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Summary

The analysis of case-control studies with several disease subtypes is increasingly common, e.g. in can-

cer epidemiology. For matched designs, a natural strategy is based on a stratified conditional logistic

regression model. Then, to account for the potential homogeneity among disease subtypes, we adapt the

ideas of data shared lasso, which has been recently proposed for the estimation of stratified regression

models. For unmatched designs, we compare two standard methods based on L1-norm penalized multi-

nomial logistic regression. We describe formal connections between these two approaches, from which

practical guidance can be derived. We show that one of these approaches, which is based on a symmetric

formulation of the multinomial logistic regression model, actually reduces to a data shared lasso version

of the other. Consequently, the relative performance of the two approaches critically depends on the

level of homogeneity that exists among disease subtypes: more precisely, when homogeneity is moderate

to high, the non-symmetric formulation with controls as the reference is not recommended. Empirical

results obtained from synthetic data are presented, which confirm the benefit of properly accounting for

potential homogeneity under both matched and unmatched designs, in terms of estimation and predic-

tion accuracy, variable selection and identification of heterogeneities. We also present preliminary results

from the analysis of a case-control study nested within the EPIC cohort, where the objective is to identify

metabolites associated with the occurrence of subtypes of breast cancer.

Key words: Conditional logistic regression; Multinomial logistic regression; Lasso; Sparsity; Structured sparsity.
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1. Introduction

The rise of -omics and other high-dimensional data in medical science gives researchers access to numerous

features that may predict outcomes of interest, like cancer development. However, this relatively cheap

source of information comes at a price: the curse of dimensionality makes multivariate modeling of such

data impossible without further assumptions. In other words, some prior piece of information has to be

properly accounted for to reduce dimensionality and accurately estimate high-dimensional multivariate

models. The prior information about the sparsity of the parameter vector is one common assumption

for the parametric regression models. The use of L1-norm regularized approaches, such as the Lasso

(Tibshirani, 1996), has been shown to yield optimal sparse estimates when the true vector is sparse,

under technical assumptions on the design matrix (Wainwright, 2009; Bach, 2010; Bickel, Ritov and

Tsybakov, 2009). As a result, L1-penalized logistic models are now standard tools when studying risk

factors of a disease in a high-dimensional setting (Park and Hastie, 2007; Wu and others, 2009) .

For many diseases that were primarily considered as one single disease (breast cancer, colorectal

cancer), several subtypes have now been recognized. They can either be histological, as for breast cancer,

or anatomical, as for colorectal cancer. Even if commonalities may exist among these subtypes, they

have their own specificities regarding both prognosis and etiology. For example, the cancer epidemiology

community is now increasingly concerned with the identification of subtype specific risk factors for various

cancer sites. One illustrating example is presented in Section 5, where the objective is the identification

of metabolites associated with breast cancer subtypes, based on a matched case-control study nested in

the EPIC (European Prospective Investigation into Cancer and nutrition) cohort study.

Formally, let K − 1 denote the number of case/disease subtypes, for some K > 1. In matched case-

control studies, and assuming for simplicity a 1:1 matching, each case has his own control. Then, the

overall sample can naturally be divided intoK−1 subsamples. Each subsample can be analyzed separately

using, e.g., a conditional logistic regression model. On the other hand, for unmatched studies with multiple

subtypes, controls are “shared” for all case subtypes, and the sample can not be split according to disease

subtype. The analysis of such data typically relies on a multinomial logistic regression model (McCullagh

and Nelder, 1989; Begg and Gray, 1984).

Under both matched and unmatched settings, the inference boils down to the estimation of K − 1

parameter vectors. But, as mentioned above, commonalities are generally expected among disease sub-

types. More precisely, some risk factors are likely to be shared by some subtypes, and these shared risk

Page 2 of 33

http://biostatistics.oupjournals.com/

Manuscript Submitted to Biostatistics



For Peer Review

Case-control studies with multiple disease subtypes 3

factors may have the same level of association across various subtypes. Then, the K−1 parameter vectors

are expected to show some level of homogeneity, in the sense that some zeros are likely to be in the same

positions, and that some non-zero values are likely identical across subtypes. Properly accounting for

this particular structured sparsity (Bach and others, 2012) is key to reduce the complexity of the infer-

ence task and improve estimation efficiency (Viallon and others, 2016). Recently, data shared lasso has

been introduced as a way to account for the expected homogeneity among the K − 1 parameter vectors

to be estimated under stratified regression models (Gross and Tibshirani, 2016; Ollier and Viallon, 2017).

In this article, we will show how the ideas of data shared lasso can be applied to analyze both

matched and unmatched case-control studies with multiple disease subtypes. In Section 2, we consider

stratified sparse conditional logistic models under matched designs, for which data shared lasso is natu-

rally appealing. Section 3 is devoted to the unmatched setting and sparse multinomial logistic regression

models, for which the link with data shared lasso is less obvious at first sight. Two formulations of sparse

multinomial logistic regression models exist in the literature (Krishnapuram and others, 2005; Friedman,

Hastie and Tibshirani, 2010), without clear guidance on how to chose between them. We will formally

establish that one of these two formulations corresponds to a data shared lasso version of the other. In

Section 4, we present results from a simulation study. Under both the matched and unmatched settings,

our results illustrate the superiority of data shared lasso compared to its competitors when homogeneity

exists among the parameter vectors to be estimated, in terms of prediction and estimation accuracy, as

well as support recovery (i.e., the ability to identify the position of the non-zero entries of these vectors)

and identification of heterogeneities among these vectors. Section 5 is devoted to our illustrative example.

Concluding remarks are given in Section 6.

2. Matched case-control studies with multiple subtypes of cases and stratified

conditional logistic models

Conditional logistic regression is a standard tool for the analysis of matched case-control studies when a

single type of disease is considered (Pearce, 2016; Rothman, Greenland and Lash, 2008). Here, we show

how the ideas of data shared lasso can be applied to handle the situation where K − 1 disease subtypes

are present, for some given integer K > 1.
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2.1 Setting

Consider a matched case-control study where information about subtype is available for each case. We

denote the number of subtypes by K−1, for some given integer K > 1. For simplicity, we further assume

a 1:1 matched case-control design, and we denote by m ⩾ 1 the total number of pairs of individuals.

Because each case has his own control, the total sample can be divided into K − 1 subsamples. For any

k ∈ {1, ..,K − 1}, the k-th subsample Mk is made of the mk pairs composed by each case of subtype k

and his matched control.

For any ℓ ∈ {1, . . . ,mk}, we let x
(k)
ℓ,case and x

(k)
ℓ,control denote the vectors of covariates (of length p)

for the case and the control, respectively, in the ℓ-th matched pair of Mk. We then have Y
(k)
ℓ,case = 1

and Y
(k)
ℓ,control = 0, which represent the disease indicators for the two individuals composing this matched

pair. The association between covariates and disease subtype k can be studied by applying a conditional

logistic regression model restricted to observations in Mk. Under this model, we assume the existence of

a vector δ∗k ∈ IRp of true values of parameters such that the probability that the case is the one observed

in pair ℓ, given that a case is observed in pair ℓ, is (Greenland, 2000)

Pr(Y
(k)
ℓ,case = 1|Y (k)

ℓ,case + Y
(k)
ℓ,control = 1,x

(k)
ℓ,case,x

(k)
ℓ,control) =

exp(δ∗Tk x
(k)
ℓ,case)

exp(δ∗Tk x
(k)
ℓ,case) + exp(δ∗Tk x

(k)
ℓ,control)

· (2.1)

Introduce 1mk
= (1, . . . , 1)T ∈ IRmk and let ∆(k) denote the mk × p matrix whose ℓ-th row equals

(x
(k)
ℓ,control − x

(k)
ℓ,case), for ℓ ∈ {1, ..,mk}. Vector δ∗k can be estimated by maximizing the log conditional

likelihood L
(cond)
k restricted to pairs in Mk, which is defined for any vector δk ∈ IRp as

L
(cond)
k (δk) = −

mk∑
ℓ=1

log[1 + exp{δTk (x
(k)
ℓ,control − x

(k)
ℓ,case)}]

= −[log{1mk
+ exp(∆(k)δk)}]T1mk

· (2.2)

Equivalently, vectors δ∗1, . . . , δ
∗
K−1 can be estimated simultaneously by maximizing the following global

criterion over δ = (δT1 , . . . , δ
T
K−1)

T ,

L(cond)(∆In, δ) =
K−1∑
k=1

L
(cond)
k (δk) = −[log{1m + exp(∆Inδ)}]T1m, (2.3)

with

∆In =

 ∆(1) . . . 0m1,p

...
. . .

