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Abstract: Quantifying the uncertainty of inversion-derived CO2 surface fluxes and attributing the
uncertainty to errors in either flux or atmospheric transport simulations continue to be challenges
in the characterization of surface sources and sinks of carbon dioxide (CO2). Despite recent studies
inferring fluxes while using higher-resolution modeling systems, the utility of regional-scale models
remains unclear when compared to existing coarse-resolution global systems. Here, we present an
off-line coupling of the mesoscale Weather Research and Forecasting (WRF) model to optimized
biogenic CO2 fluxes and mole fractions from the global Carbon Monitoring System inversion system
(CMS-Flux). The coupling framework consists of methods to constrain the mass of CO2 introduced
into WRF, effectively nesting our regional domain covering most of North America (except the
northern half of Canada) within the CMS global model. We test the coupling by simulating
Greenhouse gases Observing SATellite (GOSAT) column-averaged dry-air mole fractions (XCO2)
over North America for 2010. We find mean model-model differences in summer of ∼0.12 ppm,
significantly lower than the original coupling scheme (from 0.5 to 1.5 ppm, depending on the
boundary). While 85% of the XCO2 values are due to long-range transport from outside our
North American domain, most of the model-model differences appear to be due to transport
differences in the fraction of the troposphere below 850 hPa. Satellite data from GOSAT and tower
and aircraft data are used to show that vertical transport above the Planetary Boundary Layer is
responsible for significant model-model differences in the horizontal distribution of column XCO2

across North America.

Keywords: Carbon cycle; GOSAT; Mesoscale modeling; model coupling; XCO2

1. Introduction

One of the persistent challenges in the study of the global carbon cycle is the quantification of the
uncertainty in inferred biogenic carbon sources and sinks [1]. Contemporary solution methods include
atmospheric inversions while using general circulation models and in situ or satellite observations of
carbon dioxide (CO2) to correct vegetation model or flux-derived estimates of these biogenic surface
CO2 fluxes e.g., [2–4]. However, in spite of increasing sophistication in the optimization methods
and observation systems, annual inverse fluxes vary widely at continental scales, e.g., from 0 to
−1.5 PgC over North America [5]. Recent studies e.g., [6] assimilating in situ and satellite retrievals
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from the Orbiting Carbon Observatory (OCO)-2 NASA mission estimated the range of uncertainties
between −0.5 to −1.6 PgC over North America. Contributions to this disagreement include poor
representation of the heterogeneous land surface in relatively coarse general circulation models [7],
as well as aggregation and atmospheric transport errors [8]. Inversions using column-averaged CO2

(XCO2) show promise [9] as the XCO2 from satellites are presumed to be less susceptible to planetary
boundary layer (PBL) atmospheric dynamics and heterogeneous surface fluxes [10,11]. Assimilating
column-averaged CO2 observations is not without problems in terms of seasonal global coverage,
interference from clouds, and large-scale transport errors [12]. The density of observations increases to
unprecedented levels, requiring averaging or thinning techniques, so that global inverse models can
ingest the large volume of data collected monthly [9]. An increase in atmospheric model resolution
would potentially provide a better representation of the observed spatial variability in XCO2 over
continents and allow for the assimilation of individual satellite retrievals [13], and may become even
more important for the use of observations from geostationary satellites [14].

Regional models, which are capable of transporting CO2 as a trace gas, have been effectively
used to simulate atmospheric CO2 gradients in regional studies [15,16] and generate footprints or
back trajectories from observation locations to correct in-domain CO2 surface fluxes in comparison to
existing agricultural inventories e.g., [7,17]. Several studies illustrated the value of regional models in
exploring the near-field variability of CO2 fluxes and observed mole fractions, using a biogeochemical
flux model coupled to a mesoscale atmospheric model and lateral boundary conditions modified from
a global model [15,18,19]. However, these uses of regional models often assume that the large-scale
boundary inflow is sufficiently known, so that fluxes within the regional domain dominate the
observed variability e.g., [20,21]. To deal with total observable mole fractions of long-lived trace gases,
background mole fractions (advected from outside the regional domain) must be dealt with carefully,
e.g., [22]. Various strategies are in use; some are borrowed from the discipline of atmospheric chemistry
research: constant concentrations [15], profiles from aircraft sampling, vertical transects derived from
global models, and data over oceans [23], climatologies or average conditions from global models
(see Tang et al. [24] for a review). For short campaigns, aircraft profile sampling can establish a curtain
wall of boundary conditions in the upwind direction. Profile sampling schemes can be used to correct
climatological conditions using monthly mean values. These climatologies or average conditions may
be used for short-lived trace gases e.g., [25], but they do not fairly represent varying atmospheric
circulation and transport. For long-lived trace gases, such as CO2, the vast majority of the molecules in
any given volume is the result of long-range transport that originates outside the simulation domain.

Long-running regional CO2 inversion studies require time-varying, full-pro has been
inversion-optimized mole fractions from global models, with and without adjustment to account
for biases in the global model. For example, Göckede et al. [20] and Göckede et al. [21] used
four-dimensional (4-D) lateral boundary conditions from the CarbonTracker global model [26] and
verified the high sensitivity of regional inverse fluxes to the CO2 advected at the lateral boundaries.
Bias-correcting offsets or adjustments to global model mole fractions have also been made based on
comparisons to remote clean-air observations [27]. Lauvaux et al. [28] used a two-step approach,
first adjusting the modeled mole fractions with local aircraft profiles and, second, optimizing them
within the inversion system. Gourdji et al. [29] compared inversion results using an empirical
data product that was derived from Pacific Ocean marine boundary layer observations and aircraft
profiles [30,31] following Gerbig et al. [32] and described in Jeong et al. [33]. Ahmadov et al. [18] and
Ahmadov et al. [19] incorporated CO2 initial and lateral boundary conditions from a global model
(LMDZ; Peylin et al. [34]). Their lateral boundary conditions consisted of the results of a forward run
of surface fluxes in LMDZ with an added constant offset to adjust the modeled CO2 mole fractions for
general agreement with European in situ observations. He et al. [23] optimized boundary conditions
using upper-air aircraft profile measurements (above 3000 m asl) while using global atmospheric mole
fractions from a global inversion system and data-driven vertical transects.
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In our study, we assume the optimized mole fractions from the global model can be used without
further adjustment. We also choose the regional domain boundaries to be remote from the main area
of interest in our study, and aim to conserve the mass of CO2 introduced at the boundaries of the
simulation domain to be consistent between the global model and the regional model. This enables
us to simulate column-averaged CO2 (XCO2) in both global and regional models and compare to
satellite-derived observations. This permits us to explore the impact in the regional model of surface
CO2 fluxes optimized in the global model. To better understand the role of transport errors in our
simulations, we also perform an ensemble of Weather Research and Forecasting-Chem (WRF-Chem)
simulations while using identical fluxes from the NASA Carbon Monitoring System-Flux (CMS-Flux)
inversion system but different transport realizations using the Stochastic Kinetic Backscatter Scheme
(SKEBS; Berner et al. [35]). Do these fluxes produce equivalent results in the regional domain?
How large are the differences in simulated XCO2 due to the use of different atmospheric transport
models? Are the transport errors impairing our ability to infer surface sources and sinks? These are
long-standing problems in CO2 inversion studies.

