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Abstract

In global testing, where a large number of pointwise test statistics are aggre-
gated to simultaneously test for a collection of null hypotheses, the handling
of dependence is a crucial issue. In various fields, more particularly in genetic
epidemiology and functional data analysis, many testing methods for detecting
an association signal between a response and explanatory variables have been
proposed. Some aggregation procedures ignore dependence across pointwise test
statistics whereas others introduce a model for decorrelation, with unclear con-
clusions on their relative performance. Indeed, the benefit that can be expected
from decorrelation highly depends on the interplay between the structure of
dependence across pointwise test statistics and the pattern of the association
signal. Within a large class of test statistics covering a continuum of decorrela-
tion approaches, an optimal procedure is introduced. This procedure is based
on the maximization of an ad-hoc cumulant generating function-based distance
between the null and nonnull distributions of a global test statistic, in order to
adapt the aggregation of the pointwise statistics to the pattern of the association
signal. A comparative study including simulations and applications to genetic
association studies demonstrates that the ability of this test to detect a signal
is more robust to the dependence structure than existing methods.

Keywords: Decorrelation, Dependent tests, Global testing, Signal detection.

1. Introduction

In many research fields, signal detection is viewed as the simultaneous tests
of pointwise null hypotheses, e.g. over a time interval in functional Analysis of
Variance (fANOVA), over a specific segment of the genome in Genome Wide
Association Studies (GWAS) or over a two-dimensional region of an image in
functional Magnetic Resonance Imaging (fMRI). In the former situations where
the number of features is usually large, sometimes larger than the sample size,
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such testing issues are generally addressed by deriving a global test statistic for
the conjunction of null hypotheses from the aggregation of the corresponding
pointwise test statistics. The diversity of existing aggregation methods (see the
reviews by [31] for fANOVA and [12] for GWAS issues) reflects the difficulty
of identifying a method that would show a good detection performance in a
wide scope of situations. As reported by [9] for the two-group mean compar-
ison issue in high-dimension, the possibly strong dependence across pointwise
test statistics turns out to be a crucial point in the comparison of aggregation
procedures. Besides, several studies also investigate the influence of the pattern
of the association signal, especially its sparsity rate [13, 2, 33], on the power
of global testing methods. As demonstrated hereafter, the best way of aggre-
gating pointwise test statistics actually depends on the interplay between the
dependence structure and the association signal.

However, the most popular whole-interval or whole-region testing methods,
both in fANOVA and in GWAS, are based on simple aggregations of pointwise
test statistics, not especially designed to be optimal under dependence. For
example, [22] suggest using the maximum absolute pointwise test statistics,
which turns out to be analogous to the famous minP procedure, proposed by [10]
to test for the relationship between genotypes of a given set of Single Nucleotide
Polymorphisms (SNPs) and a case/control group membership in the context of
GWAS. A functional F-type test statistic based on the squared L2–norm of the
vector of pointwise test statistics is also introduced by [30], whereas similar
weighted or unweighted L2-norm statistics are recommended by many authors
[20, 28, 12] for GWAS issues.

The choice of an appropriate method to aggregate pointwise test statistics
falls into the general context of global testing as defined by [2]. The former paper
focuses on the impact of the sparsity rate of the association signal on the choice
between the L2-norm based test statistics of standard Analysis of Variance and
the higher criticism [13] in a wide variety of correlation patterns. The former
higher criticism (HC) test statistics can be viewed as a Kolmogorov-Smirnov
type distance between the standardized empirical distribution of the pointwise
p-values and the theoretical uniform null distribution. If the pointwise test
statistics are assumed to be independent and in the so-called Rare-and-Weak
paradigm, defined by conditions on the amplitude and sparsity rate of the signal,
[14] show that HC reaches the optimal detection bounds obtained by [18].

It is commonly observed that, whatever the aggregation method, detection
performance for a given association signal is affected by dependence across point-
wise test statistics. A growing number of studies therefore suggest that signal
detection procedures are improved by aggregating decorrelated pointwise test
statistics, as for instance in [16] and [17] for HC and [1] for the slightly dif-
ferent feature selection issue in two-group classification models. Indeed, the
innovated higher criticism (iHC) proposed by [17] first performs a whitening
transformation of the original test statistics using the Cholesky decomposition
of the correlation matrix and calculates the HC statistic on decorrelated point-
wise test statistics. Similarly, [1] introduce Correlation-Adjusted t-scores based
on a James-Stein shrinkage estimate of correlations.
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However, as discussed in [6] in the closely related two-group classification
issue, the potential gain in detection performance that can be expected from
decorrelation remains unclear (see [29, 4] in the GWAS context). Indeed, argu-
ing that decorrelation may generate noise and weaken the signal, [4] introduces
the generalized higher criticism (GHC) procedure in which aggregation is per-
formed on the raw pointwise test statistics and the impact of dependence is
accounted for by an ad-hoc scaling of the HC statistic. Observing that the
detection performance of the GHC procedure highly depends both on the pat-
tern of dependence across pointwise statistics and on the sparsity rate of the
signal, [4] propose to combine it with the maximum of the absolute pointwise
test statistics and a weighted L2-norm statistic in an omnibus testing approach.
While the former test shows good detection performance in the simulation setup
proposed in [4], it raises limitations in terms of power and computational cost
induced by the two-step Monte-Carlo calculation of the p-value.

To overcome these limitations, the global testing approach proposed here-
after aims at adapting the aggregation of pointwise tests to both the correlation
structure and the pattern of the signal. For that purpose, a class of global test
statistics defined as linear combinations of the squared decorrelated pointwise
test statistics is introduced. The linear coefficients corresponding to each global
test statistics within this class enable a flexible handling of dependence in the
aggregation procedure and prevents from the dilution of the signal that can be
induced by a complete whitening of the pointwise test statistics. A subclass of
global test statistics is identified, which linear coefficients maximize a cumulant
generating function-based distance between the null and non-null distributions
of the test statistics. A global test statistic is deduced, by estimating the linear
coefficients of the optimal test statistics within this subclass.

