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Abstract

In real-life machine learning applications, a common problem is that raw data (e.g. remote sensing data) is

sometimes inaccessible due to confidentiality and privacy constrains of corporations, making classification

methods arduous to work in the supervised context. Moreover, even though raw data is accessible, limited

labeled samples can also seriously affect supervised methods. Recently, supervised and unsupervised clas-

sification (clustering) results related to specific applications are published by more and more organizations.

Therefore, combination of supervised classification and clustering results has gained increasing attention to

improve the accuracy of supervised predictions. Incorporating clustering results with supervised classifi-

cations at the output level can help to lessen the recline on information at the raw data level, so that is

pertinent to improve the accuracy for the applications when raw data is inaccessible or training samples are

limited.

We focus on the combination of multiple supervised classification and clustering results at the output

level based on belief functions for three purposes: (1) to improve the accuracy of classification when raw

data is inaccessible or training samples are highly limited; (2) to reduce uncertain and imprecise information

in the supervised results; and (3) to study how supervised classification and clustering results affect the

combination at the output level.

Our contributions consist of a transformation method to transfer heterogeneous information into the

same frame, and an iterative fusion strategy to retain most of the trustful information in multiple supervised

classification and clustering results.
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1. Introduction

Ensemble methods can efficiently take advantage of information from different classifiers and thus out-

perform any single one [11]. However, in many real-life applications, raw data for machine learning methods

is sometimes inaccessible due to confidentiality, and only results of classification and clustering are avail-

able. In addition, despite the possible accessibility of raw data, limited labeled samples can also induce low

performance of supervised classifiers and ensemble methods.

Current ensemble methods can be classified into two aspects: the level of supervision (supervised, semi-

supervised, unsupervised), and the level of execution of the ensemble process (no ensemble, ensemble at the

raw data level and the ensemble at the output level) [15], [16]. Ensemble methods in each category have

their specific advantages and limitations. Supervised ensemble methods can easily outperform any single

classifer. Nevertheless, they rely heavily on training samples in classification problems [17]. In general, a

long-standing rule of thumb in the supervised context requires training samples to be 10 times, preferably 100

times, more than the number of variables. Unfortunately, it is generally challenging to guarantee sufficient

training samples in many complex situations. Conversely, unsupervised ensemble methods do not require

training samples, yet generating unlabeled predictions [7], [36]. Semi-supervised ensemble methods overcome

the constraints on training samples and thus has gain increasing attention in recent studies [3],[30].

Ensembles at raw data can fully exploit information of data. However, in numerous applications, raw

data from different sources have different formats, making it difficult to combine them in the same scenario.

More importantly, in real-world applications, raw data can sometimes be inaccessible due to confidentiality

and privacy constrains of corporations, which makes ensembles arduous to work at the raw data level.

Ensembles at the output level can reduce the dependence on the raw data, so that they are more pertinent

to employ when limited information is available at the raw data level. Another benefit of the output level

fusion is its higher robustness and less sensitivity on the type of data. It has also been proved that fusion

at the output level is more powerful and effective in managing uncertainty and imprecision in complicated

classification problems [26], [27].

Another important issue in ensemble methods is the management of uncertainty and imprecision that

refer to epistemic states caused by imperfect or unknown information. Decreasing uncertainty can help to

ameliorate predictions of ensemble methods. However, handling uncertainty at the output level is challenging

for the current ensemble methods. We therefore propose a novel solution based on belief functions to reduce

the uncertainty of supervised methods by combining with clustering results. Clustering results can provide

information on compactness and separateness of data. Moreover, various numbers of clusters can reflect

information on distributions of data, probably being different from distributions of classes. These information

can not be reflected by classification results. Therefore, the combination with clustering results can provide

heterogeneous yet supplementary information for classifications, so that it decreases the uncertainty caused
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by lack of knowledge or imperfect information in classification results.

In this paper, we propose an evidential fusion method to combine supervised and clustering results

(EFSC) at the output level. The proposed EFSC can effectively combine information from clustering with

classification and thus decrease the dependence on raw data and labeled samples. The uncertainty and

imprecision at the raw data level can finally be reflected at the output level and therefore can be measured

by belief functions. The proposed EFSC attempts to deal directly with uncertainty and imprecision at the

output level of supervised results by combining several unsupervised results. In this way, the most reliable

information from different sources can be extracted and then be combined to improve the overall accuracy.

The rest of the paper is organized as follows: In section 2 and section 3, we present the current semi-

ensemble methods at output level and the basic concepts of belief functions. In sections 4, we propose a

transformation method to transfer heterogeneous information into the same frame. In section 5, we propose

an iterative fusion process to retain the most trustful information when combining multiple supervised and

unsupervised predictions. A numerical example of EFSC is presented in section 6. In section 7, we compare

the proposed method in framework of belief functions with current semi-ensemble methods on different data

sets. In section 8, we conclude on our research work and present the perspectives.

2. Related works

Many previous efforts have shown the effectiveness of combining multiple machine learning methods. In

this section, we briefly present several related studies, including ensemble methods at the raw data level in

section 2.1 and at the output level in section 2.2.

2.1. Ensemble learning at the raw data level

Ensemble learning at raw data level can be also considered as learning in the supervised context, where the

raw data is applied to train a combination process [32], [13]. Many studies have focused on the combination

at the raw data level. For instance, multi-view learning, a popular method at raw data level, can learn

from both labeled and unlabeled data from multiple sources [5], [37]. It aims to learn a function to model

each view and jointly optimizes all the functions to improve the overall performance. Multi-view learning

relies heavily on the initial performance of the supervised classifier. The significance of the initial accuracy

of a basic classifier has been fully studied in [29], proving the supervised classifier is essential for the final

combination results. In semi-supervised context, numerical studies have shown the remarkable performance

of fuzzy methods [3],[30]. It has been experimentally proved that the low-fuzzy samples added to the

training dataset can help to improve the accuracy of classification [30]. A novel fuzziness based semi-

supervised learning approach is proposed in [3], which produces fuzzy memberships on unlabeled samples

to assist with supervised methods. These two researches demonstrate the importance at the raw data level

to use fuzziness, also a kind of uncertainty, to improve the accuracy of classification.
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2.2. Ensemble learning at the output level

At the output level, major research has been devoted to ensemble methods for either classification or

clustering. In the supervised context, majority voting [28] and belief functions [4], [25] are commonly used

in combination at the output level. Compared to majority voting, the method based on belief functions

can cope with more complex problems because several combination and decision rules are proposed in this

framework to handle different situations [33], [22], [24]. In the unsupervised context, the combination is

more difficult because single model has always different numbers of clusters. The final combination results

are required to obtain the most agreement with each individual clustering, modeled by an objective function

using consensus maximization [14]. Collaborative clustering [7], [36], is another family close to multi-view

clustering, which allows different types of algorithms to work together. The theory of belief functions has

also been used in combination with unsupervised methods in an early research [20], which has been proved

to be effective for remote sensing data.

The combination of supervised and unsupervised methods has always been considered as a great challenge

due to heterogeneous information in clustering. Less effective combinations have been proposed for high

level fusion. Existing methods model the combination process as an optimization problem to find the most

agreement with each individual method.

One of the early remarkable researches is the Bipartite Graph-based Consensus Maximization (BGCM)

algorithm [15]. It considers results of clustering as constraints and maximizes the consensus between super-

vised and unsupervised predictions. C3E [1] is another early ensemble model that combine heterogeneous

information. It uses multiple classifiers to generate an initial probability distribution at the class level for

each object. Recently, the UPE model [2] has been proposed, casting the combination problem as an uncon-

strained probabilistic embedding problem. It assumes that objects and groups (classes/clusters) have latent

coordinates without constraints in a D-dimensional Euclidean space. The prediction of an object is then

determined by the distance between the object and the classes in the embedded space. A novel method,

EC3 [6], has recently been proposed to merge classification and clustering by mapping the combination into

a convex optimization problem. The objective function is based on the consensus at the object level as well

as at the group level, which surpasses previous methods on different data sets.

Most of the existing methods considered clustering predictions as supplementary constraints for super-

vised results, consequently relying more on supervised methods than unsupervised ones. BGCM, C3E and

EC3 take the probability of class distribution as the core of the objective function in which clustering results

are used as supplementary constrains. It indicates that sufficient training samples are needed to ensure

the performance of supervised methods, and on the other hand, unsupervised results have not been fully

exploited. Less attention has been paid to the management of uncertainty and imprecision in the fusion

process, which however includes a wealth of information to improve accuracy.
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Belief functions, an effective theory for addressing uncertain and imprecise information, are usually con-

sidered to model inperfect information in combination. Numerous studies [31], [21], [23] have demonstrated

the efficiency of belief functions in both classification and clustering. A novel method for combining su-

pervised and unsupervised methods was proposed in [19], in which the results of clustering are modeled as

discounting coefficients to generate mass functions in the same frame as classification. The experiments in

[19] demonstrate a great potential for solving the combination problem by belief functions.

3. Basic concepts of belief functions

The theory of belief functions is a popular method for dealing with uncertainty and imprecision with the

belief reasoning framework [34], [8]. This section presents the basic concepts of belief functions, which will

be used in this paper.

3.1. Representation of information

Let’s consider a decision from the source E regarding a variable X. All possible states ωx of X construct

a finite set Ω, called the frame of discernment. The information supporting the decision on X can be

quantified by a basic belief assignment (BBA), also called mass function mΩ, which projects 2Ω on [0, 1],

verifying:

∑
A⊆Ω

mΩ
E(A) = 1 (1)

Function mΩ
E represents the state of knowledge of the source E about the variable X on Ω. When there

is no ambiguity, it can be simplified as m. We give the basic and important concepts of BBA as follows:

Definition 1 (Focal element). Focal element is a subset A of Ω verifying m(A) > 0.

Definition 2 (Normal BBA). A BBA is normal if ∅ is not a focal element.

Definition 3 (Bayesian BBA). A BBA is Bayesian when all its focal elements are singletons.

Definition 4 (Simple BBA (SBBA)). A BBA is simple if it has no more than two focal elements, Ω

being included. In this paper, we denote the SBBA as mA, where A is the focal element besides Ω.

Definition 5 (Categorical BBA (CBBA)). A BBA has only one focal element A, denoted as m[A]. We

have m[A](A) = 1.

Definition 6 (Non-dogmatic BBA). A BBA is non-dogmatic if Ω is a focal element.

In belief functions, uncertainty can be represented by BBA values on singletons, and imprecision refers

to BBA values on unions. Specifically, the BBA value on Ω (i.e. m(Ω)) is called the ignorance.
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3.2. Discounting

Discounting operation is used to model the reliability of the source regarding a piece of information, and

defined by:

αm(A) = αm(A) + (1− α)m(Ω),∀A ⊆ Ω (2)

with α ∈ [0, 1]. A discounting coefficient α reflects the reliability of the source. α = 1 means the source is

completely reliable and the information it provides can thus be entirely taken into account. On the contrary,

a null α indicates that the source is not reliable at all and thus its information cannot be considered.

