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Summary: Within the statistical climatology literature, inferring the contributions of potential causes

with regard to climate change has become a recurrent research theme during this last decade. In particular,

disentangling human induced (anthropogenic) forcings from natural causes represents a non-trivial statistical

task, especially when the focal point moves away from mean behaviors and goes towards extreme events with

high societal impacts. Most studies found in the field of Extreme Event Attributions (EEA) rely on Extreme

Value Theory (EVT). Under this theoretical umbrella, it is often assumed that, for a given location, temporal

changes in extremes can be detected in both location and scale parameters of an extreme value distribution,

while its shape parameter remains unchanged over time. This assumption of constant tail shape parameters

between a so-called factual world (all forcings) and a counterfactual one (without anthropogenic forcing)

can be challenged due to the fact that important forcing changes could impact large scale atmospheric and

oceanic circulation patterns, and consequently, the later can reshape the full distribution, including its shape

parameter that drives extremal behavior.

In this paper, we study how allowing different extremal tail indices between the factual and counterfactual

worlds can affect the analysis of records. In particular, we extend the work of Naveau et al. (2018) in which

this case was not treated. We also add properties and theoretical inferential results about records in EEA

and propose a procedure for model validation. A simulation study of our approach is detailed. Our method

is applied on records of yearly maxima of daily maxima of near-surface air temperature issued from the

numerical climate model CNRM-CM5 of Météo-France.
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1. INTRODUCTION

The field of extreme event attribution (EEA) in climatology (see for reviews, e.g., Naveau

et al., 2020; Stott et al., 2016) aims at comparing how the likelihood of a specific extreme

climate event can change under different inputs, the so-called forcings in atmospheric

sciences. The most studied driver is the increase of greenhouse gas concentrations induced

by human activities. Depending on enduser needs, two questions are typically asked in this

research domain. To highlight scientific evidencing (e.g., Stott et al., 2004), one may want

to assess if the probability of today extreme climate events could have been different without

anthropogenic emissions. Besides improving scientific understanding of physical mechanisms,

this setup can also be useful for litigation cases and such a framing is closely linked to

causality theory (e.g., Hannart et al., 2016). The thought experiment of imagining a world

without anthropogenic forcings is called counterfactual because it did not happen in reality.

In contrast, the expression factual world corresponds to today forcing conditions, i.e. with

anthropogenic forcing included. Another example treated in EEA could be the case of a

flood planner manager who is interested by revising 100-year return levels according to

future forcing conditions.

In these setups, in silico numerical experiments are needed to provide possible climate

trajectories under never observed forcings, either in the past, present or future. For example,

our application in Section 5 will focus on numerical outputs from the global climate model

CNRM-CM5 of Météo-France. A factual dataset will correspond to a CNRM-CM5 run with

all forcings (natural and anthropogenic forcings) during the years 1975-2005, mimicking

today’s climate. The counterfactual data will be represented by a different CNRM-CM5 run

only driven by natural forcings over the period 1850-2012, a never observed trajectory.

An important step in any EEA analysis is the choice of extreme events under study.

Statistically, the extreme event of interest is classically defined as an exceedance above a large

threshold, say u, for some atmospheric feature. More precisely, climatologists have compared
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the survival probabilities p1 = P(X > u) and p0 = P(Z > u) where the random variable Z

with cdf F takes its values in the factual world and the random variable X with cdf G

represents the same atmospheric parameter but in the counterfactual word. In practice, the

threshold u is set relatively to an exceptional event, say the 2003 European heatwave analysis

in Stott et al. (2004), and relative ratios like p1/p0 or the so-called fraction of attributable

risk, FAR(u) = 1− p0/p1, are inferred from specific numerical model experiments aiming at

reproducing both factual and counterfactuals worlds (see, the bibliographies in Stott et al.,

2016; Naveau et al., 2020, for details). Still, defining extremes as exceedances above a high

threshold is not the only way to capture rare events distributions. For example, one can be

interested by records. The American Meteorological Society in its bulletin produces yearly

special reports about EEA (see, e.g., Kew et al., 2019). In such reports, the specific event

under study is often chosen because a new record has been broken for a specific variable of

interest (see, e.g., King, 2017). Mathematically, Yr is said to a record at time r with respect

to the sample (Y1, Y2, . . . ) if

Yr ≥ max(Y1, . . . , Yr−1).

The advantage of defining extremes as records is that there is no need to choose a threshold.

In addition, the interpretation is straightforward for the general public. It simply means

that the latest recorded value is the largest. Naveau et al. (2018) studied record probabilities

within a EEA context by introducing the following relative ratio

far(r) = 1− p0,r
p1,r

where

 p0,r = P(Xr > max{X1, . . . , Xr−1}),

p1,r = P(Zr > max{X1, . . . , Xr−1}),

for every integer number r ≥ 2. Clearly, p0,r = P(Xr > max{X1, . . . , Xr−1}) can be

interpreted as the probability that Xr is a record within the counterfactual sample

(X1, . . . , Xr)
T . One can also notice that p0,r is equivalent to set u = max{X1, . . . , Xr−1}

into P(X > u). By replacing u = max{X1, . . . , Xr−1} into P(Z > u), we obtain p1,r. So, p1,r
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indicates the probability of observing a factual record with respect to the counterfactual

world. Concerning the computation of p0,r, exchangeability of the sequence (Xj) implies

that

p0,r =
1

r
and far(r) = 1− 1

rp1,r
.

Then, under exchangeability of Xi’s, the difficult estimation of the two small probabilities

in FAR(u) = 1− P(Z > u)/P(X > u) is completely bypassed and replaced by the single

inference of p1,r. This greatly simplifies the statistical inference. In this work, the assumption

of exchangeability appears to be reasonable in the counterfactual world†. The non-

stationarity of anthropogenic forcing implies that exchangeability is not tenable in the

factual world. This departure will be taken into account by assuming stationarity within

a climatological period (1975-2005). In terms of interpretation of FAR(u) and far(r), we

refer to Hannart and Naveau (2018) who detailed the link between these quantities and the

causal counterfactual probability theory of Pearl (2000). Still, we want to remind that a

far(r) close to one indicates a strong probability of necessary causation, meaning that the

cause under study (here increase in greenhouse gas concentrations) is required for extreme

records but other factors might be required as well. A far(r) between zero and one gives us

the degree of such necessary causation.

Naveau et al. (2018) provided the basic ingredients to infer p1,r, and a few cases were

explored. In particular, the assumption of equal tail shape parameters of the factual and

counterfactual distributions was used in all examples and case studies. More precisely, the

generalized extreme value distribution (GEV), classically used to model block maxima (see

†The exchangeability assumption is satisfied in both worlds if the numerical experiments at hand are viewed as ensemble resampling of
the same event within the factual and factual worlds. In our application we use transient climate runs, but not ensembles of the same
event
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the books of Coles, 2001; Beirlant et al., 2004; de Haan and Ferreira, 2006),

GEV (x;µ, σ, ξ) = exp

(
−Hξ

(
x− µ
σ

))
, with Hξ(x) =

 (1 + ξx)−1/ξ+ , ξ 6= 0,

exp(−x), ξ = 0,
(1)

has a shape parameter ξ that provides key information about the tail behavior‡. In Naveau

et al. (2018), the GEV case where the factual and counterfactual shape parameters were

assumed equal leads to a very simple expression of

far(r) = (1− λ) (1− 1/r) ,

where the unique parameter λ only depends on the scaling and location GEV parameters,

but not on the common shape parameter ! This simple expression brought fast and efficient

estimation schemes. Still, the assumption of equal shape parameters can be challenged in

some EEA studies. For example, one can imagine that, significative changes in circulation

patterns could modify the climate of regions affected by these patterns, and consequently

the factual shape parameter could be different from the counterfactual one. If true, a

difference in positive shape parameters is particularly important for risk assessment of

extremes. Another limitation of Naveau et al. (2018) is that the asymptotic properties of

non-parametric estimators of far(r) were restricted to sample sizes of the same length. In

practice, factual and counterfactual runs may have different runs and so, this was a limit in

terms of applicability. Finally, the study of confidence intervals was briefly touched upon in

Naveau et al. (2018), but not fully complete and needed to be improved.

In this work, we propose to address all the above shortcomings. Section 2 recalls the

basic setup and extends the non-parametric approach to samples of different sizes. Section

‡A zero shape parameter corresponds to an exponential tail, while ξ > 0 characterizes heavy tails and ξ < 0 implies a bounded support.
For example, block maxima of precipitation tend to be slightly heavy-tailed, (see, e.g., Katz et al., 2002), while block maxima of
temperatures appear to have negative ξ’s, (see, e.g., Kharin et al., 2007). The scale parameters σ has to be positive, a+ = max(a, 0)

and µ ∈ R.
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3 provides the main theoretical results. Under a specific class of distributions that allow for

different factual and counterfactual tail behaviors, we introduce a new inference scheme and

derive asymptotic convergence results. The question of model validation is also addressed.

Sections 4 focuses on our simulation study, while Section 5 provides an application to

temperatures maxima for the aforementioned CNRM climate model. Section 7 contains the

proofs of the results and some discussion on the computational aspects of this work.

