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The analysis of case-control studies with several disease subtypes is increasingly common, e.g. in cancer epidemiology. For matched designs, a natural strategy is based on a stratified conditional logistic regression model. Then, to account for the potential homogeneity among disease subtypes, we adapt the ideas of data shared lasso, which has been recently proposed for the estimation of stratified regression models. For unmatched designs, we compare two standard methods based on L 1 -norm penalized multinomial logistic regression. We describe formal connections between these two approaches, from which practical guidance can be derived. We show that one of these approaches, which is based on a symmetric formulation of the multinomial logistic regression model, actually reduces to a data shared lasso version of the other. Consequently, the relative performance of the two approaches critically depends on the level of homogeneity that exists among disease subtypes: more precisely, when homogeneity is moderate to high, the non-symmetric formulation with controls as the reference is not recommended. Empirical results obtained from synthetic data are presented, which confirm the benefit of properly accounting for potential homogeneity under both matched and unmatched designs, in terms of estimation and prediction accuracy, variable selection and identification of heterogeneities. We also present preliminary results from the analysis of a case-control study nested within the EPIC cohort, where the objective is to identify metabolites associated with the occurrence of subtypes of breast cancer.

Introduction

The rise of -omics and other high-dimensional data in medical science gives researchers access to numerous features that may predict outcomes of interest, like cancer development. However, this relatively cheap source of information comes at a price: the curse of dimensionality makes multivariate modeling of such data impossible without further assumptions. In other words, some prior piece of information has to be properly accounted for to reduce dimensionality and accurately estimate high-dimensional multivariate models. The prior information about the sparsity of the parameter vector is one common assumption for the parametric regression models. The use of L 1 -norm regularized approaches, such as the Lasso [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], has been shown to yield optimal sparse estimates when the true vector is sparse, under technical assumptions on the design matrix [START_REF] Wainwright | Sharp thresholds for high-dimensional and noisy sparsity recovery usingconstrained quadratic programming (lasso). Information Theory[END_REF][START_REF] Bach | Self-concordant analysis for logistic regression[END_REF][START_REF] Bickel | Simultaneous analysis of lasso and dantzig selector[END_REF]. As a result, L 1 -penalized logistic models are now standard tools when studying risk factors of a disease in a high-dimensional setting [START_REF] Park | L 1 -regularization path algorithm for generalized linear models[END_REF]Wu and others, 2009) .

For many diseases that were primarily considered as one single disease (breast cancer, colorectal cancer), several subtypes have now been recognized. They can either be histological, as for breast cancer, or anatomical, as for colorectal cancer. Even if commonalities may exist among these subtypes, they have their own specificities regarding both prognosis and etiology. For example, the cancer epidemiology community is now increasingly concerned with the identification of subtype specific risk factors for various cancer sites. One illustrating example is presented in Section 5, where the objective is the identification of metabolites associated with breast cancer subtypes, based on a matched case-control study nested in the EPIC (European Prospective Investigation into Cancer and nutrition) cohort study.

Formally, let K -1 denote the number of case/disease subtypes, for some K > 1. In matched casecontrol studies, and assuming for simplicity a 1:1 matching, each case has his own control. Then, the overall sample can naturally be divided into K-1 subsamples. Each subsample can be analyzed separately using, e.g., a conditional logistic regression model. On the other hand, for unmatched studies with multiple subtypes, controls are "shared" for all case subtypes, and the sample can not be split according to disease subtype. The analysis of such data typically relies on a multinomial logistic regression model [START_REF] Mccullagh | Generalized linear models[END_REF][START_REF] Begg | Calculation of polychotomous logistic regression parameters using individualized regressions[END_REF].

Under both matched and unmatched settings, the inference boils down to the estimation of K -1 parameter vectors. But, as mentioned above, commonalities are generally expected among disease subtypes. More precisely, some risk factors are likely to be shared by some subtypes, and these shared risk Case-control studies with multiple disease subtypes 3 factors may have the same level of association across various subtypes. Then, the K -1 parameter vectors are expected to show some level of homogeneity, in the sense that some zeros are likely to be in the same positions, and that some non-zero values are likely identical across subtypes. Properly accounting for this particular structured sparsity (Bach and others, 2012) is key to reduce the complexity of the inference task and improve estimation efficiency (Viallon and others, 2016). Recently, data shared lasso has been introduced as a way to account for the expected homogeneity among the K -1 parameter vectors to be estimated under stratified regression models [START_REF] Gross | Data shared lasso: A novel tool to discover uplift[END_REF]Ollier and Viallon, 2017).

In this article, we will show how the ideas of data shared lasso can be applied to analyze both matched and unmatched case-control studies with multiple disease subtypes. In Section 2, we consider stratified sparse conditional logistic models under matched designs, for which data shared lasso is naturally appealing. Section 3 is devoted to the unmatched setting and sparse multinomial logistic regression models, for which the link with data shared lasso is less obvious at first sight. Two formulations of sparse multinomial logistic regression models exist in the literature (Krishnapuram and others, 2005;[START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF], without clear guidance on how to chose between them. We will formally establish that one of these two formulations corresponds to a data shared lasso version of the other. In Section 4, we present results from a simulation study. Under both the matched and unmatched settings, our results illustrate the superiority of data shared lasso compared to its competitors when homogeneity exists among the parameter vectors to be estimated, in terms of prediction and estimation accuracy, as well as support recovery (i.e., the ability to identify the position of the non-zero entries of these vectors)

and identification of heterogeneities among these vectors. Section 5 is devoted to our illustrative example.

Concluding remarks are given in Section 6.

Matched case-control studies with multiple subtypes of cases and stratified conditional logistic models

Conditional logistic regression is a standard tool for the analysis of matched case-control studies when a single type of disease is considered [START_REF] Pearce | Analysis of matched case-control studies[END_REF][START_REF] Rothman | Modern epidemiology, 3rd edition[END_REF]. Here, we show how the ideas of data shared lasso can be applied to handle the situation where K -1 disease subtypes are present, for some given integer K > 1. 

Setting

Consider a matched case-control study where information about subtype is available for each case. We denote the number of subtypes by K -1, for some given integer K > 1. For simplicity, we further assume a 1:1 matched case-control design, and we denote by m ⩾ 1 the total number of pairs of individuals.

Because each case has his own control, the total sample can be divided into K -1 subsamples. For any k ∈ {1, .., K -1}, the k-th subsample M k is made of the m k pairs composed by each case of subtype k and his matched control.

For any ℓ ∈ {1, . . . , m k }, we let x

(k) ℓ,case and x (k)
ℓ,control denote the vectors of covariates (of length p)

for the case and the control, respectively, in the ℓ-th matched pair of M k . We then have

Y (k) ℓ,case = 1 and Y (k)
ℓ,control = 0, which represent the disease indicators for the two individuals composing this matched pair. The association between covariates and disease subtype k can be studied by applying a conditional logistic regression model restricted to observations in M k . Under this model, we assume the existence of a vector δ * k ∈ IR p of true values of parameters such that the probability that the case is the one observed in pair ℓ, given that a case is observed in pair ℓ, is [START_REF] Greenland | Small-sample bias and corrections for conditional maximum-likelihood oddsratio estimators[END_REF] Pr(Y

(k) ℓ,case = 1|Y (k) ℓ,case + Y (k) ℓ,control = 1, x (k) ℓ,case , x (k) ℓ,control ) = exp(δ * T k x (k) ℓ,case ) exp(δ * T k x (k) ℓ,case ) + exp(δ * T k x (k) ℓ,control ) • (2.1)
Introduce 1 m k = (1, . . . , 1) T ∈ IR m k and let ∆ (k) denote the m k × p matrix whose ℓ-th row equals (x restricted to pairs in M k , which is defined for any vector δ k ∈ IR p as

(k) ℓ,control -x (k) ℓ,case
L (cond) k (δ k ) = - m k ∑ ℓ=1 log[1 + exp{δ T k (x (k) ℓ,control -x (k) ℓ,case )}] = -[log{1 m k + exp(∆ (k) δ k )}] T 1 m k • (2.2)
Equivalently, vectors δ * 1 , . . . , δ * K-1 can be estimated simultaneously by maximizing the following global

criterion over δ = (δ T 1 , . . . , δ T K-1 ) T , L (cond) (∆ In , δ) = K-1 ∑ k=1 L (cond) k (δ k ) = -[log{1 m + exp(∆ In δ)}] T 1 m , (2.3) with ∆ In =    ∆ (1) . . . 0 m1,p . . . . . . . . . 0 mK-1,p . . . ∆ (K-1)    •
For future use, observe that function L (cond) but still independently when maximizing the above criterion. Coupling the estimation of the K-1 vectors, that is making the estimation of each vector to depend on each other, is deemed necessary to allow the estimates to share the same similarities as δ * 1 , . . . , δ * K-1 when such similarities exist. This can be achieved by using appropriate penalties, such as the one employed in data shared lasso presented below.