In Section 2, a general framework is introduced for the global testing of
an association between a response and explanatory variables in a generalized
linear model. In this framework, a list of popular signal detection methods by
aggregation of pointwise test statistics is presented, covering a large scope of de-
pendence handling strategies. The impact of the interplay between the patterns
of dependence across pointwise statistics and association signal on the detection
performance of these methods is demonstrated in an illustrative situation.

Section 3 introduces a class of global test statistics defined as linear com-
binations of squared decorrelated pointwise tests. A specific choice of linear
coefficients gives the sum of squared pointwise test statistics, which ignores de-
pendence in aggregation, whereas another choice gives the Hotelling’s t-square
test, which on the contrary accounts for dependence by introducing a prelimi-
nary whitening step. Other choices of linear coefficients leading to alternative
dependence handling strategies, a procedure searching for an optimal choice of
the linear coefficients is proposed. Finally, a comparative study of the proposed
global testing procedure with a variety of alternative methods is conducted in
Section 4, based on simulations under various assumptions on the dependence
across explanatory variables and in the context of two genetic association stud-
ies.
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2. Signal Detection by Aggregation of Pointwise Test Statistics

The global testing issue is usually presented in the standard linear regres-
sion model framework under normality assumptions [2, 12]. However, in order
to enlarge the scope of applications to the association test between a binary
response variable and a block of genetic markers in genetic epidemiology issues,
the main existing aggregation methods for signal detection are introduced in a
generalized linear model (GLM) framework [10, 28, 4].

2.1. A general framework for the detection of an association signal

Setup for the association signal.
In the following, Y denotes a response variable and X = (X1, . . . , Xp) a

p–profile of explanatory variables. In most fANOVA settings, X contains the
discretized observations Xj = X(tj), j = 1, . . . , p of a curve X : t 7→ X(t)
on a time grid t1, . . . , tp and Y can either be a continuous variable, usually
assumed to be normally distributed givenX = x in scalar-on-function regression
issues or a grouping variable for supervised classification of functional data. In
GWAS issues, when related to genomic selection in animal or plant science, Y
can also be a continuous variable measuring a yield whereas, in most genetic
epidemiology issues, Y is a binary (case/control) variable. In the former genomic
context, X = (X1, . . . , Xp) is a profile of three-level categorical genetic markers
observed for a set of contiguous Single-Nucleotide Polymorphisms in a given
region of the genome.

The former sample of typical situations for global testing applications is cov-
ered by the following GLM settings, as suggested by [10] and [4] for conditional
distributions of Y in the exponential family [21]:

h(E[Y |U = u,X = x]) = u′α+ x′β, (1)

where h is a link function, U = (U1, . . . , Uq)
′ is an optional q-vector of covariates

with corresponding regression coefficients α and β is the p-vector of regression
coefficients for the explanatory variables.

The need for covariate adjustment is especially common in GWAS where
a population structure identifying marked clusters or external environmental
conditions are suspected to explain a part of the variations of the response. The
canonical link function is often chosen for h, namely the identity function in
continuous trait analysis or the logit function for case-control studies [29, 25, 32].

In the above framework, signal detection is viewed as a global test for the
significance of the signal β of regression coefficients:

{
H0 : β = 0
H1 : β 6= 0.

(2)

4



Signal detection.
Hereafter, y = (y1, . . . , yn)

′ denotes the n-vector of observations of the re-
sponse variable, X the n×p matrix whose jth column Xj contains the observed
values (x1j , . . . , xnj) of Xj , j = 1, . . . , p. Similarly, the values of the covariates
are stacked in a n× q matrix U.

In regular designs where n ≫ p + q, under the GLM assumption (1), the
testing issue (2) can be addressed using Analysis of Variance F-tests for the
comparison of nested models if the conditional distribution of Y given U and
X is normal or chi-square Likelihood-Ratio Tests under alternative assumptions
on the distribution of Y within the exponential family. However, such well-
proven tests cannot be implemented in large (n ≈ p + q) or high (n ≪ p + q)
dimensional situations, where maximum likelihood (ML) estimation of model
(1) is either numerically unstable or impossible. An alternative approach is to
form a global test statistic from the aggregation of the pointwise test statistics
for the marginal association between the response and each explanatory variable
in the following models: for j = 1, . . . , p,

h(E[Y |U = u, Xj = xj ]) = u′α⋆
j + xjβ

⋆
j ,

where α⋆
j is the q-vector of regression parameters for the covariates and β⋆

j is
the marginal association parameter between Y and Xj .

A usual choice for testing H0j : β⋆
j = 0 is the Student’s t-test when Y is

assumed to be normally distributed conditionally on U and X or the equivalent
Wald’s test under other assumptions on the conditional distribution of Y within
the exponential family. In the GLM framework of model (1), [10] and [4] also
propose a marginal testing procedure based a similar z-score. First, under the
global null hypothesis H0, model (1) becomes:

h(E[Y |U = u,X = x]) = u′α0, (3)

where α0 is a q-vector of regression coefficients. Let α̂0 be the Maximum
Likelihood estimator of α0. We denote ŷ0 the n-vector whose i-th coordinate
equals h−1(u′

iα̂0), where ui is the ith row of U. For testing the significance
of an association between Y and Xj , the following marginal test statistic is
proposed by [10] and [4]:

Zj =
X ′

j(y − ŷ0)√
Γ̂j,j

. (4)

where Γ̂ = σ̂2
y(X′X−X′U(U′U)−1U′X) is the estimated covariance matrix of the

vector X′(y − ŷ0), with σ̂2
y = (y − ŷ0)

′(y − ŷ0)/n.
It is clearly beyond the scope of the present paper to discuss in more detail

the choice of a marginal testing procedure. As in the Rare-and-Weak paradigm
introduced by [13] for the higher criticism procedure, it will be assumed here-
after that the p-vector Z = (Z1, . . . , Zp)

′ of pointwise test statistics for the as-
sociation between Y and Xj is asymptotically normally distributed with mean
µ = (µ1, . . . , µp)

′ and positive definite variance matrix Σ:

Z = (Z1, . . . , Zp)
′ ∼ N (µ,Σ). (5)
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Although the pointwise association parameter µ and the regression parame-
ter β can show different patterns, the hypothesis testing issue (2) coincides with
the test for the nullity of µ:

{
H0 : µ = 0
H1 : µ 6= 0,

i.e.

