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In this paper, we obtain an asymptotic formula for the number of imaginary quadratic fields with prime discriminant and class number up to H, as H → ∞. Previously, such an asymptotic was only known under the assumption of the Generalized Riemann Hypothesis, by the recent work of Holmin, Jones, Kurlberg, McLeman and Petersen.

Introduction

The celebrated Gauss class number problem, posed by Gauss in his Disquisitiones Arithmeticae of 1801, asks for the determination of all imaginary quadratic fields with a given class number. This was solved for h = 1 by Baker, Heegner and Stark in the 50's and 60's, by Baker and Stark for h = 2, and by Oesterlé for h = 3. We now have a complete list of all imaginary quadratic fields with class number h for all h ≤ 100 thanks to the work of Watkins [START_REF] Watkins | Class numbers of imaginary quadratic fields[END_REF].

In [START_REF] Soundararajan | The number of imaginary quadratic fields with a given class number[END_REF] Soundararajan proved that there are asymptotically 3ζ (2) ζ(3) H 2 imaginary quadratic fields with class number up to H, as H → ∞, where ζ(s) is the Riemann zeta function. He also studied the quantity F(h) defined as the number of imaginary quadratic fields with class number h. In particular, a more precise form of his asymptotic formula asserts that (1.1) h≤H

F(h) = 3ζ(2) ζ(3) H 2 + O ε H 2 (log H) 1/2-ε .
The error term was recently improved to H 2 (log H) -1-ε by the author in [START_REF] Lamzouri | On the average of the number of imaginary quadratic fields with a given class number[END_REF].

Furthermore, Soundararajan [START_REF] Soundararajan | The number of imaginary quadratic fields with a given class number[END_REF] conjectured that for large h we have

h log h F(h) h log h,
where the variation in size depends on the largest power of 2 that divides h. In particular, when h is odd, he conjectured that

F(h) h log h ,
and noted that the precise constant would depend on the arithmetic properties of h. In their recent investigation of class groups of imaginary quadratic fields, Holmin, Jones, Kurlberg, McLeman and Petersen [START_REF] Holmin | Missing class groups and class number statistics for imaginary quadratic fields[END_REF] refined this conjecture to an asymptotic estimate. More precisely, they conjectured that as h → ∞ through odd values, we have

F(h) ∼ C • c(h) • h log h where C = 15 p>2 ∞ i=2 1 - 1 p i ≈ 11
.317, and c(h) =

p n h n i=1 1 - 1 p i -1
.

To obtain this conjecture, they used the Cohen-Lenstra heuristics, together with a similar asymptotic formula to (1.1) averaged over odd values of h, which they proved assuming the Generalized Riemann Hypothesis GRH. More precisely, Theorem 1.5 of [START_REF] Holmin | Missing class groups and class number statistics for imaginary quadratic fields[END_REF] states that conditionally on GRH, we have 

(1.2) h≤H h odd F(h) = 15 4 • H 2 log H + O ε H 2 (log H)
F(h) = 15 4 • H 2 log H + O H 2 (log log H) 3 (log H) 3/2 .
Note that assuming GRH, the error term above can be improved to H 2 (log log H) 3 /(log H) 2 (see [START_REF] Lamzouri | On the average of the number of imaginary quadratic fields with a given class number[END_REF]). Let h(d) denote the class number of the quadratic field Q( √ d). Dirichlet's class number formula for imaginary quadratic fields asserts that

(1.4) h(d) = |d| π L(1, χ d ),
for all fundamental discriminants d < -4, where χ d = d

• is the Kronecker symbol, and L(s, χ d ) is the Dirichlet L-function attached to χ d . Hence, the distribution of h(d) is ultimately connected to that of L(1, χ d ).