3.3. Least Committed Principle (LCP)

The Least Commitment Principle plays a significant role in belief functions, as does the principle of

maximum entropy in Bayesian Probability Theory. Given several BBAs compatible with a set of constraints,

the least informative one should be selected [35]. Many partial orderings are proposed on the set of belief

functions to compare information by LCP. We can compare separable BBAs by the weight of evidence w,

defined as:

w(A) =
∏
B⊇A

q(B)(−1)|B|−|A|+1

,∀A ⊂ Ω (3)

where q represents the commonality function, defined as:

q(A) =
∑
B⊇A

m(B) (4)

For a SBBA mA, the weight of evidence can be simplified as w(A) = −ln(mA(Ω)). Given two non dogmatic

BBAs m1 and m2, m1 is considered more committed than m2 if it verifies w1(A) ≤ w2(A),∀A ⊂ Ω. This is

noted as m1 vw m2 [10] called w−ordering, and we can also say m1 is w-more committed than m2.

3.4. A distance model to estimate BBAs

Distance BBAs estimation is suggested by Denoeux [9]. For a group B (B ⊆ Θ) consisting of a set of

objects, the closer to the center of B, noted as B̄ object x is , the more certain in B x could be. This

information can be modeled by a SBBA for the object x, ∀B ⊆ Θ:

m
Θ(B) = αe−γd(x,B̄),

mΘ(Θ) = 1− αe−γd(x,B̄).

(5)

where α is a discounting coefficient and γ can be used to handle the lack of knowledge, and d represents the

Euclidean distance.
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3.5. Transformation of BBAs

A transformation proposed by Karem [19] is to project a BBA in Θ to Ω based on the similarity measured

by proportion. For a group pf objects X, the similarity between A and B is modeled by a BBA mns verifying:

mns(A) =
|{x : x ∈ A} ∩ {x : x ∈ B}|

|{x : x ∈ B}|
, A ⊆ Ω, B ⊆ Θ, x ∈ X (6)

The transformation of a BBA from Θ to Ω, ∀A ⊆ Ω,∀B ⊆ Θ, is defined by:

mΘ↑Ω(A) = mΘ(B)mΩ
ns(A) (7)

mΘ↑Ω(Ω) = 1−mΘ(B)(1−mΩ
ns(A)) (8)

where mΘ is the distance model presented in section 3.4

3.6. Combination of information

Two BBAs m1 and m2 representing information from two independent and reliable sources, can be

combined by the conjunctive rule. For all A ⊆ Ω, we have:

m1 ∩©m2(A) =
∑

B∩C=A

m1(B)m2(C) (9)

Dempster’s rule is equivalent to the normalized conjunctive rule, assuming m1 ∩©m2(∅) 6= 1, using equa-

tion (10), defined for all A ⊆ Ω by:

m1 ⊕m2(A) =


m1 ∩©m2(A)

1−m1 ∩©m2(∅) if A 6= ∅,

0 otherwise,

(10)

Both rules are commutative and associative and assume that combined evidence is cognitively independent

and reliable.

If we only know at least one source is reliable, we can use the disjunctive rule. For all A ⊆ Ω, we have:

m1 ∪©m2(A) =
∑

B∪C=A

m1(B)m2(C) (11)

3.7. Canonical decomposition

Canonical Decomposition, proposed by Shafer [34], describes that a BBA can be considered as the results

of ⊕ combination of a group of SBBAs as follows:

m =
⊕
∅6=A⊂Ω

mA (12)

If the unique decomposition exists, m is said separable.
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3.8. Decision based on BBAs

Decision is the last step in the framework of belief functions, based on combined mass functions from

multiple sources. For each object, a subset of the frame of discernment has to be chosen to maximize a

certain criterion. In belief functions, several decision rules are avaiable. We use the minimum Jousselme

distance [12] to make decisions.

The minimum Jousselme distance (the minimum loss of confidence):

x ∈ A, if dJ(m(x),m[A]) = minA∈2Ω{dJ(m(x),m[A])} (13)

where m(x) is the BBA of object x, and dJ(m(x),m[A]) is Jousselme distance between the m(x) and the

categorical m[A] with A as the focal element. Jousselme distance [18] between two BBA m1 and m2 is

defined by:

dJ(m1,m2) =

√
1

2
(m1 −m2)TJ(m1 −m2) (14)

where J is the Jaccard weighting matrix defined as:

J =
|A ∩B|
|A ∪B|

,∀A ⊆ Ω,∀B ⊆ Ω (15)

4. Transformation of heterogeneous information in belief functions

In this section, we present the proposed transformation method in the framework of belief functions. This

method can transform both uncertainty and imprecision in a BBA from its original frame of discernment to

any other target frame, based on the similarity at the output level. Section 4.1 explains how we measure and

model the similarity information between classification or clustering results in different frames of discernment.

We illustrate the proposed transformation for heterogeneous information in section 4.2.

4.1. Similarity information

Jaccard Index originally is used to measure similarity between two finite sample sets. In land cover

classification problem, a class and a cluster can be considered as two different finite sets which may contain

some pixels in common. Therefore, we can use Jaccard Index to measure similarity between a class and a

cluster. The more pixels they have in common, the more similar they are. For a group of objects X, suppose

we have two methods c and s such that c can separate X in frame of discernment Θ and s in Ω. Here c

and s can be a classification or a clustering. Jaccard Index is defined based on the classification/clustering

results as:

Jac(Ti, Oj) =
|{x : x ∈ Oj} ∩ {x : x ∈ Ti}|
|{x : x ∈ Oj} ∪ {x : x ∈ Ti}|

, Oj ⊆ Ω, Ti ⊆ Θ, x ∈ X (16)
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A matrix JM = [Jac(Ti, Oj)] can be used to measure the similarity of the classification/clustering results

about any x in Ω and Θ. Apparently, the element Jac(Ti, Oj) can be only affected by the subsets it involves,

so it is independent of the other elements in the matrix. Jac(Ti, Oj) gives uncertainty on the information

that Ti and Oj are the same and nothing more, which can be modeled by a SBBA mHij in the frame of

discernment Hij = {Yij , Nij}. Yij represents the class Oj and the cluster Ti are the same while Nij indicates

they are different. The information from a Jaccard Index between Oj and Ti can be modeled as a SBBA

by:

m
Hij

ij (Yij) = Jac(Ti, Oj),

m
Hij

ij (Hij) = 1− Jac(Ti, Oj).
(17)

where m
Hij

ij (Yij) indicates the support on the information that Oj and Ti are the same, and m
Hij

ij (Hij)

represents we know nothing about the relationship between Oj and Ti.

4.2. The proposed transformation of BBA

The information provided by the method c in the frame of discernment Θ can be modeled by a BBA

mΘ
c . To combine it with BBAs in the frame of discernment Ω, the crucial step is to transfer mΘ

c as mΩ
c .

The transformation proposed in [19] takes only uncertainty on singletons from clustering, yet ignoring

imprecision. To fully exploit the information in clustering, we decompose the original BBA mΘ
c into a set

of SBBAs, so that both uncertainty and imprecision can be well preserved during the transformation. The

proposed transformation consists of the following four steps:

Step 1: Decompose a BBA on the original frame of discernment to SBBAs

Suppose mΘ
c is a separable mass which accordingly can be decomposed as several SBBAs as

mΘ
c =

⊕
∅6=Ti⊂Θ

mΘ
c,Ti

(18)

where mΘ
c, Ti

indicates the SBBA from the method c and its focal element besides Θ is Ti. We can denote

mΘ
c, Ti

as: m
Θ
c, Ti

(Ti) = t,

mΘ
c, Ti

(Θ) = 1− t.
(19)

The SBBAs after decomposition can be considered as multiple independent sources that entirely preserve

the information from mΘ
c .

Step 2: Transfer a SBBA on the original frame of discernment to the target frame of discernment

We denote the transferred SBBA on Ti toOj asmΩ
Ti,Oj

. It indicates the uncertainty about the information

that object x clustered as Ti should be labeled as Oj , incorporating the similarity between Ti and Oj .
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To calculate mΩ
Ti,Oj

in Ω, we can use the uncertainty on Ti or Θ as a discounting coefficient to modify

the similarity BBA m
Hij

ij . There are two strategies for performing this simple transformation: <1> using

the uncertainty on Ti as a discounting coefficient to weaken m
Hij

ij (Yij); <2> using the ignorance on Θ as a

discounting coefficient to weaken m
Hij

ij (Hij).

In strategy <1>, ∀Ti ⊂ Θ,∀Oj ⊂ Ω, we have:

m1,Ω
Ti,Oj

(Oj) = m
Hij

ij (Yij) ∗mΘ
c,Ti

(Ti)

= Jac(Ti, Oj) ∗ t
(20)

m1,Ω
Ti,Oj

(Ω) = 1−mHij

ij (Yij) ∗mΘ
c,Ti

(Θ)

= 1− t ∗ Jac(Ti, Oj)
(21)

In strategy <2>, ∀Ti ⊂ Θ,∀Oj ⊂ Ω, we have:

m2,Ω
Ti,Oj

(Oj) = 1−mHij

ij (Hij) ∗mΘ
c,Ti

(Θ)

= 1− (1− t) ∗ (1− Jac(Ti, Oj))

= t+ Jac(Ti, Oj)− t ∗ Jac(Ti, Oj)

(22)

m2,Ω
Ti,Oj

(Ω) = m
Hij

ij (Hij) ∗mΘ
c,Ti

(Ti)

= (1− t) ∗ (1− Jac(Ti, Oj))

= 1− t− Jac(Ti, Oj) + t ∗ Jac(Ti, Oj)

(23)

According to the Least Committed principle (LCP), we should choose the less committed transferred

SBBA between strategy <1> and strategy <2>.

Lemma 1. For two give non dogmatic SBBAs m1,Ω
Ti,Oj

and m2,Ω
Ti,Oj

, m1,Ω
Ti,Oj

is less committed than m2,Ω
Ti,Oj

with w-ordering.

Proof. According to equations (20), (21) (22), (23), ∀t, Jac(Ti, Oj) ∈ [0, 1], we have:

m1,Ω
Ti,Oj

(Oj) +m1,Ω
Ti,Oj

(Ω) = 1 (24)

m2,Ω
Ti,Oj

(Oj) +m2,Ω
Ti,Oj

(Ω) = 1 (25)
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For all Oj ⊂ Ω, we always have:

2 ≤ 1

t
+

1

Jac(Ti, Oj)

⇔ 2t ∗ Jac(Ti, Oj) ≤ t+ Jac(Ti, Oj)

⇔ t ∗ Jac(Ti, Oj) ≤ t+ Jac(Ti, Oj)− t ∗ Jac(Ti, Oj)

⇔ m1,Ω
Ti,Oj

(Oj) ≤ m2,Ω
Ti,Oj

(Oj)

⇔ −ln(m1,Ω
Ti,Oj

(Ω)) ≥ −ln(m2,Ω
Ti,Oj

(Ω))

⇒ w1,Ω
Ti,Oj

≥ w2,Ω
Ti,Oj

⇒ m2,Ω
Ti,Oj

vw m1,Ω
Ti,Oj

(26)

m1,Ω
Ti,Oj

is less committed than m2,Ω
Ti,Oj

and should therefore be selected, simplified as mΩ
Ti,Oj

.

