the parameter sets corresponding 

to a filter size of 10x10 leads to the results shown in Table 2 (it could have been indifferently a filter 

size of 20x20 as it was showed previously). The term “Slope” indicates the regression coefficient 

‘a’, from which the reference volume is inferred. The obtained standard deviations do not differ 

significantly, so that the robustness of the algorithm according to changes in the set of parameters is 

confirmed. However, it can be seen that the reference volume increases if the threshold decreases. 

This behaviour is to be expected because lower thresholds allow the detection of less sharp cell 

images. 

The regression model calculated for parameter set k=7 gives a value for ‘a’ equal to 0.99. 

Concentrations values calculated using this model and the corresponding ISM data are given figure 

8. An interval of confidence, associated with a 5% risk, is computed for each estimate from the 

error variance estimation. The comparison with the original analysis values shows the quality of the 

calibration for concentration below 4.5 106 cells/ml.  

Let us now focus on the observed saturation. The deviation of the last analysis point is clearly 

related to the perfusion phase. The resonance field both causes an increase in the cell concentration 

and an active cell aggregation phenomenon that is displayed in Figure 9. As the image-processing 

algorithm is not well suited to undergo the counting of the cells belonging to flocs of cells, the 

cellular concentration may thus be under-estimated. Moreover, the evolution of the optical 

characteristics of the broth was noticed: images become darker and the cells got more blurred than 

at the beginning of the process. That may also contribute to the underestimation of the number of 

cells.  
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Conclusion 

A very carefull procedure has been proposed to establish how the image-processing algorithm is 

robust and efficient when faced with spherical or nearly spherical objects. For concentrations below 

4.5 106 cells/ml, the ISM gives a good on-line estimate of the cell-concentration and is robust faced 

to image processing parameter changes. Indeed, the selected set of parameters allows the ISM cell-

concentration curve to fit almost perfectly the reference method results and the correlation 

coefficient between both reference and ISM data sets is then equal to 0.99. The calibration method 

applied for this set of parameters corresponds to a 1.08.10-6 mL reference volume that can be 

considered as a reference volume for further ISM utilisation. Thus, the presented system could be 

used in an extensive way for enhancing process control in the frame of agitated broth cell 

cultivation. 
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Figure 1: Diagram of the In Situ Microscope mounted in a bioreactor growing cells suspended in a 

nutrient medium. Pump 1 and 2 are respectively the feed and harvest pumps. Pump 3 is the clarified 

culture medium harvest pump. Pump 4 is the recirculation pump. 

Figure 2: Original ISM image of the stirred culture broth. Hybridomal cells occur as individual cells 

or as twins in the case of mitosis. Cells belonging to the virtual probe volume appear with sharper 

edges.  

Figure 3: Objects recognised as cells after the pre-processing phase and the cell recognition phase. 

Figure 4: Mean cell number curves (cells/image) during the time of the culture. Each curve 

corresponds to a set of parameters (see Table 1).  
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Figure 5: Coordinates in the first principal plane of cell-number per images curves. Projections are 

numered according to parameter sets in Table 1.      and  are the projection of the first principal 

component of the analytical results respectively for 20 and 19 values. 

Figure 6: Evolution of the hybridoma concentration results (cell/ml) during the culture (h). 

Figure 7: Regression model between ISM cell-concentration results (cells/image) based on 

parameter set 9 and reference data from hemocytometry (*) and from flow cytometry (o). 

Figure 8: Final ISM cell-concentration results () and the 5% confidence interval (---) considering 

parameter set 7 and only keeping first 19 analysis to avoid the saturation. Results are compared with 

hemocytometry (*) and flow cytometry (O). 
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Figure 9: 8 bit gray scaled image of cell aggregates due to the acoustic resonance field during the 

ultrasonic perfusion phase. 

Table 1: Parameter sets used to specify filter-size, binarisation-threshold and number of circles in 

the image processing algorithm. 

Table 2: Regression results for filter size 10x10. The data-point at maximum concentration is 

excluded from this analysis in order to avoid saturation. 
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Table 1  

  Filter size 

  5x5 10x10 20x20 

Number 

of 

circles 
10 11 12 10 11 12 10 11 12 

T
h
re

sh
o
ld

 200 1 2 3 6 7 8 15 16 17 

180 4 5 / 9 10 11 18 19 20 

160 / / / 12 13 14 21 22 23 
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Table 2 

Parameter set 6 7 8 9 

Slope 

510 image/ml´  

1.00 9.26 7.88 8.55 

Standard deviation 

510 image/ml´  
3.37 3.35 3.18 3.23 

Reference volume 

610 ml/image-´  

9.96 1.08 1.27 1.17 

Parameter set 11 12 13 14 

Slope 

510 image/ml´  

6.80 7.34 6.40 5.30 

Standard deviation 

510 image/ml´  

3.35 3.32 4.09 4.97 

Reference volume 

610 ml/image-´  

1.47 1.36 1.56 1.89 

 

 