{
H0 : ∀j ∈ {1, . . . , p}, µj = 0
H1 : ∃j ∈ {1, . . . , p}, µj 6= 0.

(6)

Let us first illustrate this point in the special case of model (1) under as-
sumption of a joint multinormal distribution for Y and X given U . Here, the
expectation µ of the vector of pointwise Student t-tests in models (3) is propor-
tional to the p-vector β⋆ = (β⋆

1 , . . . , β
⋆
p)

′ of marginal association parameters:

µ ∝ β⋆ = D−1
σ2
x|u

σx,y|u, (7)

where Dσ2
x|u

is the p × p diagonal matrix whose diagonal entries form the p-

vector σ2
x|u of conditional variances of X given U and σx,y|u is the p-vector of

conditional covariances between Y and each explanatory variables given U .
Provided the conditional variance-covariance matrix Σx|u of X given U has

rank p, β = Σ−1
x|uσx,y|u = Σ−1

x|uDσ2
x|u

β⋆. Consequently, β = 0 if and only if

µ ∝ β⋆ = 0. However, except in the situation where the explanatory variables
are uncorrelated given U , the set of nonzero coordinates in β is generally dif-
ferent from the set of nonzero coordinates in µ. This explains that the signal
identification issue, consisting in finding the nonzero coordinates of β, based
on Z under dependence is far more challenging than the global testing issue
[17, 24].

In most papers addressing global testing issues, a rare signal usually refers
to a sparse vector β in Equation (1), which, due to the correlation among the
variables, does not imply the sparsity of µ. For association studies in genetic
epidemiology, where genetic markers are dependent three-level categorical vari-
ables, this is illustrated using two data-driven simulation scenarios, one with
a sparse β (scenario 1) and another one with a non-sparse β (scenario 2).
Both simulation scenarios reproduce the conditions of an association study be-
tween a binary response variable Y and the region of the genome made by a
block of p = 64 genetic markers forming a Linkage Disequilibrium (LD) block
on chromosome 1. For each simulated dataset, 1,000 independent profiles of
dependent genetic markers data, whose both marginal and joint distributions
are estimated using a publicly available GWAS dataset [26], are generated using
the R package GenOrd [3]. Then, consistently with model (1), for each simulated
profile of genetic markers data, the response is simulated according to a logistic
linear regression model, where the only nonzero coordinates of the vector β of
regression coefficients in scenario 1 are for the 5th and 10th genetic marker,
whereas in scenario 2, a few other coefficients around the 5th and 10th genetic
marker are also set to nonzero values. For each simulated dataset, the vector Z
of pointwise test statistics as defined by equation (4) is calculated, without any
covariate adjustment.

Both the regression coefficients β and the corresponding pointwise associa-
tion signal µ, deduced by averaging over 1,000 simulations of the vector Z as
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detailed above, are represented in Figure 1. As previously shown in the special
case of a normal joint distribution of Y and X, it can be remarked that the
patterns of β and µ, especially their sparsity rates, are also very different in the
present logistic regression framework.
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Figure 1: Regression coefficients (β) and corresponding pointwise association signal (µ) in
scenarios reproducing a genetic association study between a binary response variable and an
LD block of 64 SNPs on chromosome 1. Scenario 1 (Left): only the SNPs located at the
5th and 10th positions have non-zero regression coefficients. Scenario 2 (Right): a few other
coefficients around those SNPs are also nonzero.

2.2. Aggregation procedures of pointwise statistics

For the testing issue (6), a combined test statistic T (Z) is obtained by
aggregating the pointwise statistics Zj . The most commonly used aggregation
methods are briefly introduced hereafter and summarized in Table 1.

One of the most used aggregation methods is the maximum squared point-
wise test statistic (see [22] for fANOVA and [27, 10] for GWAS), for which
T (Z) = Tmax(Z) = maxj Z

2
j . The former method, called minP by [27], is in-

deed often preferred to alternatives because its ability to reveal a true signal
turns out to be generally good and resistant to strong correlations between the
coordinates of Z [29].

The squared L2-norm of Z , denoted T2(Z) and defined as the sum of the
squared Zj is also proposed by [20] in the GWAS context and by [23] to define
a functional F-test. Weighted versions of the L2-norm statistic are also widely
used when the goal is to identify an association with explanatory variables
having a smaller variance. Especially designed for the identification of rare
variants in the GWAS context, the Sequence Kernel Association Test (SKAT, [28])
is one of them, for which the jth weight depend on the minor allele frequency
of the jth genetic marker via a Beta function (see Table 1).
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The Hotelling’s t-square test, denoted TH(Z) (see [12] for applications to
GWAS issues), can just be viewed as a whitened version of the L2-norm statistic.
Indeed, provided Σ̂ is a consistent estimate of Σ and Σ̂−1 exists, TH(Z) =
Z ′Σ̂−1Z is the L2-norm of the decorrelated vector Σ̂−1/2Z , where Σ̂−1/2 is
any p× p matrix satisfying (Σ̂−1/2)′Σ̂−1/2 = Σ̂−1.

The higher criticism (HC) signal detection method introduced by [13] can
also be cast into the above testing framework for signal detection. Indeed,
the HC test statistic aggregates the pointwise test statistics by forming a Kol-
mogorov-Smirnov type distance between the empirical probability distribution
function of the pointwise p-values and the uniform null distribution. Some other
versions are based on a distance between S(t) =

∑p
j=1 1{|Zj |≥t} and its expec-

tation under the null hypothesis, the distance being scaled by the theoretical
standard error of S(t), straightforwardly deduced from the binomial distribution
of S(t) when the pointwise test statistics are assumed to be independent.