...

0mK−1,p . . . ∆(K−1)

 ·

For future use, observe that function L(cond) is defined for any pair (∆, δ) with ∆ ∈ IRm×d and δ ∈ IRd,

for any integer d ⩾ 1. Moreover, estimation of theK−1 vectors δ∗1, . . . , δ
∗
K−1, is performed simultaneously
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but still independently when maximizing the above criterion. Coupling the estimation of theK−1 vectors,

that is making the estimation of each vector to depend on each other, is deemed necessary to allow the

estimates to share the same similarities as δ∗1, . . . , δ
∗
K−1 when such similarities exist. This can be achieved

by using appropriate penalties, such as the one employed in data shared lasso presented below.

2.2 Data shared lasso

Data shared lasso was introduced by Gross and Tibshirani (2016) and Ollier and Viallon (2017) in the

context of stratified regression models, as a way to account for the expected homogeneities among the

parameter vectors to be estimated. The key to the approach is a reparametrization of the model. More

precisely, instead of the original parametrization based on δ∗k,j , for k ∈ {1, ...,K − 1} and j ∈ {1, ..., p},

data shared lasso is based on the following over-parametrized decomposition

δ∗k,j = µ∗
j + γ∗

k,j . (2.4)

Here µ∗
j can be seen as the “global” parameter for covariate j and is common to all subtypes, while γ∗

k,j

captures the variation of the parameter for subtype k around this global parameter. As will be shown

in Section 2.3, data shared lasso can be seen as a generalization of several more standard L1-penalized

approaches based on other parametrizations of the model, which correspond to particular constraints in

decomposition (2.4).

Even if decomposition (2.4) is over-parametrized, estimates of µ∗
j and γ∗

k,j for k ∈ {1, ...,K − 1} and

j ∈ {1, ..., p} can be derived by maximizing the following L1-penalized criterion over µ = (µ1, . . . , µp)

and the γk’s, with γk = (γk,1, . . . , γk,p),

K−1∑
k=1

L
(cond)
k (µ+ γk)− λ(∥µ∥1 +

K−1∑
k=1

∥γk∥1). (2.5)

As usual, appropriate values of the tuning parameter λ can be obtained in practice by cross-validation

(Bühlmann and Geer, 2011) or through the maximization of BIC-like criteria (Schwarz, 1978). We will

refer to this approach as CondLogist DataSharedLasso. The L1-norm penalty ∥µ∥1 encourages sparsity

of the vector of global parameters, while the ∥γk∥1’s encourage homogeneity among vectors δ̂k defined

as δ̂k = µ̂ + γ̂k, for k ∈ {1, ...,K − 1}. Moreover, Gross and Tibshirani (2016) and Ollier and Viallon

(2017) showed that optimal parameters especially satisfy

µ̂j = argmin
m

{|m|+
K−1∑
k=1

|δ̂k,j −m|} = median(δ̂1,j , . . . , δ̂K−1,j , 0).
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In words, the estimated global parameter for covariate j corresponds to a shrunk version of the median

of the estimated parameters for covariate j across disease subtypes. As a result, estimates (δ̂1, . . . , δ̂K−1)

produced by CondLogist DataSharedLasso, are encouraged to be close to their shrunk median µ̂ =

(µ̂1, . . . , µ̂p) in the L1-norm sense, hence similar.

We shall stress that the penalty
∑K−1

k=1 ∥γk∥1 can be generalized to
∑K−1

k=1 τk∥γk∥1, for some (τk)k⩾1,

e.g., to penalize more heavily terms ∥γk∥1 associated with larger sample size mk. For simplicity, we focus

on the case τk = 1 here, and refer to Gross and Tibshirani (2016) and Ollier and Viallon (2017) for more

details on the general case.

2.3 Implementation and relationship with more standard strategies

A first nice property of data shared lasso is that it can be written as a simple lasso, which makes it

readily implementable. In particular, the data shared lasso criterion can be rewritten as

K−1∑
k=1

L
(cond)
k (µ+ γk)− λ(∥µ∥1 +

K−1∑
k=1

∥γk∥1) = −[log{1m + exp(∆DSΓ)}]T1m − λ∥Γ∥1 (2.6)

with Γ = (µT ,γT
1 , . . . ,γ

T
K−1)

T ∈ IRK×p and

∆DS =


∆(1) ∆(1) 0m1,p . . . 0m1,p

∆(2) 0m2,p ∆(2) . . . 0m2,p

...
...

...
. . .

...

∆(K−1) 0mK−1,p 0mK−1,p . . . ∆(K−1)

 .

Here, ∆(k) still denotes the mk × p matrix whose ℓ-th row equals (x
(k)
ℓ,control − x

(k)
ℓ,case). Criterion (2.6)

corresponds to an L1-penalized version of the log-likelihood (2.2) or (2.3), with design matrix ∆DS

instead of ∆(k) or ∆In. In other words, any solver for the L1-penalized conditional logistic regression

model can be used to implement CondLogist DataSharedLasso. For instance, the cLogitLasso (Avalos

and others, 2015) and cLogitL1 (Reid and Tibshirani, 2014) packages are available for R users.

In addition, this new writing of the data shared lasso criterion highlights its connection with three

more standard approaches based on other reparametrizations of the model, and which correspond to par-

ticular constraints in decomposition (2.4). These standard approaches consist in maximizing a criterion

similar to (2.6) above with ∆DS replaced, in turn, by ∆In given above, and ∆Po and ∆
(1)
Re given by

∆Po =


∆(1)

∆(2)

...

∆(K−1)

 , ∆
(1)
Re =


∆(1) 0m1,p . . . 0m1,p

∆(2) ∆(2) . . . 0m2,p

...
...

. . .
...

∆(K−1) 0mK−1,p . . . ∆(K−1)

 .

First, consider the constraint µ∗
j = 0 for all j ∈ {1, ..., p} in decomposition (2.4). In this case, the

reparametrization is simply a change of notation compared with the original parametrization: δ∗k,j = γ∗
k,j .
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The constraint µ∗
j = 0 for all j ∈ {1, ..., p} can be imposed in criterion (2.6) simply by eliminating the

first block of p columns in ∆DS , that is by replacing ∆DS by ∆In. As detailed in Appendix A.1 of the

Supplementary Materials, under this additional contraint, CondLogist DataSharedLasso reduces to the

simple approach which consists in running one L1-penalized conditional logistic regression (that is an

L1-penalized version of criterion (2.2)) on each subsample Mk independently, and so we refer to this

approach as CondLogist IndepLasso. Second, consider the constraint γ∗
k,j = 0 for all k ∈ {1, ...,K − 1}

and j ∈ {1, ..., p}. In this case, δ∗k,j = µ∗
j for all k: working under this constraint corresponds to assuming

that vectors δ∗1, . . . , δ
∗
K are all equal to a common vector, µ∗. This vector µ∗ ∈ IRp can again be estimated

by maximizing the same criterion as (2.6), this time after eliminating the K − 1 last blocks of p columns

in ∆DS , that is after replacing ∆DS by ∆Po. This corresponds to pooling all the subsamples together,

and we will refer to this approach as CondLogist PooledLasso. Finally, consider the constraint γ∗
1,j = 0

for all j ∈ {1, ..., p}. In this case, we have µ∗
j = δ∗1,j and γ∗

k,j = δ∗k,j − δ∗1,j for all j ∈ {1, ..., p} and

k > 1. The (K − 1)× p parameters µ∗
j (= δ∗1,j) and γ∗

k,j for j ∈ {1, ..., p} and k ⩾ 2, can be estimated by

maximizing the same criterion as (2.6), after eliminating the second block of p columns in ∆DS , that is

after replacing ∆DS by ∆
(1)
Re . This corresponds to working under the decomposition δ∗k = δ∗1 + γ∗

k for

k ⩾ 2. In other words, this corresponds to considering the first subtype as the reference subtype, while

parameter γ∗
k,j , for j ∈ {1, ..., p} and k ⩾ 2, captures how the association of covariate j and subtype k

differs from that of covariate j and subtype 1. We will refer to this approach as CondLogist RefLasso.

Of course, any subtype r can be considered as the reference, not necessarily the first one.