In our experiment, we introduce the optimized biogenic surface fluxes and posterior 4-D
atmospheric mole fractions of CO2 from the Carbon Monitoring System (CMS-Flux; Liu et al. [36]) as
initial and boundary conditions into the WRF-Chem regional model [37–39]. Here, we describe this
framework for achieving our goal of conserving the mass of CO2 introduced in the regional model from
the global model. In Section 2, we describe the global and regional models used in this experiment,
the model coupling framework, and introduction to the methods for comparison to observation data.
We present between-model consistency and comparisons to observations in Section 3. A discussion
of the results follows in Section 4. Finally conclusions are presented in Section 5, including how the
framework can be used to couple other global models to WRF.

2. Models and Methods

In this section, we provide an overview of the CMS-Flux inversion system, the customized
WRF-Chem model, the coupling of the two modeling environments, the ensemble of WRF transport
realizations, and the observations used to compare model results.

2.1. CMS-Flux Inversion System

The NASA CMS-Flux inversion system (http://cmsflux.jpl.nasa.gov) is described in detail in
Liu et al. [36], an observing system simulation experiment (OSSE) to optimize biogenic fluxes using
simulated Greenhouse gases Observing SATellite (GOSAT) XCO2 soundings [40]. The GOSAT Project
(Japan Aerospace Exploration Agency, National Institute of Environmental Studies, and Ministry
of the Environment) measures densities of CO2 and methane (CH4) from space. The CO2 column
abundances detected by the Thermal and Near Infrared Sensor for Carbon Observation-Fourier
Transform Spectrometer (TANSO-FTS; Yakota et al. [40]) that we use in our experiment are processed
using the NASA Atmospheric CO2 Observations from Space (ACOS) algorithm [41,42] for use as
column-averaged XCO2 observations. The CMS-Flux inversion system uses the forward GEOS-Chem
global chemical transport model [43,44] that is driven by meteorological fields from the NASA
Goddard Earth Observing System, Version 5 (GEOS-5) data assimilation system [45]. CO2 is simulated
as a passive tracer forced by emissions from fossil fuel, biomass burning, shipping and aviation,
biogenic land, and ocean surface fluxes. The GEOS-Chem adjoint model [46] optimizes the biogenic
surface fluxes and atmospheric CO2 mole fractions to be consistent with XCO2 from a satellite
observing system [36,47]. The GEOS-Chem adjoint has been used to estimate carbon monoxide
emissions [48,49] and to attribute direct ozone radiative forcing [50]. In our study, we couple all of the
components of the CMS-Flux inversion system including the imposed surface fluxes and the optimized
biogenic fluxes at the surface of the WRF model domain, but excluding two minor components of the
fluxes (aircraft source and chemical sources). Atmospheric CO2 mole fractions from a coarse resolution
global CMS-Flux inversion (horizontal resolution: 4◦ latitude × 5◦ longitude; vertical resolution:

http://cmsflux.jpl.nasa.gov
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47 levels to 0.01 hPa) that assimilated GOSAT XCO2 for 2010 are coupled to the boundaries of the WRF
simulation domain. Details of the imposed and prior surface CO2 fluxes can be found in Liu et al. [36]
and they are summarized for North America in Table 1. Figure A1 shows a schematic of the CMS-Flux
system and the WRF-CMS interface for our experimental setup.

2.2. Weather Research and Forecasting with Chemistry Model (WRF-Chem)

The mesoscale model is WRF-Chem v3.6.1 [37–39,51] with the modification described in
Lauvaux et al. [28] to transport greenhouse gases as passive tracers. Trace gas boundary conditions
are provided from a global model at six-hourly intervals and surface fluxes introduced hourly.
This work will describe (Section 2.4 below) the framework for introducing the boundary conditions
from the global CMS-Flux model (using the GEOS-Chem atmospheric transport model to simulate
CO2 mole fractions in the atmosphere) into the WRF domain in a manner designed to preserve the
vertical distribution of CO2 at the WRF domain edges. Lauvaux et al. [28] used WRF-Chem for the
forward transport model in an inversion for CO2 fluxes in the USA Upper Midwest region as part
of the Mid Continent Intensive (MCI) campaign. This WRF-Chem implementation was also used
in Lauvaux and Davis [13], who investigated the impact of introducing column-averaged XCO2 into
regional inversions that typically use only CO2 observations measured in the planetary boundary layer.

In the experiment that is described here, the regional domain contains most of North America in
a Lambert Conformal projection at 27 km horizontal resolution. The model has 50 levels up to 50 hPa
with 20 levels in the lowest 1 km. The model meteorology is initialized every five days with six-hourly
ERA-Interim [52] reanalysis at T255 horizontal resolution (∼80 km resolution over North America).
Each meteorological re-initialization is started at a 12-h setback from the end of the previous five-day
run. The first twelve hours of the new run are then discarded implying a discontinuity in CO2 transport
necessary to re-initalize the meteorological conditions. We minimize the impact of the discontinuity by
re-initalizing at night and by using the three-dimensional (3-D) CO2 mole fractions from the previous
run to start the following one. We also employ the alternative lake surface temperature initialization as
described in the WRF User Guide (Weather Research & Forecasting ARW Version 3 Modeling System
User’s Guide, January 2015, pp. 3–26). Choices of the model physics parameterizations used in this
experiment are documented in Table 2.

Carbon dioxide from surface fluxes from the CMS-Flux inversion (optimized biogenic CO2 fluxes
and imposed CO2 surface fluxes from the ocean and emissions of fossil fuel, biomass burning, and ship
bunker fuel; Table 1) are carried as individual tracers in WRF-Chem. Background CO2 mole fractions,
supplied as boundary conditions from the CMS-Flux optimized mole fractions, are in a separate
tracer. For analyses requiring total CO2 or XCO2, the surface flux tracers are summed after correcting
for the presence of water vapor in GEOS-Chem to obtain dry air mole fractions, and added to the
boundary condition tracer. This multiple-tracer strategy allows for the inspection of the separate
tracers throughout the model integration. If total column values are required, then the region above
the 50 hPa top of the WRF model is populated with the appropriate value from 50 hPa to 0.01 hPa
from the global model. In this experiment, we do not include the non-surface fluxes of CO2 from
the CMS-Flux inversion (aircraft source and chemical source; Table 1), but these are included in the
boundary condition mole fractions from the global domain. A test, reducing these non-surface sources
to surface emissions in the WRF domain, made, at most, a 0.03 ppm difference in the simulations of
GOSAT XCO2.