Step 3: Combine all the evidence from transferred SBBAs

The transformed SBBA mΩ
Ti,Oj

represents only one piece of evidence on object x in Oj . From the

perspective of clustering, x can also be clustered into different singletons or unions in Θ. The imprecision

should also be considered when reconstructing the supports for the assertion that x is in Oj . Since all

SBBAs transferred from Ti (∀Ti ⊂ Θ) to Oj are independent, we can combine them by Dempster’s rule:

mΩ
c,Oj

=
⊕
∀Ti⊂Θ

mΩ
Ti,Oj

, (27)

The SBBA mΩ
c,Oj

on Ω represents the evidence that object x is labeled as Oj knowing all the evidence,

provided by the method c on Θ, that x belongs to each Ti (∀Ti ⊂ Θ).

Step 4: Combine SBBAs on the target frame of discernment

Since mΩ
c,Oj

represents only a piece of evidence on the focal element Oj , we have to combine all the

evidence on Ω to obtain a normal BBA as:

mΩ
c =

⊕
∀Oj⊂Ω

mΩ
c,Oj

, (28)

mΩ
c indicates a normal BBA on Ω with the results of the method c which are initially generated on Θ.

Figure 1 illustrates the process on the proposed transformation method. mΘ
c is first decomposed into

a set of SBBAs, e.g., mΘ
c,T1

, ...,mΘ
c,Tn

. For each SBBA such as mΘ
c,T1

, it can be transferred as a group of

SBBAs on Ω using similarity information. By doing so, each focal element on Ω has a group of evidence

from Θ, which can be combined by Dempster’s rule. To obtain a normal BBA, the SBBA on Ω can also be

combined by Dempster’s rule. The proposed transformation is more cautious because both uncertainty and

imprecision on Θ are preserved and transferred into Ω, whereas the transformation in [19] takes only into

account uncertainty.
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Figure 1: Transformation method to change the BBA in frame of discernment Θ to Ω.

5. Evidential fusion of supervised methods and clustering (EFSC)

The proposed transformation allows to transfer heterogeneous information from clustering to the same

frame of discernment as classification, on the basis of which combining different classification and clustering

methods becomes possible. Clustering with different numbers of clusters affects differently on the fusion

with classification. To efficiently synthesize the information derived from clustering, we propose an iterative

fusion process that combines several classification and clustering methods.

For a group of objects X = {x1, x2, ..., xN} to be classified, suppose we have a group of classification

S = {s1, s2, ..., sM} and a group of clustering C = {c1, c2, ..., cL} with different numbers of clusters. We

denote the frame of discernment of a classification as Ω = {ω1, ω2, ..., ωx} and that of a clustering as

Θ = {θ1, θ2, ..., θy}. To simplify the problem, we can merely measure the similarity between each class ωj

and each cluster θi. Thus the similarity matrix JM can be simplified to the size |Ω| × |Θ|.

5.1. Selection of partial information in clustering

We propose a criterion to control the iterative process to ensure that only useful information from

clustering results is fused. In this case, we are more interested in the partial information about clusters

rather than evaluate the whole clustering. Therefore, at each iteration we have to decide whether the
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information from certain clusters should be fused with the classes.

Let’s denote, ∀ωj ∈ Ω, W k
j = {x : x ∈ ωkj }, for all the objects classified as ωj in iteration k. After

combination with a clustering cl, a new set of objects labeled as ωj is generated, denoted as Wj,cl = {x : x ∈

ωj}. This criterion is used to decide whether the information in Wj,cl should be updated to W k
j . Results

updated by the criterion are denoted by W k+1
j . Note that, if the information in Wj,cl is synthesized, W k+1

j

becomes the union of W k
j and Wj,cl . When the uncertainty in Wj,cl is less than that in W k

j , we update the

information in W k
j by Wj,cl . For each object x ∈ W k

j , its uncertainty represented by BBA after decision is

transformed to a scalar RWk
j

, called by loss of confidence, defined based on Jousselme distance by:

RWk
j

= dJ(m(x),m[ωj ]) (29)

where m(x) is the BBA of the object x and m[ωj ] is the categorical BBA such that m(ωj) = 1. A smaller

distance represents less loss of confidence on ωj for object x. The loss of confidence of class ωj , denoted

RWk
j

, is the average loss of confidence of all objects x in W k
j , as follows:

RWk
j

=

∑
x∈Wk

j

RWk
j

|W k
j |

(30)

We update the information, i.e. labels, BBAs and losses of confidence in the iteration k of all objects in

each class W k
j when RWj,cl

< RWk
j

. In some situations, due to insufficient information on certain classes,

it is possible that no decision is made on these classes after combination. We therefore stop merging new

information with these classes so that they can be retained during the iterative fusion process and has a

relatively high uncertainty. Details of the criterion are given in the algorithm 1.

Note that due to the cautiousness of this criterion, the loss of confidence only decrease for classes that have

less disagreement between classification and clustering. Let’s denote Vj,cl = W k
j ∩Wj,cl , Pj,cl = W k

j − Vj,cl ,

Qj,cl = Wj,cl −Vj,cl . Vj,cl represents a group of objects labeled as ωj before and after fusion with clustering

cl. Pj,cl indicates a group of objects, originally labeled as ωj , yet which are not reclassified as ωj after

combining with clustering cl. Qj,cl indicates a group of objects, not labeled as ωj , but reclassified as ωj

after combining with clustering cl.

For each x ∈ P , its information will not be changed by Wj,cl . Only for each x ∈ Vj,cl ∪ Qj,cl , its

information will be modified if the criterion is satisfied. The updated information may result in an increase

in the average loss of confidence on W k+1
j compared to W k

j , even if it satisfies RWj,cl
< RWk

j
, demonstrated

as follows:

Lemma 2. For each ωj ∈ Ω, given RWj,cl
< RWk

j
, the average loss of confidence will be increased after

the update, i.e. RWk
j
< RWk+1

j
iff RWk

j
< RQj,cl

.

13



Proof. We have RWk+1
j

= RWk
j ∪Wj,cl

after the update.

RWk
j
< RWk+1

j

⇔ RWk
j
< RWk

j ∪Wj,cl

⇔
|Pj |RPj

+ |Vj,cl |RVj,cl

|Pj |+ |Vj,cl |
<
|Pj |RPj

+ |Vj,cl |RVj,cl
+ |Qj,cl |RQj,cl

|Pj |+ |Vj,cl |+ |Qj,cl |

⇔ |Pj ||Qj,cl |RPj + |Vj,cl ||Qj,cl |RVj,cl
< |Pj ||Qj,cl |RQj,cl

+ |Vj,cl ||Qj,cl |RQj,cl

⇔
|Pj |RPj

+ |Vj,cl |RVj,cl

|Pj |+ |Vj,cl |
< RQj,cl

⇔ RWk
j
< RQj,cl

(31)

When satisfying RWj,cl
< RWk

j
, we must have RVj,cl

< RQj,cl
so that the average loss of confidence still

increase after the update. However, the relationship between RVj,cl
and RQj,cl

is not limited. Obviously, if

we have RWk
j
> RQj,cl

, the average loss of confidence of class ωj is a non-monotonic increasing function and

can converge because it has the infinimum.
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Algorithm 1: Criterion for partial information fusion

Input:

Supervised labels and BBAs on the frame of discernment of objects in a dataset X = {x1, ..., xN}.

Output:

Updated labels and BBAs on the dataset X = {x1, ..., xN}.

1 for iteration k do

2 for ∀ωj ∈ Ω do

3 if Wj,cl is not empty then

4 Calculate RWk
j

, the average loss of confidence on W k
j in iteration k by equation (30).

5 Calculate RWj,cl
, the average loss of confidence on Wj,cl by equation (30).

6 if RWj,cl
< RWk

j
then

88 Add information in Wj,cl to W k
j to obtain W k+1

j :

9 mk+1
x = m

Wj,cl
x ,∀x ∈Wj,cl

10 Lk+1
x = L

Wj,cl
x ,∀x ∈Wj,cl

11 Rk+1
x = R

Wj,cl
x ,∀x ∈Wj,cl

12 mk+1
x = mk

x,∀x ∈W k
j −W k

j ∩Wj,cl

13 Lk+1
x = Lkx,∀x ∈W k

j −W k
j ∩Wj,cl

14 Rk+1
x = Rkx,∀x ∈W k

j −W k
j ∩Wj,cl

15 else

1717 Still keep the BBAs mk, labels Lk, and the loss of confidence Rk in iteration k + 1.

18 mk+1
x = mk

x,∀x ∈W k
j

19 Lk+1
x = Lkx,∀x ∈W k

j

20 Rk+1
x = Rkx,∀x ∈W k

j

21 else

2323 Still keep the BBAs mk, labels Lk, and the loss of confidence Rk in iteration k + 1.

24 mk+1
x = mk

x,∀x ∈W k
j

25 Lk+1
x = Lkx,∀x ∈W k

j

26 Rk+1
x = Rkx,∀x ∈W k

j

27 k = k + 1

5.2. Iterative fusion process

We repeat the previous step several times to reduce the uncertainty of the supervised results as much

as possible until the overall loss of confidence is convergent. At each iteration, the information from a
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clustering is combined with the previous clustering by the Dempster’s rule, thus strengthening the mass

values on singletons and reducing the ignorance. As the combination accumulates, the results of the fusion

become more and more certain on singletons, so the accuracy can be converged for a given pool of clustering

methods C. The details of the iterative process are outlined in algorithm 2.

Algorithm 2: Iterative fusion process for one supervised method and multiple unsupervised methods

Input:

Labels generated from a supervised method cm on test data X = {x1, ..., xN}: Lsm(x1), ...Lsm(xN )

Clustering results from a group of unsupervised methods C = {c1, ...cL} on X: [Qc1(x1), ...Qc1(xN )]

, ..., [QcL(x1), ...QcL(xN )]

Output:

Labels after combination of the supervised method sm and multiple clustering methods in C

Loss of confidence based on Jousselme distance on X after fusion: Rx1 ,...,RxN

1 Calculate the BBAs of the supervised method sm in the frame of discernment Ω.

2 Begin with the iteration step k = 0.

3 Calculate the average loss of confidence Rk in step k = 0, and initialize the average loss of confidence

in step k = 1 as Rk+1 = 0.

4 while |Rk −Rk+1| > ε do

5 Randomly select a clustering cl in C.

6 Calculate the SBBAs for unsupervised cl in its original frame of discernment Θl.

7 Calculate the similarity matrix JMml of Lsm and Qcl by equation (16).

8 for ∀x ∈ X do

9 Transfer its BBA of cl in the frame of discernment Θl to Ω as the process shown in Figure 1.

1111 Update the information according to algorithm 1.

12 Update Rk and Rk+1.

13 k = k+1.

The proposed EFSC fusion strategy includes two principal steps: (1) enchaining the reliable information

in each individual supervised method by randomly combining multiple unsupervised methods from C; (2)

fusing the reliable information from multiple supervised methods.