Each of these three more standard approaches, CondLogist IndepLasso, CondLogist PooledLasso

and CondLogist RefLasso, can therefore be regarded as one particular constrained version of CondLo-

gist DataSharedLasso, where the additional constraint makes decomposition (2.4) identifiable. However,

the flexibility of the over-parametrization on which CondLogist DataSharedLasso relies makes the ap-

proach generally better than the other three, as we now explain. First, the parametrization used in

CondLogist PooledLasso is not flexible enough to account for subtype specificities, and then results in

biased estimates unless all vectors δ∗k are equal. On the other hand, the parametrizations used in Cond-

Logist IndepLasso and CondLogist RefLasso are flexible enough to avoid such a bias. But, as detailed

in Ollier and Viallon (2017), these parametrizations are still suboptimal, because they generally involve

unnecessarily large numbers of non-zero true parameters. As a matter of fact, the optimal parametriza-

tion of the form (2.4) is such that ∥µ∗∥0 +
∑

k ∥δ
∗
k − µ∗∥0 is minimized, with ∥ · ∥0 standing for the
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L0 pseudo-norm. The optimal choice for µ∗
j is therefore δ∗rj ,j for any rj ∈ {1, ...,K − 1} such that δ∗rj ,j

is the mode of the collection of values (δ∗1,j , . . . , δ
∗
K−1,j , 0). In other words, the optimal parametrization

of the form (2.4) relies on optimal covariate-specific references. The corresponding optimal version of

CondLogist RefLasso, applied with such optimal covariate-specific references, can of course not be im-

plemented in practice because these optimal covariate-specific references are unknown. But, in the setting

of stratified linear models, the data shared lasso strategy was shown to target the same parametriza-

tion as this optimal version of CondLogist RefLasso (Ollier and Viallon, 2017). It was further shown

to perform as well as this optimal version of CondLogist RefLasso, and to outperform the three more

standard approaches, both theoretically and empirically (Ollier and Viallon, 2017). Results from our

simulation study presented in Section 4 will confirm those described in Ollier and Viallon (2017) under

linear regression models. In particular, the strategy based on the data shared lasso penalty usually better

accounts for homogeneity than the other three appraoches, which translates into better estimation and

prediction accuracy, overall support recovery and identification of heterogeneities.

3. Unmatched case-control studies with multiple subtypes of cases and sparse

multinomial logistic models

We now turn our attention to the unmatched setting. When K − 1 subtypes of cases are present for

some given integer K > 1, the outcome Y can be modeled as a categorical variable, taking values in

{1, ...,K}. Hereafter, we will assume that Y = K for controls, while Y = k for cases of subtype k, for

any k ∈ {1, ...,K − 1}. When no natural order exists among the categories of Y , the multinomial logistic

regression model is a natural extension of the standard logistic regression model. Below, we will recall

some basics about the multinomial logistic regression model. We will first introduce the L1-penalized

approach based on the symmetric formulation of the model, as implemented in the popular glmnet R

package (Friedman, Hastie and Tibshirani, 2010). We will then show that it corresponds to a data shared

lasso version of the more standard formulation, which relies on the initial choice of a reference category.

For ease of notation, we will mostly focus on models with no intercept. Our presentation would mainly

be the same if intercepts were considered, except that intercept terms are generally not penalized, and

L1-norms ∥β∥1 =
∑p

j=1 |βj | would be replaced by
∑p

j=2 |βj | if β1 corresponds to the intercept. See the

last paragraph in Section 3.1 for additional details.
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3.1 The multinomial logistic regression model

For any collection of vectors (u1, . . . ,uK) ∈ IRp×K , any k ∈ {1, ...,K}, and any x0 ∈ IRp for some

p ⩾ 1, introduce the function pk(x0;u1, . . . ,uK) = exp(xT
0 uk)/{

∑K
ℓ=1 exp(x

T
0 uℓ)}. In its symmetric

formulation, the multinomial logistic regression model assumes the existence of K vectors (β∗
1, . . . ,β

∗
K) ∈

IRp×K of true values of parameters such that

Pr(Y = k|x = x0) =
exp(xT

0 β
∗
k)∑K

ℓ=1 exp(x
T
0 β

∗
ℓ )

= pk(x0;β
∗
1, . . . ,β

∗
K), (3.7)

for any value x0 ∈ IRp of the covariate vector. Because
∑K

k=1 Pr(Y = k|x = x0) = 1 for any x0 ∈ IRp,

this formulation is over-parametrized and vectors β∗
1, . . . ,β

∗
K in Equation (3.7) are defined up to a

constant only. Indeed, for any ν ∈ IRp and any (β1, . . . ,βK) ∈ IRp×K , pk(x0;β1, . . . ,βK) = pk(x0;β1 +

ν, . . . ,βK +ν). In other words, if model (3.7) holds with vectors (β∗
1, . . . ,β

∗
K), then it holds with vectors

(β∗
1 + ν, . . . ,β∗

K + ν) for any ν ∈ IRp as well. For future use, note that it especially holds with vectors

(β∗
1 − β∗

K , . . . ,β∗
K−1 − β∗

K ,0p), which corresponds to the particular choice ν = −β∗
K . Because of this

lack of identifiability, standard maximum likelihood estimation based on this parametrization can not be

used to derive estimates of β∗
1, . . . ,β

∗
K , and constrained or penalized versions of the likelihood have to

be used instead. In particular, the glmnet R package (Friedman, Hastie and Tibshirani, 2010) produces

estimates defined as maximizers of the L1-penalized version of the log-likelihood

L(β1, . . . ,βK)− λ
K∑

k=1

∥βk∥1 =
1

n

n∑
i=1

log{pyi(xi;β1, . . . ,βK)} − λ
K∑

k=1

∥βk∥1 (3.8)

for an appropriate value of the regularization parameter λ. We will refer to this approach as Multi-

nomLogist SymLasso. It works under the implicit assumption that (at least) one of the infinitely many

collections of vectors β∗
1, . . . ,β

∗
K satisfying (3.7) is sparse, and looks for the “sparsest”, or more pre-

cisely, the one with lowest
∑

k ∥β
∗
k∥1. In particular, Friedman, Hastie and Tibshirani (2010) show that

maximizers β̂1, . . . , β̂K of criterion (3.8) are such that

median(β̂1,j , . . . , β̂K,j) = 0, for all j ∈ {1, ..., p}. (3.9)

Equation (3.9) establishes that the L1-norm penalization solves the lack of identifiability for each covariate

by targeting a collection of vectors β̂1, . . . , β̂K such that, for each covariate, the median of its parameters

across the K categories is null. As mentioned above, when intercepts are considered, they are generally

not penalized, in which case the lack of identifiability remains for them. In glmnet, this is resolved by

mean centering, which corresponds to imposing the constraint
∑K

k=1 β̂k,1 = 0 (Friedman, Hastie and

Tibshirani, 2010), with β̂k,1 standing for the intercept estimate for the k-th category.
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3.2 Relationship with data shared lasso

Now, let us turn our attention to the “standard” formulation of the multinomial logistic regression model,

which resolves the lack of identifiability of the symmetric one by first selecting a reference category,

typically K. Then, this formulation assumes the existence of K− 1 parameter vectors, say δ∗1, . . . , δ
∗
K−1,

such that Pr(Y = k|x = x0) = pk(x0, δ
∗
1, . . . , δ

∗
K−1,0p). The two formulations – symmetric and standard

– are strictly equivalent. Indeed, and as mentioned above, for any β∗
1, . . . ,β

∗
K satisfying the symmetric

formulation of the model, vectors δ∗1, . . . δ
∗
K−1 defined as δ∗k = β∗

k − β∗
K for k ∈ {1, ...,K − 1} satisfy

the standard one. When the dimension p of the covariates is large, the expected sparsity within vectors

(δ∗1, . . . , δ
∗
K−1) can be accounted for by looking for estimates maximizing an L1-penalized log-likelihood

(Krishnapuram and others, 2005)

1

n

n∑
i=1

log{pyi(xi; δ1, . . . , δK−1, 0)} − λ
K−1∑
k=1

∥δk∥1.

We will refer to this approach as MultinomLogist StdLasso. The ideas of data shared lasso can further

be applied to account for the homogeneity among vectors (δ∗k)’s when the subtypes are expected to share

commonalities. Considering as in Section 2 the decomposition δk = µ + γk for k ∈ {1, ...,K − 1}, the

method we will refer to as MultinomLogist StdDataSharedLasso then simply consists in maximizing the

criterion

1

n

n∑
i=1

log{pyi(xi;µ+ γ1, . . . ,µ+ γK−1,0p)} − λ
(
∥µ∥1 +

K−1∑
k=1

∥γk∥1
)
.