2. GENERAL SETUP AND NON PARAMETRIC APPROACH

In this work, we assume that the counterfactual and factual data samples (X1, . . . , Xm) and

(Z1, . . . , Zn) respectively represent iid copies of X ∼ G and Z ∼ F . In addition, the time

series Xi’s and Zi’s are supposed to be independent. Under these conditions, p1,r for any

integer r ≥ 2 can be rewritten as an expectation

p1,r = E
(
(G(Z))r−1

)
. (2)

At this stage, one can notice that there is not need to actually observe records at time r to

estimate p1,r. For any given r, we simply need to estimate the expectation defined by (2).

More precisely, the natural non-parametric estimator of p1,r can be obtained by replacing

the unknown cdf G by any empirical estimator, say Ĝm,

p̂1,r =
1

n

n∑
i=1

Ĝr−1
m (Zi), (3)

where the sample sizes of the factual and counterfactual worlds are denoted n and m,

respectively. In this work, Ĝm is defined as the following slight modification of the usual

empirical distribution function

Ĝm(x) =
b+

∑m
j=1 IXj≤x

m+ 1
, (4)
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where IX≤x corresponds to the indicator function, equal to one when X ≤ x and zero

otherwise, b ∈]0, 1[ is a small constant chosen to avoid Ĝm(x) = 0 for practical reasons

explained in Section 3.5. The corresponding non-parametric estimator of far(r) is then

defined as

f̂ar(r) = 1− 1

rp̂1,r
.

Our first proposition is the generalization of Formula (A1) in Naveau et al. (2018), see

Appendix (A1) for elements of the proof. This is a non-parametric result that shows the

asymptotic convergence in distribution of our estimator when the sample sizes can differ.

Proposition 1 Let Ĝm denote the empirical cdf defined by (4). As n and m go to infinity,

if
√
n/m converges to some finite constant a ≥ 0 then we have

√
n(p̂1,r − p1,r)

d−→ N (0, σ2
r) and

√
n(f̂ar(r)− far(r)) d−→ N

(
0,

σ2
r

(rp21,r)
2

)
(5)

where

σ2
r = τ 2r + a×(r − 1)2(Mr − p21,r),

with

τ 2r = Var(Gr−1(Z)) = p1,2r−1 − p21,r and Mr = E
(
Gr−2(Z1)G

r−2(Z2)(min(G(Z1), G(Z2)))
)
.

The second term in σ2
r corresponds to the cost of replacing the true cdf G by its empirical

estimate Ĝm. The price can be small (large) whenever the counterfactual sample is much

larger (smaller) than the factual one. The expression of σ2
r leads to the following estimate of

the asymptotic variance

σ̂2
r = (p̂1,2r−1 − p̂21,r) +

√
n

m
(r − 1)2(M̂r,n,m − p̂21,r)
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where

M̂r,n,m =
1

n2

n∑
i=1

n∑
j=1

(Ĝm(Zi))
r−2(Ĝm(Zj))

r−2 min
(
Ĝm(Zi), Ĝm(Zj)

)
.

As expected from any non-parametric estimator of small probabilities, the asymptotic

variance of the relative error of p̂1,r grows as r gets large, see the upcoming Proposition

3 for a specific example. To deal with extreme records, i.e. when r is larger than sample

sizes, additional assumptions are needed, see Section 3. Still, Proposition 1 will be very

useful for r = 1 and r = 2 when inferring first and second moments.

3. MAIN RESULTS

3.1. Model setup

To estimate accurately p1,r for large r, we need to identify an appropriate class of bivariate

random variables (X,Z). To define this family, one can notice that the expectation defined

by (2) can be rewritten as a Laplace transform

p1,r = E (exp (−(r − 1)W )) , where W = − logG(Z).

At this stage, it appears natural to define a class of (X,Z) with respect to the random

variable W . This variable characterizes a type of relative coupling between X and Z, the

one needed to get p1,r. It also offers a clear link with Laplace transforms and consequently

opens the door to their various tools associated with them. To make the connection with

extreme value theory, we propose the following definition.
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W-class definition : Let X ∼ G and Z ∼ F be two random variables with the same

support. We will say that they belong to the W-class if the

random variable W = − logG(Z) is Weibull distributed with

parameters (k, λ), i.e.,

P(W > w) = exp
(
−(w/λ)k

)
, for any w > 0.

A first question is to wonder if either this W-class is empty or contains useful members. The

following lemma answers positively to this inquiry (below, µ, σ, ξ refer to the location, scale

and shape parameters of a Generalized Extreme Value distribution)

Lemma 1 If X ∼ GEV (µX , σX , ξX) and Z ∼ GEV (µZ , σZ , ξZ) have the same support, then

(X,Z) belongs to the W-class with parameters

 k = σX/σZ and λ = exp ((µX − µZ)/σX) , if ξX = ξZ = 0,

k = ξX/ξZ and λ = (k × σZ/σX)−1/ξX , if ξXξZ > 0.

A few remarks concerning this lemma can be made.

Remark 1 To avoid confusion, we recall that the term “Weibull" in our W-class definition

corresponds to the common denomination used in the engineering/reliability literature, not

to the one used by EVT community. The “Weibull" name often corresponds to negative GEV

shape parameters in EVT. Still, this case is covered by our Lemma when ξX < 0 and ξZ < 0.

Remark 2 Lemma 1 clearly indicates that the stringent assumption of equal GEV shape

parameters used in Naveau et al. (2018) is not needed anymore. Instead, it has been replaced

by a much weaker constraint: factual and counterfactual shape parameters have to have the

same sign or be both equal to zero. This covers a wide variety of applied cases. In addition,

if the factual shape parameter has a different sign than the counterfactual one, it means that

contrasting both worlds becomes trivial, and no fancy statistics is needed then.
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Remark 3 The assumption of a common support appears reasonable in most EEA studies.

Variables with positive (or zero) shape parameters like extreme precipitation have the same

support, e.g. (0,∞) for heavy rainfall. Variables with negative shape parameters like extreme

temperatures have to be treated with more care. Having a negative ξ implies a finite upper

bound that depends on µ, σ and ξ. For the GEV setup in Lemma 1, having the same

finite upper point translates into imposing one constraint on a set of six GEV parameters

(µX , σX , ξX , µZ , σZ , ξZ). So, still five degrees of freedoms are available and provide enough

flexibility for most applications. Finally, Proposition 6 in Appendix covers the case of different

supports of X and Z. In terms of notations and number of sub cases, this extended version

of Lemma 1 is rather cumbersome, and has a rather limited interest for practitioners. So,

we will keep the assumption of common support in the rest of this paper.

Remark 4 Lemma 1 does not imply that we have to estimate six GEV parameters in our

EEA studies of records. The practitioner only needs to check the validity of the Weibull

assumption for W , not the one about the two GEVs. In terms of inference, only the two

parameters k and λ, instead of six for the GEV’s, need to be estimated. Overall, these

elements represent an important gain in terms of models evaluation, computational time,

statistical efficiency and ease of interpretation. To highlight this later point, we need to explain

how to interpret λ and k for large r.

As the Laplace transform of W ∼Weibull(k, λ) is known, either as a finite integral or an

infinite sum, the probability p1,r can be written for any (X,Z) in the W-class

p1,r =

∫ 1

0

exp(−(r − 1)λ(− log x)1/k) dx. (6)

This allows us to provide the asymptotic expressions of p1,r and far(r) for large r.
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Proposition 2 For any (X,Z) belonging to the W-class, we have

p1,r =
kΓ(k)

λk(r − 1)k
− kΓ(2k)

λ2k(r − 1)2k
+O(r−3k),

and consequently,

lim
r→∞

far(r) =


1 if k < 1,

1− λ if k = 1,

−∞ if k > 1.

This proposition highlights the fundamental role of k that compares the factual and

counterfactual tail behaviors. The parameter λ is a second order parameter in terms of

tail behavior in the sense that it characterizes scale changes, in particular when the factual

and counterfactual shape parameters are equal.

3.2. Non-parametric inference under the W-class

Proposition 1 gave us general expressions of asymptotic variances of the non-parametric

estimator p̂1,r. Under the W-class family, it is possible, for large r, to provide precise

approximations of such variances and the associated relative errors§.

Proposition 3 For any (X,Z) belonging to the W-class, the estimator p̂1,r under the

conditions of Proposition 1 satisfies

1. σ2
r =

(
c(λ,k)/2k

rk
+ ak(c(λ,k))

2−d(λ,k)
r2k−1

)
(1 + o(1)),

2. the relative error of p̂1,r is of order rmax(k,1)/2,

3. the relative error of f̂ar(r) is of order

 rk/2 , if k > 1 or, if k = 1 and λ 6= 1,

rk−1/2 , if k < 1,

§Note that the relative error of f̂ar(r) makes no sense in the case k = λ = 1, since then we have exactly p1,r = 1/r and far(r) = 0.
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where c(λ, k) = kΓ(k)/λk, c̃(λ, k) = kΓ(2k)/λ2k, and d(λ, k) = 21−2kkc̃(λ, k).

As mentioned at the end of Section 2, this proposition reinforces the fact that, besides the

rare case of 0 < k ≤ .5, the relative errors of non-parametric estimators like p̂1,r and f̂ar(r)

are not made to handle large values of r. These non-parametric estimators should be only

kept for small values of r. New parametric estimators that fully take advantage of the W-class

are needed for large r.