The final preparation step for our experiment is the population of the WRF atmosphere with CO2

mole fractions from the CMS-Flux global model. It takes approximately a month’s integration in model
time in order to distribute the contributions from the boundaries throughout the WRF atmosphere and
completely remove the initial conditions from the simulation domain. For this experiment, we started
the model integration in early December 2009, but begin all analyses in January 2010.
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2.3. Ensemble Simulations (SKEBS)

An ensemble of ten perturbed transport realizations is performed to provide an assessment of
transport model uncertainties. Perturbations of the meteorological driver data used to create initial and
boundary conditions for WRF are generated by the Stochastic Kinetic Energy Backscattering scheme
(SKEBS) [35]. Berner et al. [53] showed that a combination of a multiphysics scheme and perturbations
from SKEBS represent more accurately transport model errors near the surface than perturbations
alone. We selected a combination of model physics parameterizations to increase the spread of our
ensemble. We used different combinations of Land Surface Models (LSMs) and planetary boundary
layer (PBL) schemes in WRF, the main sources of variability in transport following Díaz-Isaac et al. [54].
We selected (1) Mellor-Yamada Nakanishi and Niino Level 2.5 (MYNN 2.5) PBL scheme with Noah
LSM; (2) Mellor-Yamada-Janjic (MYJ) PBL scheme with RUC LSM; and, (3) Yonsei University (YSU) PBL
scheme with five-layer thermal diffusion LSM. The SKEBS algorithm generates random perturbations
to the meteorological initial and lateral boundary conditions. The SKEBS has been evaluated widely in
the atmospheric ensemble modelling community while using similar parameter values to define the
amplitude, sizes, and frequencies of the perturbations.

2.4. Mass Conserving Coupling Framework

In this experiment, we wish to compare simulated column-averaged CO2 from both the WRF
execution and the CMS-Flux products with the ACOS GOSATv3.5 soundings [42] for North America.
This requires that we ensure that the mass of CO2 introduced into the WRF domain from the CMS-Flux
GEOS-Chem global model be conserved, both at the surface (fluxes) and the boundaries (atmospheric
mole fractions) of the WRF model domain. The challenges for mass conservation include differences
in model horizontal grid resolution, implied grid surface elevation, and vertical grid discretization.
The strategy described here can also be used to couple the WRF regional model to other global models
with a minimal amount of customization specific to the global model.

2.4.1. Mass Conservation of Surface Fluxes

We apply domain-wide scaling factors for each surface flux to conserve the mass of CO2

introduced into the domain by the surface fluxes. First, we create an exact map projection for
translation from the low-resolution CMS-Flux GEOS-Chem 4◦ × 5◦ grid to the WRF 27 km grid
(Figure A2 illustrates the domain extent of the WRF Lambert Conformal projection). Thanks to the
higher resolution in WRF, the spatial mapping requires no interpolation or smoothing of the original
CMS surface fluxes. We directly assign each WRF grid cell to the corresponding CMS pixel and
compute monthly scaling factors for each surface flux component, as follows:

1. Calculate the sum of the mass exchange in the global model grid cells assigned to the
WRF domain.

2. Calculate an initial domain-wide sum of mass exchange for the WRF grid cells using the assigned
global model grid cells.

3. Compute a domain-wide scaling factor as the ratio of the results of step 1 and step 2.
4. Multiply the mass exchange assigned to each WRF grid cell by the domain-wide scaling factor.

These steps are repeated for each of the surface fluxes, including all the components of the CMS
model, so that nearly-identical fluxes are used in WRF and CMS. The modification of the CMS total
flux is due to minor misattribution along the coast lines, near water bodies, and due to non-perfect
match between the two grids. The goal is to achieve equal total surface mass exchanges at the hourly
resolution of the flux input into the WRF model domain. The component fluxes from CMS-Flux have
temporal resolutions varying from hourly to monthly. The optimized biogenic flux is at monthly
resolution, but with a 3-h diurnal cycle overlay with monthly net zero emission/uptake. We do not
scale the diurnal cycle overlay. However, the surface fluxes in WRF have the same diurnal cycle.
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Only the scaling factors are being kept constant over a month. Most monthly scaling factors are in
the range [1.0, 1.3] with the exception of some of the minor fluxes (biofuel and ship bunker fuel) with
slightly larger scaling factors. The scaled surface fluxes are introduced into the WRF modeling system
using the WRFCHEMI function of WRF-Chem. Realistic flux scaling results may also be achieved using
a more sophisticated approach, such as the mass-conserving utilities within the NCAR Command
Language (NCL) Earth System Modeling Framework (ESMF)), which would also retain the global
model flux patterns, as well as preserving the domain mean.

2.4.2. Mass Conservation at the Domain Boundaries

The challenge in the case of the domain boundaries is not only the difference in horizontal
resolution and grid type, but also the difference in vertical discretization schemes. WRF uses a
terrain-following, hydrostatic-pressure vertical eta coordinate with a fixed model top. Because the
top of the atmosphere in WRF is at 50 hPa, we used CMS mole fractions to complete the column
values above 50 hPa in our study. The CO2 boundary mole fractions for our experiment are from a
GEOS-Chem model with 47 hybrid-sigma layers corresponding to the GEOS-5 (MERRA) reduced
vertical grid [45]. This grid is terrain-following from the surface up to ∼170 hPa, with fixed pressure
levels from 170 hPa to the top of the model. Depending on the surface pressure and terrain, there may
be nine layers below 1 km, compared to 20 layers below 1 km for our WRF domain. To approximate
the vertical distribution of CO2 in the global model source in the WRF grid, we follow these steps for
each WRF boundary grid cell:

1. Compute an equivalent global model surface pressure for each WRF boundary grid cell using
standard bi-linear interpolation (interpolating in two or more dimensions) using the four global
model surface grid cells whose centers are closest in latitude and longitude to the WRF grid cell
center.

2. Compute the equivalent global model pressure column using this derived surface pressure and
the standard vertical grid discretization for the global model, in this case the GEOS-5 hybrid
sigma-pressure ap and bp parameters and algorithm for the 47-layer reduced vertical grid.

3. Compute an equivalent WRF pressure column using this derived surface pressure and the znu
WRF vertical resolution discretization vector.

4. Assign a source global model level for each receiving WRF model level in the WRF boundary
grid (Figure 1). This is determined by the global model level edge pressures between which
the derived WRF midpoint layer pressure falls. This computation is done in log space with the
respective pressure columns in units of Pa.

5. Use simple linear interpolation (if necessary) between global model levels to smooth out a poorly
mixed flux signal. We used this technique for CMS-Flux GEOS-Chem where the first four or
five model levels in WRF are sourced from the first GEOS-Chem level; this source layer often
shows the immediate result of the surface flux as distinct from several well-mixed layers above
the surface layer.

6. The result of this transfer of vertical CO2 columns from the global model to the WRF
boundary grid cells is introduced into WRF via the WRFCHEMBC functionality that is used for
meteorological boundary conditions, similar to the approach of [18,19].