To obtain the conditional estimate (1.2), the authors of [START_REF] Holmin | Missing class groups and class number statistics for imaginary quadratic fields[END_REF] followed the approach in [START_REF] Soundararajan | The number of imaginary quadratic fields with a given class number[END_REF], which relies on computing the complex moments of L(1, χ d ). Using the ideas of Granville and Soundararajan [START_REF] Granville | The distribution of values of L(1, χ d )[END_REF], Holmin, Jones, Kurlberg, McLeman and Petersen [START_REF] Holmin | Missing class groups and class number statistics for imaginary quadratic fields[END_REF] computed the complex moments of L(1, χ d ) as d varies in P(x) := {d = -p : p ≤ x is prime, and p ≡ 3 mod 4}, conditionally on GRH. To describe their result, we need some notation. Let X(p) be a sequence of independent identically distributed random variables such that X(p) = ±1 with equal probabilities 1/2. Consider the random product

L(1, X) := p 1 - X(p) p -1
, which converges almost surely by Kolmogorov's three series theorem. Then, Theorem 3.3 of [START_REF] Holmin | Missing class groups and class number statistics for imaginary quadratic fields[END_REF] asserts that assuming GRH, for all complex numbers |z| ≤ log x/(50(log log x) 2 ) we have

d∈P(x) L(1, χ d ) z = |P(x)| • E (L(1, X) z ) + O ε x 1/2+ε .
Using a different approach, we obtain an unconditional version of this asymptotic formula, though in a smaller range. One of the difficulties in obtaining such a result unconditionally arises from the possible existence of Landau-Siegel zeros. In this case, we isolate an extra factor in the asymptotic which comes from a single exceptional modulus defined as follows. By Chapter 20 of [START_REF] Davenport | Multiplicative number theory[END_REF], there is at most one square-free integer q 1 such that |q 1 | ≤ exp( √ log x) and L(s, χ q 1 ) has a zero in the region

(1.5) Re(s) > 1 - c √ log x ,
for some positive constant c. Moreover, this zero β (if it exists) is unique, real and simple.

Theorem 1.2. Let x be large. Then for all complex numbers z such that Re(z) ≥ -1 and |z| ≤ √ log x/(log log x) 2 we have

d∈P(x) L(1, χ d ) z = Li(x) 2 • E (L(1, X) z ) -sgn(q 1 ) Li(x β ) 2 • E X(|q 1 |) • L(1, X) z + O x exp - √ log x 5 log log x ,
where sgn(q 1 ) is the sign of q 1 .

If such an exceptional discriminant q 1 exists, then we must have |q 1 | ≥ (log x) 1-o(1) (see Chapter 20 of [START_REF] Davenport | Multiplicative number theory[END_REF]). This allows us to prove that the contribution of the secondary term in Theorem 1.2 to the asymptotic estimate of h≤H h odd F(h) in Theorem 1.1 is negligible. We also note that using Theorem 1.2 together with Soundararajan's method [START_REF] Soundararajan | The number of imaginary quadratic fields with a given class number[END_REF] (as in the proof of (1.2) in [START_REF] Holmin | Missing class groups and class number statistics for imaginary quadratic fields[END_REF]) produces only a saving of (log H) 1/4-ε in the error term of Theorem 1.1, since the range of validity of the asymptotic in Theorem 1.2 is reduced to |z| ≤ (log x) 1/2-o (1) . Instead, we use the approach of [START_REF] Lamzouri | On the average of the number of imaginary quadratic fields with a given class number[END_REF] in order to obtain the improved saving of (log H) 1/2-ε in Theorem 1.1, which matches that of the conditional estimate (1.2).