Interestingly, this criterion is exactly the same as the one in Equation (3.8), after using the change of

variable µ = −βK and γk = βk for all k < K; see Appendix A.2 in the Supplementary Materials for the

detailed derivation of this result. This equality formally establishes that working under the symmetric

formulation (3.7) with an L1-norm penalty, as in the glmnet R package, exactly corresponds to working

under the more standard formulation with a data shared lasso penalty to encourage homogeneity among

vectors (δ∗1, . . . , δ
∗
K−1). More precisely, the estimates (β̂1, . . . , β̂K) and (µ̂, γ̂1, . . . , γ̂K−1) produced by

MultinomLogist SymLasso and MultinomLogist StdDataSharedLasso, respectively, are such that µ̂ =

−β̂K and β̂k = γ̂k for all k ∈ {1, ...,K − 1}.

This equivalence between MultinomLogist SymLasso and MultinomLogist StdDataSharedLasso fur-

ther allows the derivation of guidance on whether to use MultinomLogist SymLasso or MultinomL-

ogist StdLasso in practice: by by-passing the arbitrary choice of the reference category, MultinomL-

ogist SymLasso will typically target a sparser parametrization than MultinomLogist StdLasso if dis-

ease subtypes share commonalities, and is then expected to produce better estimates. MultinomLo-
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gist StdDataSharedLasso can be seen as a way to compensate any suboptimal choice of the reference

category in MultinomLogist StdLasso. Although different at first sight, MultinomLogist SymLasso and

MultinomLogist StdDataSharedLasso produce the same estimates and we will simply refer to any of

them as MultinomLogist SymLasso in the rest of our article.

4. Simulation study

4.1 Evaluation criteria

To compare the performance of the considered approaches (under both the matched and unmatched

settings), several criteria are evaluated. Given estimates δ̂1, . . . , δ̂K−1 of true vectors of parameters

δ∗1, . . . , δ
∗
K−1 (under the unmatched setting, they correspond to vectors involved in the standard formu-

lation with controls as the reference category), a first common criterion when evaluating L1-penalized

approaches is the accuracy with respect to support recovery, which measures the ability to correctly

identify patterns of null, positive and negative entries in the vector of parameters to be estimated. In

our context, we consider the following criterion:

Sgn Accuracy =

∑K−1
k=1

∑p
j=1

(
1[sgn(δ∗k,j) = sgn(δ̂k,j)]− 1[sgn(δ∗k,j)× sgn(δ̂k,j) = −1]

)
(K − 1)p

,

where sgn(x) = +1 if x > 0, sgn(x) = −1 if x < 0 and sgn(x) = 0 if x = 0. This criterion is a

slight modification of the standard accuracy (Metz, 1978; Viallon and others, 2016), where the term

−1[sgn(δ∗k,j) × sgn(δ̂k,j) = −1] is included to penalize approaches that tend to produce positive [resp.

negative] estimate while the true value is negative [resp. positive], since this is particularly unwanted in

practice. Good approaches are expected to have a high Sgn Accuracy.

In our framework, vectors δ∗1, ..., δ
∗
K−1 are not only expected to be sparse. They may also have some

zeros in the same positions, and some non-zero entries may be equal for different subtypes. Estimates

δ̂1, . . . , δ̂K−1 should share the same structure to be able to identify heterogeneities. For any j ∈ {1, ..., p},

a good approach should then be able to produce estimates δ̂1,j , . . . , δ̂K−1,j such that, for any (k1 ̸= k2) ∈

{1, ...,K − 1}2, δ̂k1,j = δ̂k2,j if and only if δ∗k1,j
= δ∗k2,j

. One standard criterion to evaluate this capacity

is the Rand Index (Rand, 1971), which is defined in our context as

RandIndex =

∑p
j=1

∑K−2
k1=1

∑K−1
k2>k1

(
1[δ∗k1,j = δ∗k2,j , δ̂k1,j = δ̂k2,j ] + 1[δ∗k1,j ̸= δ∗k2,j , δ̂k1,j ̸= δ̂k2,j ]

)
p(K − 2)!

.

Again, good approaches are expected to have a high RandIndex.
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We also evaluate the approaches with respect to estimation error and prediction accuracy. As for the

estimation error, we used the following criterion, which should be as low as possible

Est Error =
K−1∑
k=1

∥δ̂k − δ∗k∥22
∥δ∗k∥22

.

As for the prediction accuracy, we computed an AUC-like criterion, which was adapted to our matched

and unmatched settings. Under both settings, our AUC compares predicted probabilities with observed

outcomes on an independent test sample of size n(test) = 10, 000. In the matched setting, our AUC is

defined as the weighted average of the AUCs computed in each subsample M(test)
k . In the unmatched

setting, we adapted the one class versus all other classes approach (Provost and Domingos, 2000; Fawcett,

2006); see Appendix A.3 in the Supplementary Material for details on this adaptation. In either setting,

good approaches are expected to have a high AUC.

4.2 The matched setting

We performed a simulation study to assess the performance of data shared lasso in the context of

matched case-control studies. We compared CondLogist DataSharedLasso with CondLogist IndepLasso,

CondLogist PooledLasso, and CondLogist RefLasso. For the latter, the first subtype was selected as

the reference. We set the number of covariates to p = 100, and the number of disease subtypes to

(K − 1) = 6. We further set the number of pairs of observations in each subsample to m1 = 200,

m2 = 100 and mk = 50 for k = 3, . . . , 6, so that the total number of observations was n = 1000. In

this “high”-dimensional setting, we implemented a cross-validation technique in the spirit of the one-step

lasso (Bühlmann and Meier, 2008) to select the optimal regularization parameters and obtain the final

parameter estimates.

Here, we briefly describe the simulation designs we considered. Additional details are provided in

Appendix A.4 of the Supplementary Materials. Four configurations corresponding to four levels of homo-

geneity among vectors δ∗1, . . . , δ
∗
6 were considered: full homogeneity (the 6 vectors are equal), low hetero-

geneity (δ∗2, . . . , δ
∗
6 are equal, and δ∗1 is different from them), moderate heterogeneity (δ∗4, δ

∗
5, and δ∗6 are

equal, while the three other vectors are different from them, and from each other) and full heterogeneity

(the 6 vectors have nothing in common). We shall stress that under the low and moderate heterogeneity

configurations, the first subtype is the worst choice for the reference used in CondLogist RefLasso, in the

sense that ∥δ∗r∥0 +
∑

k ̸=r ∥δ
∗
k − δ∗r∥0 is maximized for r = 1. The comparison between the performance

of CondLogist RefLasso and CondLogist DataSharedLasso will allow the assessment of the impact of a
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suboptimal choice for the reference when applying CondLogist RefLasso.

To illustrate the relative performance of the approaches as a function of signal strength, we made

it vary through a parameter δ ∈ {0.1, 0.25, 0.5, 0.75}, which determines the magnitude of the non-zero

true parameters of our generating model, and is related to the log-odds-ratio for an increase of one

standard-deviation of the corresponding covariates; see Appendix A.4 of the Supplementary Materials

for more details. Under each of the four configurations, and for each of the four signal strengths, we gen-

erated 200 samples under model (2.1). Figure 1 presents the criteria averaged over these 200 replicates,

along with the 95% confidence intervals, for each of the four methods we compared here, that is Cond-

Logist DataSharedLasso, CondLogist IndepLasso, CondLogist PooledLasso, and CondLogist RefLasso.

Boxplots showing the distribution of the criteria over the 200 replicates for each method, under each

configuration and for each signal strength, are presented on Figure 1 of the Supplementary Materials.

First consider the case of full homogeneity. Because all the vectors δ∗k are equal, the optimal strategy

is of course CondLogist PooledLasso, which is based on a parametrization with p0 non-zero parameters

(where p0 is the number of non-zero parameters in each vector δ∗k; we have p0 = 10 in our simula-

tion study). On the other hand, because CondLogist IndepLasso is based on a parametrization with

(K − 1)p0 non-zero parameters, it performs poorly compared to CondLogist PooledLasso in this con-

figuration, in terms of the four criteria we considered: because it is unable to account for homogeneity,

estimates produced by CondLogist IndepLasso are fully heterogeneous (its RandIndex is very low, as

expected), hence with a large variance, and performs poorly in terms of estimation and prediction accu-

racy, and also support recovery (because it is unable to borrow strength from the various subtypes). On

the other hand, both CondLogist DataSharedLasso and CondLogist RefLasso account for homogeneity,

and perform nearly as well as CondLogist PooledLasso in terms of each of our criteria under this con-

figuration of full homogeneity. It is noteworthy that in this particular case, any subtype is an optimal

reference in CondLogist RefLasso (∥δ∗r∥0+
∑

k ̸=r ∥δ
∗
k−δ∗r∥0 = p0 for any r), which explains why CondL-

ogist DataSharedLasso and CondLogist RefLasso perform similarly in this case. Next, in the case of low

heterogeneity, CondLogist PooledLasso produces biased estimates and is not optimal since vectors δ∗k are

not all equal anymore. Interestingly, CondLogist RefLasso does not outperform CondLogist PooledLasso

in this case, and these two approaches actually produce very similar estimates under this configuration.