After combination with a clustering, the updated fusion results are used as the supervised results to

calculate the similarity with a new clustering at the next iteration. In this way, the similarity can be updated

over the iterations and the information in the pool of clustering methods can be fully exploited when the

iteration steps are sufficient. In algorithm 2, ε is a user-defined value close to 0 to control the stop condition.
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The general workflow is detailed in Figure 2, where the different initial classifiers are denoted by s1, s2,..sM .

For the classifier s1, for example, we have chosen at random z different clustering methods in C, denoted

successively by cs11
, cs12

,...cs1z , to be combined with s1 on the basis of the proposed transformation. In the

ith fusion step, new labeled information Ls1i (i.e. new classification results), can be extracted to combine

with the clustering in the next iteration. Reliable information from each individual classification can be

extracted as the iterative process converges.

Figure 2: Workflow of the proposed EFSC.

In the framework of belief functions, uncertainty and imprecision are separately represented by BBA

values on singletons and on unions. After the transformation, information from clustering can be thus con-

sidered as a supplementary source to add information to classification. For a classification, the combination

of clustering by Dempster’s rule helps to reinforce the support on the same focal element, which thus in-

crease the corresponding BBA value. A higher BBA on certain focal element indicates more belief degrees

are assigned and the decision on this focal element thus become more certain. Furthermore, a combined

BBA after Dempster’s combination rule has less uncertainty or imprecision, so that it further approaches to

the categorical BBA which represents the perfect information with neither uncertainty nor imprecision.

We thus use Jousselme distance between a BBA and the corresponding categorical BBA to represent the
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loss of confidence. That is to say, the combination reduces uncertianty and imrpecsion, so that makes the

BBA more approaching to the perfect information, leading to a smaller Jousselme distance. Therefore, the

iterative combination with multiple clustering results by Dempster’s rule can gradually reduce uncertainty

and imprecision in the former BBA. The criterion based on Jousselme distance to select partial information

can control the loss of confidence after combining with clustering.

6. Numerical example

In this section, we show a numerical example to explain the proposed transformation and the iterative

fusion process. For a group of objects with eight elements, noted as X = {x1, x2, x3, x4, x5, x6, x7, x8}, their

corresponding ground truth, classification and clustering results are detailed in Table 1. The classification

result has the same frame of discernment as the ground truth, i.e. Ω = {ω1, ω2, ω3, ω4}. We have five

different clustering results on X, separating objects into either four clusters such as c1 or three clusters such

as c2, c3, c4 and c5. To combine the classification and clustering results, we have first to transfer the BBAs

of clustering methods to the same frame as classification.

Table 1: Labels of ground truth, classification and clustering results on objects in X.

Labels
Objects in X Frame of

discernmentx1 x2 x3 x4 x5 x6 x7 x8

Ground truth ω1 ω1 ω2 ω2 ω2 ω3 ω4 ω4 Ω = {ω1, ω2, ω3, ω4}

s1 ω4 ω1 ω2 ω1 ω2 ω3 ω2 ω4 Ω = {ω1, ω2, ω3, ω4}

c1 θ11 θ11 θ12 θ12 θ12 θ13 θ14 θ14 Θ1 = {θ11, θ12, θ13, θ14}

c2 θ23 θ21 θ21 θ21 θ21 θ22 θ23 θ23 Θ2 = {θ21, θ22, θ23}

c3 θ33 θ33 θ31 θ31 θ31 θ32 θ33 θ33 Θ3 = {θ31, θ32, θ33}

c4 θ41 θ41 θ42 θ42 θ43 θ43 θ42 θ42 Θ4 = {θ41, θ42, θ43}

c5 θ51 θ51 θ52 θ52 θ52 θ53 θ53 θ53 Θ5 = {θ51, θ52, θ53}

6.1. Construction of BBAs of classification and clustering results

This numerical example simulates a case where raw data of objects is not available, and we only have the

results of classification and clustering. The BBAs of classification are therefore generated randomly on 2Ω

without accessing to the raw data, as shown in Table 2. As all possible states of objects labels are included

in Ω, the BBAs of classification are constructed under the closed-world assumption satisfying m(∅) = 0. The

classification results should indicate that decisions are on the singletons corresponding to the current labels.

Therefore, all subsets except the empty set in Ω are assigned with random value by the uniform distribution,

and the singletons corresponding to the current label have the maximum BBAs, marked in bold in Table 2.
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The clustering results are on the frames Θ1, Θ2, Θ3, Θ4 and Θ5 and their BBAs are successively noted as

mΘ1
c1 for clustering c1, mΘ2

c2 for clustering c2, mΘ3
c3 for clustering c3, mΘ4

c4 for clustering c4, mΘ5
c5 for clustering

c5. We use the model presented in section 3.4 to estimate the BBA of a clustering method by a group of

SBBAs. For each object xi ∈ X, to simplify the calculation, its SBBA related to the cluster to which xi

belongs, is constructed with 0.8 on the singleton and 0.2 on the ignorance. For other clusters that xi does

not belong to, the corresponding SBBAs have 1 on the ignorance, representing we knowing nothing about

them. Therefore, the BBA of xi can be presented by only one SBBA with the cluster it belonging to as the

focal element. For example, for the object x1 belonging to the cluster θ11 in c1, its SBBA is defined as:m
Θ1
c1 (θ11)(x1) = 0.8,

mΘ1
c1 (Θ1)(x1) = 0.2.

(32)

Table 2: BBAs of classification

2Ω
Objects in X

x1 x2 x3 x4 x5 x6 x7 x8

∅ 0. 0. 0. 0. 0. 0. 0. 0.

ω1 0.0578 0.1271 0.0616 0.1212 0.1274 0.0864 0.0781 0.0183

ω2 0.0187 0.0737 0.0941 0.0258 0.1679 0.0135 0.1291 0.0221

ω1 ∪ ω2 0.0255 0.0650 0.0558 0.1045 0.0336 0.0598 0.0611 0.0591

ω3 0.0642 0.0502 0.0561 0.1031 0.0650 0.1164 0.0700 0.0939

ω1 ∪ ω3 0.0588 0.0739 0.0622 0.1198 0.0272 0.0842 0.1019 0.0272

ω2 ∪ ω3 0.0702 0.0606 0.0165 0.0792 0.1023 0.0648 0.1258 0.0366

ω1 ∪ ω2 ∪ ω3 0.0936 0.0250 0.0622 0.0138 0.0725 0.0376 0.1001 0.0906

ω4 0.1122 0.0060 0.0501 0.0485 0.0377 0.0078 0.0281 0.1149

ω1 ∪ ω4 0.1098 0.0072 0.0886 0.0258 0.0207 0.0993 0.0157 0.0515

ω2 ∪ ω4 0.0915 0.0630 0.0901 0.1056 0.0468 0.0767 0.0433 0.1017

ω1 ∪ ω2 ∪ ω4 0.1086 0.0626 0.0920 0.0253 0.1212 0.0587 0.0618 0.0322

ω3 ∪ ω4 0.0401 0.0865 0.0344 0.0445 0.0139 0.1107 0.0915 0.1085

ω1 ∪ ω3 ∪ ω4 0.0238 0.1065 0.0835 0.0713 0.0496 0.0647 0.0466 0.0900

ω2 ∪ ω3 ∪ ω4 0.0899 0.1042 0.0623 0.0289 0.0321 0.1064 0.0791 0.0936

Ω 0.0345 0.0877 0.0896 0.0819 0.0815 0.0122 0.0389 0.0589

6.2. Transformation of BBAs

In this section, we explain how to transfer the BBAs of clustering c1 defined on Θ1 to the frame of

discernment Ω. We measure the similarity between the results of classification s1 and clustering c1 by
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Jaccard index, as shown in Table 3.

Table 3: Similarity of classes and clusters measured by Jaccard index.

Classes
Clusters from clustering c1

θ11 θ12 θ13 θ14

ω1 0.333 0.25 0 0

ω2 0 0.5 0 0.25

ω3 0 0 1 0

ω4 0.333 0 0 0.333

Let’s take the object x1 again as an example. The clustering label of x1 is cluster θ11 which has

intersections with two classes: ω1 and ω4. Thus we take the similarities between cluster θ11 and class ω1,

and also class ω4 into account to achieve the transformation of mΘ1
c1 (x1). The value of similarity 0.333

between cluster θ11 and class ω1 indicates the belief degree that class ω1 and cluster θ11 are the same, and

nothing more. As illustrated in equation (17), the similarity can be represented by a BBA on the frame of

discernment H, defined as: m
H
ω1,θ11

(Y ) = 0.333,

mH
ω1,θ11

(N) = 1− 0.333 = 0.667.

(33)

The transformation is composed of four major steps as explained in section 4.2. The first step is to

decompose the BBA of clustering into a group of SBBAs considered as multiple independent sources. For

object x1, its BBA mΘ1
c1 (x1) are already in the form of SBBA with {θ11} as the focal element, as shown

in equation (32), and thus can be directly used. The second step is to transfer the SBBAs to Ω by the

corresponding similarity between cluster θ11 and all possible classes with non-empty intersections, i.e. ω1

and ω4. According to equation (20) and equation (21), the transformed SBBA of x1 on ω1 is calculated as:

mΩ
θ11,ω1

(ω1)(x1) = mH
ω1,θ11

(Y ) ∗mΘ1
c1 (θ11)(x1)

= 0.333 ∗ 0.8 = 0.2664
(34)

mΩ
θ11,ω1

(Ω)(x1) = 1−mH
ω1,θ11

(Y ) ∗mΘ1
c1 (θ11)(x1)

= 0.7336
(35)

The transformed SBBA of x1 on ω4 is calculated as:

mΩ
θ11,ω4

(ω4)(x1) = mH
ω4,θ11

(Y ) ∗mΘ1
c1 (θ11)(x1)

= 0.333 ∗ 0.8 = 0.2664
(36)

mΩ
θ11,ω4

(Ω)(x1) = 1−mH
ω4,θ11

(Y ) ∗mΘ1
c1 (θ11)(x1)

= 0.7336
(37)
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Table 4: Transformed BBAs from clustering c1 on Ω.

2Ω
Objects in X

x1 x2 x3 x4 x5 x6 x7 x8

∅ 0. 0. 0. 0. 0. 0. 0. 0.

ω1 0.2105 0.2105 0.1304 0.1304 0.1304 0. 0. 0.

ω2 0. 0. 0.3478 0.3478 0.3478 0. 0.1549 0.1549

ω1 ∪ ω2 0. 0. 0. 0. 0. 0. 0. 0.

ω3 0. 0. 0. 0. 0. 0. 8 0. 0.

ω1 ∪ ω3 0. 0. 0. 0. 0. 0. 0. 0.

ω2 ∪ ω3 0. 0. 0. 0. 0. 0. 0. 0.

ω1 ∪ ω2 ∪ ω3 0. 0. 0. 0. 0. 0. 0. 0.

ω4 0.2105 0.2105 0. 0. 0. 0. 0.2253 0.2253

ω1 ∪ ω4 0. 0. 0. 0. 0. 0. 0. 0.

ω2 ∪ ω4 0. 0. 0. 0. 0. 0. 0. 0.

ω1 ∪ ω2 ∪ ω4 0. 0. 0. 0. 0. 0. 0. 0.