Preliminary results

Let χ (mod q) be a Dirichlet character, and z ∈ C. For all complex numbers s with Re(s) > 1 we have

L(s, χ) z = ∞ n=1 d z (n) n s χ(n),
where d z (n) is the z-th divisor function, defined as the multiplicative function such that d z (p a ) = Γ(z + a)/(Γ(z)a!) for all primes p and positive integers a. We shall need the following bounds for these divisor functions and their sums. First, note that

(2.1) |d z (n)| ≤ d |z| (n) ≤ d k (n)
for any integer k ≥ |z|, and

d k (mn) ≤ d k (m)d k (n) for any positive integers k, m, n.
Furthermore, for k ∈ N, and y > 3 we have

d k (n)e -n/y ≤ e k/y a 1 ...a k =n
e -(a 1 +...+a k )/y , and hence

(2.2) ∞ n=1 d k (n) n e -n/y ≤ e 1/y ∞ a=1 e -a/y a k ≤ (log 2y) k .
We will also need the following bound, which follows from Lemma 3.3 of [START_REF] Lamzouri | Extreme values of arg L(1, χ)[END_REF] (2.3)

∞ n=1 d k (n) 2 n 2-δ ≤ exp ((2 + o(1))k log log k) ,
where k is a large positive integer, and δ is any positive real number such that δ ≤ 1/(2 log k). Let X(p) be a sequence of independent identically distributed random variables such that X(p) = ±1 with equal probabilities 1/2. We extend the X(p)'s multiplicatively to all positive integers by setting X(1) = 1 and X(n

) := X(p 1 ) a 1 • • • X(p k ) a k if n = p a 1 1 • • • p a k k . Since E(X(p a )) = E(X(p) a ) = 1 if
a is even, and equals 0 if a is odd, then for any positive integer we have E(X( )) = 1 if is a square, and equals 0 otherwise. For σ > 1/2 we define the random Euler product

L(σ, X) := p 1 - X(p) p σ
which converges almost surely by Kolmogorov's three series theorem. Let 1/2 < σ ≤ 1, z ∈ C, and q ≥ 1 be a square-free number. Then, we have almost surely

L(σ, X) z = ∞ n=1 d z (n) n σ X(n),
and hence

E (X(q) • L(σ, X) z ) = E X(q) ∞ n=1 d z (n) n σ X(n) = ∞ n=1 d z (n) n σ E (X(qn)) .
Moreover, since q is square-free, then qn is a square if and only if n = qm 2 for some integer m ≥ 1. Thus, we obtain

(2.4) E (X(q) • L(σ, X) z ) = ∞ m=1 d z (qm 2 ) (qm 2 ) σ .
In particular, since X(q) ≤ 1 and L(σ, X) > 0 almost surely, then for any real number k we have

(2.5) ∞ m=1 d k (qm 2 ) (qm 2 ) σ = E X(q) • L(σ, X) k ≤ E L(σ, X) k = ∞ m=1 d k (m 2 ) m 2σ .
Furthermore, observe that (2.6)

E (X(q) • L(1, X) z ) = p|q E X(p) 1 - X(p) p -z p q E 1 - X(p) p -z = p|q 1 2 1 - 1 p -z - 1 2 1 + 1 p -z p q 1 2 1 - 1 p -z + 1 2 1 + 1 p -z = E (L(1, X) z ) p|q (p -1) -z -(p + 1) -z (p -1) -z + (p + 1) -z = E (L(1, X) z ) p|q (p + 1) z -(p -1) z (p + 1) z + (p -1) z .
In [START_REF] Lamzouri | Distribution of values of L-functions at the edge of the critical strip[END_REF], the author studied the distribution of a large class of random models, which includes L(1, X). In particular, it follows from Theorem 1 of [START_REF] Lamzouri | Distribution of values of L-functions at the edge of the critical strip[END_REF] that there is an explicit constant A, such that for large τ we have (2.7)

P(L(1, X) ≥ e γ τ ) = exp - e τ -A τ 1 + O 1 √ τ , and 
(2.8) P L(1, X) ≤ ζ(2)(e γ τ ) -1 = exp - e τ -A τ 1 + O 1 √ τ ,
where γ is the Euler-Mascheroni constant. These large deviation estimates will be used in the proof of Theorem 1.1.