However, when the former independence assumption is relaxed, the null
distribution of S(t) is no longer binomial, which requires to update the scaling
factor in the HC statistic. Consistently, [4] propose to scale the HC statistic by
the empirical standard error of S(t) under dependence in the generalized higher
criticism (GHC) method. In order to improve the robustness of the former test to
various patterns of dependence, [4] also suggest an omnibus test statistic TOmn,
which p-value is derived by taking the smallest among the p-values obtained
with minP, SKAT and GHC.

Table 1: A sample of frequently used aggregation methods. Dβ is a diagonal matrix which
jth diagonal entry is a weight depending on the Minor Allele Frequency of the jth SNP via a
Beta function. Φ is the cumulative distribution function of the standard normal distribution.
S(t) is defined as S(t) =

∑p
j=1 I{|Zj|≥t}. pGHC, pminP and pSKAT are the p-values for the

aggregation methods GHC, minP and SKAT respectively.

Method Statistic
minP Tmax(Z) = max1≤j≤p Z

2
j

L2-norm T2(Z) = Z ′Z =
∑p

j=1 Z
2
j

Hotelling TH(Z) = Z ′Σ−1Z
SKAT TSKAT(Z) = Z ′DβZ
HC THC(Z) = max1≤j≤p/2

j/m−p(j)√
p(j)(1−p(j))

GHC TGHC(Z) = supt≥t0

{
S(t)−2p(1−Φ(t))√

v̂ar(S(t))

}

Omnibus TOmn = min (pGHC, pminP, pSKAT)

2.3. Impact of the pattern of association signal on detection performance
Many comparative studies [12, 4] report that the relative power of aggre-

gation tests highly depends on the pattern of correlation across the pointwise
test statistics. The following illustrative study aims to shed light on the fact
that, even for a same correlation structure, the compared performance of sig-
nal detection methods is also markedly affected by the pattern of the pointwise
association parameter µ introduced in expression (5).
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The simulation settings presented in Subsection 2.1 introduce two patterns
for µ displayed in Figure 1, corresponding each to a different scenario for the
regression parameter β. For 1,000 simulated datasets in these two scenarios, the
p-value of the aggregation methods introduced in Table 1 is estimated using a
Monte-Carlo estimation of the null distribution based on 1,000 random permu-
tations of the observations of Y . Under both simulation scenarios, a sequence of
regression signals β = ξβmax with increasing amplitudes is generated by scal-
ing a vector of regression coefficients βmax, where ξ ∈ {0, 0.1, 0.2, . . . , 1} is a
scaling factor controlling the signal strength and βmax corresponds to a signal
amplitude for which the power of the most powerful test is close to 1. Finally,
for each combination of a pattern of association signal µ and a signal ampli-
tude, the power of each global testing method is estimated by the proportion of
significant tests, with p-values smaller than 0.05.

The resulting power curves are represented in Figure 2. It clearly shows that
the ranking of aggregation methods depends on the pattern of the pointwise
association signal µ. Focusing on the tests based on a quadratic form of Z ,
namely L2-norm, Hotelling and SKAT, it can be remarked that, in scenario 1,
the L2-norm test is the most powerful method (with HC, GHC and minP) while
Hotelling and SKAT are the two worst methods. In scenario 2, the ranking is
reversed since Hotelling’s test is by far the most powerful method while L2-norm
and SKAT perform as the worst methods.

Such a result confirms that no single aggregation test is the most powerful
over the combinations of a correlation structure and a pattern for the association
signal [4]. This also suggests that, whatever the pattern of µ, the scope of tests
defined as quadratic forms in Z may be large enough for the search of the most
powerful method. Moreover, recalling that the Hotelling’s t-square test is a
whitened version of the L2-norm test, this also demonstrates that the potential
benefit of decorrelating the test statistics depends on the pattern of µ. In
the next Section, a new class of aggregation methods allowing for a flexible
whitening of the test statistics is therefore introduced.

3. Flexible Decorrelation of Pointwise Test Statistics

Suppose first that Σ is known, with eigendecomposition V DλV
′ where V

is the p × p matrix of eigenvectors such that V ′V = Ip and Dλ is a p × p
diagonal matrix whose diagonal entries are the positive eigenvalues λj , j =
1, . . . , p. Let Z∗ = V ′Z denote the decorrelated version of Z . Under the
asymptotic normality assumption on Z introduced in expression (5), Z∗ is also
asymptotically normally distributed with mean V ′µ and variance Var(Z∗) =
Dλ.

Now, let us introduce the class T2 of aggregated test statistics T2(Z∗;h) for
H0 : µ = 0 defined as linear combinations of the squared coordinates Z∗

j of Z∗:

T2 =



T2(Z∗;h) =

p∑

j=1

hj [Z
∗
j ]

2,h = (h1, . . . , hp) ∈ Rp,

p∑

j=1

hj = p



 . (8)
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Figure 2: Detection power of the L2-norm test, minP, HC, GHC, the Hotelling’s t-square test,
SKAT and the omnibus test (with type-I error level α = 0.05) in the two simulation scenarios
presented in Figure 1 (Left: scenario 1. Right: scenario 2).

The linear restriction
∑p

j=1 hj = p fixing the sum of linear coefficients to an
arbitrary value is due to the invariance of the power of the global test statistics
in T2 with respect to the multiplication by a scalar.

Interestingly, T2 contains two global test statistics with opposite strategies
regarding the handling of dependence across pointwise test statistics:

• T2(Z) = T2(Z∗;1p), for which dependence is ignored, where 1p is the
p-vector whose all entries equal one,

• TH(Z) = T2(Z∗;ωH), for which dependence is accounted for by whitening
Z , where ωH = (ω1H, . . . , ωpH)

′ with ωjH = p(1/λj)/(
∑p

k=1 1/λk), for
j = 1, . . . , p.

Note that, neither with T2(Z) nor with TH(Z), the handling of dependence
depends on the pattern of the association signal µ.