ω3 ∪ ω4 0. 0. 0. 0. 0. 0. 0. 0.

ω1 ∪ ω3 ∪ ω4 0. 0. 0. 0. 0. 0. 0. 0.

ω2 ∪ ω3 ∪ ω4 0. 0. 0. 0. 0. 0. 0. 0.

Ω 0.5789 0.5789 0.5217 0.5217 0.5217 0.2 0.6197 0.6197

The third step is to combine all available SBBAs on each classes, as illustrated in equation (27). As we

only have one SBBAmΩ
θ11,ω1

(x1) on ω1 and one SBBA mΩ
θ11,ω4

(x1) on ω4, thus we have:

mΩ
c1,ω1

(x1) = mΩ
θ11,ω1

(x1) (38)

mΩ
c1,ω4

(x1) = mΩ
θ11,ω4

(x1) (39)

where mΩ
c1,ω1

(x1) represents that the information of object x1 from clustering c1 is transformed on ω1 and

mΩ
c1,ω4

(x1) is transformed on ω4. The last step is to combine all possible SBBAs on Ω transformed from

clustering c1 by equation (28) as:

mΩ
c1(x1) =mΩ

c1,ω1
(x1)⊕mΩ

c1,ω4
(x1)

⇒



mΩ
c1(ω1)(x1) = 0.2105,

mΩ
c1(ω4)(x1) = 0.2105,

mΩ
c1(Ω)(x1) = 0.5789,

mΩ
c1(A)(x1) = 0,∀A ⊂ Ω, A 6= ω1, A 6= ω4.

(40)
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For other objects, their transformed BBAs on Ω are shown in Table 4.

6.3. Iterative fusion process

After the transformation, the information from clustering c1 can be combined with the BBAs of classi-

fication presented in Table 2, and the combined results of all objects are shown in Table 5. Decisions are

made on the combined BBAs by equation (13), and the loss of confidence of each decision is represented by

the method from [12] based on Jousselme distance from its BBAs to the corresponding categorical BBAs by

equation (14), as shown in Table 6.

Table 5: BBAs on Ω after combination of clustering c1 and classification s1.

2Ω
Objects in X

x1 x2 x3 x4 x5 x6 x7 x8

∅ 0. 0. 0. 0. 0. 0. 0. 0.

ω1 0.1735 0.2394 0.1385 0.1824 0.1696 0.0257 0.0624 0.0117

ω2 0.0132 0.0532 0.3100 0.2295 0.3979 0.0028 0.2353 0.1051

ω1 ∪ ω2 0.0181 0.0466 0.0359 0.0731 0.0186 0.0174 0.0473 0.0431

ω3 0.0456 0.0353 0.0361 0.0721 0.0409 0.7418 0.0552 0.0699

ω1 ∪ ω3 0.0417 0.0534 0.0404 0.0840 0.0140 0.0250 0.0833 0.0185

ω2 ∪ ω3 0.0498 0.0432 0.0080 0.0550 0.0674 0.0189 0.1044 0.0257

ω1 ∪ ω2 ∪ ω3 0.0664 0.0160 0.0404 0.0081 0.0463 0.0104 0.0817 0.0674

ω4 0.2373 0.1382 0.0319 0.0329 0.0215 0.0010 0.1063 0.2617

ω1 ∪ ω4 0.0780 0.0024 0.0592 0.0168 0.0094 0.0298 0.0074 0.0372

ω2 ∪ ω4 0.0650 0.0451 0.0603 0.0738 0.0280 0.0227 0.0317 0.0759

ω1 ∪ ω2 ∪ ω4 0.0771 0.0447 0.0617 0.0164 0.0808 0.0170 0.0479 0.0224

ω3 ∪ ω4 0.0284 0.0630 0.02076 0.0301 0.0046 0.0334 0.0107 0.0811

ω1 ∪ ω3 ∪ ω4 0.0169 0.0783 0.0556 0.0493 0.0300 0.0189 0.0346 0.0669

ω2 ∪ ω3 ∪ ω4 0.0638 0.0765 0.0405 0.0189 0.0176 0.0321 0.0632 0.0697

Ω 0.0245 0.0639 0.0600 0.0569 0.0527 0.0024 0.0278 0.0430

The labels after decision should be compared with the original classification labels according to the

proposed criterion in algorithm 1, to decide whether the information from clustering is finally added or not.

For each class, we update their labels if the average loss of confidence of this class after the combination is

reduced, compared to its counterpart calculated from the BBAs of classification s1, also shown in Table 6.

Let’s take the class ω1 as an example. Its average loss of confidence in s1, noted as Rω1,s1 , is calculated
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as:

Rω1,s1 =
Rx2,s1 +Rx4,s1

2

=
0.638 + 0.612

2

= 0.625

(41)

where Rx2,s1 and Rx4,s1 represent the loss of confidence of objects x2 and x4 in s1. After the combination

with clustering c1, the decisions on the combined BBAs update the label and also the loss of confidence of

each object. Therefore, for the class ω1, its new average loss of confidence Rω1
is calculated as:

Rω1
= Rx2

= 0.565 (42)

where Rx2 is the loss of confidence of object x2 after the combination. As we have Rω1 < Rω1,s1 , the

information on ω1 from the original classification s1 is thus updated by the new one after combination.

That is to say, the class ω1 in s1 originally contains two objects x2 and x4 is updated as only one object x2

according to the results after combination.

Table 6: Decisions on combined BBAs (compared with the labels and loss of confidence of classification s1).

Decisions
Objects in X

x1 x2 x3 x4 x5 x6 x7 x8

Labels ω4 ω1 ω2 ω2 ω2 ω3 ω2 ω4

Losses of confidence 0.543 0.565 0.508 0.553 0.428 0.178 0.528 0.514

Labels of s1 ω4 ω1 ω2 ω1 ω2 ω3 ω2 ω4

Losses of confidence of s1 0.613 0.638 0.650 0.612 0.573 0.606 0.5969 0.605

The newly updated labels can be considered as a new classification result to combine with another

randomly selected clustering result among c1, c2, c3, c4 and c5. In Table 7, we show the details of the

proposed iterative fusion process, including the clustering used for combination, the average loss of confidence

on each class (i.e. Rω1 , Rω2 , Rω3 , Rω4), the global average loss of confidence R, and the labels of objects

in each iteration. We run ten iterations in total and the average loss of confidence R gradually decreases

from 0.611 in classification s1 to 0.002 after the combination with multiple clustering results. The original

accuracy of s1 is 0.625, and it gradually increases to 1 after the fifth iteration.
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Table 7: Iterative fusion process

Combination
Losses of confidence Labels

Accuracy
Rω1 Rω2 Rω3 Rω4 R x1 x2 x3 x4 x5 x6 x7 x8

s1 0.625 0.606 0.606 0.608 0.611 ω4 ω1 ω2 ω1 ω2 ω3 ω2 ω4 0.625

+c1 0.565 0.504 0.178 0.527 0.443 ω4 ω1 ω2 ω2 ω2 ω3 ω2 ω4 0.738

+c1 0.496 0.320 0.039 0.441 0.324 ω1 ω1 ω2 ω2 ω2 ω3 ω2 ω4 0.863

+c2 0.485 0.255 0.008 0.451 0.299 ω1 ω1 ω2 ω2 ω2 ω3 ω2 ω4 0.863

+c3 0.421 0.194 0.002 0.436 0.263 ω1 ω1 ω2 ω2 ω2 ω3 ω2 ω4 0.863

+c1 0.126 0.031 0.000 0.425 0.145 ω1 ω1 ω2 ω2 ω2 ω3 ω4 ω4 1.0

+c1 0.028 0.006 0.000 0.138 0.057 ω1 ω1 ω2 ω2 ω2 ω3 ω4 ω4 1.0

+c4 0.005 0.005 0.000 0.114 0.041 ω1 ω1 ω2 ω2 ω2 ω3 ω4 ω4 1.0

+c1 0.001 0.001 0.000 0.025 0.006 ω1 ω1 ω2 ω2 ω2 ω3 ω4 ω4 1.0

+c5 0.000 0.000 0.000 0.013 0.003 ω1 ω1 ω2 ω2 ω2 ω3 ω4 ω4 1.0

+c1 0.000 0.000 0.000 0.009 0.002 ω1 ω1 ω2 ω2 ω2 ω3 ω4 ω4 1.0

7. Experiments

In this section, we evaluate the proposed EFSC on synthetic data and on real remote sensing data from

different aspects. With synthetic data, we principally discuss the performance of EFSC from the aspect at

the output level, by controlling the quality of its direct inputs: classification and clustering results. With

the real data, the evaluation of EFSC focuses more on the information at the raw data level (e.g. the quality

of training samples of classifiers). To make the experiments concise and clear, we configure EFSC into three

different ways:

1. EFSC11: one classification and one clustering methods.

2. EFSC1m: one classification and multiple clustering methods.

3. EFSCmm: Multiple classification and multiple clustering methods.

We discuss the performance of EFSC on synthetic data in section 7.1. EFSC focuses on the fusion

of classification or clustering results rather than raw data, features nor supervised/unsupervised classifiers

themselves. This indicates that the direct inputs of EFSC are the classification and clustering results and

their corresponding BBAs. Therefore, we verify EFSC with the synthetic data at the output level in a

controlled environment. In section 7.1.2, we study how the quality of classification and clustering results

affect the combination for the EFSC11 configuration. In section 7.1.3, we focus on the EFSC1m configuration

and study the same questions as section 7.1.2. In section 7.1.4, we evaluate EFSCmm configuration with

multiple classification and clustering methods and compare the results with other fusion approaches.
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On the real remote sensing datasets, we conduct four experiments to study: (1) how clustering hetero-

geneity affects the combination; (2) whether multiple clustering methods can reduce the uncertainty of a

supervised result; (3) how mislabeled training samples affect the fusion results; (4) how the EFSC behaves

during fusion with multiple supervised and clustering methods.

In the first experiment in section 7.2.2, we test the EFSC11 configuration and change the numbers

of partitions in clustering. In section 7.2.3, the second experiment studies the proposed iterative fusion

process. We focus on the EFSC1m configuration to demonstrate that information from multiple clustering

methods can progressively reduce the uncertainty and increase the accuracy of the supervised results until

convergence. In section 7.2.4, we further investigate the robustness of the EFSC1m configuration for the

mislabeled training samples in an artificial case and a real situation. The last experiment in section 7.2.5

focuses on the efficiency of the EFSCmm configuration where multiple supervised results were combined

individually with multiple clustering methods. The extracted reliable information then are combined to

improve the overall accuracy. EFSCmm is constructed based on EFSC1m whose effectiveness in reducing

uncertainty and robustness for mislabeled training samples has already been discussed in sections 7.2.3 and

7.2.4. For EFSCmm, we therefore focus only on its performance to improve the overall accuracy.

We select two distinct fusion methods at the production level, based on different principles. EC3 belongs

to the group of fusion methods that optimize the agreements between supervised and pooled results, and it

was shown to be more efficient than the other methods in this category [6]. Similar to our work, the method

proposed by Karem allows to obtain a combination through belief functions.