3.3. Parametric inference under the W-class

Under the W-class, Equation (6) gives us a natural expression of a parametric estimator of

p1,r

p̂
(W )
1,r =

∫ 1

0

exp
(
−(r − 1)λ̂(− log x)1/k̂

)
dx (7)

where λ̂ and k̂ denote any estimators of the parameters of W = − logG(Z) ∼Weibull(k, λ).

Different estimators of Weibull parameters can be found into the literature. Here, we opt for a

straightforward method-of-moment (MOM) approach because easy connections can be made

between moments of G(Z) and p1,r. In particular, any bivariate random vector belonging to

the W-class satisfies the system of two equations p1,2 = E(G(Z)) =
∫ 1

0
exp(−λ(− log x)1/k)dx,

p1,3 = E(G2(Z)) =
∫ 1

0
exp(−2λ(− log x)1/k)dx.

(8)

From estimates of p1,2 and p1,3, it is possible to numerically infer the unknown bivariate

positive vector θ = (λ, k)T . Then, applying (7) with θ̂ = (λ̂, k̂)T provides estimates of p1,r

for any r ≥ 3, in particular large ones. Our MOM can be be summarized by a three-step
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approach

(p̂1,2, p̂1,3) =

(
1

n

n∑
i=1

Ĝm(Zi),
1

n

n∑
i=1

Ĝ2
m(Zi)

)
 (λ̂, k̂)  p̂

(W )
1,r , via (7) for r = 3, 4, . . . .

The following proposition provides the conditions under which, for any fixed r ≥ 3, the

re-normalized estimators p̂(W )
1,r and f̂ar

(W )
(r) = 1−

(
rp̂

(W )
1,r

)−1
converge asymptotically in

distribution towards a Gaussian law as the sample sizes of the factual and counterfactual

worlds, n and m, go to infinity with lim
√
n/m = a ∈ [0,∞).

Proposition 4 For any integer j ≥ 1 and θ = (λ, k)T , let Jj(θ) denote the Jacobian matrix

of gj(θ) =
∫ 1

0
exp(−jλ(− log x)1/k) dx.

Under the conditions of Proposition 1 (in particular lim
√
n/m = a ≥ 0), for any (X,Z)

belonging to the W-class, and any fixed integer r ≥ 3, we have :

(i) the MOM estimator (λ̂, k̂) is asymptotically gaussian in the sense that

√
n
(

(λ̂, k̂)T − (λ, k)T
)

d−→ N
(
0, (J1,2(θ))

−1 Σa (JT1,2(θ))
−1)

where J1,2(θ) denotes the Jacobian matrix associated with θ 7→ (g1(θ), g2(θ))
T , and

Σa =

 aM2 + p1,3 − (1 + a)p21,2 2aE1,2 + p1,4 − (1 + 2a)p1,2p1,3

2aE1,2 + p1,4 − (1 + 2a)p1,2p1,3 4aM3 + p1,5 − (1 + 4a)p21,3


with E1,2 = E (G(Z1) min(G(Z1), G(Z2))).

(ii) the estimators p̂(W )
1,r and f̂ar

(W )
(r) satisfy

√
n
p̂
(W )
1,r − p1,r
σ
(W )
r

d−→ N (0, 1) and
√
n rp21,r

f̂ar
(W )

(r)− far(r)
σ
(W )
r

d−→ N (0, 1) ,

where

σ(W )
r =

√
Jr−1(θ)(J1,2(θ))−1 Σa (JT1,2(θ))

−1 (Jr−1(θ))
T .
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Note that the matrix Σa is the limiting covariance matrix of
√
n
(
(p̂1,2, p̂1,3)

T − (p1,2, p1,3)
T
)
.

If G was known, this matrix would simply be p1,3 − p21,2 p1,4 − p1,2p1,3

p1,4 − p1,2p1,3 p1,5 − p21,3

 .

As in Proposition 1, the extra terms involvingM2,M3 and E1,2 indicate the cost of estimating

G. This additional variability can vanish whenm is much larger than n, i.e., a becomes small.

In Proposition 3, the asymptotic relative error of p̂1,r was found to have a polynomial form.

The following proposition shows that the asymptotic relative error of p̂1,r has a logarithmic

rate, and consequently, it should be favored for all k > 1/2.

Proposition 5 Under the conditions stated in Proposition 4, we have, for large r :

1. the asymptotic standard deviation σ(W )
r in

√
n(p̂

(W )
1,r − p1,r) is of order log(r)/rk ,

2. the relative error of p̂(W )
1,r is of order log(r),

3. the relative error of f̂ar
(W )

(r) is of order

 log(r) , if k > 1 or, if k = 1 and λ 6= 1,

rk−1 log(r)→ 0 , if k < 1.

A sharper approximation for σ(W )
r can be found in the proof of Proposition 5. Note that the

relative error of far(r) in Naveau et al. (2018) was found to be constant. This is not the

case here, even for k = 1. This is due to the fact that the step of estimating the unknown k,

even if it is equal to one, brings a relative error that grows in log(r).

3.4. Confidence intervals within the W-class

Proposition 4 contains the main ingredient for constructing asymptotic confidence interval

estimates of p1,r and far(r). In practice, we can compute two confidence interval types:
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either on the original scale or on a logarithmic scale. Extensive simulations (available upon

request) clearly indicate that coverage probabilities and mean square errors turn out to be

superior on the log-transformed scale. For this reason, the later approach will be used in our

simulation study and our application. More precisely, in this work, the asymptotic confidence

intervals for p̂(W )
1,r will always be

[
p̂
(W )
1,r × exp

(
± zα√

n

σ̂
(W )
r

p̂
(W )
1,r

)]
, (9)

where zα denotes the quantile of order 1− α/2 of the standard normal distribution. For

f̂ar
(W )

(r), one possibility is to use the following confidence interval (equivalent to (9) by

definition of f̂ar
(W )

(r))[
1− 1

rp̂
(W )
1,r

exp

(
∓ zα√

n

σ̂
(W )
r

p̂
(W )
1,r

)]
(10)

and another one, only available when f̂ar
(W )

(r) is positive, is the confidence interval on the

logarithmic scale (issued from the asymptotic normality of log f̂ar
(W )

(r)) f̂ar(W )
(r). exp

± zασ̂
(W )
r

√
n
(
p̂
(W )
1,r (rp̂

(W )
1,r − 1)

)
 . (11)

Simulations, see Section 4, indicate that both intervals perform well, particularly when r

is large. For conciseness, (10) will be the one considered in our case study.

3.5. Checking if (X,Z) belongs to the W-class

The random variable W = − logG(Z) is at the center of our W-class definition and its

Weibullity a key element. There exist various Weibull goodness-of-fit (WGOF hereafter)

tests in the literature (see, e.g. Cabaña and Quiroz, 2005) which are coded with the R

programming language (see, e.g., the EWGoF package Krit, 2019). Leveraging this package,
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we focus here on one of them, the likelihood-based WGOF test implemented in the WLK.test

function in R, which consists in nesting the two-parameter Weibull family in the larger family

of Generalized Gamma distributions, and performing a score test of equality to 1 of some

shape parameter, (see, e.g. Krit et al., 2016, for mathematical details). This test uses Monte

Carlo simulation for determining the p-values.

At first sight, using WLK.test for validating our model should be straightforward. In

practice, we have at your disposal the factual sample, (Z1, . . . , Zn)T and the counterfactual

sample, (X1, . . . , Xm)T . But, we cannot directly build Wi = − logG(Zi) because the cdf

G is unknown and needs to be estimated. A simple solution to this issue is to introduce

"pseudo-Weibull" variables defined by

Ŵi = − log Ĝm(Zi)

where Ĝm(.) is defined by (4). As taking the log of zero is impossible, Ĝm(.) has to be always

positive. This explains the constant b in the definition¶ of Ĝm(.), see Equation (4). Still, even

when Wi is Weibull distributed, Ŵi cannot follow exactly a Weibull distribution, and thus

blind application of WLK.test to these pseudo-Weibull variables will be misleading.

To pinpoint the issue, we rewrite Ŵi = − log Ĝm(Zi) as Ŵi = − logUm(e−Wi) where

Um(x)
d
=

1

m+ 1

(
m∑
j=1

(IUj≤x) + b

)
,

and U1, . . . , Um are independent uniform variables on [0, 1]. With this setup, we can easily

simulate 1000 times Weibull samples (Wi) of size n for any given parameters (λ, k) and

1000 uniform samples (Uj) of size m, and then apply the function WLK.test to the 1000

samples of pseudo-Weibull samples of Ŵi = − logUm(e−Wi). For example, for n = m = 100

and (λ, k) = (0.4, 0.8), instead of being uniformly distributed, the obtained 1000 p-values

¶We opt for the value b = 0.05 in our study.
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are very skewed to the left with around 25% which were lower than 0.05, the expected mean

fraction 5%. This example illustrates that the WLK test, applied to those pseudo-Weibull

variables, reject much too often the Weibull assumption at the nominal risk 5%, and this

is due to the influence of this transformation Um. This inflated rejection rate may be a bit

milder when m is much larger than n, but this issue definitely needs to be addressed in

practice.