By an appropriate choice of the linear coefficients h, the class T2 defines a
large framework for a flexible handling of dependence. We propose hereafter to
search for the vector of linear coefficients corresponding to an optimal global
test statistic within T2.

3.1. Oracle Testing Procedure

For all h ∈ Rp, T2(Z∗;h) is distributed as
∑p

j=1 hjλjχ
2
1(γj), where the χ2

1

variables in the former sum are mutually independent and γj = (v′
jµ)

2/λj are
noncentrality parameters.

The optimal vector of linear coefficients is chosen to maximize a distance
between the null and non-null distributions of T2(Z∗;h). In the present context
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of a linear combination of noncentral chi-square distributions, using the most
usual distribution-based distances, such as Cramér-Von Mises-type distances or
Kullback-Leibler divergence, leads to untractable calculations of cumulative or
probability distribution functions.

However, the moment generating function MGF, or equivalently the cumu-
lant generating function CGF defined as follows:

MGF : t 7→ MGF(t;h,λ,γ) = E[exp(tT2(Z∗;h))],

CGF : t 7→ CGF(t;h,λ,γ) = logMGF(t;h,λ,γ)

offer convenient alternatives to define a distance between linear combinations of
independent noncentral chi-square distributions.

Indeed, for all h ∈ Rp and t such that, for all j = 1, . . . , p, 1−2thjλj > 0, the
log-ratio of non-null and null moment generating functions of T2(Z∗;h) turns
out to have a simple closed-form expression:

CGF(t;h,λ,γ) − CGF0(t;h,λ) = t

p∑

j=1

hjλjγj
1− 2thjλj

,

where CGF0(t;h,λ) = CGF(t;h,λ,γ = 0) is the null cumulant generating func-
tion of T2(Z∗;h). Since the former log-ratio is always larger than −∑p

j=1 γj/2,
then, for all t < minj{1/2hjλj},

∆(t;h,λ,γ) = CGF(t;h,λ,γ)− CGF0(t;h,λ) +
1

2

p∑

j=1

γj ,

=
1

2

p∑

j=1

γj
1− 2thjλj

> 0. (9)

Moreover, ∆(t;h,λ,γ) depends jointly on the pointwise association signal and
the dependence across pointwise test statistics through the parameters (λ,γ).

First, ∆(t;h,λ,γ) is maximized with respect to h ∈ Rp, under the linear
restriction

∑p
j=1 hj = p. For all t, the resulting vector h⋆

t (γ,λ) of optimal
linear coefficients, obtained using a Lagrange multiplier technique, has the fol-
lowing closed-form expression (details are given in the supplementary material,
Appendix A):

h⋆
t (γ,λ) =

1

κt
ωH − (1− 1

κt
)ω,

where ω = (ω1, . . . , ωp)
′ with ωj = p

√
γj/λj/

∑p
k=1

√
γk/λk, for j = 1, . . . , p

and κt = 2pt/(
∑p

j=1 1/λj). It is straightforwardly checked that, for all t and for
all (λ,γ), 1 − 2th⋆

jtλj > 0, for all j = 1, . . . , p, where h⋆
jt is the jth coordinate

of h⋆
t (γ,λ).

Consequently, and still considering that the association signal µ, hence also
γ, is known, the test statistics in T2 with linear coefficients h⋆

t (γ,λ) can be
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viewed as linear combinations of Hotelling’s t-square statistic T2(Z∗;ωH) and
T2(Z∗;ω):

T ⋆
2 (Z∗;κ) =

1

κ
T2(Z∗;ωH)− (1− 1

κ
)T2(Z∗;ω).

The class T ⋆
2 = {T ⋆

2 (Z∗;κ), κ ∈ R} of Oracle test statistics is a subclass of
T2 indexed by a single scalar κ. The special case κ = 1 gives the Hotelling’s
t-square test and limκ→±∞ T ⋆

2 (Z∗;κ) = ±T2(Z∗;ω).

More generally, κ can be viewed as a tuning parameter to adapt the linear
coefficients of the global test statistics within T ⋆

2 to the patterns of dependence
and pointwise association signal defined by (λ,γ). Again, this point is illustrated
by comparing the two scenarios for (λ,γ) on an LD block in chromosome 1
introduced in Section 2 (see Figure 1). For each signal strength, the power of
the global test statistics within T ⋆

2 is calculated and the optimal value κ⋆ of κ
is deduced. Similarly as in Figure 2 for the global testing methods summarized
in Table 1, Figure 3 displays the detection rates of the optimal test statistic
T ⋆
2 (Z∗;κ⋆) along the signal strength in the two scenarios.
In scenario 1, whatever the signal strength, the best choice for κ is a large

negative value whereas it is a small value in scenario 2. In both scenarios,
it turns out that there exists global test statistics within T ⋆

2 showing a better
detection rate than the L2-norm test and the Hotelling’s t-square test.

Figure 3: Power curves of the Oracle test statistics T ⋆
2 (Z∗; κ⋆), the L2-norm test and the

Hotelling’s t-square test in the two scenarios for an association signal µ introduced in Section
2 (Left: scenario 1. Right: scenario 2).

3.2. Implementation of the MGF-R Procedure

A plug-in version ĥ⋆
t = h⋆

t (γ̂, λ̂) of the Oracle vector of linear coefficients is
now proposed, where (γ̂, λ̂) is a consistent estimate of (γ,λ). Hereafter, λ̂ is
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the p-vector of eigenvalues of the estimate Σ̂ of Σ. Similarly, the coordinates of

γ̂ are defined by γ̂j = [Z∗
j ]

2/λ̂j , where Ẑ∗
= V̂ ′Z and V̂ is the p× p matrix of

eigenvectors of Σ̂.
In the case without covariates U in model (1), the null distribution of

T ⋆
2 (Ẑ

∗
;κ) is approximated by a Monte-Carlo procedure based on a large num-

ber K of random permutations of y. For each dataset obtained after ran-

dom permutation, values
{
T

(0)
2k (κ), k = 1, . . . ,K, κ ∈ R

}
of T ⋆

2 (Ẑ
∗
, κ) under

the null hypothesis are calculated. An approximation p̂⋆κ of the p-value for

T ⋆
2 (Ẑ

∗
, κ) is obtained by taking the proportion of random permutations for

which T
(0)
2k (κ) exceeds the observed value of T ⋆

2 (Ẑ
∗
, κ). Finally, the smallest

p-value in {p̂⋆κ, κ ∈ R} is denoted p̂⋆.

