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For any given integer k ≥ 2 we prove the existence of infinitely many q and characters χ (mod q) of order k, such that |L(1, χ)| ≥ (e γ + o(1)) log log q. We believe this bound to be best possible. When the order k is even, we obtain similar results for L(1, χ) and L(1, χξ) where χ is restricted to even (or odd) characters of order k, and ξ is a fixed quadratic character. As an application of these results, we exhibit large even order character sums, which are likely to be optimal.

Introduction

Dirichlet characters of a fixed order appear naturally in many applications in number theory. The quadratic characters have been extensively studied, due in large part to their connection to fundamental arithmetic objects including class numbers and ranks of elliptic curves. By contrast, higher order characters have received considerably less attention up until very recently, when Granville and Soundararajan [START_REF] Granville | Large character sums: pretentious characters and the Pólya-Vinogradov theorem[END_REF] proved the remarkable result that the classical Pólya-Vinogradov inequality can be improved for characters of a fixed odd order. Other notable work on higher order characters include the results of Baier and Young [START_REF] Baier | Mean values with cubic characters[END_REF] on large sieve inequalities and moments of Dirichlet L-functions attached to cubic characters, which build on previous work by Heath-Brown [START_REF] Heath-Brown | Kummer's conjecture for cubic Gauss sums[END_REF] on cubic symbols; the large sieve inequalities for quartic characters by Gao and Zhao [START_REF] Gao | Large sieve inequalities for quartic characters[END_REF]; and the work of Blomer, Goldmakher and Louvel [START_REF] Blomer | L-functions with n-th-order twists[END_REF] on large sieve inequalities and double Dirichlet series associated with certain higher order Hecke characters.

The connection between Dirichlet characters and class numbers was discovered by Dirichlet in 1839, who established a formula that expresses the class number of a quadratic field Q( √ d) in terms of L(1, χ d ), the value of the corresponding Dirichlet Lfunction at 1, where χ d := d

• is the Kronecker symbol. Motivated by Dirichlet's class number formula, Littlewood [START_REF] Littlewood | On the class number of the corpus P ( √ -k)[END_REF] studied how large can L(1, χ) be, in terms of the conductor of χ. Assuming the Generalized Riemann Hypothesis (GRH), Littlewood proved that for any non-principal primitive character χ (mod q), one has (1.1) |L(1, χ)| ≤ (2e γ + o(1)) log log q.

On the other hand, under the same hypothesis, Littlewood [START_REF] Littlewood | On the class number of the corpus P ( √ -k)[END_REF] showed that there exist infinitely many fundamental discriminants d (both positive and negative) for which (1.2) L(1, χ d ) ≥ (e γ + o(1)) log log |d|.

This omega result was later established unconditionally by Chowla [START_REF] Chowla | Improvement of a theorem of Linnik and Walfisz[END_REF].

To understand which of the bounds (1.1) or (1.2) is closer to the maximal values of L(1, χ d ), Montgomery and Vaughan [START_REF] Montgomery | Extreme values of Dirichlet L-functions at 1. Number theory in progress[END_REF] constructed a probabilistic random model for these values and made several conjectures on their distribution. Most of these conjectures were subsequently proved by Granville and Soundararajan [START_REF] Granville | The distribution of values of L(1, χ d )[END_REF]. Among their results, Granville and Soundararajan obtained an asymptotic formula for the distribution function of L(1, χ d ), showing that the tail of this distribution is double exponentially decreasing. In particular, their work gives strong support to the conjecture that Chowla's omega result (1.2) corresponds to the true nature of extreme values of L(1, χ d ). In [START_REF] Granville | Extreme values of |ζ(1 + it)|. The Riemann zeta function and related themes[END_REF], Granville and Soundararajan proved similar results for the distribution of the values |L(1, χ)| as χ varies over the non-principal primitive characters modulo q with q ≤ Q. Their results give very solid evidence for the following widely believed conjecture.

Conjecture 1.1. Let Q be large. Then max q≤Q max χ =χ 0 (mod q) χ primitive |L(1, χ)| = (e γ + o(1)) log log Q.
Despite all the progress made on L(1, χ d ), very little is known on the values of L(1, χ) for higher order characters χ. The main difficulty is that, unlike the quadratic case where one is equipped with the powerful law of quadratic reciprocity, higher reciprocity laws for k-th order symbols are not easy to apply to Dirichlet characters of order k.

In this paper, we exhibit large values of |L(1, χ)| for k-th order characters χ. We also apply our work to improve recent results of Goldmakher and Lamzouri [START_REF] Goldmakher | Large even order character sums[END_REF], and Bober [START_REF] Bober | Averages of character sums[END_REF], by obtaining lower bounds for even order character sums, which are likely to be optimal. Our first theorem extends Chowla's omega result (1.2) to characters of any given order k. In view of Conjecture 1.1 we believe our bound to be best possible.