7.1. Experiments on synthetic data

7.1.1. Synthetic data at the output level

The synthetic data at the output level includes the outputs of supervised or unsupervised classifiers

and their corresponding BBAs, which are used as inputs of EFSC. To study how qualities of classification

and clustering results affect the combination, we generate an image as ground truth, and gradually add

uniformly distributed mistakes on it to obtain classification and clustering results. In this way, we can

directly control the quality of supervised and unsupervised results. The experiments on synthetic labels

simulate a case where raw data is inaccessible, and we only have the results of classification and clustering.

The experiments on synthetic data are all launched 15 times to obtain the averages.

Table 8: Descriptions of the synthetic area.

Labels Forest Shrub/Scrub Grassland /Herbaceous Wetlands Total

Synthetic area 20687 11417 3526 4370 40000

The process to generate an classification result with the proportion of mistakes Ms based on the ground
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truth is detailed as:

1) Randomly select pixels with proportion Ms per class;

2) For the selected pixels, change their labels randomly into any other class.

The random BBAs of the synthetic classification result on the frame of discernment Ω are constructed as:

1) For a pixel x labeled as ωi, we have m(ωi) = 1−Ms;

2) The rest of BBAs are randomly set to [0, 1−Ms);

3) Normalize the BBAs to satisfy equation (1).

Generating a synthetic clustering result includes two major steps: separating or gathering classes into

clusters, and add noise with proportion Mc into each cluster to reduce its homogeneity. The quality of

clustering indicates whether data are well-separated, which is different from the evaluation of classification.

We use the homogeneity in clusters to represent the quality of clustering results, which thus can be controlled

by Mc. For example, if a class on the ground truth is separated into two clusters, the homogeneity in each

cluster is not reduced, and thus we still can consider it as a perfect clustering. After adding noise with Mc,

the homogeneity in each cluster is gradually reduced. We note the number of classes on the ground truth

as n, and the number of clusters as k. The process to generate a clustering result is as:

1) If k = n, classes on the ground truth is directly take as clusters;

2) If k < n, we randomly select n − k classes on the ground truth and gather them as one cluster. The

rest classes are kept as clusters;

3) If k > n, we use an iterative process to add clusters. In each iteration, we randomly select a cluster

and separate into two clusters until the clusters are enough. The initial state of this process is the

ground truth whose classes are directly take as clusters;

4) For the clustering result generated previously, we randomly select pixels in each cluster with the

proportion Mc and change its labels to any other cluster.

The BBAs of clustering on Θ are constructed in the form of SBBAs. For a pixel x in the cluster θj , we have

m(θj) = 1−Mc and m(Θ) = Mc.

7.1.2. Combination of one classification and one clustering methods

In this section, we evaluate EFSC11 configuration by combining one classification and one clustering,

compared with Karem’s and EC3. We focus on how quality of classification or clustering affect the combi-

nation. For the clustering, we fix its number of clusters k = 7 and gradually add mistakes with proportion

Mc ∈ [0, 1]. As we use the homogeneity to represent the quality of a clustering, Mc = 0 represents the

perfect case where no mistakes are involved. With Mc increasing, the homogeneity of each cluster begins to

decrease, which thus can be considered as the decline of the clustering quality.
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(a) Ms = 0.1 (accuracy of classification = 0.904). (b) Ms = 0.3 (accuracy of classification = 0.734).

(c) Ms = 0.5 (accuracy of classification = 0.586). (d) Ms = 0.7 (accuracy of classification = 0.463).

Figure 3: Accuracy change with mistakes in clustering for the combination of one classification and one clustering.

We fix the mistakes Ms in classification as 0.1, 0.3, 0.5 and 0.7 and for each of them, Mc varies from 0 to

0.9, as shown in Figure 3. A perfect clustering with Mc = 0 increases the accuracy of classification, whereas

the accuracy after combinations by EFSC11 and Karem’s are not improved when Mc ≥ 0.2, as shown in

Figure 3a. The BBAs of classification are assigned by random values but also guarantee the singletons

corresponding to the classification labels have the maximum BBA. Therefore, for the classification with

Ms = 0.1, even though almost all pixels have true labels, the BBAs are still constructed with uncertainty

and imprecision, indicating that the classification is good enough yet not completely reliable. Clustering

information can be thus partially taken into account, however possibly leading to decreasing the accuracy

when the quality of clustering is relatively poorer than classification. We can also roughly observe this in

Figure 3b, 3c and 3d. When Ms = 0.3, the accuracy after combination is improved only if Mc < 0.4, and
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for Ms = 0.5 and Ms = 0.7, improvement occurs when Mc < 0.5.

We also fix Mc for clustering and change the mistakes Ms in classification. To avoid the influence from

mistakes in clustering, we select a good enough clustering with Mc = 0.1, and study how the quality of

classification affects the combination. The results are shown in Figure 4. We can observe that combining

with a good enough clustering can noticeably enhance the accuracy, even for the low quality classification

(e.g., Ms = 0.7). When Ms > 0.8, it indicates that the classification is almost incorrect and thus the

combination is helpless to improve the accuracy, even with a good enough clustering.

In the combination of one classification and one clustering, the enhancement of accuracy is still pro-

nounced after combination by EFSC11 and Karem’s. Nevertheless, Karem’s has better performance than

EFSC11 because EFSC11 takes information more prudently so that less information is fused compared

to Karem’s. Accordingly, Karem’s is more pertinent for combining one classification and one clustering,

whereas EFSC has more advantage when multiple classification and clustering are available. EC3 has the

similar performance as the original classification because it relies more on classification than clustering. EC3

is more pertinent for multiple classification results with high qualities.

Figure 4: Accuracy change with mistakes in classification for the combination of one classification and one clustering.

7.1.3. Combination of one classification and multiple clustering methods

In this section, we evaluate the EFSC1m configuration with one classification and multiple clustering

methods. We also fix Ms separately as 0.1, 0.3, 0.5 and 0.7 and gradually change Mc from 0 to 0.9. A group

of clustering methods has the number of clusters varying from 3 to 15.

For EFSC1m and Karem’s methods, combination with multiple clustering methods can evidently improve

the accuracy of classification, as shown in Figure 5. A high-quality classification boosts the combination

results with multiple clustering, such as results in Figures 5a, 5b.
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(a) Ms = 0.1 (accuracy of classification = 0.904). (b) Ms = 0.3 (accuracy of classification = 0.734).

(c) Ms = 0.5 (accuracy of classification = 0.586). (d) Ms = 0.7 (accuracy of classification = 0.463).

Figure 5: Accuracy change with mistakes in clustering for the combination of one classification and multiple clustering

methods.

Even if the mistakes in classification are considerable, i.e. Ms = 0.7, EFSC1m and Karem’s methods can

still increase the overall accuracy, as shown in Figure 5d. We can observe that combination with multiple

clustering methods can better decrease the influence by the quality of classification, compared with the

results in the previous section. When Ms reaches 0.1, 0.3 and 0.5, the accuracy of classification is improved

when Mc < 0.5. This indicates that when combining with multiple clustering methods, EFSC1m and

Karem’s methods are easily influenced by clustering than classification.

When Mc > 0.6, the accuracy after combination slightly increases yet always worse than the original

classification. This increase occurs when clustering evidently has low quality because the BBAs of clustering,
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in this case, are mainly distributed on the total ignorance. Therefore, information from clustering with low

quality is rarely combined with classification, consequently avoiding further reduction of accuracy.

We also fix the quality of clustering with Mc = 0.1 and study the accuracy change with Ms, as shown in

Figure 6. The accuracy after combination shows an evident decline when Mc > 0.5. This result also proved

that when the quality of clustering is acceptable, the combination is less influenced by classification.

In the combination of one classification and multiple clustering methods, EFSC1m outperforms the

other two methods because it cautiously takes into account the information from clustering. EC3 still shows

similar performance as the original classification because when maximizing the consensus of classification

and clustering, only one classification is available to provide the semantic labels. This indicates that EC3

relies more on classification than clustering. Compared to EC3, EFSC1m and Karem’s methods with

the proposed iterative fusion process can well handle the combination with one classification and multiple

clustering methods.

Figure 6: Accuracy change with mistakes in classification for the combination of one classification and multiple

clustering methods.

7.1.4. Combination of multiple classification and clustering methods

In this section, we combine multiple classification and clustering results separately by EFSCmm, Karem’s

and EC3 methods, also compared with the fusion of multiple classifications by Majority Voting (MV).

We randomly generate three classification results with the accuracy of 0.586, 0.522, 0.463. The group of

clustering methods has the number of partitions from 3 to 15 with Mc = 0.3.

Table 9 shows the overall accuracy measured by F1 score and also for each class. We also show the classi-

fication and combination results in Figure 8. EFSCmm can noticeably enhance the accuracy by 30% at most

compared to the best classification, and it also surpasses other combination methods. Karem’s also shows an
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evident improvement of the overall accuracy, whereas totally ignores two classes: Grassland/Herbaceous and

Wetlands. Although EFSCmm can not well classify Grassland/Herbaceous either, it improves the accuracy

of Wetlands, demonstrating it is more prudent than Karem’s. EC3 performs better with three classifications

compared to its previous performance, because it depends more on classification than clustering. For the

combination results of the three classifications by MV, we can observe it is less pertinent than the other

three combination methods, indicating the importance of clustering information.

We assume that for each object x, the probability that an object is correctly classified follows Gaussian

distribution. Thus for 40000 pixels, each of them can be regard as an independent result. We thus consider

approximately that each test is run 40000× 15 to calculate the confidence interval. The confidence interval

with the confidence level as 95% of EFSCmm is [0.887, 0.890], Karem’s [0.793, 0.796], EC3 [0.602, 0.605], and

MV [0.593, 0.596]. The experiments show that EFSCmm is significantly better than Karem’s, EC3 and MV

on synthetic data.

(a) Classification 1 (b) Classification 2 (c) Classification 3 (d) Ground truth

Figure 7: Synthetic classification results and ground truth.

(a) EFSCmm (b) Karem’s (c) EC3 (d) MV

Figure 8: Combination results of EFSCmm, Karem’s, EC3 and MV on synthetic data.
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Table 9: Accuracy of three original classifications and four fusion methods (Karem’s, EFSCmm, EC3, MV) on

synthetic data.

Methods
Accuracy per class

Accuracy

Forest
Shrub

/Scrub

Grassland

/Herbaceous
Wetlands

Classification 1 0.667 0.573 0.363 0.421 0.586

Classification 2 0.609 0.497 0.292 0.355 0.522

Classification 3 0.562 0.422 0.230 0.285 0.463

Karem’s 0.786 0.828 0. 0. 0.795

EFSCmm 0.880 0.955 0.026 0.433 0.889

EC3 0.682 0.590 0.389 0.446 0.604

MV 0.705 0.594 0.388 0.452 0.595

7.2. Experiments on real remote sensing data sets

7.2.1. Data description and study areas

The study area is located in Colorado, USA, and contains two national forest parks with a variety of

vegetation, as shown in Figure 3a. The satellite data used in our experiment are from LandSat-8 OLI. It

consists of eight spectral bands with a spatial resolution of 30 meters, a panchromatic band with a resolution

of 15 meters and two thermal bands with a resolution of 100 meters. The remote sensing data acquired 11th

June 2018 were obtained from the USGS Earth Explorer. The geometric correction of the image was per-

formed by the transformation of the UTM map by NASA. We used the multispectral bands 1−7 in our test.