This is due to the particular choice for the reference subtype in CondLogist RefLasso: when δ∗2 = . . . = δ∗6,

and δ∗1 is different from them, the penalty term
∑

k ∥δk−δ1∥1 generally prevents the approach to identify

these heterogeneities. As a matter of fact, any other choice for the reference would have led to better
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performance for CondLogist RefLasso. As mentioned above, CondLogist DataSharedLasso bypasses the

arbitrary choice of the reference, and mimics the optimal version of CondLogist RefLasso applied with

an optimal, possibly covariate-specific, reference. Under this low heterogeneity configuration, CondLo-

gist DataSharedLasso allows the identification of heterogeneities (its RandIndex is higher than that of

CondLogist RefLasso and CondLogist PooledLasso), and substantially outperforms the other approaches

with respect to all criteria. As the level of heterogeneity increases, the complexity of the estimation task

increases, and the performance of CondLogist DataSharedLasso tends to that of CondLogist IndepLasso.

But, as long as some level of homogeneity is present (moderate heterogeneity configuration), CondLo-

gist DataSharedLasso outperforms the other approaches. Under the full heterogeneity configuration,

CondLogist DataSharedLasso still performs on average as well as CondLogist IndepLasso, which is the

optimal strategy in this case, while CondLogist PooledLasso, and to a lesser extent CondLogist RefLasso,

perform worse.

Overall, our results illustrate that the performance of CondLogist IndepLasso does not depend on

the level of heterogeneity, in terms of support recovery, prediction accuracy and estimation accuracy. In

the total absence of homogeneity, this performance is optimal. But, as the level of homogeneity increases,

methods that account for homogeneity can target better (i.e., sparser) parametrizations, and yield sub-

stantial improvements in terms of estimation performance. Among the four approaches we compared

here, CondLogist DataSharedLasso appears as the best approach to account for homogeneity when it is

present. In addition, it performs as well as CondLogist IndepLasso on average when no homogeneity is

present at all.

4.3 The unmatched setting

We further performed a simulation study in the unmatched setting to illustrate the relative performance

of MultinomLogist StdLasso and MultinomLogist SymLasso (the later being the same as MultinomL-

ogist StdDataSharedLasso), depending on the level of homogeneity among vectors δ∗1, . . . , δ
∗
K−1 of the

standard formulation. We again set K − 1 = 6 disease subtypes, and considered four configurations: full

homogeneity, low heterogeneity, moderate heterogeneity and full heterogeneity. To save computational

time, a low-dimensional setting with n = 1000 and p = 20 was considered here. To generate the data,

we adapted the framework described in Section 4.2 to the unmatched setting. We used intercept terms,

(δ1,0, . . . , δK−1,0), chosen in such a way that Pr(Y = K) = 0.5 and Pr(Y = k) ranged from 0.05 to 0.2 for
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k ∈ {1, ...,K−1}. In this low-dimensional setting, regularization parameters were selected as minimizers

of the BIC after adapting the Lasso-OLS hybrid ideas to our context (Efron and others, 2004), in the

same way as in Viallon and others (2016).

Figure 2 presents the criteria averaged over 200 replicates, along with their 95% confidence intervals.

Boxplots summarizing the full distribution of the criteria over the 200 replicates are presented in Figure

2 of the the Supplementary Materials. Overall, the conclusions drawn from the comparison between

MultinomLogist SymLasso and MultinomLogist StdLasso in this unmatched setting are consistent with

those drawn when comparing CondLogist DataSharedLasso with CondLogist IndepLasso in the matched

setting. More precisely, the two methods perform similarly in case of full heterogeneity, but the perfor-

mance of MultinomLogist SymLasso improves as the level of homogeneity increases, while that of Multi-

nomLogist StdLasso remains roughly unchanged. In particular, MultinomLogist SymLasso substantially

outperforms MultinomLogist StdLasso with respect to all criteria in the case of full homogeneity. This

was expected since the number of non-zero parameters to be estimated under the standard formulation is

(K−1)p0 (where p0 is the number of non-zero parameters in each δ∗k; this was set to p0 = 10 in our sim-

ulation study), while MultinomLogist SymLasso (or equivalently MultinomLogist StdDataSharedLasso)

is able to target a parametrization with only p0 non-zero parameters in the case of full homogeneity;

see Appendix A.6 of the Supplementary Materials, for more details. Just as in the matched setting,

our results confirm that using data shared lasso (or, equivalently, the symmetric formulation in this un-

matched setting) allows the homogeneity to be accounted for when present, which translates into better

estimation and prediction accuracy, support recovery and identification of heterogeneties.

5. Application

5.1 Data description

The European Prospective Investigation into Cancer and Nutrition (EPIC) study is an ongoing multi-

center prospective study aiming to investigate prospectively the etiology of cancer in relation to diet,

lifestyle and environmental factors. Its design has been previously described in detail (Riboli and others,

2002). From 1992 to 2000, a total of 521,324 participants were recruited across 10 European countries.

Among these participants, 246,000 women, aged from 35 to 70 years, provided a blood sample at in-

clusion. Here, we present preliminary results from the analysis of a case-control study nested in EPIC,

whose main objective was to assess the association between metabolites and the risk of subtypes of breast
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cancer for women older than 50: 1415 cases of breast cancer were included, along with 1415 matched

controls (using incidence density sampling). We shall stress that the methods presented in Section 2 can

be applied when the case-control study is nested within a cohort, as is the case here. This is because the

analysis of the k-th disease subtype still relies on a conditional logistic regression model with parameter

δ∗k, which measures the level of association between the covariates and disease subtype k.

For these 2830 individuals, plasma samples collected at inclusion in the study were analyzed by mass

spectrometry (AbsoluteIDQ p180 Kit) allowing the measurement of the concentrations of 127 metabo-

lites. These concentrations were log-transformed to reduce skewness. We considered six histological sub-

types of breast cancer, based on the presence/absence of hormone receptors: HER2-enriched (100 pairs

of observations), triple negative (134 pairs), Luminal A PR+ (164 pairs), Luminal A PR- (820 pairs),

Luminal B PR+ (58 pairs) and Luminal B PR- (139 pairs).

5.2 Results

Figure 3 provides a graphical representation of the log odds-ratio estimates δ̂1, . . . , δ̂6 produced by each

of the four methods for the 6 subtypes of breast cancer. For 79 out of the 127 measured metabolites, all

methods produced a zero estimate for all subtypes. These “constantly” null estimates are not reported

on Figure 3 to improve legibility. Also, the remaining 48 metabolites were anonymized as the biological

interpretation of the results is out of the scope of this preliminary analysis. When analyzing such data,

most practitioners would start by pooling all subtypes together (that is, ignoring subtypes) to identify

metabolites associated with breast cancer as a whole. In this application, CondLogist PooledLasso does

identify several metabolites associated with breast cancer, which naturally raises the question of whether

these identified metabolites (and maybe other ones as well) may be more specifically associated with par-

ticular subtypes. The independent analyses of each subtype, as implemented in CondLogist IndepLasso,

identifies many metabolites associated with the Luminal A PR- subtype, and fewer metabolites for the

other subtypes. In particular, no metabolite is identified for the Luminal B PR- and the HER2-enriched

subtypes. Moreover, very few metabolites were found to be associated with more than one subtype: to

name a few exceptions, M96 appeared to be associated with both Luminal A PR+ and Luminal A PR-,

and M28 with Luminal A PR+ and Triple Negative. Clearly, this heterogeneity across the subtypes can

be the result of a combination of: (i) true heterogeneities, (ii) lack of power for some subtypes (many

metabolites are identified in the case of Luminal A PR-, which is the most frequent subtype, while no
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metabolite is identified for Luminal B PR- or the HER2-enriched which are the two least frequent sub-

types), and (iii) sample variability combined with correlations among the metabolites. Indeed, if two

metabolites are strongly correlated, CondLogist IndepLasso will typically identify one or the other on

two different samples even if these samples are drawn from the same population (that is, in the absence

of true heterogeneity between the two samples). In other words, and just as in subgroup analyses (Wang

and others, 2007), it is hazardous to claim and interpret heterogeneities on the basis of the independent

analyses of subtypes. Because heterogeneities are penalized when using CondLogist DataSharedLasso

(and, in a less optimal way, when using CondLogist RefLasso), heterogeneities identified by CondLo-

gist DataSharedLasso are supported by the data, and are more likely true ones. In the present appli-

cation, CondLogist DataSharedLasso produces estimates that are quite similar to those produced by

CondLogist PooledLasso, suggesting that the data does not support departure from homogeneity in the

levels of association between most metabolites and breast cancer across subtypes. A few heterogeneities

are identified though, suggesting that some metabolites might be more specifically associated with the

Luminal A PR+ subtype (M18, M27, M42, M43, M63 but also M111 whose association with other

subtypes exist, but is stronger with Luminal A PR+), or Luminal A PR- (M96). The comparison with

the results produced by CondLogist RefLasso is also instructive, in particular the estimates produced for

M18 and M63. Because Luminal A PR- was chosen as the reference when applying CondLogist RefLasso,

it is here unable to identify any heterogeneity for this particular subtype, which is consistent with the

results of our simulation study under the low heterogeneity configuration.