We use the GEOS-Chem surface pressure for two reasons. First, it is the mass in the GEOS-Chem
column that we want to introduce into the WRF model domain and, second, it is not possible to match
the surface pressures between the two models due to different horizontal grid resolutions, model
grid surface elevations, and driver meteorology. To test the adequacy of this method, we compute
pressure-weighted column-averaged XCO2 along the WRF boundaries, independently compute the
same quantity from the global model up to 50 hPa, and compare the results. Figure 2 shows an example
of this comparison for a day in early June 2010. The surface layer of the western and eastern boundaries
of the WRF domain is predominantly ocean, where we do not expect significant model grid elevation
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or surface pressure differences. This is evident for this example date in Figure 2b. On the other hand,
we do expect some differences in the southern and northern boundaries, particularly in mountainous
areas (Figure 2a). Our algorithm produces model-model differences of column-averaged CO2 at the
boundaries of less than 0.1 ppm on most of the boundaries and less than 0.3 ppm in the high-terrain
regions of the northern boundary. We present a comparison of the mass-conserved coupling scheme to
previous versions e.g., [28] in Section 3.1 to demonstrate the importance of mass conservation at the
boundaries of the simulation for the use of column-integrated measurements.

2.5. Model Comparison to Observations

While a primary goal of this model coupling experiment is to compare WRF and CMS-Flux
model-simulated XCO2 GOSAT soundings, it is comparisons to other observations that provide
verification and insight into model behavior. In addition to the GOSAT XCO2, we compare to XCO2

from a Total Carbon Column Observing Network (TCCON) site for times of GOSAT overpasses.
In order to understand the vertical distribution of CO2 and its relationship to column XCO2

values, we compared our simulated mole fractions to aircraft measurements and continuous tower
measurements. We also compare model meteorological winds to observations from selected North
American rawinsonde sites.
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Figure 1. Conceptual illustration of the vertical mapping scheme between an example grid cell from
the CMS-Flux GEOS-Chem 47-level grid (left) and the corresponding domain boundary grid cell in the
WRF-Chem 50-level grid (right). Numbers indicate the levels in each model. In this case, the mass at
the pressure midpoint in level 6 of the WRF column is matched to level 2 in the GEOS-Chem column.
With no additional interpolation, level 6 CO2 in the WRF column will be sourced from level 2 in
GEOS-Chem (see text).
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Figure 2. Differences in column-averaged CO2 (to 50 hPa) of WRF boundary grid cells compared to
the source Carbon Monitoring System (CMS)-Flux GEOS-Chem grid cells (up to 48 hPa). The southern
and northern boundaries (a) are mostly over land, illustrating the effects of grid surface and surface
pressure differences. The western and eastern boundaries (b) are over ocean, except for the northern
end of the western boundary.

2.5.1. GOSAT XCO2

We evaluated the WRF and CMS-Flux model-simulated XCO2 by comparison to to ACOSv3.5
LITE GOSAT soundings (Crisp et al. [41]) with more than 13,000 good quality soundings within
the WRF North American domain during 2010. Reflected sunlight in three near-infrared bands are
measured over a surface footprint of approximately 10 km in diameter at the nadir [55]. Nadir land
and ocean glint observations were both used in our analysis.

The distribution of these soundings varies in space and time, with no coverage in ocean areas or
north of 60◦ N in winter. We follow the same sampling scheme in both WRF and CMS-Flux model
CO2 mole fractions:

1. Locate the nearest model grid cell in time and space to the GOSAT sounding.
2. Isolate the column of CO2 at that grid cell, calculate the dry air mole fractions.
3. Interpolate the simulated CO2 to the 20 pressure levels specified in the sounding’s ACOSv3.5

averaging kernel algorithm and a priori profile [42,56], as shown in the ACOS 3.5 User Guide.
4. Apply the averaging kernel to the interpolated profile for the full column XCO2 or use the a

priori profile pressure-level weights for partial column analysis.

Using the pressure-level weights versus the complete averaging kernel for the whole column
yields results within a few tenths of a ppm for the full columns in our model atmospheres. For a priori
profile pressure levels above 50 hPa, we use the CMS-Flux interpolated optimized mole fractions for
both the WRF and CMS XCO2 computations. For ACOS GOSAT soundings with profile pressure levels
below the model surface, we use the CO2 at the midpoint of the surface model layer.

2.5.2. Lamont TCCON XCO2

The Total Carbon Column Observing Network (TCCON; Wunch et al. [57]) provides
measurements of XCO2 from the earth’s surface at a global network of sites. Two TCCON sites within
our North American domain were operating in 2010. The Park Falls site has significant drop-outs,
especially in summer, so we choose the Lamont TCCON site (36.6◦ N, 97.49◦ W) for comparison [58].
We average GOSAT soundings in a box of 6◦ latitude and 12◦ longitude centered at the Lamont site
and match them to the TCCON data averaged for the hour of the GOSAT overpass of this regional box
to include enough GOSAT soundings over each day in our analysis. This region corresponds to the US
Upper Midwest with similar ecosystems and synoptic conditions, despite occasional frontal systems
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crossing the region. More advanced filtering methods have been developed to co-locate GOSAT and
TCCON soundings [59], but we avoided using XCO2 fields from one of the two models to avoid
biasing the selection process. We also computed hourly-averaged simulated XCO2 from the models for
these GOSAT soundings in order to compare to both GOSAT and TCCON XCO2. During our period of
comparison, summer of 2010, this region covers a large gradient of surface CO2 fluxes. Our goal is not
to evaluate the GOSAT XCO2 relative to TCCON observations, but rather to illustrate how well the
model-simulated XCO2 follow the general tendencies of the observations. More rigorous evaluation
of the GOSAT XCO2 would require the use of coincidence criteria, as shown in Wunch et al. [60] or
Basu et al. [61].

2.5.3. Horizontal Wind at Selected Rawinsonde Sites

We also make use of the NOAA archive of rawinsonde data (Schwartz and Govett [62]) for
model comparisons to observed wind speed and direction at mandatory reporting levels. The goal in
this case is to identify the possible causes of transport differences between models and observations.
Comparisons of 00 UTC soundings (16–19 LST, depending on the site) are summarized to show annual
and seasonal biases.

2.5.4. In Situ Tower and Aircraft CO2 Observations

In order to evaluate the impact of transport differences between WRF and GEOS-Chem,
and among the WRF ensemble members, we collected in situ ground-based data from the NOAA
Tall Tower network [63] and from multiple aircraft profiles to diagnose differences in vertical CO2

distribution [64]. Continuous gas analyzers measure CO2 mole fractions using non-dispersive infrared
(NDIR) absorption sensors (e.g., Licor Li-6200 series and Li-7000 analyzers) and Picarro Cavity Ring
Down Spectrometers (CRDS) [65]. Calibration with high-accuracy gas cylinders and comparison to
co-located discrete flask samples indicate measurement errors below 0.2 ppm. Discrete samples from
the NOAA Aircraft Program are collected by the programmable 12-flask sampling systems at various
altitudes (between 300 and 8000 m above ground level). CO2 mole fractions are measured by one
of two nearly identical Measurement of Atmospheric Gases Influencing Climate Change (MAGICC)
automated analytical systems. Measurement errors fall below 0.1 ppm, including possible sampling
errors and storage biases.

Table 1. Surface fluxes for the North American domain in this study.