Our procedure for determining correct p-values for the WGOF test is the following one :

1. Compute the moment estimates (λ̂, k̂) as described in Section 3.3.

2. Repeat for each j ∈ {1, . . . , N} with N a prefixed number of replicas (we advise at least

N = 500 for precise p-value evaluation) :

(a) simulate n iid W (j)
i ∼Weibull(λ̂, k̂),

(b) simulate an uniform sample of size m and denote by U(j)
m its associated empirical

function (see above),

(c) compute Ŵ (j)
i = − logU(j)

m (exp(−W (j)
i )) for each i = 1, . . . , n

(d) compute the test statistic value from WLK.test, say T (j), associated to these pseudo-

Weibull variables.

3. Approximate the test statistic p-value as the proportion 1
N

∑N
j=1 IT (j)>T where T

corresponds to the test statistic value inferred from the original pseudo-Weibull Ŵi.

Simulations not reported here (available on demand) indicate that this procedure provides

adequate p-values for the WGOF test considered here.
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4. SIMULATIONS

In this section dedicated to numerical simulations‖ assessments in R, we take X ∼

GEV (µX , σX , ξX) and Z ∼ GEV (µZ , σZ , ξZ), i.e. (X,Z) belongs to the W-class. The shape

parameter ξX will span eight values in the set {−0.4,−0.3,−0.2,−0.1, 0.1, 0.2, 0.3, 0.4}, the

parameter k = ξX/ξZ will cover the seven values in {4/4, 4/5, 4/6, 4/7, 4/8, 4/9, 4/10}, and

the ratio σZ/σX will belong to the set {1, 2, 2.5} with the fixed value σX = 1. From Lemma

1, we know that the Weibull scale parameter is equal to λ = (k × σZ/σX)−1/ξX . Hence, our

simulation setup covers 8× 7× 3 = 168 different settings of (k, λ) and spans most of the

cases encountered in climate EEA. To mimic our case study in Section 5, we set n = 30 and

m = 150. These factual and counterfactual sample sizes are rather small, but are typical of

climate applications. Note also that

• the case ξX = ξZ = 0, was covered in Naveau et al. (2018),

• the location GEV parameters have been set to insure the common support constraint

in Lemma 1,

• all values of k are less or equal to one in our 168 settings. According to Proposition 5, the

relative error of f̂ar
(W )

(r) rapidly goes to zero when k > 1 for large r. So, the case k > 1

is trivial from a inferential point of view and it is also uninformative in terms of causality

interpretation (see, e.g., Hannart et al., 2016; Hannart and Naveau, 2018). If k > 1,

necessary causation probability defined as max(0, far(r)) quickly becomes null for large

r, and the degree of evidencing is only contained in sufficient causation probability

defined by max(0, 1− (1− p1,r)/(1− p0,r)). Finally, for most EEA studies, we expect

an increase in extremal tail behaviors, i.e. k < 1. For the few cases where the opposite

is expected (e.g., snow covers), then our definition of p1,r could be changed. Instead of

comparing P(Zr > max{X1, . . . , Xr−1}) to P(Xr > max{X1, . . . , Xr−1}), it will make

‖Some R code (and a manual) for applying the contents of this paper can be found on the second author’s webpage.
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more sense to compare P(Xr > max{Z1, . . . , Zr−1}) to P(Zr > max{Z1, . . . , Zr−1}).

This study of the probability of observing a counterfactual record with respect to the

factual world will imply a ratio of tail indices smaller than one.

Our main tool to assess the quality of our asymptotic intervals proposed in Section 3.4 is

the coverage probability obtained by computing the intervals defined by equations (9) and

(10) over 1000 replicas for each of our 168 cases.

To summarize our results for the cases with σX = σZ = 1, Figure 1 displays the 95%

coverage probability of p1,r with r = 10 and estimated either from (3), see panel (a), or

(7), see panel (b). The x-axis correspond to the value of ξX and the y-axis represents the

inverse of k. A green color indicates a good performance, roughly between 93.5% and 96.5%,

a purple/blue color a conservative interval (coverage larger than 98%), a yellow color a

coverage around 90%, and orange and red colors represent worse coverages. Each scalar in

the cell provides the value of the coverage. The difference between the two panels shows,

as expected, that the parametric approach, see panel (a) obtained with (7), outperforms its

non-parametric version, see panel (b) obtained with (9). Although the parametric approach

appears to provide good coverage values in most cases, panel (b) also indicates that, when

the factual shape parameter increases by more than 50%, i.e. when ξZ is 1.5 larger than ξX ,

the coverage appears to be too high for slightly negative ξX . Note the factual sample size

n = 30 is small and this issue progressively disappears as n increases.

[Figure 1 about here.]

Concerning the confidence intervals of far(r), we apply formula (10) to the parametric

estimator f̂ar
(W )

(r) for r = 20. Comparing the three coverage probability maps in Figure

2 stresses the influence of the scale parameters. This time, each cell contains the value of

λ = ((ξX × σZ)/(ξZ × σX))−1/ξX , while the color still indicates the coverage probability. The

key message from this figure is that λ is the main driver of the coverage accuracy. If λ is

very large, then the coverage is underestimated, see yellow cells. In contrast, the blue cells,
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overestimation of coverage probabilities, correspond to very small λ’s close to zero. Overall,

when λ stays in the range [0.3, 10], color maps are mostly greenish indicating a good coverage

probability. In the upcoming section, we will see that this situation will correspond to our

application setup.

[Figure 2 about here.]

5. ANALYSIS OF ANNUAL DAILY TEMPERATURES RECORDS

In this section, we analyze yearly maxima of daily maxima of near-surface air temperature

issued from the numerical climate model CNRM-CM5 of Météo-France, a participant of the

CMIP5 intercomparison project. The whole world surface is represented on a 256× 128 grid,

each cell roughy represents a 150km×150km area. Our factual dataset corresponds to the

recent climatology, 1975-2005 (so n = 31), of an "all forcings" run (natural and anthropogenic

forcings) spanning the preindustrial times (year 1850) to the year 2005. Our counterfactual

data are issued from a second run with only natural forcings enabled over the period 1850-

2012 (so m = 163). Thus, the methodology described in Section 3.1 can be applied to

both factual and counterfactual time series available at each of N = 256× 128 = 32, 768

gridpoints.

To assess which (X,Z) belongs to the W-class, the likelihood-based test (WLK) presented

in Section 3.5 is applied to each grid point. This test at the nominal risk of 5% rejects the

Weibull assumption at 6.3% of all locations. For comparison, the exponentiality assumption

is rejected by the Cox-Oakes test (at risk 5%) in 27.5% of the cases, mostly located over

oceans. To have a global view, Figure 3 shows the p-values of the WLK where the white zones

correspond to rejecting the Weibull hypothesis. No clear spatial clusters prone to rejection

can be identified over land, while small structured patches appear over ocean, but without

large scale climatological patterns.
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[Figure 3 about here.]

The estimated Weibull shape parameter, k̂ from (8), that captures the main changes in tail

behavior in the W-class, is plotted in the upper panel of Figure 4. To complement this visual

inspection of the fact that many k’s differ from one, the hypothesis H0: k ≥ 1 against the

alternative k < 1 is tested using the asymptotic normality of k̂ at each grid point. Around

26.5% of the gridpoints reject (at risk 5%) H0: k ≥ 1. This percentage is rather large, in

particular by taking in consideration that the statistical power is expected to be moderate

for a small sample of n = 31. Panel (b) of Figure 4 complements this picture by providing

the map of estimated Weibull scale parameter. The red and yellow colors pinpoint regions

where the factual world strongly differs from the counterfactual in terms of λ̂. In particular,

a strong contrast for this parameter can be seen around the Greenland sea, the tropical

band and parts of southern ocean. Note that λ̂ and k̂ are moderately correlated (Pearson

correlation coefficient is 0.52), zones with low λ̂ more or less correspond to zones with low k̂.

[Figure 4 about here.]

We now focus on identifying changes in records. As the factual sample size n = 31 is small,

we illustrate our approach with decadal records fixing, i.e. r = 10. Figure 5(a) displays the

values p̂(W )
1,10 , i.e. the estimated probabilities that the factual world produces a temperature

record with respect to the previous 9 counterfactual years. Again, the Greenland sea, the

tropical band and parts of southern ocean appear to be the regions where an increase in

decadal records can be identified. This is confirmed by the estimated map of far(10) in

panel (b).

[Figure 5 about here.]

Finally, Figure 6 illustrates that our approach can bring information about records beyond

the observable sample size of n = 31. Here, we have randomly chosen the grid point

corresponding to south Florida. The two lower panels show the interval estimations (based on
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(9) and (10)) of p1,r and far(r) for the values r = 5, 10, 20, 30, 50 (in the lower left panel, the

red crosses are located at the 1/r values, the probability of a record in the counter-factual

world). The histogram and qqplot in the upper two panels indicate that (X,Z) seems to

belong to the W-class (the p-value for the WLK test at this gridpoint is 0.78). The estimate

of k is 0.77, with a 95% confidence interval [0.47, 1.08].

[Figure 6 about here.]

6. CONCLUSION AND DISCUSSIONS

To summarize our work, we propose a simple, fast and efficient approach to analyze records

in EEA studies. The simplicity comes from the idea of checking ifWi follows a two parameter

Weibull distribution. This avoids to test if both factual and counterfactual world are EVT

distributed and we completely bypass the estimation of EVT parameters for each dataset.