Theorem 1.2. Let k ≥ 2 be fixed, and Q be large. There exists a constant c k > 0 for which there are at least Q exp(-c k log Q/ log log Q) primitive characters χ of order k and conductor q ≤ Q, such that

|L(1, χ)| ≥ e γ log log Q + O k (1).
Let χ (mod q) be a non-principal primitive character. An important quantity attached to χ is

M (χ) := max x n≤x χ(n) .
This character sum has been extensively studied over the past century. The first nontrivial bound on M (χ), proved independently by Pólya [START_REF] Pólya | Uber die Verteilung der quadratischen Reste und Nichtreste[END_REF] and Vinogradov [START_REF] Vinogradov | Uber die Verteilung der quadratischen Reste und Nichtreste[END_REF] in 1918, asserts that

M (χ) √ q log q.
This upper bound remains the strongest known outside of special cases. However, conditionally on the GRH, Montgomery and Vaughan [START_REF] Montgomery | Exponential sums with multiplicative coefficients[END_REF] proved that

(1.3) M (χ) √ q log log q.
Recently, in a groundbreaking paper [START_REF] Granville | Large character sums: pretentious characters and the Pólya-Vinogradov theorem[END_REF], Granville and Soundararajan improved both the Pólya-Vinogradov inequality and the Montgomery-Vaughan GRH bound for characters of a given odd order. More precisely, they showed that if g ≥ 3 is an odd integer, and χ (mod q) is a primitive character of order g, then

(1.4) M (χ) √ q(log q) 1-δg 2 +o(1)
unconditionally, √ q(log log q) 1-δg

2 +o(1)
under GRH, where δ g := 1 -g π sin π g . (Here o(1) → 0 as q → ∞.) After developing their ideas further, Goldmakher [START_REF] Goldmakher | Multiplicative mimicry and improvements to the Pólya-Vinogradov inequality[END_REF] showed that these bounds hold with the exponent 1 -δ g instead of 1 -δ g /2, and hence one has M (χ) √ q(log log q) g π sin π g +o(1) , under the assumption of GRH. Shortly afterwards, Goldmakher and Lamzouri [START_REF] Goldmakher | Lower bounds on odd order character sums[END_REF] proved that this bound is in fact optimal. More precisely, they showed that for any > 0 and any fixed odd integer g ≥ 3, there exist arbitrarily large q and primitive characters χ (mod q) of order g satisfying M (χ) g, √ q(log log q) g π sin π g -.

The situation for even order characters is completely different. Indeed, an old result of Paley [START_REF] Paley | A theorem on characters[END_REF] asserts the existence of an infinite family of quadratic characters χ (mod q) for which

(1.5) M (χ) √ q log log q,
showing that the Montgomery-Vaughan bound (1.3) is sharp in this case. This was extended to characters of a given even order by Granville and Soundararajan [START_REF] Granville | Large character sums: pretentious characters and the Pólya-Vinogradov theorem[END_REF] under the assumption of GRH. Recently, Goldmakher and Lamzouri [START_REF] Goldmakher | Large even order character sums[END_REF] obtained this result unconditionally.

Granville and Soundararajan [START_REF] Granville | Large character sums: pretentious characters and the Pólya-Vinogradov theorem[END_REF] also refined the GRH bound of Montgomery and Vaughan (1.3) for all characters χ (mod q). More specifically, assuming the GRH, they showed that

(1.6) M (χ) ≤        2e γ π + o(1) √ q log log q if χ is odd (that is χ(-1) = -1), 2e γ π √ 3 + o(1)
√ q log log q if χ is even (that is χ(-1) = 1).

Similarly to the case of L(1, χ), Granville and Soundararajan [START_REF] Granville | Large character sums: pretentious characters and the Pólya-Vinogradov theorem[END_REF] conjecture that the GRH bounds (1.6) are off by a factor of 2. Namely that, Conjecture 1.3. Let q be large, and χ be a primitive character (mod q). Then

(1.7) M (χ) ≤        e γ π + o(1) √ q log log q if χ is odd, e γ π √ 3 + o(1)
√ q log log q if χ is even.

In a recent work, Bober, Goldmakher, Granville and Koukoulopoulos [START_REF] Bober | The frequency and the structure of large character sums[END_REF] studied the distribution of large values of M (χ) as χ varies over non-principal characters modulo q, where q is a large prime. Among their results, they showed that the bounds in (1.7) are best possible. Indeed, they proved that if q is a large prime, then there exist nonprincipal even and odd characters χ (mod q) such that M (χ) ≥ (c + o(1))

√ q log log q, where c = e γ /π if χ is odd, and c = e γ /(π √ 3) if χ is even. Moreover, their Theorems 1.1 and 1.3 give strong support to Conjecture 1.3.