The same procedure is applied to each null value T
(0)
2k (κ) obtained after

random permutation, leading to p-values p̂⋆k. Finally, the p-value p̂ of the optimal
global test statistics within T2 is obtained by taking the proportion of p-values
p̂⋆k smaller than p̂⋆.

In the presence of covariates U in model (1), the above random permutation
procedure has to be adapted to preserve the relationships between Y and U on
the one hand and between X and U on the other hand. One solution consists
in randomly permuting y − ŷ0, as defined in expression (4) of the pointwise
test statistics, instead of y. Consistently, still in expression (4), Xj would also
be replaced by the residuals of a regression model of Xj on the covariates.
However, in the context of genomic association studies, [8, 15] advocate for the
use of parametric resampling methods accounting for the suspected effect of
confounding covariates, not explicitly included in the model.

4. Comparison of Detection Methods for Association Signals

4.1. Simulation Study

Both the ability of the MGF-R procedure to control the type-I error rate and
its statistical power compared to other global testing procedures are investigated
hereafter for a large scope of simulation scenarios. The general framework of
those simulation scenarios is similar as in the study introduced in Subsection
2.1: reproducing the conditions of a genetic association study, the n = 2, 000
profiles X of explanatory variables in each simulated dataset are independent
p-vectors of three-level categorical variables, the response is a binary variable
with equal prior probabilities and the association model is the logistic regression
model (1) without additional covariatesU . The marginal and joint distributions
of the profiles of explanatory variables are either set by parametric assumptions
or reproduce the distribution estimated using the WTCCC dataset [26]. The
R package GenOrd [3] is used to generate the profiles of dependent three-level
explanatory variables.

The global testing methods summarized in Table 1 are included in the com-
parative study. All methods are implemented using R: the SKAT method via
the package SKAT [19] and the GHC method via the package GHC [4]. The MGF-R
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Table 2: Average computation time (in seconds) for each global testing method in the com-
parative study (see Table 1) for testing association between a binary variable and a set of 68
explanatory variables (with same within-gene dependence as in gene PDZRN4).

minP L2-norm Hotelling HC GHC SKAT Omnibus MGF-R

Time 0.50 0.49 0.60 0.56 6.01 0.05 1139.10 0.68

procedure detailed in Subsection 3.2 is available in the R package MGFRtest

(https://github.com/fhebert/MGFRTest). The p-values are calculated by a
Monte-Carlo procedure based on 1,000 random permutations as detailed in Sub-
section 3.2. Table 2 gives the average computation times of these global testing
methods over 100 simulated datasets for which the dependence pattern repro-
duces the correlation as estimated using the WTCCC dataset [26] across the
68 genetic markers within gene PDZRN4. Obviously, the computation time of
the MGF-R procedure is not markedly larger than with the most trivial global
testing methods, such as minP or the L2-norm test and much smaller than the
GHC and Omnibus test.

Type-I Error Rate Control. To study to which extent the MGF-R procedure con-
trols the type-I error rate, two types of situations regarding the dependence
across explanatory variables are considered, either based on parametric mod-
els for correlation or on more complex correlation matrices as observed within
blocks of genetic markers in the WTCCC dataset [26]. The parametric mod-
els considered hereafter are limited to equicorrelation, where the correlation
between any two explanatory variables Xj and Xk is ρ, and autocorrelation,
where the correlation between two explanatory variables Xj and Xk is ρ|k−j|.
For each dependence scenario, a value of the binary response variable is ran-
domly assigned to each profile of explanatory variables.

The number p of explanatory variables is set to 20, 50 and 100 and ρ to
0.2, 0.5 and 0.8. The marginal distributions are obtained assuming that genetic
markers are in Hardy-Weinberg equilibrium with Minor Allele Frequency set to
0.4. The p-value for the global test of an association between the p-profile of
explanatory variales and the response is obtained by implementing the MGF-R

procedure as detailed in Subsection 3.2 on 1,000 simulated datasets. The em-
pirical type I error rate is then estimated by the proportions of p-values smaller
than the nominal level α over the 1,000 simulations, for different values of α.

Table S1 in the supplementary material reproduces the results for each com-
bination of a parametric dependence model (equicorrelation and autocorrela-
tion), a level of dependence across explanatory variables (ρ), a number p of
explanatory variables and a nominal level α for the test. It confirms that in
these situations the empirical type-I error rates are close to the level α.

For the simulations conducted under data-driven dependence patterns, three
blocks of SNPs corresponding to genes PDZRN4 (68 SNPs), DTD1 (49 SNPs) and
KCNN3 (37 SNPs) are extracted from the WTCCC dataset [26] and used to esti-
mate correlations across genetic markers. Figure S1 of the supplementary mate-
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Table 3: Empirical type I error rates of the MGF-R test for different values of the nominal level
α and for three within-gene correlation matrices estimated using the WTCCC dataset [26].

α 0.01 0.05 0.1 0.2
PDZRN4 0.013 0.049 0.104 0.185
DTD1 0.011 0.055 0.107 0.207
KCNN3 0.015 0.050 0.098 0.207

rial displays image plots of the corresponding within-gene correlation matrices,
showing different patterns of dependence: DTD1 has the strongest dependence
structure, KCNN3 the weakest and PDZRN4 has an intermediate position. The em-
pirical type I error rates of the MGF-R test, calculated as above by proportions
of positive tests over 1,000 simulations, are given in Table 3 for different values
of the nominal level α. Obviously, under these dependence structures also, the
MGF-R test seems to properly control the type I error rate.