6. Discussion

In this article, we considered the analysis of high-dimensional case-control studies, when several disease

subtypes exist, under both unmatched and matched settings. In the latter case, our analysis further cov-

ers matched case-control studies nested within a cohort. We have shown that estimation and prediction

accuracy, support recovery and the ability to identify heterogeneities across subtypes, could all be sub-

stantially improved when commonalities exist among subtypes, provided methods that properly account

for these commonalities, e.g. those based on the data shared lasso penalty, are used. Our findings are in

line with the empirical and theoretical results of Ollier and Viallon (2017) in the case of stratified linear

regression models, as well as the empirical results of Ballout and Viallon (2017) for stratified binary

graphical models.
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Under matched designs, the original parametrization relies on K − 1 vectors δ∗k, which represent the log

odds-ratios that compare each of theK−1 disease subtypes with controls. Based on an over-parametrized

reparametrization, CondLogist DataSharedLasso is able to target a sparser parametrization when com-

monalities exist among subtypes, which can yield substantial improvements in terms of estimation effi-

ciency. In the absence of commonalities, it still performs as well as the standard, independent analysis

of each subtype. Under unmatched designs, the standard formulation of multinomial logistic regression

models relies on the same parametrization, involving K − 1 vectors δ∗k that compare each disease sub-

type with controls. We formally established that applying the ideas of data shared lasso along with this

parametrization was actually equivalent to applying a standard lasso on the symmetric formulation of

the model. This symmetric formulation relies on an over-parametrized parametrization with K vectors

β∗
k, and takes advantage of the fact that controls do not necessarily have to be considered as the refer-

ence category in unmatched settings. Again, the resulting parametrization can be much sparser than the

standard one, and yields generally better estimation efficiency, especially when the level of homogeneity

among subtypes is high.

The methods we presented to account for potential commonalities are simple to implement under

both designs. Under matched designs, CondLogist DataSharedLasso is as easy to implement as CondLo-

gist RefLasso or CondLogist IndepLasso. Under unmatched designs, MultinomLogist SymLasso (which

is equivalent to MultinomLogist StdDataSharedLasso) is implemented in the glmnet R package. Given

the simplicity of their implementation and the possibly substantial gain in terms of estimation per-

formance, we strongly encourage the use of these approaches when analyzing case-control studies with

several disease subtypes.

As pointed out in our application to the EPIC data, the methods that account for potential common-

alities are especially useful to claim and interpret heterogeneities across subtypes, contrary to methods

that do not account for them. An interesting extension would concern the derivation of valid p-values

or confidence intervals for the nonzero parameters identified by CondLogist DataSharedLasso or Multi-

nomLogist SymLasso, in particular those corresponding to heterogeneities across subtypes. Given the

connection of data shared lasso with the lasso (see, e.g., Equation (2.6) under matched designs), this

post-selection inference could be derived by extending strategies proposed for lasso estimates (Lee and

others, 2016). In other respects, when the identification of heterogeneities is of primary interest, study

design is an important step to ensure balanced sample sizes across subtypes (which was not the case in

our application to the EPIC data).
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The estimation of several parameter vectors considered here is closely related to multi-task learning

(Evgeniou and Pontil, 2004), for which a number of other structured sparsity inducing norms have been

proposed in the literature, including the group lasso and generalized fused lasso (Lounici and others,

2011; Viallon and others, 2016). We shall first mention that the group lasso is not well suited for the

identification of heterogeneities. On the other hand, the generalized fused lasso has shown good properties

in the context of stratified regression models, both under generalized linear models (Viallon and others,

2016), survival models (Sennhenn-Reulen and Kneib, 2016) and binary graphical models (Ballout and

Viallon, 2017). Its extension to conditional logistic regression models or multinomial logistic models

constitutes another interesting lead for future work.

7. Software

Software in the form of R codes is available on Github. The link to the codes in the matched setting

is https://github.com/NadimBLT/SL1CLR. The link to the codes in the unmatched setting is https:

//github.com/NadimBLT/L1MLR.

8. Supplementary Materials

Supplementary materials is available online at http://biostatistics.oxfordjournals.org.

Acknowledgments

This work was partially supported by the French National Cancer Institute (L’Institut National du

Cancer; INCA) (grant number 2015-166; PI: S. Rinaldi). The authors are grateful to the Principal

Investigators of each of the EPIC centres for sharing the data of our illustrative example.

Where authors are identified as personnel of the International Agency for Research on Cancer / World

Health Organization, the authors alone are responsible for the views expressed in this article and they

do not necessarily represent the decisions, policy or views of the International Agency for Research on

Cancer / World Health Organization.

References

Avalos, M., Pouyes, H., Grandvalet, Y., Orriols, L. and Lagarde, E. (2015). Sparse condi-

tional logistic regression for analyzing large-scale matched data from epidemiological studies: a simple

Page 19 of 33

http://biostatistics.oupjournals.com/

Manuscript Submitted to Biostatistics



For Peer Review

20 REFERENCES

algorithm. BMC bioinformatics 16(6), S1.

Bach, F. (2010). Self-concordant analysis for logistic regression. Electronic Journal of Statistics 4,

384–414.

Bach, F., Jenatton, R., Mairal, J. and Obozinski, G. (2012). Structured sparsity through convex

optimization. Statistical Science 27(4), 450–468.

Ballout, N. and Viallon, V. (2017). Structure estimation of binary graphical models on stratified

data: application to the description of injury tables for victims of road accidents. arXiv preprint

arXiv:1709.10298 .

Begg, C. B. and Gray, R. (1984). Calculation of polychotomous logistic regression parameters using

individualized regressions. Biometrika 71(1), 11–18.

Bickel, P. J., Ritov, Y. and Tsybakov, A. B. (2009). Simultaneous analysis of lasso and dantzig

selector. The Annals of Statistics, 1705–1732.
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Fig. 1. Results of the simulation study in the matched setting. Solid lines correspond to averages over the 200
replicates, while 95% confidence intervals appear as dotted lines.
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Fig. 2. Results of the simulation study in the unmatched setting. Solid lines correspond to averages over the 200
replicates, while 95% confidence intervals appear as dotted lines
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Fig. 3. Preliminary results from the analysis of the matched case-control study nested in EPIC. Six breast
cancer histological subtypes are considered: HER-enriched, Triple Negative, Luminal A PR-, Luminal A PR+,
Luminal B PR- and Luminal B PR+. Results obtained after the application of four different methods (Cond-
Logist PooledLasso, CondLogist IndepLasso, CondLogist RefLasso, and CondLogist DataSharedLasso) are pre-
sented. For CondLogist RefLasso, the Luminal A PR+ subtype was selected as the reference. For each method,
estimates of δ∗

1, . . . , δ
∗
6 are combined in a matrix, with 6 columns (one for each subtype) and 48 rows (out of

the 127 original metabolites, the 79 metabolites for which the four methods produced a zero estimate for all 6
subtypes were eliminated from the plot). In each of the four matrices, each entry represents the estimated level
of association between one metabolite and one particular breast cancer subtype. White entries correspond to
null associations, grey entries indicate positive associations, while red entries indicate negative association; see
the scale on the left of the figure. For example, CondLogist IndepLasso identifies a strongly inverse association
between metabolite M33 and Triple-Negative breast cancer.
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APPENDIX

A. Additional technical details

A.1 Details on the “standard” L1-penalized approaches presented in the matched design

Here, we provide additional details on the link between CondLogist DataSharedLasso and the three more

standard approaches presented in the matched design (CondLogist IndepLasso, CondLogist PooledLasso

and CondLogist RefLasso).