In the case of quadratic characters, Bateman and Chowla [START_REF] Bateman | Averages of character sums[END_REF] improved Paley's result (1.5), by establishing the existence of infinitely many q and odd quadratic characters χ (mod q) such that

M (χ) ≥ e γ π + o(1) √ q log log q.
In view of Conjecture 1.3, this bound is likely to be best possible. When k ≥ 4 is an even integer, Goldmakher and Lamzouri [START_REF] Goldmakher | Large even order character sums[END_REF] extended Paley's construction to characters of order k. More precisely, they showed that there are infinitely many q, and even characters χ (mod q) of order k such that

M (χ) ≥ 1 π √ p k + o(1) √ q log log q,
where p k is the smallest prime such that p k ≡ k + 1 (mod 2k). Since p k > k, this bound decreases as the order increases. Bober [START_REF] Bober | Averages of character sums[END_REF] subsequently obtained the same result using a different approach. As Bober notes that, this leaves open the possibility that for any > 0 there exist (large) even k such that all characters χ (mod q) of order k satisfy M (χ) ≤ √ q log log q. We resolve this matter, by exhibiting values of M (χ) for even and odd characters χ of even order k, that are as large as the conjectured bounds (1.7). Our result also allows for the order k to grow uniformly as large as any fixed power of the logarithm of the conductor of χ.

Theorem 1.4. Let A ≥ 1 be fixed and Q be large. Let 2 ≤ k ≤ (log Q) A be an even integer. Then, there are at least Q 1/3+o (1) odd primitive characters χ of order k and conductor q ≤ Q, such that

M (χ) ≥ e γ π + o(1) Q log log Q.
Moreover, there exist at least Q 1/3+o (1) even primitive characters χ of order k and conductor q ≤ Q, such that

M (χ) ≥ e γ π √ 3 + o(1) Q log log Q.
In order to establish this result, we relate M (χ) to L(1, χ) via the following bounds, which are valid if the order of χ is even

(1.8) M (χ) ≥      √ q π |L(1, χ)| if χ is odd, and has even order, √ 3q 2π L 1, χ • 3
if χ is even, and has even order, where • 3 is the Legendre symbol modulo 3. When χ is even, this bound is proved in Section 4 of [START_REF] Bober | The frequency and the structure of large character sums[END_REF]. When χ is odd, the corresponding bound follows from the pointwise estimate (see for example Theorem 9.21 of [START_REF] Montgomery | Multiplicative number theory. I. Classical theory[END_REF])

n≤q/2 χ(n) = (2 -χ(2)) τ (χ) iπ L(1, χ),
where τ (χ) is the Gauss sum associated to χ, which satisfies |τ (χ)| = √ q. Now to obtain Theorem 1.4, it remains to produce large values of |L(1, χ)| for odd primitive characters χ of even order k, as well as large values of |L 1, χ • 3 | for even primitive characters χ of order k. Unfortunately, our construction in Theorem 1.2 does not permit us to restrict to even or odd characters, to twist by • 3 , or to allow the order k to be large. Instead, we use a different construction based on twisting a family of quadratic characters by a single specific character of order k, so that these twists also have order k, since k is even. We prove Theorem 1.5. Let A ≥ 1 be fixed, and Q be large. Let 2 ≤ k ≤ (log Q) A be an even integer and δ ∈ {1, -1}. Let ξ be a primitive real character of conductor , where is fixed. Then, there are at least Q 1/3+o (1) primitive characters χ of order k and conductor q ≤ Q such that χ(-1) = δ and

|L(1, χξ)| ≥ ϕ( ) e γ log log Q + O ,A (1). 
Using the bounds (1.8), we deduce Theorem 1.4 from Theorem 1.5 by taking ξ to be the principal character if χ is odd, and ξ = • 3 if χ is even. Our construction in Theorem 1.2 relies on primitive characters χ of prime conductor q. In this case, if χ has order k then q ≡ 1 (mod k). We first prove that there are exactly ϕ(k) such characters modulo q. Here and throughout we let ζ k := exp 2πi k . Lemma 2.1. Let k ≥ 2 be an integer. For any prime q ≡ 1 (mod k), there are exactly ϕ(k) primitive characters of order k and conductor q.

Proof. Let g be a primitive root modulo q. Since any primitive character is completely determined by its value at g, we deduce that if χ is primitive and

(2.1) χ(g) = (ζ k ) α , for some (α, k) = 1,
then χ has order k. Moreover, any character χ of order k and conductor q has to satisfy (2.1). Finally, note that there are exactly ϕ(k) such characters.

For any prime q ≡ 1 (mod k), we let g q be the smallest primitive root modulo q. We define ψ q to be the primitive character modulo q such that (2.2)

ψ q (g q ) = ζ k .
Note that ψ q has order k. Using these characters, we are going to construct a family of primitive characters of order k, which shall be used in the proof of Theorem 1.2.