Surface Flux Source Temporal
Resolution

Annual Budget
(GtC yr−1) Reference

Fossil Fuel CDIAC Hourly 1.77 Andres et al. [66]
Ocean MITgcm, ECCO2, 3-Hourly −0.25 Marshall et al. [67,68],

Darwin project Menemenlis et al. [69,70],
Follows et al. [71],
Dutkiewicz et al. [72],
Follows and Dutkiewicz [73]

Biogenic CMS-Flux, optimized Monthly, −1.07 Liu et al. [36],
from CASA-GFED3 with imposed van der Werf et al. [74,75,76],

diurnal cycle Olson and Randerson [77]
Biomass Burning GFED3 Daily 0.11 van der Werf et al. [76],

Mu et al. [78]
Biofuel GFED3 Monthly 0.02 van der Werf et al. [76],

Mu et al. [78]
Ship Bunker Fuel ICOADS Monthly 0.04 Nassar et al. [43,44]
* Aircraft and Monthly 0.20 Nassar et al. [43]
* Chemical Source

* These non-surface sources are not included in the results that are presented in this work. When released as
surface sources, they add ≤0.03 ppm to the XCO2 reported here.



Atmosphere 2020, 11, 787 10 of 36

Table 2. Weather Research and Forecasting (WRF) model physics parameterization choices.

Parameterization Option Used References

Longwave Rapid Radiative Transfer Model Mlawer et al. [79]
Shortwave Dudhia Dudhia [80]
PBL Mellor-Yamada-Nakanishi-Niino Level 2.5 Nakanishi and Niino [81,82]
Surface layer Mellor-Yamada-Nakanishi-Niino Nakanishi and Niino [81,82]
Land Surface Model Noah Chen and Dudhia [83]
Cumulus Kain-Fritsch Kain [84]
Microphysics WRF Single Moment 5-class Hong et al. [85]

3. Results

3.1. Evaluation of Transport Differences in Model-Simulated GOSAT XCO2 Soundings

We compare the CMS-Flux and WRF XCO2 model simulations with GOSAT soundings without
and with mass-conservation in WRF in Table 3. The results from the mass-conserved coupling scheme
in WRF reproduce more closely the original mismatches between CMS-Flux and GOSAT measurements.
Mean mismatches in the original coupling scheme reach large values (up to 1.4 ppm) in Spring of 2010,
and between 0.5 and 1 ppm during the other seasons. The histograms of the residuals are shown in
Figure 3 revealing a similar range, positively-biased for all seasons. This first result demonstrates the
decrease in the bias introduced in WRF by using a mass-conserved coupling scheme, whereas the
original coupling artificially increases the amount of CO2 molecules in the atmosphere. We further
compare XCO2 model simulations with each other in Figure 4 and with the GOSAT soundings in Table 4.
If we have reached our target of conserving CO2 mass entering the WRF domain from the CMS-Flux
optimized CO2 surface fluxes and boundary conditions, then we expect the model-simulated XCO2 to
be similar. Model–model differences can be related to transport from the boundaries into the WRF
simulation domain (horizontal transit times from different driver meteorology and vertical mixing from
boundary layer processes) or model resolution (heterogeneous surface characteristics). The seasonal
mean model–model differences in XCO2 simulations are largest in winter (mean, −0.30 ppm; RMSD,
0.51 ppm) and smallest in summer (mean, 0.12 ppm; RMSD, 0.72 ppm). These seasonal distributions
of differences are all sharply peaked around zero with a few large outliers (>5 ppm) in summer.
Table 4 summarizes comparisons of model simulations to the GOSAT soundings. In spite of a few
extreme outliers in winter and spring, the inner quartile ranges (IQRs) for both models relative to
GOSAT are approximately 2 ppm, with nearly the same seasonal mean differences (CMS-Flux range
[0.00, 0.31] ppm; WRF range [−0.04, 0.38] ppm). The median differences are slightly larger than
the mean differences, except for the CMS-Flux simulations in summer and the WRF simulations in
summer and fall. Although the model results are centered well with the GOSAT soundings, neither
model produces simulations with the full range of values of the GOSAT XCO2. Because the WRF
model is able to simulate the meteorological conditions at higher resolution, we might have expected
more variability in the WRF simulations, as multiple GOSAT soundings assigned to a single grid
cell in GEOS-Chem are represented by many grid cells in the higher resolution WRF grid. However,
because surface fluxes remain at coarse resolution in both systems, we do not see any differences at this
summary level. When considering the tails of the model-data residuals, only six individual GOSAT
XCO2 soundings with model-GOSAT differences greater than 10 ppm were found; these soundings
are all located over steep terrain in the western United States, hence most likely noise in the GOSAT
measurements rather than due to the coarse resolution of the CMS-Flux system.
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Figure 3. Histograms of model-data residuals between WRF and Atmospheric CO2 Observations
from Space (ACOS) Greenhouse gases Observing SATellite (GOSAT) XCO2 retrievals coupled at the
boundaries to the CMS-Flux simulated mole fractions without mass conservation (left panel) and with
the newly-developed mass-conserved scheme (right panel) for the year 2010.
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Figure 4. Seasonal model-model differences (WRF–CMS-Flux) in simulations of GOSAT XCO2.

Table 3. Mean model residuals [ppm] relative to ACOSv3.5 GOSAT XCO2 for WRF without and with
mass-conserved coupling schemes and CMS.

Original Scheme Mass-Conserved Scheme Original CMS

Winter 0.624 0.294 0.269
Spring 0.492 0.071 0.031
Summer 1.412 0.569 0.015
Fall 0.768 0.226 −0.012
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Table 4. Model residuals [ppm] relative to ACOSv3.5 GOSAT XCO2. The span between the distribution
quantiles Q3 and Q1 defines the interquartile range (IQR). IQRs for residuals of both models and all
seasons are in the range [1.8, 1.9] ppm.

Winter Spring Summer Fall

CMS WRF CMS WRF CMS WRF CMS WRF

Maximum 5.91 5.51 6.52 7.45 6.58 7.31 9.42 9.03
Q3 1.25 0.97 1.28 1.09 1.18 1.31 0.96 0.79
Median 0.29 −0.00 0.38 0.16 0.26 0.34 0.07 −0.10
Mean 0.25 −0.04 0.31 0.11 0.26 0.38 −0.00 −0.15
Q1 −0.63 −0.91 −0.58 −0.79 −0.61 −0.52 −0.87 −1.01
Minimum −18.00 −18.13 −19.21 −19.73 −7.95 −7.23 −9.64 −9.70

Soundings 1998 3113 3965 4305

However, these general comparisons do not show differences in spatial coverage by season of
the GOSAT XCO2 soundings or any spatio-temporal variations in model-model residuals. To address
this, we aggregate the model-model differences to the CMS-Flux GEOS-Chem 4◦ × 5◦ grid to map
the mean seasonal differences in each grid cell (Figure 5). We report in Figure 5 only those grid cells
with more than 10 GOSAT soundings during each season shown. There are consistent small negative
residuals in the WRF XCO2 simulations relative to CMS-Flux in most of the continent in winter and
in the south and east in fall. The WRF–CMS-Flux differences are slightly positive in the northwest
in fall. The pattern in spring is mixed. There are strong positive differences in the Pacific Northwest
in summer. The underlying CMS-Flux optimized biogenic flux shows a very strong source of CO2

in the upper Pacific Northwest, and a correspondingly strong sink in the MidWest and East in July.
These sources and sinks are evident in the WRF model layers closest to the surface, but not always
in the CMS-Flux optimized mole fractions in the surface layers in the same locations. On some days,
the surface layer flux contributions in the CMS-Flux XCO2 mole fractions are in grid cells adjacent to
the emitting grid cells, which suggests some model–model differences in mixing and transport within
the boundary layer. There are also sharp gradients in terrain height in this region that may contribute
to the model differences, although this does not appear to be an issue in the Rocky Mountain region
of the US West. In general, there is more variability in the spatial differences during the growing
season. These maps also show how the spatial distribution of the GOSAT soundings changes by
season. Note that there are no ocean soundings and no soundings in the high latitudes in winter.
The examination of variances of the model-simulated soundings on this spatial scale show no clear
differences between models, other than that there is less spatial variance in the models than in the
GOSAT soundings.