In order to compute the complex moments of L(1, χ d ) over d ∈ P(x) and prove Theorem 1.2, we need to estimate the character sum d∈P(x) χ d (n). By the law of quadratic reciprocity, this amounts to estimating the character sum over primes p≤x χ n (p). It follows from Chapter 20 of [START_REF] Davenport | Multiplicative number theory[END_REF], that for all square-free integers |n| ≤ exp( √ log x) with at most one exception q 1 , we have (2.9)

p≤x χ n (p)
x exp -c log x , for some positive constant c. Furthermore, for this exceptional q 1 (if it exists), the associated L-function L(s, χ q 1 ) has a unique real simple zero β, such that β > 1c/ √ log x, and moreover we have

(2.10) p≤x χ q 1 (p) = -Li x β + x exp -c log x .
Lemma 2.1. Let x be large and n ≤ exp √ log x be a positive integer. Then, we have

d∈P(x) χ d (n) =                    Li(x) 2 + O x exp -c log x , if n = m 2 , -sgn(q 1 ) Li(x β ) 2 + O x exp -c log x , if n = |q 1 | • m 2 , O x exp -c √ log x , otherwise.
Proof. First, we have

d∈P(x) χ d (n) = p≤x p≡3 mod 4 -p n .
Write n = n 1 m 2 where n 1 is square-free. Then, it follows from the law of quadratic reciprocity that for any prime p ≡ 3 mod 4 such that p n, we have

-p n = n p = n 1 p .
Thus, we get

d∈P(x) χ d (n) = p≤x p≡3 mod 4 n 1 p + O (ω(n)) = 1 2 p≤x n 1 p - 1 2 p≤x -n 1 p + O (ω(n)) .
The first estimate, which corresponds to the case n 1 = 1, follows simply from the prime number theorem in arithmetic progressions. Now, if

n 1 = |q 1 |, then we get p≤x n 1 p - p≤x -n 1 p = -sgn(q 1 ) • Li(x β ) + O x exp -c log x ,
by (2.9) and (2.10). The final estimate follows from (2.9).

Note that Lemma 2.1 is valid only in the small range n ≤ exp( √ log x). Hence, in order to use this result in the proof of Theorem 1.2, we need to find an approximation of the form

L(1, χ d ) z ≈ n≤y d z (n)χ d (n) n
where y ≤ exp( √ log x). The following result, which is a slightly different version of Proposition 3.3 of [START_REF] Dahl | The distribution of class numbers in a special family of real quadratic fields. 27 pages[END_REF], shows that we can find a good approximation to L(1, χ d ) z if L(s, χ d ) has no zeros in a certain small rectangle near 1. The proof is similar to that of Proposition 3.3 of [START_REF] Dahl | The distribution of class numbers in a special family of real quadratic fields. 27 pages[END_REF], but we shall include it for the sake of completeness. Here and throughout we let log j be the j-fold iterated logarithm; that is, log 2 = log log, log 3 = log log log and so on. Proposition 2.2. Let q be large and 0 < δ < 1/2 be fixed. Let χ be a non-principal character modulo q, and y be a real number in the range exp ((log 2 q) 3 ) ≤ y ≤ q. Assume that L(s, χ) has no zeros inside the rectangle {s : 1 -δ < Re(s) ≤ 1 and |Im(s)| ≤ 2(log q) 2/δ }. Then, for any complex number z with |z| ≤ (log y)/(log 2 q) 2 we have

L(1, χ) z = ∞ n=1 d z (n)χ(n) n e -n/y + O δ exp - log y 2 log 2 q .
To prove this result, we need the following lemma from [START_REF] Dahl | The distribution of class numbers in a special family of real quadratic fields. 27 pages[END_REF].