For ground truth, we use the labels generated by National Land Cover Database (NLCD) 2016 and group its

land cover pattern at the basic level:Water, Developed Area, Forest, Shrub/Scrub, Grassland/Herbaceous,

Pasture/Crops, Wetlands. We randomly select two test areas, one with 2500 pixels and the other with 40000

pixels, detailed in Figure 9 and Table 10. Most of the experiments are conducted on the test area 1, but we

also evaluate the proposed EFSC on the test area 2 in section 7.2.5.

Table 10: Descriptions of the test areas.

Water
Developed

Area
Forest

Shrub

/Scrub

Grassland

/Herbaceous

Pasture

/Crops
Wetlands Total

Test area 1 146 182 266 1558 15 148 185 2500

Test area 2 77 571 21147 13609 593 2250 1753 40000
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Figure 9: Ground truth of test areas.

7.2.2. Combination of one classification and one clustering methods

In this section, we focus on evaluating the proposed transformation by combining a classification and

a clustering. We test nine pairs of combinations between three classifiers: 5-Nearest Neighbors (5-NN),

Random Forest (RF) and Stochastic Gradient Boost (SGB) and three clustering methods: K-Means (KM),

Spectral Clustering (SC) and Gaussian Mixture Model (GMM). In each combination, we set the number of

clusters as 3, 7, 11, 15 in each clustering method to study how this affects the fusion results. We evaluate

the results by F1 score with weighted average to take into account the imbalance of labels. Each test was

launched 15 times to calculate the average.

Table 11 shows the F1 score for the three fusion methods. We also show the silhouette score of each

clustering to measure its quality. It is evident that on the test data set, Karem’s and EFSC perform

better than EC3 which requires high-quality clustering results. The combination results based on Karem’s

transformation and EFSC have neither evident relation with the silhouette score of clustering nor the number

of partitions. Rather than directly take the agreement of classification and clustering as combination results,

these two methods transfer information of clustering into the frame of discernment of classification and fused

them by belief functions. During this process, complementary information that is difficult to measure directly

is extracted to improve the accuracy of the classification.

Compared with Karem’s transformation, the EFSC11 shows no obvious improvement because the combi-

nation with clustering can fuse only limited information with the classification. Our proposed transformation

is generally more cautious than Karem’s, so that it is less possible to change its decisions when the infor-
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Table 11: Accuracy of Karem’s, EFSC11 and EC3, with combination of one classification (5-NN, RF, SGB) and one

clustering (KM, SC,GMM) on test area 1.

Clustering
Partitions

( Silhouette score)

5-NN 0.561 RF 0.541 SGB 0.553

Karem’s EFSC11 EC3 Karem’s EFSC11 EC3 Karem’s EFSC11 EC3

KM

k=3 (0.424) 0.566 0.582 0.568 0.607 0.575 0.547 0.626 0.604 0.558

k=7 (0.349) 0.567 0.568 0.562 0.584 0.561 0.541 0.629 0.590 0.553

k=11 (0.315) 0.570 0.585 0.562 0.586 0.560 0.542 0.629 0.582 0.554

k=15 (0.294) 0.568 0.570 0.562 0.587 0.534 0.545 0.621 0.570 0.553

SC

k=3 (0.401) 0.587 0.584 0.568 0.587 0.571 0.552 0.561 0.567 0.560

k=7 (0.119) 0.579 0.570 0.563 0.606 0.558 0.545 0.603 0.579 0.553

k=11 (0.087) 0.573 0.571 0.563 0.593 0.572 0.541 0.600 0.581 0.553

k=15 (0.009) 0.570 0.572 0.550 0.596 0.572 0.541 0.597 0.580 0.553

GMM

k=3 (0.239) 0.566 0.613 0.564 0.568 0.546 0.540 0.593 0.558 0.554

k=7 (0.171) 0.565 0.575 0.568 0.603 0.556 0.543 0.618 0.566 0.554

k=11 (0.111) 0.559 0.564 0.554 0.632 0.578 0.542 0.620 0.562 0.553

k=15 (0.155) 0.570 0.581 0.558 0.589 0.551 0.542 0.570 0.613 0.553

mation provided by the clustering is highly limited.

7.2.3. Combination of one classification and multiple clustering methods

In this section, we evaluate the EFSC1m configuration that combines one classification and multiple

clustering methods through the proposed iterative fusion process. We select three clustering methods: K-

Means (KM), Spectral Clustering (SC) and Gaussian Mixture Model (GMM), which are commonly used

in land cover classification, to construct the pool of clustering methods. The number of clusters in each

clustering method varies from 3 to 15. We perform the iterative fusion process 300 times by randomly

selecting a clustering in the pool.

Since K-Means and SC are implemented based on distance, we employ the distance model to construct

their BBAs, as illustrated in section 3.4. Gaussian Mixture Model separates data by distribution, thus

providing a probability for the clustering results. The proposed transformation requires separable BBAs

from clustering, so the probability from GMM is discounted by a global discounting coefficient 0.9. They

can be decomposed by the canonical decomposition to a group of SBBAs, as illustrated in section 3.7.

We have verified that the EFSC11 configuration does not depend on the type of classifiers in section 7.2.2.

Due to space limitations, we therefore only displayed the results of Random Forest as a supervised method in

the EFSC1m configuration. Karem’s transformation only works on a supervised method and a classification

method. To compare with the EFSC1m configuration, we also used the proposed iterative fusion process to

combine several clustering methods with Karem’s transformation. As EC3 cannot handle uncertainty and
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cooperate with the iterative fusion process, we used EC3 to combine directly the classifier with all clustering

methods in the clustering pool.

We display the comparison of accuracy of the three methods in Table 12 and mark the best performance

on each class by bold text. EC3 improves the accuracy by 0.8% compared to the original classification,

which is outperformed by EFSC1m and Karem’s methods. The results of the EC3 method were obviously

limited by insufficient training samples. Compared to the results in section 7.2.2, the combination with

multiple clustering methods does not make a big difference, as the clustering results on our test data have

low qualities as measured by the silhouette score. EC3 generally requires sufficient training samples for

parameter selection and good clustering results to reach the agreement.

Although Karem’s can improve accuracy by 8%, it cannot reserve information on all classes during the

iterative fusion process. Some classes, such as Developed Areas, are more uncertain so that could be ignored

when making decisions based on Karem’s transformation. EFSC1m shows a noticeable improvement in

accuracy of 9% and the information on all classes is well preserved. Indeed, the Karem’s transformation only

takes into account the uncertainties of the clustering results while ignoring their imprecision. Moreover, the

similarity to achieve their transformation is the proportion of each class in a cluster, which also ignores more

information compared to Jaccard Index. Therefore, Karem’s transformation tends to make a more certain

class become more dominant in the iterative fusion process. On the contrary, our proposed transformation

can preserve both uncertainty and imprecision in clustering results, based on which decisions become more

cautious. When supervised results are unreliable, it is more appropriate to gradually fuse the clustering

information in a more cautious manner. The tests are launched 15 times to calculate the averages. As every

pixel can be regarded as an independent result, we consider approximately that each test is run 2500 × 15

to calculate the confidence interval. The confidence interval with confidence level of95% of EFSC1m is

[0.628, 0.637], Karem’s [0.617, 0.626], EC3 [0.543, 0.554]. The experiments show that EFSC1m is significantly

better than Karem’s and EC3.

Table 12: Accuracy of the original RF, Karem’s EFSC1m and EC3 on test area 1.

Classifiers States
Accuracy per class

Accuracy

Water
Developed

Areas
Forest

Shrub/

Scrub

Grassland/

Herbacrous

Pasture/

Crops
Wetlands

RF

Original 0.922 0.277 0.518 0.609 0.095 0.214 0.215 0.541

Karem’s 0.795 0.012 0.316 0.816 0.056 0.079 0.164 0.622

EFSC1m 0.866 0.279 0.589 0.762 0.109 0.335 0.071 0.633

EC3 0.882 0.263 0.567 0.670 0.042 0.264 0.108 0.549

As EC3 neither works in the iterative process nor deals with uncertainty, we only study the EFSC1m and

35



Karem’s on the changes of accuracy at each iteration and the reduction of uncertainty. Due to the limited

space, we display only the results in one experiment in Figure 10. Figure 10a shows how accuracy changes

with each iteration. The accuracy of Karem’s could decrease during the iterative fusion process while our

method become more stable and can reach convergence for a fixed clustering pool. Dempster’s combination

rule can strengthen similar information so that in the proposed iterative fusion process, it can gradually

decrease ignorance. Therefore, in our method, the later a grouping is combined, the less important it is,

until it no longer influences the fusion results. We also illustrate the change of loss of confidence before and

after fusion in Figure 10b, objects correctly classified in different intervals of loss of confidence are counted.

For the original RF, the initial loss of confidence of the correct objects distributes similarly in intervals:

[0., 0.2], (0, 2, 0.4], (0.4, 0.6]. EFSC1m and Karem’s methods can highly reduce the loss of confidence and

make the majority of correct objects in the interval [0, 0.2]. Compared to the Karem method, EFSC1m has

more advantages in making the correct object less uncertain.

(a) Accuracy change in the iterative process (b) Correct objects in different intervals of loss of confidence

Figure 10: Accuracy change and correct objects in different intervals of loss of confidence of EFSC1m and Karem’s

on test area 1.

7.2.4. Robustness of the EFSC1m on mislabeled training samples

To further evaluate the effectiveness and robustness of the proposed method, we test it on mislabeled

training samples. This is a common problem in land cover classification, as labels and data are generally

collected at different times. In this section, we start with a real case where labels were collected in 2011.

However, the remote sensing data were collected in 2018 with very different surface circumstances. We

evaluate the results on the latest NLCD labels published in 2016, which are quite similar to the reality in

the field in 2018. Later, we manually modified the proportions of mislabeled training samples in each class

by a uniform distribution to study the evolution of the results. We use the same method configuration as in
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section 7.2.3. The training sample configuration is detailed in Table 13 in which we illustrate the training

samples by class and show the proportion of mislabeled samples in the NLCD 2011.

We employ the NLCD 2011 with 36.8% incorrect labels as training samples for RF and showed the

results in Table 14 where the best performance of each class is marked in bold. Karem’s and EFSC1m

still outperform EC3 with mislabeled training samples. EFSC1m can improve the overall accuracy by 13%

than the original RF, which is more satisfying than Karem’s and EC3. Due to 97.9% incorrect labels in

Grassland/Herbaceous, its accuracy after fusion becomes 0 for Karem’s and EFSC1m, but for EC3, the

accuracy is kept as the original supervised results. For Pasture/Crops which has 61.1% incorrect labels,

EFSC1m can still improve its accuracy by 6%.

Table 13: Descriptions of training samples in the real case (M: proportion of mislabeled training samples) on test

area 1.