Having documented the model–model differences in column-averaged XCO2 at seasonal scales,
we next compare the distribution within the columns of the CMS-Flux and WRF XCO2 simulations.
We expect to find the most differences in the active growing season, hence we focused on the
comparison of summertime column estimates. We divide the columns into upper and lower portions,
with the lower column corresponding to the three pressure levels closest to the surface in the ACOS
algorithm, and with the upper column consisting of the remaining 17 levels. The ACOS averaging
kernel pressure level weights specify ∼12.5% of the column-averaged value from the three pressure
levels that are closest to the surface. The elevation above the surface of this split varies with terrain,
but roughly corresponds to 850 hPa. As justification for this division, we highlight an example CO2

profile at the location of the LEF tall tower in Park Falls, Wisconsin, USA (45.95◦ N, 90.27◦ W) at the time
of a GOSAT overpass on 27 August 2010 (Figure 6). In this example, the XCO2 simulations from both the
WRF total CO2 and the CMS-Flux optimized mole fractions agree with each other and with the ACOS
GOSAT XCO2 (Figure 6a). The GOSAT XCO2 value is 385.526 ppm, with an uncertainty of 1.075 ppm;
WRF and CMS-Flux simulated values are 385.706 and 385.245 ppm, respectively. We decompose the
WRF total column XCO2 into contributions from the global model (light blue boundary conditions
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profile in Figure 6a) and the contributions of the flux tracers (Figure 6b). This is a location far from the
boundaries of the WRF regional domain, so the boundary conditions profile is the result of long-range
transport, not recent inflow. At this location and time, the flux contributions to the total CO2 profile are
predominantly below 850 hPa. The minor CO2 fluxes (ocean, and combined biomass burning, biofuel,
and ship bunker fuel emissions) contribute very little to the overall column value. The biogenic
flux and the imposed fossil fuel emissions constitute almost all the flux portion of the column
value. The transported boundary conditions account for more than 85% of the column-averaged
CO2. For applications using total column CO2, it is important that this coupling of regional to global
model be done correctly.
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Figure 5. Seasonal mean spatial differences in WRF and CMS simulated XCO2 aggregated to the
GEOS-Chem CMS-Flux grid (light gray lines) for (a) spring, (b) summer, (c) fall and (d) winter.
Grid cells with no shading have fewer than 10 GOSAT soundings for the season indicated.

We illustrate the model–model differences for the simulated GOSAT XCO2 in summer using
this ∼850 hPa division in Figure 7. Differences shown are for sub-column-averaged CO2 within the
lower and upper portions of the column, computed as the sum of the interpolated mole fractions at
each ACOS pressure level times the ACOS-provided weight at that pressure level. The lower portion
of the column accounts for ∼50 ppm of the total column-averaged CO2. When comparing spatial
patterns of differences of the sub-columns versus the total column in Figure 5c, we see that the WRF
positive residual in the Pacific Northwest is the result of larger mole fractions in both upper and lower
sub-columns. This is an area with a relatively low count of GOSAT soundings (Figure A3) and very
large biogenic source flux. In the eastern half of North America, there is a dipole effect, with WRF
simulations having lower mole fractions in the lower sub-column and higher values in the upper
sub-column when compared to the CMS-Flux simulations. There are non-homogeneous patches of
strong uptake in the biogenic flux in eastern North America in July, generally matching the spatial
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pattern in the lower sub-column. As a result, once re-scaled over the total column mole fractions
(cf. Figure 7, lower panel), an additional 1 ppm is attributed to the lower part of the column over
the West coast in WRF as compared to CMS-Flux, while the Great Lakes region and the Central part
of North America shows a −0.5 to −1 ppm difference. The differences will reflect the attribution of
the observed gradients to the north American surface fluxes as low levels interact with the surface
while the upper part of the column is attributed to long-distance air masses. We note here that 1 ppm
over the column and over the entire domain would correspond to an aggregated annual flux of 1 PgC
over North America, or twice the natural sink over the continent. The upper sub-column pattern
more closely resembles the total column pattern in Figure 5c. Model-model differences in other
seasons are minimal in both parts of the column. The summer patterns illustrate that agreement of
full column XCO2 simulations does not necessarily imply that the distribution of the CO2 is the same
in the two models. This further suggests model–model differences in transport within the columns,
possibly due to more vertical mixing in the CMS-Flux GEOS-Chem model. The CMS-Flux vertical
profile in Figure 6a shows an example of this behavior.
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Figure 6. Profiles of modeled distribution of CO2 within a column at the LEF tall tower in northern
Wisconsin, USA, at the time of a GOSAT overpass on 27 August 2010. (a) Total CO2 from the
CMS-optimized mole fractions and the WRF simulation. Black dots on the CMS profile indicate
the 20 pressure levels from the ACOS GOSAT a priori profile. The light blue profile is the transported
boundary condition tracer from the WRF simulation. (b) Profiles of the flux tracers from the WRF
simulation. The total of the flux tracers and transported boundary conditions equals the total WRF
profile. Other sources include biomass burning, biofuel burning and ship bunker fuel emissions.
The dashed line marks the separation of the profiles into lower and upper portions.

3.2. Evaluation of Transport Differences in GOSAT XCO Soundings

The spatial differences between WRF and CMS-Flux XCO2 column mole fractions and ACOS
GOSAT retrievals are shown in Figure 8, averaged over the summer of 2010. The two maps of
model-data differences show similarities with positive values in the Central Great Plains and the
coastal region of the Gulf of Mexico, and negative values over Canada and the West Coast of the US
(cf. left and right upper panels in Figure 8). Differences are noisy, but, despite using different transport
models, the overall model-data mismatches remain similar. Both models tend to over-estimate XCO2

column mole fractions in the North West of the US (region of Seattle, WA). To better understand the
differences between the two transport models, we show in Figure 8 (lower panel) the differences
between the two model-data mismatches (differences of the differences). The positive anomaly over
the northwestern US dominates other regional differences, advected by the westerly flow following
the Mid-latitudinal Jet Stream. The Jet advects this anomaly toward the central part of North America,
generating a large mismatch of about 0.2 to 2 ppm between the two models. This anomaly is highly
correlated with a large positive biogenic flux area in the CMS inverse fluxes, hence in both models but
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more pronounced in WRF, located over Seattle, WA. Looking at vertical profiles, this anomaly seems
to be related to vertical mixing differences. GEOS-Chem, used in the CMS-Flux inversion system,
tends to mix faster in the vertical, lifting CO2 molecules to higher altitudes where the wind speed is
higher. We investigate the general behaviors of transport models in Section 3.4 using NOAA aircraft
profiles across North America. WRF shows higher XCO2 values across the domain (0.57 ppm over
summer) as compared to CMS (0.015 ppm), as shown in Table 3. This positive bias seems to be driven
by the anomaly in the northwestern US.