Still, our approach does not require the assumption of the equal shape parameters in the two

worlds. The “efficiency" of our approach comes from our propositions 2, 3, 4 and 5 that detail

the asymptotic properties of both non-parametric and parametric of all quantities of interest.

For small sample sizes n = 30, our simulation study indicates that coverage probabilities are

meaningful for a wide range of setup, in particular the ones close to our application.

Still, different shortcomings of our paper can be identified and discussed. In our application,

all grids points are treated independently and consequently, spatial patterns of p-values in

Figure 3 should not be interpreted as such. An unknown proportion of gridpoints showing

rejection (at risk 5%) of the Weibull assumption corresponds to a wrong decision: i.e. the

null hypothesis is erroneously rejected because no multiplicity correction test was used∗∗.

This means that the map may provide a more pessimistic image of the Weibull fit. The issue

∗∗a direct application of the Benjamini-Hochberg correction for FDR (false discovery rate), (see, e.g. Dudoit et al., 2003), drops the
proportion to 12.2% of the sites for which H0: k ≥ 1 is rejected at 5% risk.
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of multiple comparison/multiple testing is a delicate one, since it is not clear which type of

spatial dependence can and should be taken into account for appropriately correcting the

computed p-values. This topic can be explored in future research. This leads to a second and

related point. Kiriliouk and Naveau (2020) recently leveraged both multivariate extreme

value theory and counterfactual theory to assess causality into a multivariate framework.

But, they did not study records and it would be of interest to extend the idea of the W-class

into a multivariate setup. This could help modeling spatial dependence, and consequently

improve our treatment of multiplicity correction test.

7. PROOFS AND COMPUTATIONAL DETAILS

This section contains the proofs of the various results of this paper, with the exception of

Lemma 1, which is proved in a more general form in the Appendix (subsection .4). Proof

of Proposition 1 is omitted, because it is only a small modification of the proof provided in

Naveau et al. (2018), and it has similarities with the first part of the proof of Proposition 4

(there, the reader will see where the data sizes condition
√
n/m→ a plays its role).

7.1. Proof of Propositions 2 and 3

Let us start by proving the development of p1,r, i.e. Proposition 2. Thanks to the fact that

(X,Z) belongs to the W-class, we write

p1,r = E
(
Gr−1(Z1)

)
= E

(
e−(r−1)(− logG(Z1))

)
=

∫ ∞
0

exp(−(r − 1)w)
k

λk
wk−1 exp(−(w/λ)k) dw

=
k

((r − 1)λ)k

∫ ∞
0

xk−1e−x−tr(x) dx
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where tr(x) = {x/((r − 1)λ)}k is close to 0 when r is large (and λ is fixed). Writing

e−tr = 1− tr + (e−tr − 1 + tr) (with the term in brackets being between 0 and t2r/2), it comes

p1,r =
k

((r − 1)λ)k

{∫ ∞
0

xk−1e−x dx − 1

((r − 1)λ)k

∫ ∞
0

x2k−1e−x dx + Rr

}

=
c(λ, k)

(r − 1)k
− c̃(λ, k)

(r − 1)2k
+O(r−3k) where

 c(λ, k) = kΓ(k)/λk

c̃(λ, k) = kΓ(2k)/λ2k

since the (positive) remainder term Rr of the first line is smaller than Γ(3k)/{2((r − 1)λ)2k}.

Consequences in terms of far(r) are straightforward (since far(r) = 1− 1/(rp1,r) = 1−

c(λ, k)−1rk−1(1 + o(1)), with c(λ, k) > 0 and c(λ, 1) = 1
λ
), so Proposition 2 is proved.

Let us now turn our attention to Proposition 3, and first on its Statement 1, the description

(for large r) of the asymptotic variance σ̂2
r of
√
n(p̂1,r − p1,r). This variance equals

σ2
r = τ 2r + a.(r − 1)2(Mr − p21,r),

where we have

τ 2r = p1,2r−1 − p21,r =
c(λ, k)/2k

(r − 1)k
(1 +O(r−k))− c(λ, k)2

(r − 1)2k
(1 +O(r−k))2 =

c(λ, k)/2k

rk
(1 +O(r−min(1,k))).

We keep this result in mind and focus now on the study of the termMr (and on the difference

Mr − p21,r). Setting Wi = − log(G(Zi)), and r′ = r − 1, r′′ = r − 2, we have

Mr = E
(
Gr−2(Z1)G

r−2(Z2)(min(G(Z1), G(Z2)))
)

= 2E
(
Gr−1(Z1)G

r−2(Z2)IG(Z1)<G(Z2)

)
= 2E

(
e−r

′W1e−r
′′W2IW1>W2

)
=

2k2

(λ2r′r′′)k

∫ ∫
xk−1e−x−(x/(r

′λ))kuk−1e−u−(u/(r
′′λ))kI[0,(r′′/r′)x](u) du dx

Details about the approximation of Mr for large r are rather lengthy, so in this document
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we only provide a quick picture of them. In fact, caution is necessary for the passage from

the indicator of [0, (r′′/r′)x] to the indicator of [0, x]. If we set h(x, u) = xk−1e−xuk−1e−u and

f(x, u) = h(x, u)I[0,x](u), f̃r(x, u) = h(x, u)I[0,(r′′/r′)x](u),

fr(x, u) = f̃r(x, u)e−tr(x,u), tr(x, u) = (x/(r′λ))k + (u/(r′′λ))k,

we decompose the double integral in the expression of Mr above as

∫∫
fr =

∫∫
f −

∫∫
f tr +

∫∫
h δr −

∫∫
h tr δr +

∫∫
f̃r(e

−tr − 1 + tr)

where δr(x, u) = I[0,(r′′/r′)x](u)− I[0,x](u) = −I[x(1−εr),x](u) with εr = 1/(r − 1). The fourth

and fifth terms of this sum will be negligible, but the other first three will combine with

the development of p21,r (using Proposition 2) to provide the following relation (additional

details are omitted)

(r − 1)2(Mr − p21,r) =
k(c(λ, k))2 − d(λ, k)

r2k−1
+ o(1/r2k−1)

where d(λ, k) = 21−2kk2Γ(2k)/λ2k. This ends the proof of Statement 1. Note that when k = 1,

the first term of the right-hand side above is equal to 1/(2λ2r), which coincides with the

second term 1/(2θ2r) of the formula for the variance λ2r stated in Naveau et al. (2018) page

3421.

Statement 2 is directly implied by Statement 1, since the relative error of p̂1,r is the

asymptotic standard deviation of
√
n(p̂1,r − p1,r)/p1,r which equals the square root of

σ2
r/p

2
1,r =

( c1
rk

+
c2

r2k−1

) r2k
c21

(1 + o(1)) =
(
c−11 rk + c2c

−2
1 r
)

(1 + o(1)) ∼ cst.rmax(k,1)

where c1 = c(λ, k)/2k and c2 = a(k(c(λ, k))2 − d(λ, k)).
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Finally, statement 3 describes the relative error of f̂ar(r), which is the asymptotic standard

deviation of

√
n
f̂ar(r)− far(r)

far(r)
=

rp1,r
rp1,r − 1

√
n

((
1− 1

rp̂1,r

)
−
(

1− 1

rp1,r

))
=

1 + oP(1)

p1,r(rp1,r − 1)

√
n (p̂1,r − p1,r)

and is thus equal to σr/(p1,r(rp1,r − 1)). Setting c = c(λ, k) and c̃ = c̃(λ, k), we have for large

r (remind that, in the case k = 1, the exact formula p1,r = 1/(1 + (r − 1)λ) is valid)

p1,r(rp1,r − 1) = c.r−k(c.r1−k + c̃.r1−2k − 1)(1 + o(1)) ∼


c.r−k if k > 1,

c2.r1−2k if k < 1,

c.(λ−1 − 1)/r if k = 1 and λ 6= 1.

Therefore, since 2k − 1 > k whenever k > 1, we finally have, as announced,

σr
p1,r(rp1,r − 1)

=


(cst+ o(1)).r−k/2.rk = (cst+ o(1)).rk/2 if k > 1,

(cst+ o(1)).r1/2−k.r2k−1 = (cst+ o(1)).rk−1/2 if k < 1,

(cst+ o(1)).
√
r if k = 1 and λ 6= 1. �

7.2. Proof of Proposition 4

Introducing the important notations θ = (λ, k),

gj(θ) = gj(λ, k) = Eθ[Gj(Z)] =

∫ 1

0

exp(−jλ(− log x)1/k) dx

and

g(θ) =

 g1(θ)

g2(θ)

 =

 Eθ[G(Z)]

Eθ[G2(Z)]

 ,
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our estimation procedure is to define

θ̂ = (λ̂, k̂) solving in (λ, k) the non-linear system

 p̂1,2 − g1(λ, k) = 0

p̂1,3 − g2(λ, k) = 0

and then set

p̂
(W )
1,r = gr−1(θ̂) = gr−1(λ̂, k̂) =

∫ 1

0

exp(−(r − 1)λ̂(− log x)1/k̂) dx.