Power studies. The ability of the MGF-R test to detect an association signal
is now compared to the detection performance of the global testing methods
introduced in Subsection 2.2 and summarized in Table 1. As above for the con-
trol of the type-I error rate, the scope of dependence patterns considered in the
simulation study includes both parametric correlation models and correlation
matrices within blocks of genetic markers estimated using the WTCCC dataset
[26].

The patterns of dependence within blocks of genetic markers are those in-
troduced above for the three genes PDZRN4, DTD1 and KCNN3 (see also Figure S1
in supplementary material). As in the short simulation study in Subsection 2.1,
the association signal between the binary response variable and the p-profile of
explanatory variables is set by fixing the regression coefficients β in the logis-
tic regression model (1) without additional covariates U . In the two scenarios
for an association signal considered for each gene, a vector βmax with only two
or three non-zero regression coefficients, given above each plot in Figure 4, is
chosen so that the detection rate of at least one of the global testing meth-
ods is close to one. A sequence of regression coefficients β = ξβmax with
ξ ∈ {0.1, 0.2, . . . , 0.9, 1} is considered to define intermediate situations in terms
of association signal strength.

For each gene and two scenarios of association signals, 1,000 datasets are
simulated and the p-value for the test of β = 0 is calculated by all the global
testing methods introduced above. The corresponding proportions of p-values
smaller than 0.05 over the 1,000 simulations are displayed in Figure 4. As
previously mentioned, the first striking result is the strong inconsistency of
the ranking of global testing methods for a given gene, or equivalently for a
given dependence pattern. Interestingly, the MGF-R test is the only method
with an acceptable power in all scenarios, close to the most powerful method
in scenarios (a), (c), (e) and even the best method in scenarios (b), (d) and
(f). In all scenarios, either the L2-norm test or the Hotelling’s t-square test
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has high power thus confirming that the class T2 introduced in Section 3 covers
an interesting scope of test statistics. All the other methods, including the
omnibus test, have low power in at least one scenario. It is worth noticing
that minP and GHC have close performance in all scenarios which weakens the
advantage of combining them in an omnibus test. Furthermore the benefit of
using GHC instead of HC is not clear in our results.

Two Toeplitz-type correlation matrices are used to generate weaker and more
regular parametric dependence patterns than those observed within blocks of
SNPs:

• a one-band correlation matrix, for which all correlations are zero except
on the first off-diagonal band where the correlation between Xj and Xk is
0.5 if |k − j| = 1,

• and a three-band correlation matrix, for which all correlations are zero
except on the first three off-diagonal bands where the correlation between
Xj and Xk is 0.75 if |k − j| = 1, 0.5 if |k − j| = 2 and 0.25 if |k − j| = 3.

The association signal between the binary response variable and the p-profile of
explanatory variables, with p = 100 or p = 200, is set by fixing the regression
coefficients β in the logistic regression model (1) without additional covariates
U . For p = 100 (resp. 200), only the explanatory variables located at positions
22, 37 and 74 (resp. 50, 100 and 150) take nonzero and equal values. As
previously explained in Subsection 2.2, the former nonzero coefficients are first
set to a maximal value for which at least one of the global testing methods shows
a detection rate close to 1, which defines a reference vector βmax of regression
coefficients. Intermediate vectors β = ξβmax of regression coefficients defining
a continuum of association signal strengths are generated by multiplying βmax

by a reduction factor ξ ∈ {0.1, 0.2, . . . , 0.9, 1}.
For each number p of explanatory variables, dependence pattern and vector

of regression coefficients β, 1,000 datasets are simulated and the p-value for
the test of β = 0 is calculated by all the global testing methods introduced
above. The proportions of simulations for which the p-value is smaller than 0.05
are displayed in Figure 5 along the signal strength. First, it can be deduced
that, due to the strong regularity of the correlation models, the ranking of
global testing methods is not markedly different between the two dependence
patterns, dominated by the two higher criticism methods and the max-based
method minP. The sum-of-squared-based testing methods L2-norm and MGF-R

seem to be slightly less powerful, SKAT and the Hotelling’s t-square test being
markedly underpowered.

4.2. Application to real datasets

Using benchmark genetic datasets with corresponding binary phenotype,
the MGF-R test is now used to test the association between the response vari-
able and biologically validated genes. Since the MGF-R procedure involves the
estimation of pairwise correlations between explanatory variables, as the other
global testing methods handling dependence across pointwise test statistics, it
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Figure 4: Detection rates along signal strength for all the global testing methods in the
comparative study. The six simulation scenarios combine three genes (dependence patterns)
and two vectors of regression coefficients β.
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Figure 5: Detection rates along signal strength for all the global testing methods in the com-
parative study. The four simulation scenarios combine two Toeplitz-type correlation patterns
and two numbers p of explanatory variables. (a): one-band structure, p = 100; (b): one-band
structure, p = 200; (c): three-band structure, p = 100; (d): three-band structure, p = 200.

can be expected that it would suffer from instability in small sample designs.
This explains why the first illustrative genetic association studies conducted on
a very small number of dogs has been chosen. For each dataset, the MGF-R pro-
cedure is compared to the alternative methods introduced in Subsection 2.2. It
is demonstrated that the MGF-R test can successfully detect genes known to be
associated to the phenotype, whereas other tests cannot.

Dogs Dataset. The first dataset consists of 28 dogs for which 5615 genes were
sequenced to investigate the genetic background of the furnishing phenotype
that is a characteristic pattern of a moustache and eyebrows [7]. Among the 28
dogs, 16 are standard poodle, thus having a furnishing trait, while 12 are not fur-
nished. Due to the small sample size, the correlation matrix of the test statistics
vector may not be positive definite. When needed, it is replaced by the nearest
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positive definite correlation matrix, computed with the nearPD function of the
R package Matrix [5]. The p-values are calculated by a Monte-Carlo method
with 1,000,000 random permutations for each gene. Due to extremely large
computational time, the results for the omnibus test could not be computed.