Figure 7. Mean summer (June, July, August) spatial differences in WRF and CMS-Flux
pressure-weighted CO2 for partial columns of simulated GOSAT XCO2 aggregated to the CMS-Flux
grid (light gray lines). (a) Lower portion of column (model surface to 850 hPa) (b) Upper portion of
column (850 hPa to top of the ACOS profile) and (c) the differences in the lower portion of the column
scaled to the total column mole fractions (lower panel).

3.3. Temporal Evaluation of Model-Simulated XCO2 at the Lamont TCCON Site

A semi-independent comparison of column-averaged XCO2 for GOSAT and the model
simulations is performed while using the XCO2 observations at the Lamont TCCON site.
The calibration of ACOS GOSAT retrievals by comparison to TCCON measurements only accounts
for long-term systematic errors, while our comparison focuses on short-term model-data differences.
GOSAT passes near the Lamont TCCON site around 19 UTC. We select the GOSAT soundings near
Lamont, as described in Section 2.5.2, average the XCO2 values by day and report them along with
the 19 UTC hourly average of the TCCON observations. We present the weighted averages and
standard deviations of both sets of observations in Figure 9a. The error bars in Figure 9a represent
the root mean square uncertainties of the selected TCCON and GOSAT soundings included in the
hourly averages. In the example shown for days in July and August 2010 when both observations are
available, there are 1–21 good GOSAT soundings and 3–34 TCCON XCO2 observations during the 19
UTC overpass. Despite the presence of outliers in the early summer (around DOY 180–190), the daily
average GOSAT and TCCON XCO2 soundings agree within 1–2 ppm, with discrepancies likely due to
sampling and representation errors. The mean residuals of ACOS GOSAT, CMS-Flux, and WRF XCO2
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relative to TCCON for this period are 0.088 ± 1.856 ppm, 0.868 ± 1.042 ppm, and 0.965 ± 0.981 ppm,
respectively (Figure 9b). The residuals from the model simulations are generally, but not exclusively,
positive and they are more similar to each other than to either of the observations. This implies
that model transport differences are small when compared to other model-data differences at this
time and location. The synoptic-scale variability in the summer atmospheric CO2 mole fractions is
well represented during short-term events (e.g., near DOY 218). Despite the coarser resolution of
the CMS-Flux mole fractions as compared to WRF, both models are able to capture the trend and
variability observed by the Lamont TCCON site.

Figure 8. Summer mean model-data differences (bias) for the year 2010 between GOSAT ACOS XCO2

measurements and WRF (left panel), CMS (GEOS-Chem, right panel), and differences between the
two (lower panel).

3.4. Vertical Transport Evaluation of Model-Simulated CO2 at Several NOAA Aircraft Profile Sites

In order to understand the differences in total columns, we present an analysis of vertical profiles
of CO2 mole fractions in Figure 10 focusing on two NOAA aircraft profile sites, one near West Branch,
Iowa (WBI) in the central part of the US Corn Belt, and a second on the East Coast of the US near
Charleston, South Carolina (SCA). Profiles were selected to represent both well-mixed conditions,
during which the PBL top is well-defined and vertical CO2 gradients are close to zero (upper left
and lower right panels), and near-neutral conditions when vertical mixing is driven by wind shear
and thermals from the surface, responsible for non-zero CO2 gradients in the Lower Troposphere.
Differences between WRF and CMS-Flux are observed in both the Free Troposphere and the PBL on
28 April 2010 (cf. Figure 10, upper left panel), with an under-estimation of the PBL height in WRF.



Atmosphere 2020, 11, 787 17 of 36

The ensemble of WRF simulations is insufficient to explain the differences between the two transport
models. On 29 November 2010 (cf. Figure 10, lower right panel), modeled CO2 mole fractions are
consistent between the two models, but WRF captures correctly the near-surface gradient and values,
independent of transport perturbations. For neutral cases ( e.g., Figure 10, upper middle panel),
vertical gradients in CO2 mole fractions observed by the aircraft show a constant decrease until 3000 m
above sea level. CMS-Flux shows a shallow and mixed PBL until 1000 m asl, while the ensemble of
WRF simulations shows a similar gradient when compared to the observations but a wide range of
values among transport ensemble members. A similar case is observed on 28 June 2010 (cf. Figure 10,
lower left panel). The last two cases show an agreement between the two models, not matching the
observed gradients nor the observed values in CO2 mole fractions. When considering the different
cases shown here, we conclude here that models tend to agree in the Free Troposphere, but vary widely
near the surface. The ensemble of transport realizations indicate a large spread among members in
neutral conditions and a narrower range of vertical profiles during well-mixed conditions, despite the
use of different physics schemes. In the Free Troposphere, the ensemble shows some variability due to
variations in the origin of air masses. This result shows the importance of the transport of large-scale
boundary conditions within the WRF domain, driven by uncertainties in the meteorological conditions
over North America. These differences might also be due to differences in boundary conditions from
the northern boundary, not fully reconcilable due to the steep terrain. Overall, we conclude that
vertical mixing in the Lower Troposphere seems to drive the model-model CO2 differences, while the
transport over long distances of large-scale CO2 air masses impacts CO2 mole fractions in the Free
Troposphere. No clear improvement in the representation of observed vertical gradients in WRF as
compared to the global CMS-Flux model is being observed over the vast majority of the profiles.
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Figure 9. (a) A comparison of XCO2 from GOSAT and the Lamont TCCON site in summer 2010.
TCCON observations are weighted means and standard deviations during the hour of the GOSAT
overpass. GOSAT observations are weighted means of soundings near the Lamont TCCON site.
(b) Residuals with respect to the TCCON values for the ACOS GOSAT soundings and the modeled
XCO2 simulations from CMS-Flux and WRF.