CondLogist DataSharedLasso. First recall that estimates produced by CondLogist DataSharedLasso are

defined as δ̂k = µ̂ + γ̂k with

(µ̂, γ̂1, . . . , γ̂K−1) = argmin
(µ,γ1,...,γK−1)∈IRp×K

K−1∑
k=1

L
(cond)
k (µ + γk)− λ(‖µ‖1 +

K−1∑
k=1

‖γk‖1)

CondLogist IndepLasso. This approach simply consists in working with the original parametrization

and performing one L1-penalized conditional logistic regression on each subsample independently. Then,

∗To whom correspondence should be addressed.

c© The Author 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
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the most natural way of defining estimates returned by CondLogist IndepLasso is

(δ̂1, . . . , δ̂K−1) = argmin
(δ1,...,δK−1)∈IRp×(K−1)

[K−1∑
k=1

{
L
(cond)
k (δk)− λ‖δk‖1

}]
But, CondLogist IndepLasso can also be seen as a special case of CondLogist DataSharedLasso since we

also have (δ̂1, . . . , δ̂K−1) = (γ̂1, . . . , γ̂K−1), with

(0p, γ̂1, . . . , γ̂K−1) = argmin
(µ,γ1,...,γK−1)∈IR

p×K

µ=0p

[K−1∑
k=1

{
L
(cond)
k (µ + γk)

}
− λ(‖µ‖1 +

K−1∑
k=1

‖γk‖1)
]

i.e., (γ̂1, . . . , γ̂K−1) = argmin
(γ1,...,γK−1)∈IRp×K

[K−1∑
k=1

{
L
(cond)
k (γk)− λ‖γk‖1

}]
While estimated simultaneously, the (K − 1) parameter vectors are still estimated independently. This

approach cannot take advantage of any potential similarity among (δ∗1, . . . , δ
∗
K), and typically produces

estimates with suboptimal properties when such similarity exists.

CondLogist PooledLasso. This approach works under the (strong) assumption that all disease subtypes

share the same parameter vector: δ∗1 = . . . = δ∗K−1 = δ∗. Then, the most natural way of defining

estimates returned by CondLogist PooledLasso is

δ̂ = argmin
δ∈IRp

[K−1∑
k=1

L
(cond)
k (δ)− λ‖δ‖1

]
Again, there is a link between CondLogist PooledLasso and CondLogist DataSharedLasso since δ̂ = µ̂,

with

(µ̂,0p, . . . ,0p) = argmin
(µ,γ1,...,γK−1)∈IR

p×K

γ1=...=γK−1=0p

[K−1∑
k=1

L
(cond)
k (µ + γk)− λ(‖µ‖1 +

K−1∑
k=1

‖γk‖1)
]

i.e., µ̂ = argmin
µ̂∈IRp

[K−1∑
k=1

L
(cond)
k (µ)− λ‖µ‖1

]
Because all δ∗k’s are assumed to be equal, this approach obviously produces biased estimates when dif-

ferences exist among the δ∗k’s.

CondLogist RefLasso. For simplicity, assume that the first disease subtype is chosen as the reference.

Then, CondLogist RefLasso works under the following reparametrization: δ∗k = δ∗1 + γ∗k for all k > 2.

The most natural way of defining estimates returned by CondLogist RefLasso is

(δ̂1, γ̂2, . . . , γ̂K−1) = argmin
(δ1,γ2...,γK−1)∈IRp×(K−1)

[
L
(cond)
1 (δ1) +

K−1∑
k=2

L
(cond)
k (δ1 + γk)− λ(‖δ1‖1 +

K−1∑
k=2

‖γk‖1)
]
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But, we also have (δ̂1, . . . , δ̂K−1) = (µ̂, µ̂ + γ̂2, . . . , µ̂ + γ̂K−1), with

(µ̂,0p, γ̂2, . . . , γ̂K−1) = argmin
(µ,γ1,...,γK−1)∈IR

p×K

γ1=0p

[K−1∑
k=1

{
L
(cond)
k (µ + γk)

}
− λ(‖µ‖1 +

K−1∑
k=1

‖γk‖1)
]

i.e., (µ̂, γ̂2, . . . , γ̂K−1) = argmin
(µ,γ2,...,γK−1)∈IRp×(K−1)

[
L
(cond)
1 (µ) +

K−1∑
k=2

L
(cond)
k (µ + γk)− λ(‖µ‖1 +

K−1∑
k=2

‖γk‖1)
]

More generally, when used with the r-th subtype as the reference, this approach encourages similarity

between δ∗r and the remaining K−2 vectors. Consequently, its performance depends on the choice of the

reference subtype. In particular, it will perform poorly if the true parameter vector pertaining to the cho-

sen reference subtype is actually very different from the K−2 other ones. As explained in the main text,

the optimal reference subtype is generally covariate-specific. CondLogist DataSharedLasso bypasses the

arbitrary choice of the reference subtype. Moreover, in the setting of stratified linear regression models,

the data shared lasso strategy was shown to perform as well as the optimal (and non-implementable)

strategy based on an a priori selection of optimal covariate-specific references.

A.2 Equivalence between MultinomLogist SymLasso and MultinomLogist StdDataSharedLasso

First observe that the contribution of an individual with covariate vector x0 to the likelihood of the

symmetric formulation of the model (see Equation (3.8) of the Main Manuscript) is

K∏
k=1

{
pk(x0;β1, . . . ,βK)

}1I(Y=k)
=

K∏
k=1

{
exp(xT

0 βk)∑K
`=1 exp(xT

0 β`)

}1I(Y=k)

(∗)
=

K−1∏
k=1

{
exp(xT

0 γk)

exp(−µTx0) +
∑K−1

`=1 exp(xT
0 γ`)

}1I(Y=k)

×

{
exp(−µTx0)

exp(−µTx0) +
∑K−1

`=1 exp(xT
0 γ`)

}1I(Y=K)

=
K−1∏
k=1

{
exp(xT

0 (µ + γk))

1 +
∑K−1

`=1 exp(xT
0 (µ + γ`))

}1I(Y=k)

×

{
1

1 +
∑K−1

`=1 exp(xT
0 (µ + γ`))

}1I(Y=K)

=

K∏
k=1

{
pk(x0;µ + γ1, . . . ,µ + γK−1,0p)

}1I(Y=k)

where we used the change of variable µ = −βK and γk = βk for all k < K to obtain the equality (∗).

Using the same change of variable, we get
∑K

k=1 ‖βk‖1 = ‖µ‖1 +
∑K−1

k=1 ‖γk‖1. Putting this all together,

the L1-penalized criterion (3.9) of the Main Manuscript equals, up to a change of variable,

L(β1, . . . ,βK)− λ
K∑

k=1

‖βk‖1 =
1

n

n∑
i=1

log{pyi(xi;β1, . . . ,βK)} − λ
K∑

k=1

‖βk‖1

=
1

n

n∑
i=1

log{pyi
(xi;µ + γ1, . . . ,µ + γK−1,0p)} − λ

(
‖µ‖1 +

K−1∑
k=1

‖γk‖1
)

.
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A.3 Additional details on the AUC criteria

In the unmatched setting, the AUC was computed as an adaptation of the one class versus all other

classes approach (Provost and Domingos, 2000; Fawcett, 2006). More precisely, first remind that we

generate data such that, e.g., δ∗4 = δ∗5 = δ∗6 (under the configurations described as full homogeneity, low

heterogeneity and moderate heterogeneity). Then, the three classes 4, 5, 6 are undistinguishable under

these configurations. More generally, the set of classes {1, ...,K} can be partitioned into G = {g1, ..., gI},

where I 6 K and gi ⊂ {1, ...,K}, for all i = {1, . . . , I}, such that (∃i ∈ {1, . . . , I} : (k1, k2) ∈ gi) ⇔

(δ∗k1
= δ∗k2

); we set δ∗K = 0p for the class corresponding to controls. For the sake of completeness, these

partitions are as follows under the four configurations we considered

• Full homogeneity: G = {g1, g2}, |G| = 2, g1 = {1, ..., 6} and g2 = {7}

• Low heterogeneity: G = {g1, g2, g3}, |G| = 3, g1 = {1}, g2 = {2, ..., 6} and g2 = {7}

• Moderate heterogeneity: G = {g1, g2, g3, g4, g5}, |G| = 5, g1 = {1}, g2 = {2} , g3 = {3}, g4 =

{4, ..., 6} and g5 = {7}

• Full heterogeneity: G = {g1, g2, ..., g7}, |G| = 7, for each k ∈ {1, ..., k}, gk = k

Given such a partition G of {1, . . . ,K}, for any g ⊂ G, let y
(g)
i = 1 if yi ∈ g and 0 otherwise. Then set

ng =
∑n

i=1 1[yi ∈ g], T
(g)
0 = {i ∈ {1, ..., n} : y

(g)
i = 0}, T (g)

1 = {i ∈ {1, ..., n} : y
(g)
i = 1}, and

p̂
(g)
i =

∑
k∈g

p̂
(k)
i =

∑
k∈g

exp (xTi δ̂k)∑K
`=1 exp (xTi δ̂`)

.