Data shared lasso

Data shared lasso was introduced by [START_REF] Gross | Data shared lasso: A novel tool to discover uplift[END_REF] and Ollier and Viallon (2017) in the context of stratified regression models, as a way to account for the expected homogeneities among the parameter vectors to be estimated. The key to the approach is a reparametrization of the model. More precisely, instead of the original parametrization based on δ * k,j , for k ∈ {1, ..., K -1} and j ∈ {1, ..., p}, data shared lasso is based on the following over-parametrized decomposition

δ * k,j = µ * j + γ * k,j .
(2.4)

Here µ * j can be seen as the "global" parameter for covariate j and is common to all subtypes, while γ * k,j captures the variation of the parameter for subtype k around this global parameter. As will be shown in Section 2.3, data shared lasso can be seen as a generalization of several more standard L 1 -penalized approaches based on other parametrizations of the model, which correspond to particular constraints in decomposition (2.4).

Even if decomposition (2.4) is over-parametrized, estimates of µ * j and γ * k,j for k ∈ {1, ..., K -1} and j ∈ {1, ..., p} can be derived by maximizing the following L 1 -penalized criterion over µ = (µ 1 , . . . , µ p ) and the γ k 's, with

γ k = (γ k,1 , . . . , γ k,p ), K-1 ∑ k=1 L (cond) k (µ + γ k ) -λ(∥µ∥ 1 + K-1 ∑ k=1 ∥γ k ∥ 1 ). (2.5)
As usual, appropriate values of the tuning parameter λ can be obtained in practice by cross-validation [START_REF] Bühlmann | Statistics for High-Dimensional Data: Method, Theory and Applications[END_REF] or through the maximization of BIC-like criteria [START_REF] Schwarz | Estimating the dimension of a model[END_REF]. We will refer to this approach as CondLogist DataSharedLasso. The L 1 -norm penalty ∥µ∥ 1 encourages sparsity of the vector of global parameters, while the ∥γ k ∥ 1 's encourage homogeneity among vectors δ k defined as [START_REF] Gross | Data shared lasso: A novel tool to discover uplift[END_REF] and Ollier and Viallon (2017) showed that optimal parameters especially satisfy In words, the estimated global parameter for covariate j corresponds to a shrunk version of the median of the estimated parameters for covariate j across disease subtypes. As a result, estimates ( δ 1 , . . . , δ K-1 ) produced by CondLogist DataSharedLasso, are encouraged to be close to their shrunk median µ = ( µ 1 , . . . , µ p ) in the L 1 -norm sense, hence similar.

δ k = µ + γ k , for k ∈ {1, ..., K -1}. Moreover,
µ j = argmin m {|m| + K-1 ∑ k=1 | δ k,j -m|} = median( δ 1,j , . . . , δ K-1,j , 0).
We shall stress that the penalty ∑ K-1 k=1 ∥γ k ∥ 1 can be generalized to

∑ K-1 k=1 τ k ∥γ k ∥ 1 , for some (τ k ) k⩾1 ,
e.g., to penalize more heavily terms ∥γ k ∥ 1 associated with larger sample size m k . For simplicity, we focus on the case τ k = 1 here, and refer to [START_REF] Gross | Data shared lasso: A novel tool to discover uplift[END_REF] and Ollier and Viallon (2017) for more details on the general case.

Implementation and relationship with more standard strategies

A first nice property of data shared lasso is that it can be written as a simple lasso, which makes it readily implementable. In particular, the data shared lasso criterion can be rewritten as 2) . . . 0 m2,p . . . . . . . . . . . . . . .

K-1 ∑ k=1 L (cond) k (µ + γ k ) -λ(∥µ∥ 1 + K-1 ∑ k=1 ∥γ k ∥ 1 ) = -[log{1 m + exp(∆ DS Γ)}] T 1 m -λ∥Γ∥ 1 (2.6) with Γ = (µ T , γ T 1 , . . . , γ T K-1 ) T ∈ IR K×p and ∆ DS =      ∆ (1) ∆ (1) 0 m1,p . . . 0 m1,p ∆ (2) 0 m2,p ∆ ( 
∆ (K-1) 0 mK-1,p 0 mK-1,p . . . ∆ (K-1)      .
Here, ∆ (k) still denotes the m k × p matrix whose ℓ-th row equals (x

(k) ℓ,control -x (k)
ℓ,case ). Criterion (2.6) corresponds to an L 1 -penalized version of the log-likelihood (2.2) or (2.3), with design matrix ∆ DS instead of ∆ (k) or ∆ In . In other words, any solver for the L 1 -penalized conditional logistic regression model can be used to implement CondLogist DataSharedLasso. For instance, the cLogitLasso (Avalos and others, 2015) and cLogitL1 [START_REF] Reid | Regularization paths for conditional logistic regression: the clogitl1 package[END_REF] packages are available for R users.

In addition, this new writing of the data shared lasso criterion highlights its connection with three more standard approaches based on other reparametrizations of the model, and which correspond to particular constraints in decomposition (2.4). These standard approaches consist in maximizing a criterion similar to (2.6) above with ∆ DS replaced, in turn, by ∆ In given above, and ∆ P o and ∆

(1)

Re given by 2) . . .

∆ P o =      ∆ (1) ∆ ( 
∆ (K-1)      , ∆ (1) 
Re =      ∆ (1) 0 m1,p . . . 0 m1,p ∆ (2)
∆ (2) . . . 0 m2,p . . . . . . . . . . . .

∆ (K-1) 0 mK-1,p . . . ∆ (K-1)      .
First, consider the constraint µ * j = 0 for all j ∈ {1, ..., p} in decomposition (2.4). In this case, the reparametrization is simply a change of notation compared with the original parametrization: 

δ * k,j = γ * k,
Re . This corresponds to working under the decomposition

δ * k = δ * 1 + γ * k for k ⩾ 2.
In other words, this corresponds to considering the first subtype as the reference subtype, while parameter γ * k,j , for j ∈ {1, ..., p} and k ⩾ 2, captures how the association of covariate j and subtype k differs from that of covariate j and subtype 1. We will refer to this approach as CondLogist RefLasso.

Of course, any subtype r can be considered as the reference, not necessarily the first one.