The first step of this proof is to obtain the asymptotic normality of the first and second

moments sequence (p̂1,2, p̂1,3), i.e. of the sequence

Nn :=
√
n

  p̂1,2

p̂1,3

−
 p1,2

p1,3

 
=

1√
n

n∑
i=1

 Ĝm(Zi)−G(Zi)

Ĝ2
m(Zi)−G2(Zi)

 +
1√
n

n∑
i=1

 G(Zi)− EG(Z)

G2(Zi)− EG2(Z)


The first sum is first transformed to

1√
n

n∑
i=1

 1

2G(Zi)

 .(Ĝm(Zi)−G(Zi)) +

 0

1√
n

∑n
i=1(Ĝm(Zi)−G(Zi))

2


where the sum in the second term is OP(

√
n/m) = OP(1/

√
m) thanks to the fact that Ĝm

is defined by (4), to the Glivenko-Cantelli theorem, and to the assumption
√
n/m→ a.

Concerning the sum in the first term now, thanks to the result (8) in Mason and Zwet

(1987), if Ĝecdf
m is the usual empirical cdf of the counterfactual sequence X1, . . . , Xm, then

there exists some brownian bridge process B on [0, 1], independent of the sequences (Xj)

and (Zi), such that (almost surely)

√
m(Ĝecdf

m (z)−G(z)) = B(G(z)) +O

(
logm√
m

)
(12)
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uniformly in z ∈ R ; and if Ĝm is the estimator defined by formula (4), then it differs from

the empirical cdf by the negligible term (b− Ĝecdf
m )/(m+ 1), so statement (12) also holds for

Ĝm.

Therefore, assumption
√
n/m→ a on data sizes allows us to write

Nn =

√
n

m
× 1

n

n∑
i=1

 B(G(Zi))

2G(Zi).B(G(Zi))

+
1√
n

n∑
i=1

 G(Zi)− EG(Z)

G2(Zi)− EG2(Z)

+ oP(1)

= a.N1,n + N2,n + oP(1)

Both termsN1,n andN2,n converge in distribution as n→∞, and their limits are independent

thanks to the independence of the brownian bridge B with the factual world dataset Z.

On one hand, the limit in distribution of the second term N2,n is the centered gaussian

random vector with covariance matrix described after the statement of Proposition 4. On

the other hand, if µn denotes the empirical measure of the sample (G(Z1), . . . , G(Zn)),

thenN1,n = (
∫
B(u) dµn(u),

∫
2uB(u) dµn(u)) converges in distribution to the random vector

V = (
∫ 1

0
B(u) dµ(u);

∫ 1

0
2uB(u) dµ(u)) where µ is the distribution of the random variable

G(Z1). By the properties of the brownian bridge, this vector V = (V1, V2) is a centered

gaussian vector, with

V ar(V1) = E(V 2
1 ) =

∫ 1

0

∫ 1

0

E(B(u)B(v)) dµ(u)dµ(v)

=

∫ 1

0

∫ 1

0

(min(u, v)− uv) dµ(u)dµ(v)

= E(min(G(Z1), G(Z2)))− E(G(Z))2 = M2 − p21,2
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and similarly V ar(V2) = 4M3 − 4p21,3. It remains to compute

Cov(V1, V2) = E(V1V2) =

∫ 1

0

∫ 1

0

2vE(B(u)B(v)) dµ(u)dµ(v)

=

∫ 1

0

∫ 1

0

2v(min(u, v)− uv) dµ(u)dµ(v)

= 2E(G(Z1) min(G(Z1), G(Z2)))− 2E(G(Z))E(G(Z)2) = 2E1,2 − 2p1,2p1,3.

We have thus proved that Nn converges in distribution to the centered gaussian distribution

with covariance matrix Σa.

We are now ready to prove Statement (i) of Proposition 4, i.e. that the asymptotic

distribution of
√
n
(

(λ̂, k̂)− (λ, k)
)
is the centered gaussian vector with covariance matrix

(J1,2(θ))
−1 Σa (JT1,2(θ))

−1. This is in fact a consequence of the first step (standard M -

estimation theory), because

√
n
(

(λ̂, k̂)− (λ, k)
)

=
√
n
(
g−1(p̂1,2, p̂1,3)− g−1(p1,2, p1,3)

)
where function g : (λ, k) 7→ (g1(λ, k), g2(λ, k)) (which = (p1,2, p1,3) under the W-class) is

locally bijective, Nn
d→ N2(0,Σa), and J1,2(λ, k).Jg−1(g(λ, k)) is the identity matrix of

dimension 2. Details on this jacobian matrix are provided at the end of this subsection.

Let us now deal with Statement (ii) of Proposition 4, i.e. that
√
n(p̂

(W )
1,r − p1,r) converges

in distribution to the centered gaussian with standard deviation σ
(W )
r : this is here

a consequence of Statement (i) via standard delta-method, because
√
n(p̂

(W )
1,r − p1,r) =

√
n
(
gr−1(λ̂, k̂)− gr−1(λ, k)

)
. Proposition 4 is thus proved, because its last statement

(asymptotic normality of f̂ar
(W )

(r)) comes from the relation

√
n(f̂ar

(W )
(r)− far(r)) = −1

r

√
n

(
1

p̂
(W )
1,r

− 1

p1,r

)

and the delta-method. �
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Now, to end this subsection, we provide some details about the expressions of the involved

jacobians. For any j ≥ 1 (values j = 1, j = 2, and j = r − 1 are the ones that appeared in

the proof above), we have gj(λ, k) =
∫ 1

0
hj(x) dx where hj(x; θ) = exp(−jλ(− log x)1/k), as

well as

dhj
dλ

(x; θ) = (−j)(− log x)1/khj(x; θ),

d

dk
(− log x)1/k = − 1

k2
log(− log x).(− log x)1/k,

dhj
dk

(x; θ) =
jλ

k2
log(− log x).(− log x)1/khj(x; θ).

Therefore we obtain

Jr−1(θ) =

(
dgr−1
dλ

(λ, k)
dgr−1
dk

(λ, k)

)
and J1,2(θ) =

 dg1
dλ

(λ, k)
dg1
dk

(λ, k)

dg2
dλ

(λ, k)
dg2
dk

(λ, k)

 ,

where

dgj
dλ

(λ, k) = (−j)
∫ 1

0

(− log x)1/k exp(−jλ(− log x)1/k) dx,

dgj
dk

(λ, k) = (jλ/k2)

∫ 1

0

log(− log x).(− log x)1/k exp(−jλ(− log x)1/k) dx.

Remarks on the way these integrals should be numerically evaluated are provided in the

Appendix.

7.3. Proof of Proposition 5

Statements 2 and 3 are direct consequences of Statement 1, relying on the material contained

in the proof of statements 2 and 3 of Proposition 3 some lines above. We omit the details

and thus just need to prove Statement 1.

First of all, let us note in this section r′ = r − 1 in order to lighten the notations. The

variance
(
σ
(W )
r

)2
depends on r only through the jacobian Jr−1(θ), which we study now.
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We have Jr−1(θ) = ( I1,r , I2,r ) where

I1,r = (−r′)
∫ ∞
0

u1/k exp(−u− r′λu1/k) du,

I2,r =
r′λ

k2

∫ ∞
0

log(u)u1/k exp(−u− r′λu1/k) du.

Proceeding as we did for the development of p1,r in subsection 7.1, the change of variable

v = r′λ.u1/k leads to

I1,r ÷ (−r′) =
k

(r′λ)k+1

∫ ∞
0

vke−v dv − k

(r′λ)2k+1

∫ ∞
0

v2ke−v dv + O(r−(3k+1))

so

I1,r =
−c1(λ, k)

(r − 1)k
+

c̃1(λ, k)

(r − 1)2k
+O(r−3k) where

 c1(λ, k) = kΓ(k + 1)/λk+1

c̃1(λ, k) = kΓ(2k + 1)/λ2k+1

The treatment of I2,r is a bit more involved. We first have

I2,r ÷ (r′λ/k2) =

∫ ∞
0

log

(( v

r′λ

)k)
.
v

r′λ
. exp

(
−(v/(r′λ))k − v

) k

(r′λ)k
vk−1 dv

=
k2

(r′λ)k+1

∫ ∞
0

vke−ve−(v/(r
′λ))k log

( v

r′λ

)
dv

=
k2

(r′λ)k+1

{∫ ∞
0

vke−v log
( v

r′λ

)
dv − 1

(r′λ)k

∫ ∞
0

v2ke−v log
( v

r′λ

)
dv + O(r−2k)

}
Then, noticing that

∫∞
0
xα−1e−x log(x) dx = d

dα

∫∞
0
xα−1e−x dx = Γ′(α) (where Γ is the

Gamma function), we have∫ ∞
0

vke−v log
( v

r′λ

)
dv = (− log(r′λ))

∫ ∞
0

vke−v dv +

∫ ∞
0

vke−v log(v) dv

= (− log(r′λ))Γ(k + 1) + Γ′(k + 1)

= (− log(r′λ))Γ(k + 1)

(
1− Ψ(k + 1)

log(r′λ)

)
= (− log(r′λ))Γ(k + 1) (1 + o(1)) .
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where Ψ(·) = Γ′(·)/Γ(·) is the digamma function. Proceeding similarly for the second term

of I2,r, we obtain

∫ ∞
0

v2ke−v log
( v

r′λ

)
dv = (− log(r′λ))Γ(2k + 1) (1 + o(1))

(where o(1) refers to the asymptotic in r). Finally, the main part of I2,r is

I2,r ' log((r − 1)λ)

{
−c2(λ, k)

(r − 1)k
(1− o1(1)) +

c̃2(λ, k)

(r − 1)2k
(1− o2(1))

}

where c2(λ, k) = Γ(k + 1)/λk, c̃2(λ, k) = Γ(2k + 1)/λ2k, and oi(1) := Ψ(ik + 1)/ log((r −

1)λ) (i = 1, 2) converge slowly to 0 when r →∞. We notice that the term issued from

o1(1) is of larger order than the term c̃2/(r − 1)2k, so finally there is no need to take the

latter into account.