The AUC was then simply computed as

AUC =
∑
g⊂G

ng
n

1

|T (g)
1 | × |T

(g)
0 |

∑
i1∈T (g)

1

∑
i2∈T (g)

0

1[p̂
(g)
i1

> p̂
(g)
i2

].

It is a weighted average of the one class versus all class AUC (Provost and Domingos, 2000; Fawcett,

2006), with classes replaced by the groups of classes in G.

A.4 Additional details on the simulation study

For any real numbers a < b, we denote the uniform distribution on [a, b] by U[a,b]. For any p ∈ [0, 1],

we further denote the Bernoulli distribution with parameter p by B(p). Parameters δ∗k,j were generated

as follows. One subset J1 ⊂ {1, ..., p} was first randomly selected, with |J1| = 10. For j /∈ J1, we set

δ∗k,j = 0 for all k ∈ {1, ...,K − 1}. For j ∈ J1, four configurations were considered, allowing the level
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of homogeneity among (δ∗1,j , . . . , δ
∗
K−1,j) to vary. In the first configuration (full homogeneity), we set

δ∗k,j = (2ιj − 1)δ, for some δ > 0 and with ιj ∼ B(1/2). In the second configuration (low heterogeneity),

for j ∈ J1, we set δ∗k,j = (2ιj − 1)δ for k > 2 and δ∗1,j = (2ιkj ,j − 1)δ(1 + Ukj ,j), with each ιk,j ∼ B(1/2)

and Ukj ,j ∼ U[√K/2,2
√
K]. Here, the limits [

√
K/2, 2

√
K] were motivated by the non-asymptotic results

obtained by Ollier and Viallon (2017) under stratified linear regression models (see the comment right

after Theorem 1). In the third configuration (moderate heterogeneity), we set δ∗k,j = (2ιj − 1)δ for

k /∈ {1, 2, 3} and δ∗k,j = (2ιk,j − 1)δ(1 +Uk,j) for k ∈ {4, 5, 6}, with again ιj ∼ B(1/2), ιk,j ∼ B(1/2) and

Uk,j ∼ U[√K/2,2
√
K]. Finally, in the fourth configuration (full heterogeneity), we set δ∗k,j = (2ιk,j−1)δ(1+

Uk,j) for k ∈ {1, ...,K − 1} with again ιk,j ∼ B(1/2) and Uk,j ∼ U[√K/2,2
√
K]. In each configuration,

parameter δ varied in {0.1, 0.25, 0.5, 0.75} to study the impact of signal strength on the performance of

the approaches; these δ values correspond to log-odds-ratio for an increment of one standard deviation.

For each observation, covariates were generated under a multivariate Gaussian distribution N (0p,Σ),

where Σi,j = 0.3|i−j|. Pairs of observations were then created and randomly assigned to one stratum

Mk in such a way that m1 = 200, m2 = 100 and mk = 50 for k = 3, . . . , 6. Within each pair ` of each

stratum Mk, the response variable Y
(k)
`,1 was then generated under model (2.1), that is, Y

(k)
`,1 was drawn

from a Bernoulli distribution with parameter equal to

exp(δ∗Tk x
(k)
`,1 )

exp(δ∗Tk x
(k)
`,1 ) + exp(δ∗Tk x

(k)
`,2 ))

.

Then, Y
(k)
`,2 was set to 1− Y (k)

`,1 . Denoting by case [resp. control] the index of the case [resp. control] in

the `-th generated pair, we then have

Pr(Y
(k)
`,case = 1|Y (k)

`,case + Y
(k)
`,control = 1,x

(k)
`,case,x

(k)
`,control) =

exp(δ∗Tk x
(k)
`,case)

exp(δ∗Tk x
(k)
`,case) + exp(δ∗Tk x

(k)
`,control)

,

and our data are indeed generated under model (2.1).

A.5 Additional results from the simulation study

Figure 1 illustrates the distribution of the criteria whose averages are presented on Figure 1 (matched

setting) in the main text.

Figure 2 illustrates the distribution of the criteria whose averages are presented on Figure 2 (un-

matched setting) in the main text.
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Fig. 1. Boxplots showing the distributions of the criteria for each of the four methods compared in the matched
setting, over the 200 replicates of each considered configuration and signal strength.

A.6 The influence of the reference category when using MultinomLogist StdLasso: a toy example

Consider a multinomial logistic regression model with K − 1 disease subtypes, in the particular case of

full homogeneity, that is when covariates associated with disease have the same level of association with

all disease subtypes. For any β∗1, ...,β
∗
K satisfying the symmetric formulation of the model, we would

then have (i) β∗1 = · · · = β∗K−1, and (ii) β∗K 6= β∗1 (assuming as in the main text that Y = K indicates

controls, while Y = k for k ∈ {1, ...,K − 1} indicates disease subtype k). Let p0 denote the number of

covariates associated with the disease, for some 1 6 p0 6 p. If the standard formulation of the model is

used with controls as the reference, parameters to be estimated will be δ∗1, . . . , δ
∗
K−1, with δ∗k = β∗k−β∗K

for k = 1, . . . ,K − 1. Then, these K − 1 vectors are all equal (since β∗1 = . . . = β∗K−1), and they all

have p0 non-zero components. The total number of non-zero parameters (hereafter referred to as model

complexity) is therefore (K−1)p0. Now, consider again the standard formulation, but this time using the

first disease subtype as the reference. The parameters to be estimated would then be δ̃
∗
2, . . . , δ̃

∗
K , with

δ̃
∗
k = β∗k −β∗1 for k = 2, . . . ,K. Because β∗1 = . . . = β∗K−1, the K − 2 vectors (δ̃

∗
k)k=2,...,K−1 are all null,

while δ̃
∗
K = −δ∗1 has p0 non-zero components. The model complexity is therefore p0, which is much lower
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Fig. 2. Boxplots showing the distributions of the criteria for the two methods compared in the unmatched setting,
over the 200 replicates of each considered configuration and signal strength.

than (K − 1)p0. In this particular case, using subtype 1 (or any other subtype) as the reference category

yields a parametrization which is much sparser than the parametrization we consider when using controls

as the reference. Therefore, when applying MultinomLogist StdLasso, controls represent the worst choice

for the reference category in this situation (we recall that the choice of the reference category would not

have any influence on the quality of the estimation in an unpenalized framework). Still considering

this toy example, applying MultinomLogist StdDataSharedLasso corrects any suboptimal choice for the

reference category. For example, whether the reference category is set to controls or to the first disease

subtype, the model complexity is p0 when applying MultinomLogist StdDataSharedLasso, as illustrated

in Figure 3 below. Finally, MultinomLogist SymLasso would target the sparsest collection of vectors

β∗1, ...,β
∗
K satisfying the symmetric formulation of the model. In the toy example considered here, this

would be (0p, . . . ,0p, δ̃
∗
K), as illustrated in Figure 3. The corresponding model complexity is again p0.

Figure 3 below gives a graphical representation of our toy example. It especially illustrates how model

complexity (denoted by C) is affected by the choice of the reference category when working under the

standard formulation of the multinomial logistic regression model, and how the decomposition targeted
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by data shared lasso corrects any sub-optimal choice for this reference category. For simplicity, Figure

3 represents the case where p0 = p, and where all covariates share the same level of association with

the disease. In this case, a typical collection of vectors β∗1, ...,β
∗
K satisfying the symmetric formulation

of the model is such that, for all j ∈ {1, ..., p}, β∗1,j = β1 and β∗K,j = β2 for some β1, β2 6= 0 such that

β1 − β2 6= 0.
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Fig. 3. Graphical representation of our toy example. In each matrix, red entries correspond to the “common”
value β1, blue entries correspond to the value β2, purple entries to the value (β1 − β2), gray entries to the value
−(β1 − β2) and white entries to the value 0. If MultinomLogist StdLasso is applied after selecting the K-th
category as the reference, model complexity is C = (K − 1)p. The choice of the K-th categoty as the reference
is clearly sub-optimal since selecting any other category as the reference, e.g. the first one, leads to a model
complexity C = p. On the other hand, irrespective of the initial choice of the reference category, the complexity
of the decomposition targeted by MultinomLogist StdDataSharedLasso is optimal and equals p.
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