Each of these three more standard approaches, CondLogist IndepLasso, CondLogist PooledLasso and CondLogist RefLasso, can therefore be regarded as one particular constrained version of CondLogist DataSharedLasso, where the additional constraint makes decomposition (2.4) identifiable. However, the flexibility of the over-parametrization on which CondLogist DataSharedLasso relies makes the approach generally better than the other three, as we now explain. First, the parametrization used in CondLogist PooledLasso is not flexible enough to account for subtype specificities, and then results in biased estimates unless all vectors δ * k are equal. On the other hand, the parametrizations used in Cond-Logist IndepLasso and CondLogist RefLasso are flexible enough to avoid such a bias. But, as detailed in Ollier and Viallon (2017), these parametrizations are still suboptimal, because they generally involve unnecessarily large numbers of non-zero true parameters. As a matter of fact, the optimal parametrization of the form (2.4) is such that L 0 pseudo-norm. The optimal choice for µ * j is therefore δ * rj ,j for any r j ∈ {1, ..., K -1} such that δ * rj ,j

∥µ * ∥ 0 + ∑ k ∥δ * k -µ * ∥ 0 is minimized, with ∥ • ∥ 0 standing for the
is the mode of the collection of values (δ * 1,j , . . . , δ * K-1,j , 0). In other words, the optimal parametrization of the form (2.4) relies on optimal covariate-specific references. The corresponding optimal version of CondLogist RefLasso, applied with such optimal covariate-specific references, can of course not be implemented in practice because these optimal covariate-specific references are unknown. But, in the setting of stratified linear models, the data shared lasso strategy was shown to target the same parametrization as this optimal version of CondLogist RefLasso (Ollier and Viallon, 2017). It was further shown to perform as well as this optimal version of CondLogist RefLasso, and to outperform the three more standard approaches, both theoretically and empirically (Ollier and Viallon, 2017). Results from our simulation study presented in Section 4 will confirm those described in Ollier and Viallon (2017) under linear regression models. In particular, the strategy based on the data shared lasso penalty usually better accounts for homogeneity than the other three appraoches, which translates into better estimation and prediction accuracy, overall support recovery and identification of heterogeneities.

Unmatched case-control studies with multiple subtypes of cases and sparse multinomial logistic models

We now turn our attention to the unmatched setting. When K -1 subtypes of cases are present for some given integer K > 1, the outcome Y can be modeled as a categorical variable, taking values in {1, ..., K}. Hereafter, we will assume that Y = K for controls, while Y = k for cases of subtype k, for any k ∈ {1, ..., K -1}. When no natural order exists among the categories of Y , the multinomial logistic regression model is a natural extension of the standard logistic regression model. Below, we will recall some basics about the multinomial logistic regression model. We will first introduce the L 1 -penalized approach based on the symmetric formulation of the model, as implemented in the popular glmnet R package [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF]. We will then show that it corresponds to a data shared lasso version of the more standard formulation, which relies on the initial choice of a reference category.

For ease of notation, we will mostly focus on models with no intercept. Our presentation would mainly be the same if intercepts were considered, except that intercept terms are generally not penalized, and

L 1 -norms ∥β∥ 1 = ∑ p j=1 |β j | would be replaced by ∑ p j=2 |β j | if β 1 corresponds to the intercept. See the F o r P e e r R e v i e

w
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The multinomial logistic regression model

For any collection of vectors (u 1 , . . . , u K ) ∈ IR p×K , any k ∈ {1, ..., K}, and any x 0 ∈ IR p for some

p ⩾ 1, introduce the function p k (x 0 ; u 1 , . . . , u K ) = exp(x T 0 u k )/{ ∑ K ℓ=1 exp(x T 0 u ℓ )}.
In its symmetric formulation, the multinomial logistic regression model assumes the existence of K vectors (β * 1 , . . . ,

β * K ) ∈ IR p×K of true values of parameters such that Pr(Y = k|x = x 0 ) = exp(x T 0 β * k ) ∑ K ℓ=1 exp(x T 0 β * ℓ ) = p k (x 0 ; β * 1 , . . . , β * K ), (3.7)
for any value x 0 ∈ IR p of the covariate vector. Because

∑ K k=1 Pr(Y = k|x = x 0 ) = 1 for any x 0 ∈ IR p ,
this formulation is over-parametrized and vectors β * 1 , . . . , β * K in Equation (3.7) are defined up to a constant only. Indeed, for any ν ∈ IR p and any (β 1 , . . . , 

β K ) ∈ IR p×K , p k (x 0 ; β 1 , . . . , β K ) = p k (x 0 ; β 1 + ν, . . . , β K + ν). In
(β * 1 -β * K , . . . , β * K-1 -β * K , 0 p ), which corresponds to the particular choice ν = -β * K .
Because of this lack of identifiability, standard maximum likelihood estimation based on this parametrization can not be used to derive estimates of β * 1 , . . . , β * K , and constrained or penalized versions of the likelihood have to be used instead. In particular, the glmnet R package [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] produces estimates defined as maximizers of the L 1 -penalized version of the log-likelihood

L(β 1 , . . . , β K ) -λ K ∑ k=1 ∥β k ∥ 1 = 1 n n ∑ i=1 log{p yi (x i ; β 1 , . . . , β K )} -λ K ∑ k=1 ∥β k ∥ 1 (3.8)
for an appropriate value of the regularization parameter λ. We will refer to this approach as Multi-nomLogist SymLasso. 

, . . . δ * K-1 defined as δ * k = β * k -β * K for k ∈ {1, ..., K -1} satisfy
the standard one. When the dimension p of the covariates is large, the expected sparsity within vectors

(δ * 1 , . . . , δ * K-1
) can be accounted for by looking for estimates maximizing an L 1 -penalized log-likelihood (Krishnapuram and others, 2005) 1

n n ∑ i=1 log{p yi (x i ; δ 1 , . . . , δ K-1 , 0)} -λ K-1 ∑ k=1 ∥δ k ∥ 1 .
We will refer to this approach as MultinomLogist StdLasso. The ideas of data shared lasso can further be applied to account for the homogeneity among vectors (δ * k )'s when the subtypes are expected to share commonalities. Considering as in Section 2 the decomposition δ k = µ + γ k for k ∈ {1, ..., K -1}, the method we will refer to as MultinomLogist StdDataSharedLasso then simply consists in maximizing the criterion

1 n n ∑ i=1 log{p yi (x i ; µ + γ 1 , . . . , µ + γ K-1 , 0 p )} -λ ( ∥µ∥ 1 + K-1 ∑ k=1 ∥γ k ∥ 1
) .

Interestingly, this criterion is exactly the same as the one in Equation (3.8), after using the change of variable µ = -β K and γ k = β k for all k < K; see Appendix A.2 in the Supplementary Materials for the detailed derivation of this result. This equality formally establishes that working under the symmetric formulation (3.7) with an L 1 -norm penalty, as in the glmnet R package, exactly corresponds to working under the more standard formulation with a data shared lasso penalty to encourage homogeneity among vectors (δ * 1 , . . . , δ * K-1 ). More precisely, the estimates ( β 1 , . . . , β K ) and ( µ, γ 1 , . . . , γ K-1 ) produced by MultinomLogist SymLasso and MultinomLogist StdDataSharedLasso, respectively, are such that µ =

-β K and β k = γ k for all k ∈ {1, ..., K -1}.
This equivalence between MultinomLogist SymLasso and MultinomLogist StdDataSharedLasso further allows the derivation of guidance on whether to use MultinomLogist SymLasso or MultinomLogist StdLasso in practice: by by-passing the arbitrary choice of the reference category, MultinomLogist SymLasso will typically target a sparser parametrization than MultinomLogist StdLasso if disease subtypes share commonalities, and is then expected to produce better estimates. MultinomLo-

F o r P e e r R e v i e w
gist StdDataSharedLasso can be seen as a way to compensate any suboptimal choice of the reference category in MultinomLogist StdLasso. Although different at first sight, MultinomLogist SymLasso and MultinomLogist StdDataSharedLasso produce the same estimates and we will simply refer to any of them as MultinomLogist SymLasso in the rest of our article.