Lemma 2.2. Let k ≥ 2 be an integer, and m = q 1 q 2 where q 1 = q 2 are primes such that q 1 ≡ q 2 ≡ 1 (mod k). Then ψ m := ψ q 1 ψ q 2 is a primitive character of order k and conductor m.

Proof. Since q 1 and q 2 are coprime, then ψ m is primitive and has conductor m. Moreover, ψ q 1 and ψ q 2 have order k and hence the order of ψ m divides k. Therefore, to show that ψ m has order k, it suffices to find a integer n such that ψ m (n) = ζ k . Now, let g be the smallest primitive root modulo q 1 , and a be a solution to the following linear congruence aq 2 ≡ g -1 (mod q 1 ).

Letting n = aq 2 + 1 and using (2.2) we derive

ψ m (n) = ψ q 1 (g)ψ q 2 (aq 2 + 1) = ζ k , as desired.
Let F k (Q) be the set of characters ψ m indexed over the integers m = q 1 q 2 , where q 1 , q 2 are primes such that

√ Q < q 1 < q 2 < 2 √ Q and q 1 ≡ q 2 ≡ 1 (mod k). If A ≥ 1 is fixed and k ≤ (log Q) A , then it follows from the Siegel-Walfisz Theorem that (2.3) π 2 Q; k, 1 -π Q; k, 1 ∼ 2 √ Q ϕ(k) log Q ,
and hence

|F k (Q)| ∼ 2Q (ϕ(k) log Q) 2 Q (log Q) 2+2A .
In order to obtain large values of L(1, χ), a general strategy is to construct characters χ such that χ(p) = 1 for all the small primes p, typically up to the logarithm of the conductor of χ. Using a judicious application of the pigeonhole principle we prove that there exist many characters ψ m in F k (Q) with this property.

Lemma 2.3. Let A ≥ 1 be fixed, and Q be large. Let 2 ≤ k ≤ (log Q) A be an integer and 2 ≤ y ≤ log Q be a real number. Then there are

Q k 2π(y)+2 (log Q) 2 characters ψ m ∈ F k (Q) such that ψ m (p) = 1 for all primes p ≤ y.
Proof. Let p j denote the j-th prime and put = π(y). Let U k = {ζ a k : 0 ≤ a ≤ k -1} be the set of k-th roots of unity, and

A = {v = (v 1 , . . . , v ) such that v j ∈ U k for all 1 ≤ j ≤ }.
Note that |A| = k . For any v ∈ A we define S Q (v) to be the set of primes q in ( √ Q, 2 √ Q) such that q ≡ 1 mod k and ψ q (p j ) = v j for all 1 ≤ j ≤ . By (2.3) we have

max v∈A |S Q (v)| ≥ 1 |A| v∈A |S Q (v)| √ Q k ϕ(k) log Q . Let v max be such that max v∈A |S Q (v)| = |S Q (v max )|. Note that if q 1 = q 2 are both in S Q (v max ) then ψ q 1 ψ q 2 (p j ) = 1 for all 1 ≤ j ≤ .
Finally, the number of characters ψ m ∈ F k (Q) such that m = q 1 q 2 and q 1 , q 2 ∈ S Q (v max ) equals

|S Q (v max )| 2 Q k 2 +2 (log Q) 2 ,
as desired.

The second ingredient in the proof of Theorem 1.2 is to approximate L(1, χ) by a short Euler product. Using zero density estimates together with the large sieve, Granville and Soundararajan [START_REF] Granville | The distribution of values of L(1, χ d )[END_REF] proved that this can be done for almost all primitive characters χ (mod q) with q ≤ Q. More precisely, they established Proposition 2.4 (Proposition 2.2 of [START_REF] Granville | The distribution of values of L(1, χ d )[END_REF]). Let A > 2 be fixed. Then, for all but at most Q 2/A+o (1) primitive characters χ (mod q) with q ≤ Q we have

L(1, χ) = p≤(log Q) A 1 - χ(p) p -1 1 + O 1 log log Q .
Let z = (log Q) A for some A > 2, and y ≤ (log Q) be a large real number. Then, note that

p≤z 1 - ψ m (p) p -1 = p≤y 1 - ψ m (p) p -1 exp y<p<z ψ m (p) p + O 1 √ y log y .
Let k ≥ 2 be a fixed integer. By Lemma 2.3, there are at least Q 1+o (1) characters ψ m ∈ F k (Q) for which the product p≤y (1 -ψ m (p)/p) -1 is as large as possible. The third and last ingredient in the proof of Theorem 1.2 is the following proposition which gives an upper bound for the 2r-th moment of y<p<z ψ m (p)/p over the characters ψ m ∈ F k (Q), uniformly for r in a large range. In particular, we shall later deduce that with very few exceptions in F k (Q), the prime sum y<p<z ψ m (p)/p is small. Proposition 2.5. Let k ≥ 2 be a fixed integer, and k < y < (log Q) A be a real number where A > 2 is a constant. Put z = (log Q) A . Then, for every positive integer r ≤ log Q/(3Ak 2 log log Q) we have

ψm∈F k (Q) y<p<z ψ m (p) p 2r k 2 r r!Q y<p<z 1 p 2 r + Q 1-1/(4k) .
To establish this result, we shall use the following large sieve inequality over k-th order characters, which is due to Elliott [START_REF] Elliott | On the mean value of f (p)[END_REF].