Lemma 2.3 (Lemma 3.1 of [START_REF] Dahl | The distribution of class numbers in a special family of real quadratic fields. 27 pages[END_REF]). Let q be large and χ be a non-principal character modulo q. Put η = 1/ log 2 q, and let 0 < δ < 1/2 be fixed. Assume that L(z, χ) has no zeros in the rectangle {z : 1 -δ < Re(z) ≤ 1 and |Im(z)| ≤ 2(log q) 2/δ }. Then for any s = σ + it with 1 -η ≤ σ ≤ 1 and |t| ≤ log 4 q we have

| log L(s, χ)| ≤ log 3 q + O δ (1). Proof of Proposition 2.2. Since 1 2πi 2+i∞ 2-i∞ y s Γ(s)ds = e -1/y then 1 2πi 2+i∞ 2-i∞ L(1 + s, χ) z Γ(s)y s ds = ∞ n=1 d z (n)χ(n) n e -n/y .
we shift the contour to C, where C is the path which joins -i∞, -i(log q) 4 , -η -i(log q) 4 , -η + i(log q) 4 , -i(log q) 4 , +i∞, where η = 1/ log 2 q. By our assumption, we encounter only a simple pole at s = 0 which leaves the residue L(1, χ) z . Also, since χ is a non-exceptional character, we can use the following standard bound (see for example Lemma 2.2 of [7])

(2.11) log L(1 + it, χ) log 2 q(|t| + 2) .

Using (2.11) together with Stirling's formula we obtain 1 2πi

-i(log q) 4 -i∞

+ i∞ i(log q) 4 L(1 + s, χ) z Γ(s)y s ds ∞ (log q) 4
e O(|z| log 2 qt) e -π 3 t dt 1 q .

Finally, using that Γ(s) has a simple pole at s = 0 together with Stirling's formula and Lemma 2.3, we deduce that

1 2πi -η-i(log q) 4 -i(log q) 4 + -η+i(log q) 4 -η-i(log q) 4 + i(log q) 4 -η+i(log q) 4 L(1 + s, χ) z Γ(s)y s ds exp - π 3 (log q) 4 + O(|z| log 3 q) + y -η η exp |z| log 3 q + O δ (|z|) (log q) 4 δ exp - log y 2 log 2 q .
3. Complex moments of L(1, χ d ) over d ∈ P(x): Proof of Theorem 1.2

Let P(x) be the set of discriminants d = -p such that √ x ≤ p ≤ x is prime, p ≡ 3 mod 4 and L(s, χ -p ) has no zeros in the rectangle {s : 9/10 < Re(s) ≤ 1 and |Im(s)| ≤ 2(log x) 20 }. To bound |P(x) \ P(x)| we use the following zero-density result of Heath-Brown [START_REF] Heath-Brown | A mean value estimate for real character sums[END_REF], which states that for 1/2 < σ < 1 and any ε > 0 we have

|d|≤x N (σ, T, χ d ) (xT ) ε x 3(1-σ)/(2-σ) T (3-2σ)/(2-σ) ,
where By (2.11), it follows that log L(1, χ -p ) log 2 p if χ -p is a non-exceptional character. Since there is at most one exceptional prime modulus between any two powers of 2 (see Chapter 14 of [START_REF] Davenport | Multiplicative number theory[END_REF]), it follows that there are at most O(log x) exceptional characters χ -p with p ≤ x. In this case, we shall use the trivial bound L(1, χ -p ) p -1/2 , which follows from the class number formula (1.4). Therefore, using (3.1) and noting that Re(z) ≥ -1 we obtain

(3.2) d∈P(x)\ P(x) L(1, χ d ) z x 1/2 log x + x 1/2 exp O(|z| log 2 x) x 2/3 .
In the remaining part of the proof we let k = |z| + 1. If d ∈ P(x), then we can use Proposition 2.2 in order to approximate L(1, χ d ) z . This gives