Simulation study

Evaluation criteria

To compare the performance of the considered approaches (under both the matched and unmatched settings), several criteria are evaluated. Given estimates δ1 , . . . , δK-1 of true vectors of parameters δ * 1 , . . . , δ * K-1 (under the unmatched setting, they correspond to vectors involved in the standard formulation with controls as the reference category), a first common criterion when evaluating L 1 -penalized approaches is the accuracy with respect to support recovery, which measures the ability to correctly identify patterns of null, positive and negative entries in the vector of parameters to be estimated. In our context, we consider the following criterion:

Sgn Accuracy = ∑ K-1 k=1 ∑ p j=1 ( 1[sgn(δ * k,j ) = sgn( δk,j )] -1[sgn(δ * k,j ) × sgn( δk,j ) = -1] ) (K -1)p ,
where sgn(x) = +1 if x > 0, sgn(x) = -1 if x < 0 and sgn(x) = 0 if x = 0. This criterion is a slight modification of the standard accuracy [START_REF] Metz | Basic principles of roc analysis[END_REF]Viallon and others, 2016), where the term -1[sgn(δ * k,j ) × sgn( δk,j ) = -1] is included to penalize approaches that tend to produce positive [resp.

negative] estimate while the true value is negative [resp. positive], since this is particularly unwanted in practice. Good approaches are expected to have a high Sgn Accuracy.

In our framework, vectors δ * 1 , ..., δ * K-1 are not only expected to be sparse. They may also have some zeros in the same positions, and some non-zero entries may be equal for different subtypes. Estimates δ1 , . . . , δK-1 should share the same structure to be able to identify heterogeneities. For any j ∈ {1, ..., p}, a good approach should then be able to produce estimates δ1,j , . . . , δK-1,j such that, for any (k 1 ̸ = k 2 ) ∈ {1, ..., K -1} 2 , δk1,j = δk2,j if and only if δ * k1,j = δ * k2,j . One standard criterion to evaluate this capacity is the Rand Index [START_REF] Rand | Objective criteria for the evaluation of clustering methods[END_REF], which is defined in our context as We also evaluate the approaches with respect to estimation error and prediction accuracy. As for the estimation error, we used the following criterion, which should be as low as possible

RandIndex = ∑ p j=1 ∑ K-2 k1=1 ∑ K-1 k2>k1 ( 1[δ * k1,j = δ * k2,j , δk1,j = δk2,j ] + 1[δ * k1,j ̸ = δ * k2,j , δk1,j ̸ = δk2,j ] ) p(K -2)! .
Est Error = K-1 ∑ k=1 ∥ δk -δ * k ∥ 2 2 ∥δ * k ∥ 2 2 .
As for the prediction accuracy, we computed an AUC-like criterion, which was adapted to our matched and unmatched settings. Under both settings, our AUC compares predicted probabilities with observed outcomes on an independent test sample of size n (test) = 10, 000. In the matched setting, our AUC is defined as the weighted average of the AUCs computed in each subsample M (test) k

. In the unmatched setting, we adapted the one class versus all other classes approach (Provost and Domingos, 2000;Fawcett, 2006); see Appendix A.3 in the Supplementary Material for details on this adaptation. In either setting, good approaches are expected to have a high AUC.

The matched setting

We performed a simulation study to assess the performance of data shared lasso in the context of matched case-control studies. We compared CondLogist DataSharedLasso with CondLogist IndepLasso, CondLogist PooledLasso, and CondLogist RefLasso. For the latter, the first subtype was selected as the reference. We set the number of covariates to p = 100, and the number of disease subtypes to (K -1) = 6. We further set the number of pairs of observations in each subsample to m 1 = 200, m 2 = 100 and m k = 50 for k = 3, . . . , 6, so that the total number of observations was n = 1000. In this "high"-dimensional setting, we implemented a cross-validation technique in the spirit of the one-step lasso [START_REF] Bühlmann | Discussion of "one-step sparse estimates in nonconcave penalized likelihood models" by h. zou and r. li[END_REF] to select the optimal regularization parameters and obtain the final parameter estimates.

Here, we briefly describe the simulation designs we considered. suboptimal choice for the reference when applying CondLogist RefLasso.

To illustrate the relative performance of the approaches as a function of signal strength, we made it vary through a parameter δ ∈ {0.1, 0.25, 0.5, 0.75}, which determines the magnitude of the non-zero true parameters of our generating model, and is related to the log-odds-ratio for an increase of one standard-deviation of the corresponding covariates; see Appendix A.4 of the Supplementary Materials for more details. Under each of the four configurations, and for each of the four signal strengths, we generated 200 samples under model (2.1). Figure 1 presents the criteria averaged over these 200 replicates, along with the 95% confidence intervals, for each of the four methods we compared here, that is Cond-Logist DataSharedLasso, CondLogist IndepLasso, CondLogist PooledLasso, and CondLogist RefLasso.

Boxplots showing the distribution of the criteria over the 200 replicates for each method, under each configuration and for each signal strength, are presented on Figure 1 of the Supplementary Materials.

First consider the case of full homogeneity. Because all the vectors δ * k are equal, the optimal strategy is of course CondLogist PooledLasso, which is based on a parametrization with p 0 non-zero parameters (where p 0 is the number of non-zero parameters in each vector δ * k ; we have p 0 = 10 in our simulation study). On the other hand, because CondLogist IndepLasso is based on a parametrization with (K -1)p 0 non-zero parameters, it performs poorly compared to CondLogist PooledLasso in this configuration, in terms of the four criteria we considered: because it is unable to account for homogeneity, estimates produced by CondLogist IndepLasso are fully heterogeneous (its RandIndex is very low, as expected), hence with a large variance, and performs poorly in terms of estimation and prediction accuracy, and also support recovery (because it is unable to borrow strength from the various subtypes). On the other hand, both CondLogist DataSharedLasso and CondLogist RefLasso account for homogeneity, and perform nearly as well as CondLogist PooledLasso in terms of each of our criteria under this configuration of full homogeneity. It is noteworthy that in this particular case, any subtype is an optimal reference in CondLogist RefLasso (∥δ * r ∥ 0 + ∑ k̸ =r ∥δ * k -δ * r ∥ 0 = p 0 for any r), which explains why CondLogist DataSharedLasso and CondLogist RefLasso perform similarly in this case. Next, in the case of low heterogeneity, CondLogist PooledLasso produces biased estimates and is not optimal since vectors δ * k are not all equal anymore. Interestingly, CondLogist RefLasso does not outperform CondLogist PooledLasso in this case, and these two approaches actually produce very similar estimates under this configuration. This is due to the particular choice for the reference subtype in CondLogist RefLasso: when δ * 2 = . . . = δ * 6 , and δ * 1 is different from them, the penalty term ∑ k ∥δ k -δ 1 ∥ 1 generally prevents the approach to identify performance for CondLogist RefLasso. As mentioned above, CondLogist DataSharedLasso bypasses the arbitrary choice of the reference, and mimics the optimal version of CondLogist RefLasso applied with an optimal, possibly covariate-specific, reference. Under this low heterogeneity configuration, CondLogist DataSharedLasso allows the identification of heterogeneities (its RandIndex is higher than that of CondLogist RefLasso and CondLogist PooledLasso), and substantially outperforms the other approaches with respect to all criteria. As the level of heterogeneity increases, the complexity of the estimation task increases, and the performance of CondLogist DataSharedLasso tends to that of CondLogist IndepLasso.

But, as long as some level of homogeneity is present (moderate heterogeneity configuration), CondLogist DataSharedLasso outperforms the other approaches. Under the full heterogeneity configuration, CondLogist DataSharedLasso still performs on average as well as CondLogist IndepLasso, which is the optimal strategy in this case, while CondLogist PooledLasso, and to a lesser extent CondLogist RefLasso, perform worse.

Overall, our results illustrate that the performance of CondLogist IndepLasso does not depend on the level of heterogeneity, in terms of support recovery, prediction accuracy and estimation accuracy. In the total absence of homogeneity, this performance is optimal. But, as the level of homogeneity increases, methods that account for homogeneity can target better (i.e., sparser) parametrizations, and yield substantial improvements in terms of estimation performance. Among the four approaches we compared here, CondLogist DataSharedLasso appears as the best approach to account for homogeneity when it is present. In addition, it performs as well as CondLogist IndepLasso on average when no homogeneity is present at all.