Water
Developed

Area
Forest

Shrub

/Scrub

Grassland

/Herbaceous

Pasture

/Crops
Wetlands Total

Training

samples
32 257 135 239 47 36 82 828

M in NLCD 2011 0.218 0.377 0.148 0.230 0.979 0.611 0.707 0.368

Table 14: Accuracy with the mislabeled training samples in the real case on test area 1.

Methods Water
Developed

Area
Forest

Shrub

/Scrub

Grassland

/Herbaceous

Pasture

/Crops
Wetlands Accuracy

RF 0.926 0.234 0.468 0.524 0.019 0.301 0.102 0.473

Karem’s 0.910 0.058 0.184 0.803 0.005 0.012 0.009 0.578

EFSC1m 0.893 0.273 0.539 0.713 0.008 0.368 0.079 0.602

EC3 0.926 0.235 0.493 0.535 0.019 0.289 0.100 0.478

In the artificial case, we set the proportion of mislabeled training samples per class from 0.0 to 0.9, as

shown in Figure 11. The accuracy of the original RF decreases slightly when M ∈ [0, 0.3], where Karem’s and

EFSC1m have similar performance. When M > 0.5, the accuracy of Karem’ method has obviously decreased

but EFSC1m retains the improvement. Compared to Karem’s, EFSC1m can improve the overall accuracy

by 20% at most. The results of EFSC1m decrease when M > 0.7, but they are still more satisfactory than

Karem’s. Apparently, the cautiousness of the EFSC1m makes it more robust in case the training samples

are partially incorrect. EC3 has similar results to the original RF, which is less satisfactory than the other

two methods initially. When M > 0.7, the accuracy of Karem’s and EFSC1m becomes poorer than that
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of the original RF, whereas EC3 can keep the same. This can be explained by the fact that EC3 is based

on consensus maximization, and therefore relies more on classification than clustering. We retrieve classical

results obtained in information fusion.

Figure 11: Accuracy with different proportions of mislabeled training samples per class in the artificial case on test

area 1.

7.2.5. Combination of multiple classification and clustering methods

In this section, we evaluate the EFSCmm configuration and compare results with Karem’s, EC3, and

also the combination of the three classifications by MV. We retake the three supervised classifiers: 5NN, RF,

and SGB in section 7.2.2. For each individual classifier, we combine them with multiple clustering methods

by EFSC1m configuration. In this way, the reliable information from each classifier is thus reinforced.

Information extracted by fusion with multiple clustering methods, from different classification results, is

discounted because their ignorance in BBAs usually is near to 0. In the experiment, we set this discounting

coefficient as 0.8. Note that this coefficient is only used to fuse information by Dempster’s rule. We apply

the same configuration for Karem’s as EFSCmm. As for EC3, we use it directly to combine the three

classifications with all clustering methods. Due to the limitation of space, we do not discuss the details of

EFSC1m with 5-NN and SGB. Furthermore, we have already thoroughly studied EFSC1m with RF in the

two previous experiments, which can indicate the effectiveness of the EFSC1m using 5-NN or SGB.

Figure 12 shows the results of the original classification of 5-NN, RF, and SGB in one experiment.

Note that Shrub/Scrub are easy to classify as Developed Areas, and Wetlands is difficult to identify. For
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each classification results, we use EFSC1m to combine it with multiple clustering methods. Figure 13

displays Karem’s with each classification. Many land covers such as Developed Areas, Grassland/Herbaceous

and Wetlands, are almost eliminated in the fusion results, and Shrub/Scrub becomes the dominant class.

Apparently, Karem’s transformation cannot preserve the weak information during an iterative process where

the clustering results may be considered several times. Results of EC3 combining each classification with

multiple clustering methods are presented in Figure 14 and show less improvement compared to the results

of each original classification. We display the results of EFSC1m with 5-NN, RF, and SGB in Figure 15.

The identification of Developed Areas is evidently improved and weak information such as Wetlands can

also be well preserved after fusion with multiple clustering methods.

(a) 5-NN (b) RF (c) SGB

Figure 12: Original classification results of 5-NN, RF and SGB on test area 1.

(a) Karem’s with 5-NN (b) Karem’s with RF (c) Karem’s with SGB

Figure 13: Karem’s with combination of one classification (5-NN, RF and SGB) and multiple clustering methods on

test area 1 on test area 1.

Results of combination with the three classification results and multiple clustering methods are detailed

in Table 15 and Figure 16. The original accuracy of each classifier is also detailed to compare. EC3 and

MV have similar performances because the initial classification results are less reliable and the training

samples are not sufficient. Both the EFSCmm and Karem’s methods can effectively improve accuracy
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by combining several supervised and unsupervised methods. Karem’s, which apparently is less effective

in distinguishing all possible classes because its transformation of the BBAs only deals with uncertainty

while ignoring imprecision. The transformation we propose carefully takes into account the uncertainty and

imprecision in clustering. Therefore, compared to the other two methods, the advantage of the EFSC is

to strengthen reliable information and also to prudently reserve unreliable information when merging with

multiple clustering methods. The cautiousness of the EFSC makes it more effective when training samples

are limited or with incorrect labels. We also calculate the confidence interval with confidence level of 95%

and obtain [0.650, 0.657] for EFSCmm, [0.627, 0.634] for Karem’s, [0.557, 0.568] for EC3, and [0.556, 0.567]

for MV. EFSCmm is significantly better than other methods, and EC3 has similar performance as MV when

classification and clustering results have poor qualities.

(a) EC3 with 5-NN (b) EC3 with RF (c) EC3 with SGB

Figure 14: EC3 with combination of one classification (5-NN, RF and SGB) and multiple clustering methods on test

area 1.

(a) EFSC1m with 5-NN (b) EFSC1m with RF (c) EFSC1m with SGB

Figure 15: EFSC1m with combination of one classification (5-NN, RF and SGB) and multiple clustering methods

on test area 1.
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Table 15: Accuracy of the original classifications (5-NN, RF, SGB) and four fusion methods (Karem’s, EFSCmm,

EC3, MV on test area 1.

Methods
Accuracy per class

Accuracy

Water
Developed

Area
Forest

Shrub

/Scrub

Grassland

/Herbaceous

Pasture

/Crops
Wetlands

5-NN 0.903 0.250 0.558 0.639 0.142 0.293 0.188 0.561

RF 0.922 0.277 0.518 0.609 0.095 0.214 0.215 0.541

SGB 0.936 0.240 0.557 0.635 0.017 0.277 0.133 0.553

Karem’s 0.893 0.009 0.494 0.818 0.025 0.273 0.014 0.631

EFSCmm 0.854 0.290 0.525 0.801 0.111 0.424 0.030 0.654

EC3 0.917 0.267 0.475 0.654 0.112 0.122 0.192 0.563

MV 0.920 0.182 0.597 0.613 0.103 0.287 0.173 0.562

(a) EFSCmm (b) Karem’s (c) EC3 (d) MV

Figure 16: EFSCmm, Karem’s and EC3 with combination of multiple classification and clustering methods on test

area 1.

We also evaluate the proposed EFSC on test area 2 which is 16 times larger than test area 1. The details

and ground truth on test area 2 are shown in Table 10 and Figure 9. Due to the limitation of space, we

only display the combination results with multiple classification and clustering by EFSCmm, Karem’s and

EC3. We also show the combination only for classifications by MV. The experiments are launched 5 times

on test area 2 to calculate the averages.

The accuracy measured by F1 score for each method are detailed in Table 16. The classification results

are shown in Figure 17 and the combination results in Figure 18. Test area 2 is dominant by Forest

and Shrub/Scrub, and classes such as Water and Developed Areas are more unbalanced compared to teat

area 1. EFSCmm improves the accuracy by 7% at most and also outperforms other methods. The confidence

interval with confidence level of 95% of EFSCmm is [0.663, 0.668], Karem’s [0.653, 0.658], EC3 [0.630, 0.635]

and MV [0.625, 0.631]. The experiments show that EFSCmm is also significantly better than Karem’s, and
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EC3 on test area 2.

(a) 5NN (b) RF (c) SGB

Figure 17: Original classification results of 5-NN, RF and SGB on test area 2

Table 16: Accuracy of the original classifications (5-NN, RF, SGB) and four fusion methods (Karem’s, EFSCmm,

EC3, MV) on test area 2.

Methods
Accuracy per class

Accuracy

Water
Developed

Area
Forest

Shrub

/Scrub

Grassland

/Herbaceous

Pasture

/Crops
Wetlands

5-NN 0.280 0.122 0.733 0.522 0.118 0.379 0.161 0.597

RF 0.245 0.137 0.714 0.553 0.115 0.422 0.185 0.602

SGB 0.359 0.141 0.753 0.483 0.079 0.367 0.183 0.595

Karem’s 0. 0. 0.784 0.660 0. 0.303 0. 0.656

EFSCmm 0.431 0.227 0.798 0.639 0.016 0.325 0.089 0.666

EC3 0.330 0.150 0.756 0.576 0.089 0.434 0.195 0.633

MV 0.314 0.143 0.759 0.558 0.121 0.428 0.202 0.628

(a) EFSCmm (b) Karem’s (c) EC3 (d) MV

Figure 18: Combination of multiple classification and clustering by EFSCmm, Karem’s, and EC3, and combination

of classifications by MV on test area 2.
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One of the benefits of belief functions based methods is to correct the information in classifications by clus-

tering. For the three classification results, they are all misclassified parts of Shrub/Scrub as Pasture/Crops,

which is difficult to correct by EC3 and MV. This is because for EC3 only classification results can provide

semantic labels so that it depends more on classification than clustering. Belief functions based methods,

such as EFSC and Karem’s, can transform clustering into the same frame as classification, consequently

generating more information on semantic labels to combine.

8. Conclusion

In this paper, we have focused on the fusion of heterogeneous information at the output level. The

major difficulty of the combination is to transfer heterogeneous information from supervised and clustering

methods into the same scenarios. Under the framework of belief functions, we proposed a transformation to

transfer heterogeneous BBAs to the same frame of discernment. Based on this transformation, an iterative

strategy was proposed to combine supervised methods with multiple clustering methods.

The proposed method EFSC can efficiently improve the classification accuracy when the information at

the raw data level is limited (i.e. raw data is inaccessible, training samples are insufficient or partially incor-

rect). Combining supervised methods with clustering results helps to reduce the uncertainty of supervised

results and to enhance reliable information. EFSC emphasizes the treatment of uncertain information in

order to make prudent decisions. Different configurations of EFSC have been evaluated both on synthetic

data and real remote sensing data, in comparison with two other methods: Karem ’s and EC3. EFSC has

shown significantly better performance compared to Karem’s and EC3. EFSC does not rely heavily on

training samples, so it is more pertinent to improve the accuracy of the classification at the output level.

The combination of heterogeneous information at the output level is always difficult. We will further

study how supervised and unsupervised results affect the combination in the proposed transformation,

especially on regrouping/refining the original classes based on clustering results. In our current approach,

we use the Jaccard index as the similarity between classes and clusters. We also consider to study different

measurements of similarity and try to understand how the similarity affects the process of the proposed

transformation. In our future work, we will focus on the feasibility to generate the similarity matrix by

learning process with limited training samples. We will also develop a parallel implementation to test the

proposed framework on very large datasets with different types of data.
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