(3.3) d∈ P(x) L(1, χ d ) z = d∈ P(x) ∞ n=1 d z (n)χ d (n) n e -n/y + O x exp - √ log x 5 log log x ,
where y = exp 1 2 √ log x . We now extend the main term of the last estimate, so as to include all elements of P(x). Using (2.2) and (3.1), we deduce that

d∈P(x)\ P(x) ∞ n=1 d z (n)χ d (n) n e -n/y x 1/2 ∞ n=1 d k (n) n e -n/y x 1/2 (log 2y) k x 2/3 .
Combining this estimate with (3.2) and (3.3) gives

d∈P(x) L(1, χ d ) z = ∞ n=1 d z (n) n e -n/y d∈P(x) χ d (n) + O x exp - √ log x 5 log log x = n≤y(log y) 2 d z (n) n e -n/y d∈P(x) χ d (n) + O x exp - √ log x 5 log log x ,
since the contribution of the terms n > y log 2 y to the right hand side is

(3.4) x n>y log 2 y d k (n) n e -n/y ≤ x exp - (log y) 2 2 ∞ n=1 d k (n) n e -n/(2y) x 7/8 (log 4y) k x 8/9 , by (2.2) 
. We are now able to use Lemma 2.1 to estimate the sum d∈P(x)

χ d (n) since n ≤ y(log y) 2 ≤ exp √ log x . Thus, Lemma 2.1 gives (3.5) d∈P(x) L(1, χ d ) z = Li(x) 2 m≤ √ y log y d z (m 2 ) m 2 e -m 2 /y -sgn(q 1 ) Li(x β ) 2 m≤ √ y/|q 1 | log y d z (|q 1 |m 2 ) |q 1 |m 2 e -|q 1 |m 2 /y + O (E 1 (x)) ,
where

E 1 (x) x exp -c log x ∞ n=1 d k (n) n e -n/y + x exp - √ log x 5 log log x x exp - √ log x 5 log log x , by (2.2) 
. Next, we use (3.4) to complete the two sums in the right hand side of (3.5). This yields (3.6)

d∈P(x) L(1, χ d ) z = Li(x) 2 ∞ m=1 d z (m 2 ) m 2 e -m 2 /y -sgn(q 1 ) Li(x β ) 2 ∞ m=1 d z (|q 1 |m 2 ) |q 1 |m 2 e -|q 1 |m 2 /y + O x exp - √ log x 5 log log x .
By (2.4), in order to complete the proof of Theorem 1.2, we need to replace the factors e -m 2 /y and e -|q 1 |m 2 /y in the above sums by 1, and in so doing we introduce an error term of size at most

(3.7) E 2 (x) = Li(x) ∞ m=1 d k (m 2 ) m 2 1 -e -m 2 /y + ∞ m=1 d k (|q 1 |m 2 ) |q 1 |m 2 1 -e -|q 1 |m 2 /y .
We shall use the bound 1 -e -t t α which is valid for all t > 0 and 0 < α ≤ 1. Choosing α = 1/ log 2 x, and using (2.5) we deduce that

E 2 (x) y -α x ∞ m=1 d k (m 2 ) m 2-2α + ∞ m=1 d k (|q 1 |m 2 ) (|q 1 |m 2 ) 1-α y -α x • ∞ m=1 d k (m 2 ) m 2-2α ,
Finally, using the bound (2.3) and noting that

d k (m 2 ) ≤ d k (m) 2 for all integers m ≥ 1, we obtain ∞ m=1 d k (m 2 ) m 2-2α ≤ ∞ m=1 d k (m) 2 m 2-2α ≤ exp ((2 + o(1))k log 2 k) exp √ log x 20 log 2 x .
This implies that E 2 (x) exp -√ log x/(5 log 2 x) . Combining this estimate with (3.6) completes the proof of Theorem 1.2.

Proof of Theorem 1.1

To prove Theorem 1.1 we shall follow the argument in [START_REF] Lamzouri | On the average of the number of imaginary quadratic fields with a given class number[END_REF], which is a refinement of the work of Soundararajan [START_REF] Soundararajan | The number of imaginary quadratic fields with a given class number[END_REF]. 