The unmatched setting

We further performed a simulation study in the unmatched setting to illustrate the relative performance of MultinomLogist StdLasso and MultinomLogist SymLasso (the later being the same as MultinomLogist StdDataSharedLasso), depending on the level of homogeneity among vectors δ * 1 , . . . , δ * K-1 of the standard formulation. We again set K -1 = 6 disease subtypes, and considered four configurations: full homogeneity, low heterogeneity, moderate heterogeneity and full heterogeneity. To save computational time, a low-dimensional setting with n = 1000 and p = 20 was considered here. To generate the data, we adapted the framework described in Section 4.2 to the unmatched setting. We used intercept terms, (δ 1,0 , . . . , δ K-1,0 ), chosen in such a way that Pr(Y = K) = 0.5 and Pr(Y = k) ranged from 0.05 to 0.2 for Case-control studies with multiple disease subtypes 15 k ∈ {1, ..., K -1}. In this low-dimensional setting, regularization parameters were selected as minimizers of the BIC after adapting the Lasso-OLS hybrid ideas to our context (Efron and others, 2004), in the same way as in Viallon and others (2016).

Figure 2 presents the criteria averaged over 200 replicates, along with their 95% confidence intervals.

Boxplots summarizing the full distribution of the criteria over the 200 replicates are presented in Figure 2 of the the Supplementary Materials. Overall, the conclusions drawn from the comparison between MultinomLogist SymLasso and MultinomLogist StdLasso in this unmatched setting are consistent with those drawn when comparing CondLogist DataSharedLasso with CondLogist IndepLasso in the matched setting. More precisely, the two methods perform similarly in case of full heterogeneity, but the performance of MultinomLogist SymLasso improves as the level of homogeneity increases, while that of Multi-nomLogist StdLasso remains roughly unchanged. In particular, MultinomLogist SymLasso substantially outperforms MultinomLogist StdLasso with respect to all criteria in the case of full homogeneity. This was expected since the number of non-zero parameters to be estimated under the standard formulation is (K -1)p 0 (where p 0 is the number of non-zero parameters in each δ * k ; this was set to p 0 = 10 in our simulation study), while MultinomLogist SymLasso (or equivalently MultinomLogist StdDataSharedLasso) is able to target a parametrization with only p 0 non-zero parameters in the case of full homogeneity; see Appendix A.6 of the Supplementary Materials, for more details. Just as in the matched setting, our results confirm that using data shared lasso (or, equivalently, the symmetric formulation in this unmatched setting) allows the homogeneity to be accounted for when present, which translates into better estimation and prediction accuracy, support recovery and identification of heterogeneties.

Application

Data description

The European Prospective Investigation into Cancer and Nutrition (EPIC) study is an ongoing multicenter prospective study aiming to investigate prospectively the etiology of cancer in relation to diet, lifestyle and environmental factors. Its design has been previously described in detail [START_REF] Riboli | European prospective investigation into cancer and nutrition (epic): study populations and data collection[END_REF]. From 1992 to 2000, a total of 521,324 participants were recruited across 10 European countries.

Among these participants, 246,000 women, aged from 35 to 70 years, provided a blood sample at inclusion. Here, we present preliminary results from the analysis of a case-control study nested in EPIC, whose main objective was to assess the association between metabolites and the risk of subtypes of breast cancer for women older than 50: 1415 cases of breast cancer were included, along with 1415 matched controls (using incidence density sampling). We shall stress that the methods presented in Section 2 can be applied when the case-control study is nested within a cohort, as is the case here. This is because the analysis of the k-th disease subtype still relies on a conditional logistic regression model with parameter δ * k , which measures the level of association between the covariates and disease subtype k. 

Results

Figure 3 provides a graphical representation of the log odds-ratio estimates δ1 , . . . , δ6 produced by each of the four methods for the 6 subtypes of breast cancer. For 79 out of the 127 measured metabolites, all methods produced a zero estimate for all subtypes. These "constantly" null estimates are not reported on Figure 3 to improve legibility. Also, the remaining 48 metabolites were anonymized as the biological interpretation of the results is out of the scope of this preliminary analysis. When analyzing such data, most practitioners would start by pooling all subtypes together (that is, ignoring subtypes) to identify metabolites associated with breast cancer as a whole. In this application, CondLogist PooledLasso does identify several metabolites associated with breast cancer, which naturally raises the question of whether these identified metabolites (and maybe other ones as well) may be more specifically associated with particular subtypes. The independent analyses of each subtype, as implemented in CondLogist IndepLasso, identifies many metabolites associated with the Luminal A PR-subtype, and fewer metabolites for the other subtypes. In particular, no metabolite is identified for the Luminal B PR-and the HER2-enriched subtypes. Moreover, very few metabolites were found to be associated with more than one subtype: to name a few exceptions, M96 appeared to be associated with both Luminal A PR+ and Luminal A PR-, and M28 with Luminal A PR+ and Triple Negative. Clearly, this heterogeneity across the subtypes can be the result of a combination of: (i) true heterogeneities, (ii) lack of power for some subtypes (many metabolites are identified in the case of Luminal A PR-, which is the most frequent subtype, while no metabolite is identified for Luminal B PR-or the HER2-enriched which are the two least frequent subtypes), and (iii) sample variability combined with correlations among the metabolites. Indeed, if two metabolites are strongly correlated, CondLogist IndepLasso will typically identify one or the other on two different samples even if these samples are drawn from the same population (that is, in the absence of true heterogeneity between the two samples). In other words, and just as in subgroup analyses (Wang and others, 2007), it is hazardous to claim and interpret heterogeneities on the basis of the independent analyses of subtypes. Because heterogeneities are penalized when using CondLogist DataSharedLasso (and, in a less optimal way, when using CondLogist RefLasso), heterogeneities identified by CondLogist DataSharedLasso are supported by the data, and are more likely true ones. In the present application, CondLogist DataSharedLasso produces estimates that are quite similar to those produced by CondLogist PooledLasso, suggesting that the data does not support departure from homogeneity in the levels of association between most metabolites and breast cancer across subtypes. A few heterogeneities are identified though, suggesting that some metabolites might be more specifically associated with the Luminal A PR+ subtype (M18, M27, M42, M43, M63 but also M111 whose association with other subtypes exist, but is stronger with Luminal A PR+), or Luminal A PR-(M96). The comparison with the results produced by CondLogist RefLasso is also instructive, in particular the estimates produced for M18 and M63. Because Luminal A PR-was chosen as the reference when applying CondLogist RefLasso, it is here unable to identify any heterogeneity for this particular subtype, which is consistent with the results of our simulation study under the low heterogeneity configuration.

Discussion

In this article, we considered the analysis of high-dimensional case-control studies, when several disease subtypes exist, under both unmatched and matched settings. In the latter case, our analysis further covers matched case-control studies nested within a cohort. We have shown that estimation and prediction accuracy, support recovery and the ability to identify heterogeneities across subtypes, could all be substantially improved when commonalities exist among subtypes, provided methods that properly account for these commonalities, e.g. those based on the data shared lasso penalty, are used. Our findings are in line with the empirical and theoretical results of Ollier and Viallon (2017) in the case of stratified linear regression models, as well as the empirical results of [START_REF] Ballout | Structure estimation of binary graphical models on stratified data: application to the description of injury tables for victims of road accidents[END_REF] for stratified binary Under matched designs, the original parametrization relies on K -1 vectors δ * k , which represent the log odds-ratios that compare each of the K -1 disease subtypes with controls. Based on an over-parametrized reparametrization, CondLogist DataSharedLasso is able to target a sparser parametrization when commonalities exist among subtypes, which can yield substantial improvements in terms of estimation efficiency. In the absence of commonalities, it still performs as well as the standard, independent analysis of each subtype. Under unmatched designs, the standard formulation of multinomial logistic regression models relies on the same parametrization, involving K -1 vectors δ * k that compare each disease subtype with controls. We formally established that applying the ideas of data shared lasso along with this parametrization was actually equivalent to applying a standard lasso on the symmetric formulation of the model. This symmetric formulation relies on an over-parametrized parametrization with K vectors β * k , and takes advantage of the fact that controls do not necessarily have to be considered as the reference category in unmatched settings. Again, the resulting parametrization can be much sparser than the standard one, and yields generally better estimation efficiency, especially when the level of homogeneity among subtypes is high.