Lemma 2.6 (Lemma 33 of [START_REF] Elliott | On the mean value of f (p)[END_REF]). Let k ≥ 2 be a fixed integer, and {λ n } n≥1 be a sequence of complex numbers. Then

p≤Q p≡1 (mod k) χ (mod p) n≤H λ n χ(n) 2 k Q m,n≤H mn k-1 =a k λ n λ m + H k Q 1-2/(k+1) n≤H |λ n | 2 ,
where the sum χ (mod p) is confined to characters of order k modulo p for each prime modulus p, and a is an algebraic integer of the cyclotomic field

K = Q(ζ k ).
Remark 2.7. If the sequence λ n is supported only on integers n which are coprime to k (that is λ n = 0 for all (n, k) > 1), then one might replace the condition mn k-1 = a k by mn k-1 is an integral k-th power (i.e. one might take a ∈ N). To see this, put M = mn k-1 and let M = p α 1 1 • • • p α be its prime factorization in N. If M = a k for some alegbraic integer a of K then we must have p α j j = a k j for some algebraic integers a 1 , . . . , a of K. Moreover, since p j k, then p j is unramified in K, and hence we must have k|α j for all 1 ≤ j ≤ , which implies that M is an integral k-th power.

Proof of Proposition 2.5. First, observe that

y<p<z ψ m (p) p r = y r <n<z r b r (n) ψ m (n) n , where (2.4) b r (n) := y<p 1 ,...,pr<z p 1 •••pr=n 1. Note that 0 ≤ b r (n) ≤ r!. Moreover, b r (n) = 0 unless n = p α 1 1 • • • p αs s where y < p 1 < p 2 < • • • < p s < z are distinct primes and Ω(n) = α 1 + • • • + α s = r (
where Ω(n) is the number of prime divisors of n counting multiplicities). In this case, we have

(2.5) b r (n) = r α 1 , . . . , α s .
Using this formula, one can easily deduce that if n 1 and n 2 are positive integers with Ω(n 1 ) = r 1 and Ω(n 2 ) = r 2 then

(2.6) b r 1 +r 2 (n 1 n 2 ) ≤ r 1 + r 2 r 1 b r 1 (n 1 )b r 2 (n 2 ).
Recall that for all ψ m ∈ F k (Q), there exist primes √ Q < q 1 < q 2 < 2 √ Q such that q 1 ≡ q 2 ≡ 1 (mod k) and m = q 1 q 2 . In this case we have ψ m (n) = ψ q 1 (n)ψ q 2 (n). Therefore, we have (2.7)

ψm∈F k (Q) y<p<z ψ m (p) p 2r ≤ q 1 <2 √ Q q 1 ≡1 mod k q 2 <2 √ Q q 2 ≡1 mod k y r <n<z r b r (n)ψ q 1 (n) n ψ q 2 (n) 2 .
We define

λ n = b r (n)ψ q 1 (n) n . Since y > k then b r (n) = 0 if (n, k) > 1.
Therefore, it follows from Lemma 2.6 and Remark 2.7 that (2.8)

q 2 <2 √ Q q 2 ≡1 mod k y r <n<z r b r (n)ψ q 1 (n) n ψ q 2 (n) 2 k Q 1/2 y r <n 1 ,n 2 <z r n 1 n k-1 2 is a k-th power b r (n 1 )b r (n 2 )ψ q 1 (n 1 )ψ q 1 (n 2 ) n 1 n 2 + E 1 (Q), k Q 1/2 y r <n 1 ,n 2 <z r n 1 n k-1 2 is a k-th power b r (n 1 )b r (n 2 ) n 1 n 2 + E 1 (Q),
where (2.9)

E 1 (Q) k z rk Q 1/2-1/(k+1) y r ≤n≤z r b r (n) n 2 z rk Q 1/2-1/(k+1) y≤p≤z 1 p 2r Q 1/2-1/(4k) .
Next, we bound the main term on the right hand side of (2.8). Let n 1 and n 2 be positive integers such that Ω(n 1 ) = Ω(n 2 ) = r and put d = (n 1 , n 2 ). Also, put n 1 = dm 1 and

n 2 = dm 2 . Since n 1 n k-1
2 is a k-th power then both m 1 and m 2 are k-th powers since (m 1 , m 2 ) = 1. Let m 1 = k 1 and m 2 = k 2 , and put s = Ω( 1 ). Since Ω(n 1 ) = Ω(n 2 ) = r, then Ω( 2 ) = s and Ω(d) = r -ks. Therefore, by (2.6) we obtain