I c,λ,N (y)      = 1 if y > 1, ∈ [0, 1] if e -λN ≤ y ≤ 1, = 0 if 0 < y < e -λN .
Proof. The result follows from Perron's formula together with the following identity

1 2πi c+i∞ c-i∞
y s e λs -1 λs

N ds s = 1 λ N λ 0 • • • λ 0 1 2πi c+i∞ c-i∞ ye t 1 +•••+t N s ds s dt 1 • • • dt N for N ≥ 1.
Proof of Theorem 1.1. In order to obtain an asymptotic formula for 

(4.2) X 3 λ N |s|>T Re(s)=c |ds| |s| N +1 X N 3 λT N .
By partial summation and (1.4), it follows from Theorem 1.2 that for all complex numbers s such that Re(s) = c and |s| ≤ T we have

(4.3) d∈P(X) h(d) -s = π s 2 • E L(1, X) -s X 2 x -s/2 dLi(x) - π s 2 sgn(q 1 ) • E X(|q 1 |) • L(1, X) -s X 2 x -s/2 dLi(x β ) + O X exp - √ log X 6 log 2 X .
Combining (4.2) and (4.3) shows that the integral in (4.1) equals (4.4)

1 2πi |s|≤T Re(s)=c 1 2 • E πH L(1, X) s X 2 x -s/2 dLi(x) e λs -1 λs N ds s - 1 2πi |s|≤T Re(s)=c sgn(q 1 ) 2 • E X(|q 1 |) • πH L(1, X) s X 2 x -s/2 dLi(x β ) e λs -1 λs N ds s + E 3 ,
where 10 .

E 3 X N 3 λT N + 3 N T c X exp - √ log X 6 
We now extend the integrals in (4.4) to c+i∞ c-i∞ , and in so doing we introduce an error term E 4 , where similarly to (4.2) we have

E 4 E L(1, X) -c Li(X) N 3 λT N H 2 (log H) 10 .
Therefore, we deduce that the integral in (4.1) equals 10 . Now, it follows from Lemma 4.1 that for any 1 ≤ x ≤ X we have 

(4.6) 1 2 • E X 2 I c,λ,N πH √ x L(1, X) -1 dLi(x) - sgn(q 1 ) 2 E X(|q 1 |) X 2 I c,λ,N πH √ x L(1, X) -1 dLi(x β ) + O H 2 (log H)
I c,λ,N πH √ x L(1, X) -1 =      1 if √ xL(1, X) ≤ πH, ∈ [0, 1] if πH < √ xL(

  N (σ, T, χ d ) is the number of zeros ρ of L(s, χ d ) with Re(ρ) ≥ σ and |Im(ρ)| ≤ T , and indicates that the sum is over fundamental discriminants. Using this bound we obtain (3.1) |P(x) \ P(x)| x 1/2 .

Lemma 4 . 1 .

 41 Let λ, c > 0 be real numbers and N ≥ 0 be an integer. For y > 0 we define I c,λ,N (y) :

  which have class number 1. Therefore, the number of imaginary quadratic fields with prime discriminant and class number up to H equals h≤H

	F(h) -2, and hence (1.2)
	h odd might be viewed as a conditional asymptotic formula for this quantity as H → ∞. The
	goal of the present paper is to establish (1.2) unconditionally.
	Theorem 1.1. Let H be large. Then
	(1.3)
	h≤H
	h odd

3/2-ε . By genus theory, if d < -8 is a fundamental discriminant, then the class number of the imaginary quadratic field Q( √ d) is odd if and only if -d is prime. Furthermore, note that the only composite fundamental discriminants d with -8 ≤ d < 0 are -4 and -8

  we can restrict our attention to discriminants d ∈ P(X) with X := H 2 (log H) 5 . Indeed, if -d ≥ X and h(d) ≤ H then by the class number formula (1.4) we must have L(1, χ d ) 1/(log H) 5/2 . However, it follows from Tatuzawa's refinement of Siegel's Theorem [10] that for large |d|, we have L(1, χ d ) ≥ 1/(log |d|) 2 with at most one exception. Thus we obtain X) 2 . Since |e λs -1| ≤ e λc + 1 ≤ 3 if H is large enough, and h(d) ≥ 1, it follows that the contribution of the region |s| > T to the integral in (4.1) is