The methods we presented to account for potential commonalities are simple to implement under both designs. Under matched designs, CondLogist DataSharedLasso is as easy to implement as CondLogist RefLasso or CondLogist IndepLasso. Under unmatched designs, MultinomLogist SymLasso (which is equivalent to MultinomLogist StdDataSharedLasso) is implemented in the glmnet R package. Given the simplicity of their implementation and the possibly substantial gain in terms of estimation performance, we strongly encourage the use of these approaches when analyzing case-control studies with several disease subtypes.

As pointed out in our application to the EPIC data, the methods that account for potential commonalities are especially useful to claim and interpret heterogeneities across subtypes, contrary to methods that do not account for them. An interesting extension would concern the derivation of valid p-values or confidence intervals for the nonzero parameters identified by CondLogist DataSharedLasso or Multi-nomLogist SymLasso, in particular those corresponding to heterogeneities across subtypes. Given the connection of data shared lasso with the lasso (see, e.g., Equation (2.6) under matched designs), this post-selection inference could be derived by extending strategies proposed for lasso estimates (Lee and others, 2016). In other respects, when the identification of heterogeneities is of primary interest, study design is an important step to ensure balanced sample sizes across subtypes (which was not the case in our application to the EPIC data). Results obtained after the application of four different methods (Cond-PooledLasso, CondLogist IndepLasso, CondLogist RefLasso, and CondLogist DataSharedLasso) are presented. For CondLogist RefLasso, the Luminal A PR+ subtype was selected as the reference. For each method, estimates of δ * 1 , . . . , δ * 6 are combined in a matrix, with 6 columns (one for each subtype) and 48 rows (out of the 127 original metabolites, the 79 metabolites for which the four methods produced a zero estimate for all 6 subtypes were eliminated from the plot). In each of the four matrices, each entry represents the estimated level of association between one metabolite and one particular breast cancer subtype. White entries correspond to null associations, grey entries indicate positive associations, while red entries indicate negative association; see the scale on the left of the figure. For example, CondLogist IndepLasso identifies a strongly inverse association between metabolite M33 and Triple-Negative breast cancer. the most natural way of defining estimates returned by CondLogist IndepLasso is ( δ1 , . . . , δK-1 ) = argmin (δ1,...,δ K-1 )∈IR p×(K-1)

F

K-1 k=1 L (cond) k (δ k ) -λ δ k 1
But, CondLogist IndepLasso can also be seen as a special case of CondLogist DataSharedLasso since we also have ( δ1 , . . . , δK-1 ) = (γ 1 , . . . , γK-1 ), with (0 p , γ1 , . . . , γK-1 ) = argmin

(µ,γ 1 ,...,γ K-1 )∈IR p×K µ=0p K-1 k=1 L (cond) k (µ + γ k ) -λ( µ 1 + K-1 k=1 γ k 1 )
i.e., (γ 1 , . . . , γK-1 ) = argmin

(γ 1 ,...,γ K-1 )∈IR p×K K-1 k=1 L (cond) k (γ k ) -λ γ k 1
While estimated simultaneously, the (K -1) parameter vectors are still estimated independently. This approach cannot take advantage of any potential similarity among (δ * 1 , . . . , δ * K ), and typically produces estimates with suboptimal properties when such similarity exists.

CondLogist PooledLasso. This approach works under the (strong) assumption that all disease subtypes share the same parameter vector: δ * 1 = . . . = δ * K-1 = δ * . Then, the most natural way of defining estimates returned by CondLogist PooledLasso is δ = argmin

δ∈IR p K-1 k=1 L (cond) k (δ) -λ δ 1
Again, there is a link between CondLogist PooledLasso and CondLogist DataSharedLasso since δ = μ, with ( μ, 0 p , . . . , 0 p ) = argmin

(µ,γ 1 ,...,γ K-1 )∈IR p×K γ 1 =...=γ K-1 =0p K-1 k=1 L (cond) k (µ + γ k ) -λ( µ 1 + K-1 k=1 γ k 1 )
i.e., μ = argmin

μ∈IR p K-1 k=1 L (cond) k (µ) -λ µ 1
Because all δ * k 's are assumed to be equal, this approach obviously produces biased estimates when differences exist among the δ * k 's.

CondLogist RefLasso. For simplicity, assume that the first disease subtype is chosen as the reference.

Then, CondLogist RefLasso works under the following reparametrization:

δ * k = δ * 1 + γ * k for all k 2.
The most natural way of defining estimates returned by CondLogist RefLasso is ( δ1 , γ2 , . . . , γK-1 ) = argmin (δ1,γ 2 ...,γ K-1 )∈IR p×(K-1)

L (cond) 1 (δ 1 ) + K-1 k=2 L (cond) k (δ 1 + γ k ) -λ( δ 1 1 + K-1 k=2 γ k 1 ) F o r P e e r R e v i e w
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But, we also have ( δ1 , . . . , δK-1 ) = ( μ, μ + γ 2 , . . . , μ + γK-1 ), with ( μ, 0 p , γ2 , . . . , γK-1 ) = argmin

(µ,γ 1 ,...,γ K-1 )∈IR p×K γ 1 =0p K-1 k=1 L (cond) k (µ + γ k ) -λ( µ 1 + K-1 k=1 γ k 1 )
i.e., ( μ, γ2 , . . . , γK-1 ) = argmin (µ,γ 2 ,...,γ K-1 )∈IR p×(K-1)

L (cond) 1 (µ) + K-1 k=2 L (cond) k (µ + γ k ) -λ( µ 1 + K-1 k=2 γ k 1 )
More generally, when used with the r-th subtype as the reference, this approach encourages similarity between δ * r and the remaining K -2 vectors. Consequently, its performance depends on the choice of the reference subtype. In particular, it will perform poorly if the true parameter vector pertaining to the chosen reference subtype is actually very different from the K -2 other ones. As explained in the main text, the optimal reference subtype is generally covariate-specific. CondLogist DataSharedLasso bypasses the arbitrary choice of the reference subtype. Moreover, in the setting of stratified linear regression models, the data shared lasso strategy was shown to perform as well as the optimal (and non-implementable) strategy based on an a priori selection of optimal covariate-specific references.

A.2 Equivalence between MultinomLogist SymLasso and MultinomLogist StdDataSharedLasso

First observe that the contribution of an individual with covariate vector x 0 to the likelihood of the symmetric formulation of the model (see Equation (3.8) of the Main Manuscript) is

K k=1 p k (x 0 ; β 1 , . . . , β K ) 1 I(Y =k) = K k=1 exp(x T 0 β k ) K =1 exp(x T 0 β ) 1 I(Y =k) ( * ) = K-1 k=1 exp(x T 0 γ k ) exp(-µ T x 0 ) + K-1 =1 exp(x T 0 γ ) 1 I(Y =k) × exp(-µ T x 0 ) exp(-µ T x 0 ) + K-1 =1 exp(x T 0 γ ) 1 I(Y =K) = K-1 k=1 exp(x T 0 (µ + γ k )) 1 + K-1 =1 exp(x T 0 (µ + γ )) 1 I(Y =k) × 1 1 + K-1 =1 exp(x T 0 (µ + γ )) 1 I(Y =K) = K k=1 p k (x 0 ; µ + γ 1 , . . . , µ + γ K-1 , 0 p ) 1 I(Y =k)
where we used the change of variable µ = -β K and γ k = β k for all k < K to obtain the equality ( * ).