Gathering all the developments obtained so far, and introducing the notations M(θ) =

(J1,2(θ))
−1 Σa (J tg(θ))

−1 and Lr := log((r − 1)λ), we finally obtain via σ(W )
r :

σ2
r,par =

(
−c1

(r − 1)k
−c2Lr

(r − 1)k

)
.M(θ).

 −c1
(r−1)k

−c2Lr

(r−1)k

 .(1 + o(1))

=
L2
r

(r − 1)2k

(
c1
Lr

c2

)
.M(θ).

 c1
Lr

c2

 .(1 + o(1))

∼
(

Lr
(r − 1)k

)2

× (c2(λ, k))2 × (M(θ))2,2

and therefore Statement 1 is proved. �

Remark 5 Naturally, if another estimator (λ̃, k̃) is considered, which estimated variance

can be computed and estimated, then properties of the relative error of the corresponding

estimator p̃(W )
1,r = gr−1(λ̃, k̃) can be deduced from the contents of the proof above, by replacing

the matrix M(θ) by the appropriate covariance matrix in the formula for σ(W )
r .
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APPENDIX

.4. Proof of Lemma 1

The proposition below is a more general version of Lemma 1. It describes the situations

where the two GEV distributions do not necessarily share the same support.

Proposition 6 Suppose that the X and Z samples are issued from the cdfs G and F of

two Generalized Extreme Value distributions GEV (µX , σX , ξX) and GEV (µZ , σZ , ξZ), and

suppose that the shape parameters ξX and ξZ are both null or have the same sign. Consider

the (possibly degenerate and non-continuous) random variable

W = − logG(Z).

Note that P(W ≥ u) = exp(−(u/λ)k) for each u > 0.

1. If ξX = ξZ = 0, then W follows a Weibull distribution. with shape parameter k and scale

parameter λ with

k =
σX
σZ

and λ = exp

(
µX − µZ
σX

)
.
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2. If ξX and ξZ are non-null and have the same sign, let

θX = µX − σX/ξX , θZ = µZ − σZ/ξZ , δ =

∣∣∣∣ ξZσZ (θX − θZ)

∣∣∣∣
and

k =
ξX
ξZ

and λ =

(
ξX
ξZ

σZ
σX

)−1/ξX
.

(a) In the heavy tail case ξX > 0 and ξZ > 0, θX and θZ are the left endpoints of the

distributions G and F and we have :

(H-i) if θX = θZ, then W follows the Weibull(λ, k) distribution.

(H-ii) if θX < θZ, then G(Z) is never close to 0 and W has its values in the interval

[0, u∗] with u∗ = λδ−1/ξX and

P(W ≤ u) =


0 if u ≤ 0

1− exp
(
−{−δ + (u/λ)−ξX}−1/ξZ

)
if u ∈ [0, u∗]

1 if u ≥ u∗

(H-iii) if θZ < θX (improbable case), then G(Z) has a positive probability of being null,

and W is degenerate with a mass at +∞.
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(b) In the bounded tail case ξX < 0 and ξZ < 0, θX and θZ are the right endpoints of

the distributions G and F and we have :

(B-i) if θX = θZ, then W follows the Weibull(λ, k) distribution.

(B-ii) if θX < θZ, then Z ≥ θX ⇔ G(Z) = 1⇔ W = 0, so G(Z) has a mass at 1, and

W has a positive probability of being null, with

P(W = 0) = 1− exp(−δ1/|ξZ |)

and, for u > 0,

P(W ≤ u) = 1− exp
(
−{δ + (u/λ)|ξX |}1/|ξZ |

)
(B-iii) if θZ < θX (improbable case), then G(Z) is never close to 1 andW has its values

in the interval [u∗,+∞[ with u∗ = λδ1/|ξX | and

P(W ≤ u) =

 0 if u ≤ u∗,

1− exp
(
−{−δ + (u/λ)|ξX |}1/|ξZ |

)
if u > u∗.

Remark 6 Note that the described settings, that led to W = − logG(Z) being Weibull,

are only examples of frameworks guaranteeing the W-class assumption. Others exist : for

instance, when X has a Gumbel distribution of cdf G(x) = exp(− exp(−(x− µ)/σ), and Z

is equal to Z = a+ bX, it can be easily proved that W = − logG(Z) is Weibull distributed

with parameters k = 1/b and λ = exp((a+ µ(b− 1))/σ).

Remark 7 The assumption of equal support may seem very restrictive, but we warn the

reader that the needed equality is only about the theoretical supports only, and in practice

this does not mean that the upper values of the X and Z samples will lie in the same zone

(which would mean that our model is not very realistic). As an illustration (among many

others), in the situation ξX = −0.2, µX = 10, σX = 1.5, ξZ = −0.25 and σZ = 1.25, the value
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of µZ that makes the upper endpoints of F and G to be equal is µZ = 12.5, and therefore

θX = θZ = 17.5. But this equality of upper endpoints does not strike the eye when looking

at the two GEV densities, represented in Figure A.1. Note that, for negative tail / shape

parameters, the situation k < 1 corresponds to ξZ being larger than ξX .

[Figure A.1 about here.]

Proof of Proposition 6

The proof is tedious, but not complicated. In case 1 (ξX = ξZ = 0), we have

G(x) = exp

{
− exp

(
−x− µX

σX

)}
and F (z) = exp

{
− exp

(
−z − µZ

σZ

)}
.

The supports of F and G are R, so W = − logG(Z) is ]0,+∞[ valued, with (for u > 0)

P(W ≤ u) = P(Z ≥ µX − σX log(u))

= 1− exp

(
− exp

(
log(u)

σX
σZ

+
µZ − µX
σZ

))
= 1− exp

(
−(u/λ)k

)
because exp((µZ − µX)/σZ) = 1/λk, where the values of k and λ are given in statement 1 of

the Proposition.

Suppose now that we are in case 2, where

G(x) = exp

{
−
(

1 + ξX
x− µX
σX

)−1/ξX
+

}
and F (z) = exp

{
−
(

1 + ξZ
z − µZ
σZ

)−1/ξZ
+

}

with u+ = max(u, 0). The values θX = µX − σX/ξX and θZ = µZ − σZ/ξZ are the respective

values at which F and G are not differentiable.

In the heavy tail case ξX > 0 and ξZ > 0, the quantities in the inner brackets of the

definition of G and F are positive whenever (respectively) x > θX and z > θZ . So θX and θZ

are the lower endpoints of G and F , and consequently statement (H-iii) for θZ < θX holds
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true (i.e. G(Z) is null with probability > 0, so W is degenerate with a mass at +∞). We

suppose now θX ≤ θZ , so that W is positive but can never be infinite, and Z ≥ θX (a.s.).

For a given u > 0, we have (the second equality is due to ξX > 0 and Z ≥ θX)

P(W ≤ u) = P

((
1 +

ξX
σX

(Z − µX)

)−1/ξX
+

≤ u

)

= P
(
Z ≥ µX +

σX
ξX

(u−ξX − 1)

)
= P

(
Z − µZ
σZ

≥ v(u)

)
= 1− exp

(
−(1 + ξZv(u))

−1/ξZ
+

)
where (after some computations)

1 + ξZv(u) =
ξZ
σZ

(θX − θZ) +
σX
σZ

ξZ
ξX
u−ξX = −δ + (u/λ)−ξX .

for the values δ, λ and k stated in the Proposition. Therefore, if θX = θZ (i.e. F and

G have the same support) then the first term (−δ) of 1 + ξZv(u) vanishes and we have

P(W ≤ u) = 1− exp(−(u/λ)k), statement (H-i) is proved. If θX < θZ (i.e. X can take low

values that Z cannot), then statement (H-ii) follows, W being bounded with the upper

endpoint u∗ = λδ−1/ξX (this upper endpoint may be rather large when θX is not far from

θZ).