(2.10) b r (n 1 )b r (n 2 ) ≤ r ks 2 b ks ( k 1 )b ks ( k 2 )b r-ks (d) 2 ≤ (r!) 2 (ks)! 2 (r -ks)! b ks ( k 1 )b ks ( k 2 )b r-ks (d),
since b t (n) ≤ t! for any positive integers t and n. Furthermore, by (2.6) together with a simple inductive argument we derive

b ks ( k i ) ≤ (ks)! (s!) k b s ( i ) k ≤ (ks)! s! b s ( i ) for i = 1, 2.
Inserting this estimate in (2.10) yields

b r (n 1 )b r (n 2 ) ≤ (r!) 2 (s!) 2 (r -ks)! b s ( 1 )b s ( 2 )b r-ks (d) ≤ r! r ks b s ( 1 )b s ( 2 )b r-ks (d), since (ks)! ≥ (2s)! ≥ (s!) 2 .
Thus we deduce (2.11)

y r <n 1 ,n 2 <z r n 1 n k-1 2 is a k-th power b r (n 1 )b r (n 2 ) n 1 n 2 ≤ r! 0≤s≤r/k r ks d b r-ks (d) d 2 b s ( ) k 2 = r! 0≤s≤r/k r sk y<p<z 1 p 2 r-sk y<p<z 1 p k 2s , since n b t (n) n α = y<p<z 1 p α t .
Furthermore, since k ≥ 2 then for any positive integer n, the Euclidean norm in R n is larger than the k-norm. Therefore we have

y<p<z 1 p k 1/k ≤ y<p<z 1 p 2 1/2 .
Inserting this bound in (2.11) yields

y r <n 1 ,n 2 <z r n 1 n k-1 2 is a k-th power b r (n 1 )b r (n 2 ) n 1 n 2 ≤ 2 r r! y<p<z 1 p 2 r .
Combining this bound with equations (2.7), (2.8) and (2.9) completes the proof.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let z = (log Q) 5 , and 2 ≤ y ≤ (log Q) 3/2 be a real number to be chosen later. Then, by Proposition 2.4 it follows that for all but at most Q 1/2 primitive characters χ (mod q) with q ≤ Q we have (2.12)

L(1, χ) = p≤z 1 - χ(p) p -1 1 + O 1 log log Q = p≤y 1 - χ(p) p -1 exp y<p<z χ(p) p 1 + O 1 log log Q + 1 √ y log y ,
by the prime number theorem. Furthermore, taking r = [log Q/(15k 2 log log Q)] in Proposition 2.5 we obtain that the number of characters

ψ m ∈ F k (Q) such that y<p<z ψ m (p) p > 1 log log Q is (2.13) Q 4r(log log Q) 2 y log y r Q log Q log log Q 3k 2 y log y r ,
since y<p 1/p 2 ≤ 2/y log y by the prime number theorem. On the other hand, it follows from Lemma 2.3 that for some constant c k > 0, there are at least Q exp(-c k log Q/ log log Q) characters ψ m ∈ F k (Q) for which ψ m (p) = 1 for all primes p ≤ log Q. Choosing y = b k log Q for some suitably large constant b k > 0 we deduce from (2.12) and (2.13) that there are at least Q exp(-2c k log Q/ log log Q) characters ψ m ∈ F k (Q) for which ψ m (p) = 1 for all primes p ≤ log Q, and such that (2.12) holds and

y<p<z ψ m (p) p ≤ 1 log log Q .
For these characters ψ m , we have by (2.12) that It follows from Lemma 2.3 that there is a character ψ of large conductor m = q 1 q 2 where q 1 and q 2 are primes, such that ψ has order k ≤ (log m) A and ψ(p) = 1 for all primes p ≤ (log m)/(4A). In order to prove Theorem 1.5, our construction involves the characters ψχ d , where d ranges over a certain family of fundamental discriminants. To exhibit large values of L(1, ψχ d ξ), we first prove that for many of these fundamental discriminants d we have χ d (p) = ξ(p) for all the "small" primes p. To establish this proposition, we first need to count the fundamental discriminants d such that 0 < δd ≤ Q, d ≡ 1 (mod 4) and p | d =⇒ p > y. To this end, we use the following standard estimate whose proof we include for completeness. Lemma 3.2. Let m be a positive integer, and Q be a large real number. The number of fundamental discriminants d such that 0

L(1, ψ m ) = p≤log Q 1 - 1 p -1 exp log Q<p<y ψ m (p) p 1 + O 1 log log Q = e γ log log Q + O k (1), as desired.
< δd ≤ Q, d ≡ 1 (mod 4) and (d, m) = 1 equals 3 π 2 Q p|2m 1 + 1 p -1 + O d(m)Q 1/2 ,
where d(m) = b|m 1 is the divisor function.