Using the same change of variable, we get

K k=1 β k 1 = µ 1 + K-1 k=1 γ k 1 .
Putting this all together, the L 1 -penalized criterion (3.9) of the Main Manuscript equals, up to a change of variable, 

L(β 1 , . . . , β K ) -λ K k=1 β k 1 = 1 n n i=1 log{p yi (x i ; β 1 , . . . , β K )} -λ K k=1 β k 1 = 1 n n i=1 log{p yi (x i ; µ + γ 1 , . . . , µ + γ K-1 , 0 p )} -λ µ 1 + K-1 k=1 γ k 1 .

A.3 Additional details on the AUC criteria

In the unmatched setting, the AUC was computed as an adaptation of the one class versus all other classes approach (Provost and Domingos, 2000;Fawcett, 2006). More precisely, first remind that we generate data such that, e.g., δ * 4 = δ * 5 = δ * 6 (under the configurations described as full homogeneity, low heterogeneity and moderate heterogeneity). Then, the three classes 4, 5, 6 are undistinguishable under these configurations. More generally, the set of classes {1, ..., K} can be partitioned into G = {g 1 , ..., g I },

where I K and g i ⊂ {1, ..., K}, for all i = {1, . . . , I}, such that (∃i ∈ {1, . . . , I} :

(k 1 , k 2 ) ∈ g i ) ⇔ (δ * k1 = δ * k2 
); we set δ * K = 0 p for the class corresponding to controls. For the sake of completeness, these partitions are as follows under the four configurations we considered

• Full homogeneity: G = {g 1 , g 2 }, |G| = 2, g 1 = {1, ..., 6} and g 2 = {7}

• Low heterogeneity: G = {g 1 , g 2 , g 3 }, |G| = 3, g 1 = {1}, g 2 = {2, ..., 6} and g 2 = {7}

• Moderate heterogeneity: G = {g 1 , g 2 , g 3 , g 4 , g 5 }, |G| = 5, g 1 = {1}, g 2 = {2} , g 3 = {3}, g 4 = {4, ..., 6} and g 5 = {7}

• Full heterogeneity: G = {g 1 , g 2 , ..., g 7 }, |G| = 7, for each k ∈ {1, ..., k}, g k = k

Given such a partition G of {1, . . . , K}, for any g ⊂ G, let y (g) i = 1 if y i ∈ g and 0 otherwise. Then set The AUC was then simply computed as

n g = n i=1 1[y i ∈ g], T ( 
AU C = g⊂G n g n 1 |T (g) 1 | × |T (g) 0 | i1∈T (g) 1 i2∈T (g) 0 1[p (g) i1 > p(g) i2 ].
It is a weighted average of the one class versus all class AUC (Provost and Domingos, 2000;Fawcett, 2006), with classes replaced by the groups of classes in G. of homogeneity among (δ * 1,j , . . . , δ * K-1,j ) to vary. In the first configuration (full homogeneity), we set δ * k,j = (2ι j -1)δ, for some δ > 0 and with ι j ∼ B(1/2). In the second configuration (low heterogeneity), for j ∈ J 1 , we set δ * k,j = (2ι j -1)δ for k 2 and δ * 1,j = (2ι kj ,j -1)δ(1 + U kj ,j ), with each ι k,j ∼ B(1/2)

A.4 Additional details on the simulation study

and U kj ,j ∼ U [ √ K/2,2 √ K] .
Here, the limits [ √ K/2, 2 √ K] were motivated by the non-asymptotic results obtained by Ollier and Viallon (2017) under stratified linear regression models (see the comment right after Theorem 1). In the third configuration (moderate heterogeneity), we set δ * k,j = (2ι j -1)δ for

k / ∈ {1, 2, 3} and δ * k,j = (2ι k,j -1)δ(1 + U k,j ) for k ∈ {4, 5, 6}, with again ι j ∼ B(1/2), ι k,j ∼ B(1/2) and U k,j ∼ U [ √ K/2,2 √ K] .
Finally, in the fourth configuration (full heterogeneity), we set δ * k,j = (2ι k,j -1)δ(1+

U k,j ) for k ∈ {1, ..., K -1} with again ι k,j ∼ B(1/2) and U k,j ∼ U [ √ K/2,2 √ K] .
In each configuration, parameter δ varied in {0.1, 0.25, 0.5, 0.75} to study the impact of signal strength on the performance of the approaches; these δ values correspond to log-odds-ratio for an increment of one standard deviation.

For each observation, covariates were generated under a multivariate Gaussian distribution N (0 p , Σ),

where Σ i,j = 0. 

,1 was then generated under model (2.1), that is, Y than (K -1)p 0 . In this particular case, using subtype 1 (or any other subtype) as the reference category yields a parametrization which is much sparser than the parametrization we consider when using controls as the reference. Therefore, when applying MultinomLogist StdLasso, controls represent the worst choice for the reference category in this situation (we recall that the choice of the reference category would not have any influence on the quality of the estimation in an unpenalized framework). Still considering this toy example, applying MultinomLogist StdDataSharedLasso corrects any suboptimal choice for the reference category. For example, whether the reference category is set to controls or to the first disease subtype, the model complexity is p 0 when applying MultinomLogist StdDataSharedLasso, as illustrated in Figure 3 below. Finally, MultinomLogist SymLasso would target the sparsest collection of vectors β * 1 , ..., β * K satisfying the symmetric formulation of the model. In the toy example considered here, this would be (0 p , . . . , 0 p , δ * K ), as illustrated in Figure 3. The corresponding model complexity is again p 0 . In each matrix, red entries correspond to the "common" value β1, blue entries correspond to the value β2, purple entries to the value (β1 -β2), gray entries to the value -(β1 -β2) and white entries to the value 0. If MultinomLogist StdLasso is applied after selecting the K-th category as the reference, model complexity is C = (K -1)p. The choice of the K-th categoty as the reference is clearly sub-optimal since selecting any other category as the reference, e.g. the first one, leads to a model complexity C = p. On the other hand, irrespective of the initial choice of the reference category, the complexity of the decomposition targeted by MultinomLogist StdDataSharedLasso is optimal and equals p.

For

  these 2830 individuals, plasma samples collected at inclusion in the study were analyzed by mass spectrometry (AbsoluteIDQ p180 Kit) allowing the measurement of the concentrations of 127 metabolites. These concentrations were log-transformed to reduce skewness. We considered six histological subtypes of breast cancer, based on the presence/absence of hormone receptors: HER2-enriched (100 pairs of observations), triple negative (134 pairs), Luminal A PR+ (164 pairs), Luminal A PR-(820 pairs), Luminal B PR+ (58 pairs) and Luminal B PR-(139 pairs).
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 123 Fig.1. Results of the simulation study in the matched setting. Solid lines correspond to averages over the 200 replicates, while 95% confidence intervals appear as dotted lines.

For

  any real numbers a < b, we denote the uniform distribution on [a, b] by U [a,b] . For any p ∈ [0, 1],we further denote the Bernoulli distribution with parameter p by B(p). Parameters δ * k,j were generated as follows. One subset J 1 ⊂ {1, ..., p} was first randomly selected, with |J 1 | = 10. For j / ∈ J 1 , we set

  3 |i-j| . Pairs of observations were then created and randomly assigned to one stratum M k in such a way that m 1 = 200, m 2 = 100 and m k = 50 for k = 3, . . . , 6. Within each pair of each stratum M k , the response variable Y

  Figure 1 illustrates the distribution of the criteria whose averages are presented on Figure 1 (matched setting) in the main text.

Figure 2

 2 Figure 2 illustrates the distribution of the criteria whose averages are presented on Figure 2 (unmatched setting) in the main text.
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 1 Fig. 1. Boxplots showing the distributions of the criteria for each of the four methods compared in the matched over the 200 replicates of each considered configuration and signal strength.

Fig. 2 .

 2 Fig. 2. Boxplots showing the distributions of the criteria for the two methods compared in the unmatched setting, over the 200 replicates of each considered configuration and signal strength.

Figure 3

 3 Figure 3 below gives a graphical representation of our toy example. It especially illustrates how model complexity (denoted by C) is affected by the choice of the reference category when working under the standard formulation of the multinomial logistic regression model, and how the decomposition targeted

Fig. 3 .