According to [7], gene RSPO2 in chromosome 13 (119 SNPs) is strongly asso-
ciated to the furnishing phenotype. The gene RSPO2 is correctly detected by the
MGF-R test and the L2-norm test, each having a p-value approximately equal to
0.0056 after a Bonferroni correction. However minP, HC, GHC, SKAT, Omnibus
and Hotelling’s tests fail at detecting RSPO2 with corrected p-values equal to
0.48, 0.44, 1, 1, 1 and 1 respectively. In Table 4, the number of genes detected
by each testing method and the number of genes commonly detected by each
pair of methods are given. It can be seen that the number of detected associa-
tions is much larger for the L2-norm test (3,268 significant genes) and the MGF-R
test (3,077 significant genes) than the other tests. Hotelling’s test only detects
one gene as significant.

Table 4: Number of genes detected by each testing method and number of genes commonly
detected by each pair of testing methods, for a nominal level 0.05 after a Bonferroni correction
of the p-values.

L2-norm minP HC GHC Hotelling SKAT MGF-R

L2-norm 3268 349 430 374 1 416 2902
minP - 403 285 270 0 54 357
HC - - 468 398 0 103 433
GHC - - - 410 0 85 375

Hotelling - - - - 1 0 1
SKAT - - - - - 442 402
MGF-R - - - - - - 3077

Crohn’s Disease Dataset. The second application to a genetic association testing
issue focuses on the study of Crohn’s disease, a type of chronic inflammatory
bowel disease for which genetic factors are known to play a major role. In [11],
a list of genes known to be involved in Crohn’s disease is given. All the global
testing methods listed in table 1 and the MGF-R procedure are applied to these
73 genes using the WTCCC dataset [26].

In total, eight genes are significantly detected by at least one method:
DENND1B, SCAMP3, MST1, CARD9, ZMIZ1, C10orf55, PTPN2 and SBNO2. The corre-
sponding p-values after a Bonferroni correction are given in Table 5 for all global
testing methods, except SKAT which does not detect any significant genes. The
MGF-R test is the only method able to detect the eight reported signals. Regard-
ing the other methods, it can be underlined that the L2-norm test, together
with HC and GHC, is able to correctly detect genes DENND1B and MST1 while
the Hotelling’s t-square test fails at reporting them as significant. Conversely,
genes SCAMP3, ZMIZ1 and C10orf55 are detected by the Hotelling’s t-square test
and not by other methods. These results show the ability of the MGF-R test to
detect a wide range of signals. This is also illustrated by the detection of a

19



Table 5: Bonferroni corrected p-values of genes detected by at least one of the testing methods
introduced in the simulation scenarios of Subsection 4.1. Htlg stands for the Hotelling’s t-
square test.

Gene L2-norm minP HC GHC Htlg Omnibus MGF-R

DENND1B 7e-03 0.062 0.008 0.007 0.166 0.014 0.022
SCAMP3 1 0.651 0.633 0.679 0.019 0.226 0.033
MST1 0.006 0.036 0.029 0.023 0.208 0.007 0.020
CARD9 0.369 0.123 0.191 0.185 0.494 0.387 0.033
ZMIZ1 0.289 0.443 0.137 0.1172 0.000 0.081 0.000

C10orf55 1 1 1 1 0.008 1 0.024
PTPN2 0.000 0.000 0.000 0.000 0.021 0.014 0.000
SBNO2 0.000 0.003 0.003 0.011 0.007 0.038 0.004

significant association with gene CARD9 when using the MGF-R test, whereas no
other method finds it significant.

5. Discussion

The choice of a global testing procedure has a strong impact on the detec-
tion of an association signal in a regression framework especially when the same
method is to be used in a wide variety of dependence and association signal pat-
terns. SNP-set testing approaches of genome-wide association studies provide
illustrations of such a diversity of situations. Comparative studies of a large
panel of global testing procedures based on the aggregation of pointwise test
statistics confirm that none of them show uniformly good detection rate over
the possible combinations of a dependence pattern across explanatory variables
and an association signal.

Based on these observations, a class of global test statistics defined as linear
combinations of squared decorrelated pointwise test statistics is introduced to
allow for an adaptive handling of dependence. Indeed, special choices of the
linear coefficients leads either to a complete whitening of the pointwise test
statistics or to ignore their mutual dependence. The closed-form expression
of linear coefficients is provided, for which a moment generating function-based
distance between the null and non-null distributions of the corresponding global
test statistics is maximal. Interestingly, these optimal linear coefficients depend
both on the dependence parameters and on the association signal. The MGF-R

test consists in estimating the optimal linear coefficients to obtain a flexible
global test statistics ensuring a reasonable power in most situations.

Simulation studies conducted with correlation structures estimated within
blocks of genetic markers or under parametric models of correlation demonstrate
the benefits of using MGF-R compared to a large panel of methods. A comparative
study in the context of two Genome-Wide Association Studies confirms the good
performance of MGF-R. Indeed, the flexibility of MGF-R allows the identification
of genes that have been biologically assessed in very diverse situations while the
other methods only detect significant associations in specific situations.
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These results open new perspectives about the handling of dependence in
global testing in a more general framework that would include max-based or
higher criticism aggregation tests. Indeed, the simulation studies conducted
with more regular correlation models, where the ranking of methods is less
affected by the interplay between the patterns of dependence and association
signal, reveals that the class of linear combinations of decorrelated pointwise test
statistics may be too limited to reach the detection performance of max-based
and higher criticism aggregation methods.

Many comparative studies of global testing approaches investigate the im-
pact of the pattern of association signal through the sparsity rate of the vector
of regression coefficients. However, the results obtained in Section 3, especially
the closed-form expression of the optimal linear coefficients, suggest that the
expectation of the decorrelated pointwise tests is more directly related to the
performance of global testing procedures. Those results open new leads to es-
tablish guidelines for the handling of dependence.

6. Software

The MGF-R procedure is available in the R package MGFRtest (freely down-
loadable at https://github.com/fhebert/MGFRTest).

7. Supplementary Material

Supplementary material is available online at
https://www.journals.elsevier.com/computational-statistics-and-data-analysis/.
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