Proof. We only prove the estimate when δ = 1, since the proof for the case δ = -1 follows along similar lines. Let χ -4 be the non-principal real primitive character modulo 4, and N m (Q) be the number of fundamental discriminants 0 

< d ≤ Q such d ≡ 1 ( mod 
N m (Q) = 0<d≤Q d≡1 (mod 4) (d,m)=1 µ 2 (d) = 1 2 0<d≤Q (d,2m)=1 1 + χ -4 (d) h 2 |d µ(h) = 1 2 h≤ √ Q (h,2m)=1 µ(h) b≤Q/h 2 (b,2m)=1 1 + χ -4 (b) . Now, observe that b≤Q/h 2 (b,2m)=1 1 = a|2m µ(a) b≤Q/h 2 a|b 1 = Q h 2 a|2m µ(a) a +O d(2m) = Q h 2 p|2m 1 - 1 p +O d(2m) .
Similarly, one has Combining these estimates with (3.1) and using that d(2m) ≤ 2d(m), we deduce

(3.2) N m (Q) = Q 2 p|2m 1 - 1 p h≤ √ Q (h,2m)=1 µ(h) h 2 + O d(m)Q 1/2 . Finally note that h≤ √ Q (h,2m)=1 µ(h) h 2 = h≥1 (h,2m)=1 µ(h) h 2 + O Q -1/2 = 6 π 2 p|2m 1 - 1 p 2 -1 + O Q -1/2 .
Inserting this estimate in (3.2) completes the proof.

The second ingredient in the proof of Proposition 3.1 is the following bound on character sums, which is a slight variation of Lemma 4.1 of Granville and Soundararajan [START_REF] Granville | The distribution of values of L(1, χ d )[END_REF]. Here and throughout, the sum d is confined to fundamental discriminants d. Lemma 3.3. Let δ = ±1. Let m be positive integer, and n ≥ 2 be an integer, not a perfect square. Then we have

0<δd≤Q d≡1 (mod 4) (d,m)=1 χ d (n) d(m)Q 1/2 n 1/4 (log n) 1/2 .
Proof. We only prove the estimate when δ = 1, since the proof for the case δ = -1 follows similarly. Writing µ

2 (d) = h 2 |d µ(h) we get (3.3) 0<d≤Q d≡1 (mod 4) (d,m)=1 χ d (n) = d≤Q d≡1 (mod 4) (d,m)=1 µ 2 (d)χ d (n) = 1 2 ξ (mod 4) h≤ √ Q (h,m)=1 µ(h) d≤Q h 2 |d (d,m)=1 ξ(d) d n = 1 2 ξ (mod 4) h≤ √ Q (h,m)=1 µ(h)ξ(h 2 ) h 2 n b≤Q/h 2 (b,m)=1 ξ(b) b n = 1 2 ξ (mod 4) h≤ √ Q (h,m)=1 µ(h)ξ(h 2 ) h 2 n a|m µ(a) b≤Q/h 2 a|b ξ(b) b n = 1 2 ξ (mod 4) h≤ √ Q (h,m)=1 µ(h)ξ(h 2 ) h 2 n a|m µ(a)ξ(a) a n ≤Q/(ah 2 ) ξ( ) n .

Now, since ξ(•)

• n is a non-principal character of conductor at most 4n, then by the Pólya-Vinogradov inequality, we have

≤Q/(ah 2 ) ξ( ) n √ n log n.
We use this bound in We also need an L 2r bound for the prime sum y<p<z (ψξχ d )(p)/p, similar to Proposition 2.5. To this end we establish the following lemma. Lemma 3.4. Let {a(p)} p prime be a sequence of complex numbers such that |a(p)| ≤ 1. Let A ≥ 1 be fixed and 2 ≤ y < (log Q) A be a real number. Put z = (log Q) A . Then, for any positive integer r ≤ log Q/(6A log log Q) we have 

(3.3) if h ≤ Q 1/2 n -1/4 (log n) -1/2 , and the trivial bound Q/h 2 if h > Q 1/2 n -1/4 (log n) -1/2 , in order to get 0<d≤Q d≡1 (mod 4) (d,m)=1 χ d (n) d(m)Q 1/2 n 1/4 (log n) 1/2 + d(m)Q h>Q 1/2 n -1/4 (log n) -1/2 1 h 2 d(m)Q 1/2 n 1/4 (log n) 1/2 ,
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 3 Large values of |L(1, χξ)| for even order characters χ: Proof of Theorem 1.5
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 31 Let δ = ±1, Q be large and 2 ≤ y ≤ log Q be a real number. Put P (y) = p≤y p. Let ε(p) = ±1 for each prime p. Then there are Q 2 π(y) log y fundamental discriminants d ≡ 1 (mod 4) such that 0 < δd ≤ Q, (d, P (y)) = 1 and χ d (p) = ε(p) for all primes p ≤ y.