 3 Fig.3. Graphical representation of our toy example. In each matrix, red entries correspond to the "common" value β1, blue entries correspond to the value β2, purple entries to the value (β1 -β2), gray entries to the value -(β1 -β2) and white entries to the value 0. If MultinomLogist StdLasso is applied after selecting the K-th category as the reference, model complexity is C = (K -1)p. The choice of the K-th categoty as the reference is clearly sub-optimal since selecting any other category as the reference, e.g. the first one, leads to a model complexity C = p. On the other hand, irrespective of the initial choice of the reference category, the complexity of the decomposition targeted by MultinomLogist StdDataSharedLasso is optimal and equals p.

  j .The constraint µ * j = 0 for all j ∈ {1, ..., p} can be imposed in criterion (2.6) simply by eliminating the first block of p columns in ∆ DS , that is by replacing ∆ DS by ∆ In . As detailed in Appendix A.1 of the

	Supplementary Materials, under this additional contraint, CondLogist DataSharedLasso reduces to the
	simple approach which consists in running one L 1 -penalized conditional logistic regression (that is an
	L 1 -penalized version of criterion (2.2)) on each subsample M k independently, and so we refer to this
	approach as CondLogist IndepLasso. Second, consider the constraint γ * k,j = 0 for all k ∈ {1, ..., K -1}
	and j ∈ {1, ..., p}. In this case, δ * k,j = µ * j for all k: working under this constraint corresponds to assuming
	that vectors δ * 1 , . . . , δ * K are all equal to a common vector, µ * . This vector µ * ∈ IR p can again be estimated
	by maximizing the same criterion as (2.6), this time after eliminating the K -1 last blocks of p columns
	in ∆ DS , that is after replacing ∆ DS by ∆ P o . This corresponds to pooling all the subsamples together,
	F and we will refer to this approach as CondLogist PooledLasso. Finally, consider the constraint γ * 1,j = 0 o r for all j ∈ {1, ..., p}. In this case, we have µ * j = δ * 1,j and γ * k,j = δ * k,j -δ * 1,j for all j ∈ {1, ..., p} and
	k > 1. The (K -1) × p parameters µ * j (= δ * 1,j ) and γ * k,j for j ∈ {1, ..., p} and k ⩾ 2, can be estimated by P e maximizing the same criterion as (2.6), after eliminating the second block of p columns in ∆ DS , that is
	after replacing ∆ DS by ∆	r e
		R e v
		i e w

  Relationship with data shared lassoNow, let us turn our attention to the "standard" formulation of the multinomial logistic regression model, which resolves the lack of identifiability of the symmetric one by first selecting a reference category,

	10	N. Ballout and others
	3.2 typically K. Then, this formulation assumes the existence of K -1 parameter vectors, say δ * 1 , . . . , δ * K-1 ,
	such that Pr(Y = k|x = x 0 ) = p k (x 0 , δ * 1 , . . . , δ * K-1 , 0 p ). The two formulations -symmetric and standard
	-are strictly equivalent. Indeed, and as mentioned above, for any β * 1 , . . . , β * K satisfying the symmetric
	formulation of the model, vectors δ * 1	
	(3.9) Equation (3.9) establishes that the L 1 -norm penalization solves the lack of identifiability for each covariate o r P e e r R e v by targeting a collection of vectors β F i e w

It works under the implicit assumption that (at least) one of the infinitely many collections of vectors β * 1 , . . . , β * K satisfying (3.7) is sparse, and looks for the "sparsest", or more precisely, the one with lowest

∑ k ∥β * k ∥ 1 . In particular,

[START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] 

show that maximizers β 1 , . . . , β K of criterion (3.8) are such that median( β 1,j , . . . , β K,j ) = 0, for all j ∈ {1, ..., p}. 1 , . . . , β K such that, for each covariate, the median of its parameters across the K categories is null. As mentioned above, when intercepts are considered, they are generally not penalized, in which case the lack of identifiability remains for them. In glmnet, this is resolved by mean centering, which corresponds to imposing the constraint ∑ K k=1 βk,1 = 0

(Friedman, Hastie and 

  Additional details are provided in Appendix A.4 of the Supplementary Materials. Four configurations corresponding to four levels of homo-

	F o
	r
	P e
	e r
	R e v
	i e w
	geneity among vectors δ * 1 , . . . , δ * 6 were considered: full homogeneity (the 6 vectors are equal), low hetero-
	geneity (δ * 2 , . . . , δ * 6 are equal, and δ * 1 is different from them), moderate heterogeneity (δ * 4 , δ * 5 , and δ * 6 are
	equal, while the three other vectors are different from them, and from each other) and full heterogeneity
	(the 6 vectors have nothing in common). We shall stress that under the low and moderate heterogeneity

configurations, the first subtype is the worst choice for the reference used in CondLogist RefLasso, in the sense that ∥δ * r ∥ 0 + ∑ k̸ =r ∥δ * k -δ * r ∥ 0 is maximized for r = 1. The comparison between the performance
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The estimation of several parameter vectors considered here is closely related to multi-task learning [START_REF] Evgeniou | Regularized multi-task learning[END_REF], for which a number of other structured sparsity inducing norms have been proposed in the literature, including the group lasso and generalized fused lasso (Lounici and others, 2011;Viallon and others, 2016). We shall first mention that the group lasso is not well suited for the identification of heterogeneities. On the other hand, the generalized fused lasso has shown good properties in the context of stratified regression models, both under generalized linear models (Viallon and others, 2016), survival models (Sennhenn-Reulen and Kneib, 2016) and binary graphical models [START_REF] Ballout | Structure estimation of binary graphical models on stratified data: application to the description of injury tables for victims of road accidents[END_REF]. Its extension to conditional logistic regression models or multinomial logistic models constitutes another interesting lead for future work.
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APPENDIX A. Additional technical details

A.1 Details on the "standard" L 1 -penalized approaches presented in the matched design

Here, we provide additional details on the link between CondLogist DataSharedLasso and the three more standard approaches presented in the matched design (CondLogist IndepLasso, CondLogist PooledLasso and CondLogist RefLasso).

CondLogist DataSharedLasso. First recall that estimates produced by CondLogist DataSharedLasso are defined as δk = μ + γk with ( μ, γ1 , . . . , γK-1 ) = argmin

CondLogist IndepLasso. This approach simply consists in working with the original parametrization and performing one L 1 -penalized conditional logistic regression on each subsample independently. Then, * To whom correspondence should be addressed.
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A.6

The influence of the reference category when using MultinomLogist StdLasso: a toy example Consider a multinomial logistic regression model with K -1 disease subtypes, in the particular case of full homogeneity, that is when covariates associated with disease have the same level of association with all disease subtypes. For any β * 1 , ..., β * K satisfying the symmetric formulation of the model, we would then have (i)

Let p 0 denote the number of covariates associated with the disease, for some 1 p 0 p. If the standard formulation of the model is used with controls as the reference, parameters to be estimated will be δ * 1 , . . . ,

Then, these K -1 vectors are all equal (since β * 1 = . . . = β * K-1 ), and they all have p 0 non-zero components. The total number of non-zero parameters (hereafter referred to as model complexity) is therefore (K -1)p 0 . Now, consider again the standard formulation, but this time using the first disease subtype as the reference. The parameters to be estimated would then be δ *

..,K-1 are all null, while δ * K = -δ * 1 has p 0 non-zero components. The model complexity is therefore p 0 , which is much lower by data shared lasso corrects any sub-optimal choice for this reference category. For simplicity, Figure 3 represents the case where p 0 = p, and where all covariates share the same level of association with the disease. In this case, a typical collection of vectors β * 1 , ..., β * K satisfying the symmetric formulation of the model is such that, for all j ∈ {1, ..., p}, β * 1,j = β 1 and β * K,j = β 2 for some β 1 , β 2 = 0 such that β 1 -β 2 = 0.