Finally, in the bounded tail case ξX < 0 and ξZ < 0, the quantities in the inner brackets of

the definition of G and F are positive whenever (respectively) x < θX and z < θZ , so now

θX and θZ are the upper endpoints of G and F . Let us first say that in this setting we have
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in general

P(W ≤ u) = P
((
−|ξX |
σX

(Z − θX)

)
+

≤ u|ξX |
)

= 1− P
((
−|ξX |
σX

(Z − θX)

)
> u|ξX |

)
= P

(
Z ≥ θX −

σX
|ξX |

u|ξX |
)

= 1− exp

(
−
(
ξZ
σZ

(θX − θZ) +
σX
σZ

ξZ
ξX
u|ξX |

)1/|ξZ |

+

)

In the inner bracket of the last line, the second term equals (u/λ)|ξX |, and the first term is

zero when θX = θZ (so statement (B-i) is proved), is equal to −δ when θZ < θX , and to δ

when θZ > θX . Let us deal with θZ > θX first. In this case, Z can be greater than θX with

positive probability, so G(Z) = 1 and thusW = 0 is a non negligible event : statement (B-ii)

is thus proved (P(W = 0) is given by the formula above with u = 0). We finally deal with the

θZ < θX (improbable in practice) case : statement (B-iii) should be clear to the reader, by

identifying the value u∗ such that the inner bracket above is zero for u ≤ u∗. Note that this

value u∗ is rather small when θZ is not much greater than θX (i.e. when the "equal support

condition" of assumption (MA) is only slightly violated). �

.5. Computational issues and details

A number of quantities described in this paper require numerical procedures for computing

them. Among them :

− various integrals such as p1,r, p̂
(W )
1,r , Mr or E1,2 (described in Propositions 1 and 4), or

the jacobians Jj(λ, k) appearing in Proposition 4 ;

− computation of the estimator θ̂ := (λ̂, k̂) by solving a non-linear system of 2 equations

(involving integrals evoked above).
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Appropriate procedures have been coded in R with care so as to minimize numerical

uncertainty regarding these issues (see the codes on the second author’s webpage). We wanted

in this section to point out and explain why the computation of the integrals involved with

this work is a particularly sensitive issue.

Let us look for instance at the computation of the estimator p̂(W )
1,r . It turns out that,

generally, for a moderate or large value of r (and/or some values of the couple (λ̂, k̂)), the

function we need to integrate in the expression

p̂
(W )
1,r :=

∫ 1

0

exp(−(r − 1)λ̂(− log x)1/k̂) dx

can be very or extremely flat in almost all the interval ]0, 1[, and then grows very or extremely

steeply in the left neighborhood of 1 : this makes the concrete numerical evaluation of these

integrals particularly problematic from the computation accuracy point of view. This is why

we used in our R codes an alternative equivalent formula

p̂
(W )
1,r =

1

c

∫ 1

0

exp(−r′(− log u)1/k̂)u1/c−1 du

where r′ = (r − 1)λ̂/c1/k and the (generally large) real value c > 0 is chosen so that the

function inside this second integral is less flat, and the integral is thus easier to numerically

compute (a possibility is to choose c so that r′ is equal to 1) . One may argue that

approximations to Laplace transforms of Weibull variables are available in the literature,

in the form of series representations : we have however observed that they are particularly

unreliable in our setting, because of the great variability of situations and values of the

parameters involved, and therefore we decided not to use them.

Concerning the other integrals evoked at the start of this subsection (i.e. those involved

in the formula of the asymptotic variance of p̂(W )
1,r ), they must also be computed with similar

caution. For instance, notingWi = − logG(Zi) and considering the uniform variables Vi such
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that Wi = λ(− log Vi)
1/k, we have

Mr = E
(
Gr−2(Z1)G

r−2(Z2)(min(G(Z1), G(Z2)))
)

= E
(
e−(r−1)(W1+W2)emin(W1,W2)

)
= 2E

(
e−(r−1)(W1+W2)eW2IW1≥W2

)
= 2E

(
e−(r−2)W2e−(r−1)W1IV1≤V2

)
= 2

∫ 1

0

{
exp(−(r − 2)λ(− log y)1/k)

∫ y

0

exp(−(r − 1)λ(− log x)1/k) dx

}
dy

In this double integral, the "flatness problem" is even more important in the inner integral

(in x) than for the evaluation of p1,r, since here we only integrate between 0 and y : so

for small values of y the integrated function takes extremely small and similar values.

Therefore, for computing Mr accurately , we advocate to rely on the following formula,

where r′ := (r − 2)λ/c1/k for some value c to be chosen (for instance such that r′ = 1)

Mr =
2

c

∫ 1

0

exp(−r′(− log v)1/k)

(∫ v1/c

0

exp(−(r − 1)λ(− log x)1/k) dx

)
v1/c−1 dv.

Concerning the value E1,2 also appearing in the matrix Σa,

E (G(Z1) min(G(Z1), G(Z2))) = E
(
e−W1e−max(W1,W2)

)
= E

(
e−2W1IW1≥W2

)
+ E

(
e−(W1+W2)IW1≤W2

)
= A+

1

2
p21,2

where, setting φ(v) = E(exp(−2λ(− log v)1/k)Iv≤V2) = (1− v) exp(−2λ(− log v)1/k), we have

A = E (φ(V1)) = E
(
exp(−2λ(− log V1)

1/k)
)
− E

(
V1 exp(−2λ(− log V1)

1/k)
)

= E
(
e−2W1

)
−
∫ 1

0

u2 exp(−2λ(− log u)1/k)
du

u

= p1,3 −
1

c

∫ 1

0

exp(−(2λ/c1/k)(− log x)1/k) x2/c−1 dx

41



Environmetrics Worms and Naveau

so that finally (for some constant c to be chosen)

E1,2 = p1,3 + 1
2
p21,2 −

1

c

∫ 1

0

exp{−(2λ/c1/k)(− log x)1/k}x2/c−1 dx.

Similarly, we provide here the expressions that we used in our R routines for evaluating the

partial derivatives with respect to λ and k of the functions gj(θ) (for j = 1, 2 or r, described in

subsection 7.2), and thus the jacobians involved in the asymptotic variance of our parametric

estimator :

dgj
dλ

(λ, k) = (−j)c−1−1/k
∫ 1

0

(− log u)1/k exp(−j′(− log u)1/k). u1/c−1 du

dgj
dk

(λ, k) = (jλ/k2)c−1−1/k
∫ 1

0

log(−(1/c) log u)(− log u)1/k exp(−j′(− log u)1/k). u1/c−1 du

where j′ := jλ/c1/k for some value c to be chosen.
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(a) Coverage probabilities based on (9) for log(p̂1,r)
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(b) Coverage probabilities based on (9) for log(p̂
(W )
1,r )

Figure 1.Heatmaps of 95% coverage probabilities of confidence intervals for p1,r when r = 10. Values inside cells are the
coverage probabilities obtained from 1000 estimated confidence intervals based on Equation (9) with X ∼ GEV (µX , 1, ξX) and
Z ∼ GEV (µZ , 1, ξX/k) with sample sizes n = 30 and m = 150. Colors also correspond to the value of the coverage. The x and y
axis indicate the shape parameter ξX and the ratio 1/k = ξZ/ξX , respectively. Panels (a) and (b) correspond the estimates defined by
(3) and (7), respectively.
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9.88

5.66

3.59

2.44

1.75

1.3

1

21.21

10.08

5.49

3.28

2.1

1.42

1

97.66

32

12.86

5.95

3.05

1.69

1

9536.74

1024

165.38

35.4

9.31

2.87

1

0

0

0.01

0.03

0.11

0.35

1

0.01

0.03

0.08

0.17

0.33

0.59

1

0.05

0.1

0.18

0.3

0.48

0.7

1

0.1

0.18

0.28

0.41

0.57

0.77

1

1

1.25

1.5

1.75

2

2.25

2.5

−0.4 −0.3 −0.2 −0.1 0.1 0.2 0.3 0.4

ξX

ξ Z
ξ X

0.00

0.25

0.50

0.75

1.00
cov

(c) σX = 1, σZ = 2.5

Figure 2. Same simulation setup than in Figure 1, but coverage probabilities of confidence intervals for far(r) based on formula
(10) when r = 20 and with changing scale parameters. Each cell contains the rounded value of the Weibull parameter λ =

((ξX/ξZ)× (σZ/σX))−1/ξX . The y-axis corresponds to the inverse of the Weibull parameter k = ξX/ξZ .
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Figure 3.Records analysis of yearly maxima of daily maxima of near-surface air temperature issued from the numerical climate
model CNRM-CM5 of Météo-France (the factual run corresponds to “ ‘all forcings" run in 1975-2005 and the counterfactual one to a
“natural forcing" run over 1850-2005: This map displays p-values of the likelihood-based Weibullity test, see Section 3.5, white areas
corresponding to the p-values lower than 5%
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Figure 4. Same setup as in Figure 3: Weibull parameters estimated from (7)
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(a) Map of p̂(W )
1,10 (white zones when p̂(W )

1,10 < 1/r ; maximum is at 0.729, 95th percentile at 0.409)

(b) Map of far(10) confidence interval 95% lower bound (white zones when this lower bound is ≤ 0)

Figure 5. Same setup as in Figure 3: Probability that the factual world produces a temperature record with respect to the previous 9
counterfactual years. White zones correspond to the gridpoints at which f̂ar

(W )
(10) or this lower bound is nonpositive (in the second

case, this means that the hypothesis "far(10) ≤ 0" is not rejected at the 2.5% risk).
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Figure 6.A local analysis at the gridpoint near south Florida. Point estimates (red solid) and confidence intervals (black dotted) of
p1,r and far(r) are shown in the two lower panels for the values r = 5, 10, 20, 30, 50. In the upper left panel, the histogram of the
counter-factual data (with blue ticks on the horizontal axis being the factual data values). In the upper right panel, the qqplot of values
Ŵ1, . . . , Ŵ31 indicates that (X,Z) seems to belong to the W-class.
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Figure A.1.Densities of GEV distributions with equal support : ξX = −0.2, µX = 10, σX = 1.5 (black line), ξZ = −0.25, µZ = 12.5,
σZ = 1.25 (red line), Weibull shape parameter k = 0.8 < 1.
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