  4) and (d, m) = 1. Then, writing µ 2 (d) = h 2 |d µ(h) we obtain (3.1)

b≤Q/h 2 (

 2 )χ -4 (a) r≤Q/(ah 2 ) χ -4 (r) = O d(2m) .

1 1

 11 Proof of Proposition 3.1. Let L = π(y). Note that if (d, P (y)) = 1 and p is a prime ≤ y, then 1 + χ d (p)ε(p) = 2 if χ d (p) = ε(p) and equals 0 otherwise. Therefore, the number of fundamental discriminants d ≡ 1 (mod 4) such that 0 < δd ≤ Q, (d, P (y)) = 1 andχ d (p) = ε(p) for all primes p ≤ y <p 2 <•••<pr≤y ε(p 1 ) • • • ε(p r )χ d (p 1 • • • p r ) <p 2 <•••<pr≤y ε(p 1 ) • • • ε(p r ) 0<δd≤Q d≡1 (mod 4) (d,P (y))=1 χ d (p 1 • • • p r ) P (y))=1 1 + O Q 1/2 e y/3, by Lemma 3.3 together with the fact that p≤y p = e y(1+o(1)) which follows from the prime number theorem. Finally, using Lemma 3.

2 r+ Q - 1 / 3 .Q 1 / 3

 21313 Proof. First, we extend the sequence {a(p)} p multiplicatively to all positive integers n > 1 by settinga(n) = a(p 1 ) α 1 • • • a(p j ) α j , if n = p α 1 1 • • • p α j j . Then, we have y<p<z a(p)χ d (p) p 2r = y 2r <n<z 2r a(n)χ d (n)b 2r (n) n , is Q 1/3 4r log log Q log Q r exp -log Q 30 log log Q , since log Q<p 1/p 2 ≤ 2/(log Q log log Q)by the prime number theorem. Thus, choosing y = (log Q)/(50A), we deduce that there areQ 1/3 exp -log Q 50 log log Q fundamental discriminants d ≡ 1 (mod 4) such that 0 < εδd < Q 1/3 , (d, P (y)) = 1, the asymptotic formula (3.5) holds, χ d (p) = ξ(p) for all primes p ≤ y with p , and log Q<p<z ψ(p)ξ(p)χ d (p) p ≤ 1 log log Q .For these d, we have by (3.5) thatL(1, ψξχ d ) = )ξ(p)χ d (p) p 1 + O 1 log log Q = ϕ( ) e γ log log Q + O ,A(1), as desired.
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where the coefficient b 2r (n) is defined in (2.4). Therefore, using Lemma 3. [START_REF] Blomer | L-functions with n-th-order twists[END_REF] 

Furthermore, by (2.6) together with the fact that b r (m) ≤ r! we obtain

Inserting this bound in (3.4) and using that y<p<z 1/ √ p √ z/ log z, completes the proof.

We now prove Theorem 1.5.

Proof of Theorem 1.5. Let A ≥ 1 be fixed. First, it follows from Lemma 2.3 that for any integer 2 ≤ k ≤ (log Q) A , there exist prime numbers q 1 , q 2 such that Q 1/3 < q 1 < q 2 < 2Q 1/3 and a character ψ of order k and conductor q 1 q 2 such that ψ(p) = 1 for all primes p ≤ (log Q)/(6A).

Let ε = ψ(-1), and < y ≤ (log Q)/(6A) be a real number to be chosen later. We consider the family of characters {ψχ d }, where d ranges over the fundamental discriminants d ≡ 1 (mod 4) such that (d, P (y)) = 1 and 0 < εδd < Q 1/3 . Since , d, and q 1 q 2 are pairwise coprime then ψξχ d is primitive and ψχ d is a primitive character of order k and conductor |d|q 1 q 2 Q. Moreover, note that ψχ d (-1) = δ. Let z = (log Q) 10 . Then, it follows from Proposition 2.4 that for all but at most Q 1/4 fundamental discriminants d with 0 < εδd < Q 1/3 we have

Furthermore, by Proposition 3.1 there are at least Q 1/3 /(2 π(y) log y) fundamental discriminants d ≡ 1 (mod 4) such that 0 < εδd < Q 1/3 , (d, P (y)) = 1, and χ d (p) = ξ(p) for all primes p ≤ y, such that p .

Moreover, taking r = [log Q/(60 log log Q)] in Lemma 3.4 we obtain that the number of fundamental discriminants d with 0 < εδd < Q