	F(h) =	1 + O(1).
	h≤H h odd Let c = 1/ log H, N be a positive integer, and 0 < λ ≤ 1/N be a real number to be F(h), we h odd d∈P(X) h(d)≤H chosen later. Then it follows from Lemma 4.1 that (4.1) h≤H h odd F(h) ≤ 1 2πi c+i∞ c-i∞ d∈P(X) H s h(d) s e λs -1 λs N ds s + O(1) ≤ h≤e λN H h odd F(h). first show that h≤H Let T := √ log X/(log 2

  log 2 X ,

	implies that		
	(4.5)	E 3	H 2 (log H)

since |(e λs -1)/λs| ≤ 3 if H is large enough. Choosing λ = 10/T and N = [10 log 2 H],

  1, X) ≤ e λN πH, 0 if √ xL(1, X) > πHe λN . 2λN π 2 H 2 /L(1,X) 2 π 2 H 2 /L(1,X)2On the other hand, since d 2β (n) ≤ d(n) by (2.1) (where d(n) = d 2 (n) is the number of divisors of n), and |q 1 | is square-free, then it follows from (2.4) and (2.6) thatE X(|q 1 |)L(1, X) -2β ≤ E X(|q 1 |)L(1, X) -2 = E L(1, X) -2Moreover, since d(|q1 |) = |q 1 | o(1) and |q 1 | (log X)/(log 2 X)4 (log H)/(log 2 H) 4 (see Chapter 20 of[START_REF] Davenport | Multiplicative number theory[END_REF]) thenE X(|q 1 |)L(1, X) -2β ε 1 (log H) 1-ε .Inserting this estimate in (4.9), and using (4.1), (4.6), and (4.8) we deduce that Using the same inequality with e λN H instead of H, and noting that e 2λN -1 (log 2 H)3 / √ log H completes the proof.

	A simple computation shows that		
					E L(1, X) -2 =	p	1 -	1 p 4	1 -	1 p 2	-1	=	ζ(2) ζ(4)	=	15 π 2 .
												p|q 1	4p 2p 2 + 2	d(|q 1 |) |q 1 |	.
	Thus we obtain E 2 h≤H X h odd	I c,λ,N F(h) ≤	πH √ x 15H 2 L(1, X) -1 dLi(x) 4 log H + O H 2 (log log H) 3 (log H) 3/2	≤	h odd h≤e λN H	F(h).
	(4.7)			= E Li min	π 2 H 2 L(1, X) 2 , X		+ O	dLi(x)
	= E Li min by (2.7) together with the fact that e 2λN -1 π 2 H 2 L(1, X) 2 , X + O	H 2 (log 2 H) 3 (log H) 3/2 (log 2 H) 3 / √ log H. Furthermore, it ,
	follows from (2.8) that				
								P L(1, X) ≤	πH √ X	e -X .
	Therefore, we get						
		E Li min		π 2 H 2 L(1, X) 2 , X		= E Li	π 2 H 2 L(1, X) 2	+ O (1)
										=	π 2 H 2 2 log H	• E L(1, X) -2 + O	H 2 (log H) 2 .
	Inserting this estimate in (4.7) gives		
	(4.8)										
	E	2	X	I c,λ,N	πH √ x	L(1, X) -1 dLi(x) =	π 2 H 2 2 log H	• E L(1, X) -2 + O	H 2 (log 2 H) 3 (log H) 3/2	.
	Using the same argument, we also derive
					E X(|q 1 |)				
	(4.9)										

e X 2 I c,λ,N πH √ x L(1, X) -1 dLi(x β ) = (πH) 2β 2β log H • E X(|q 1 |)L(1, X) -2β + O H 2 (log 2 H) 3 (log H) 3/2 .
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