We further compare CO2 mole fractions from NOAA aircraft profiles to the two models (WRF
and CMS) and to the contribution from the CMS boundary conditions alone within the WRF
model in Figure 11. Total column XCO2 mole fractions are indicated for each vertical profile in
order to understand the relationship between integrated mole fractions over the column and the
vertical distribution of in situ mole fractions. For all four cases, WRF and CMS column XCO2 are
within 1 ppm or less from each other, despite significant differences in the vertical distribution.
Typically, mole fractions in the Free Troposphere remain similar. The corresponding GOSAT soundings
are indicated with black stars, soundings collected nearby and within the hour. Only few profiles
matched with GOSAT passing times. The accumulation of CO2 near the surface is a typical feature
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in CMS which might be problematic if tower data are being inverted, but not visible in satellite data.
The surface fluxes in WRF impact the profiles up to 600 hPa (about 4000 m asl) as noted in the WBI
profile on 1 July 2010 (cf. Figure 11, lower right panel). We also note that boundary conditions in
WRF display a small vertical gradient near the surface, despite the long-range transport of air masses
from the boundaries. This gradients implies that vertical gradients in CMS coupled to the boundaries
can impact the vertical gradients in WRF, hence propagating vertical structures far into the WRF
simulation domain. The largest differences are typically observed when surface signals are transported
higher in the column, above the PBL (cf. Figure 11, lower right panel), advected by widely different
horizontal mean wind. As shown in Lauvaux and Davis [13], vertical distribution matters, as it impacts
the horizontal advection of surface signals, responsible for large spatial differences in the horizontal,
as shown in Figure 8, lower panel).

Figure 10. Comparison of CO2 mole fractions (in ppm) from discrete flask samples collected at two
NOAA aircraft profile sites (in red), WBI (West Branch, Iowa), and SCA (Charleston, North Carolina) to
modeled CO2 mole fractions from CMS-Flux (purple triangles) and WRF ensemble realizations (green
lines). The reference simulation of WRF (no perturbation of meteorological fields) is indicated by a
thick green line.

3.5. Temporal Evaluation of Model-Simulated CO2 at Several NOAA Tower Sites

We evaluated the modeled CO2 mole fractions at two NOAA towers: WBI sampling at 240 m
agl and SCT sampling at 115 m agl, over a year, by showing the 31-day running mean Daily Daytime
Averages (DDA) in Figure 12. These two locations correspond to the positive bias located in the
US Midwest (WBI) and the negative bias (East Coast) diagnosed in WRF model residuals compared
to CMS in Figure 8. At the surface, model-data differences agree with total XCO2 mole fraction
differences during wintertime with lower mole fractions in WRF (cf. Figure 6), but tend to disagree in
the summertime. The model-data differences are negative when compared to tower data in the summer
whereas the total column values are positive. Positive model-data differences are observed over the
PBL, between 500 and 600 hPa, as shown in Figure 11. We conclude here that model-data differences
in the PBL do not reflect the overall differences in the column XCO2 mole fractions. When considering
transport differences in the WRF ensemble, summertime model differences can be interpreted as
transport differences at SCT, but not at WBI, with a larger drawdown in WRF. Spring and Fall seasons
show little variability due to transport, while summer and winter show a larger spread in the ensemble.
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This result suggest that WRF CO2 mole fractions are primarily driven by large-scale conditions in
shoulder seasons, reinforcing the importance of the coupling scheme when considering the annual
carbon cycle. At SCT during the Fall season, WRF and CMS show large differences (about 2 ppm),
despite the absence of fluxes from North America. We conclude here that long-range transport in
the WRF domain differs from the CMS CO2 mole fractions. This analysis demonstrates the role
of large-scale conditions and its transport within the regional simulation domain, esp. in Fall and
Spring, and highlights the indirect relationship in model-data differences when comparing model-data
residuals near the surface and in the XCO2 total column mole fractions.

Figure 11. Comparison of modeled CO2 mole fractions (in ppm) sampled at the location of WBI (West
Branch, Iowa) and Park Falls, Wisconsin (LEF) from CMS-Flux (in red), the contribution in CO2 mole
fractions by the CMS boundary conditions in WRF (in light blue), and the total CO2 mole fractions
from WRF (in dark blue). The corresponding total column XCO2 mole fractions for each profile are
indicated by the star symbols.

3.6. Horizontal Mean Wind

We selected a group of rawinsonde sites (Table 5; Figure 13), including west coast, east coast,
Gulf Coast, and mid-continent North American sites for comparison of model and observed wind
speed and wind direction at mandatory rawinsonde reporting levels. Our intent is to identify any
regional distinctions in biases or variability that might help to explain the CO2 model-data differences.
Each of these sites had more than 11 months of data for 00 UTC soundings in 2010 at the mandatory
reporting levels of 925 hPa, 850 hPa, 500 hPa, and 250 hPa, which we used in our analysis. Continental
mountain and high plains sites were not included, because they lack 925 hPa data, and cannot easily be
compared with mandatory levels at lower elevation sites. Model locations were assigned as the nearest
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grid cell with similar surface height. For some coastal sites, the representative model sites were moved
one grid cell toward the ocean to achieve this. In Figure 14, we show the annual mean wind speed
bias at these sites from the WRF forward run (initialized with the ERA-Interim reanalysis) and the
GEOS-5 reanalysis used by the CMS-Flux system. Recall that, although the WRF run is initialized with
reanalysis data, it is free-running during each five-day run, and so may not conform to the reanalysis.
Wind speed bias, RMSE, variance ratio, and correlation skill score ( Cov(model,obs)√

Var(model)Var(obs)
); von Storch and

Zwiers [86]) are summarized in Table 6 for mandatory reporting level 925 hPa. (See Tables A1–A3
for results at other reporting levels). In general, coastal sites are difficult to simulate in both models,
with seasonal differences that tend to cancel each other in WRF, but not in the GEOS-5 meteorology.
With the exception of the coastal sites, WRF wind speed error is positively biased at the lower levels,
but this bias largely disappears with height. Most notable is that GEOS-5 underestimates the wind
speed for nearly all of this selection of sites at all levels. The WRF model overestimates wind speed
variability by more than 10% at 925 hPa and 850 hPa, but slightly underestimates variability at
higher mandatory levels. The GEOS-5 analysis consistently underestimates variability at all levels.
Both models’ correlation skill scores improve with height, as expected (Table 6 and Tables A1–A3).
WRF overestimates day-to-day variability, as shown by the variance ratio, in winds at lower levels,
and it has a larger RMSE than GEOS-5 at lower, but not higher, levels. GEOS-5 underestimates
day-to-day variability at all levels. Annual wind direction bias and RMSE, for both models at all sites
and mandatory levels, are smaller than the number of degrees separating reportable wind directions
(not shown). However, at the 925 hPa mandatory level, there are seasonal directional biases at many
sites in summer and at west coast sites in all seasons (Figure 15). This directional bias may contribute
to the summer boundary layer differences in XCO2 simulations between the two models. Based on
these results, the potential improvement from finer resolution WRF simulations in the resolution of
mesoscale features and vertical structure near the surface is not evident from our continental-scale
evaluations. We discuss further in Section 4 the impact of potential biases in WRF near the surface and
in GEOS-5 at upper levels.

Figure 12. Comparison of 31-day running mean of daytime daily values of modeled and observed CO2

mole fractions (in ppm) near West Branch, Iowa (WBI) and Beech Island, South Carolina (SCT) NOAA
tall towers from the CMS-Flux model (in red), the WRF transport ensemble (in blue), and the observed
CO2 mole fractions (in black) for the year 2010.



Atmosphere 2020, 11, 787 21 of 36

50°N

40°N

30°N

12
0°

W

11
0°

W

10
0°

W

90
°W

80
°W

70
°W

UIL

OAK

NKX

YQD

BIS
INL

MPX

OAX
DVN APX GYX

FWD
SHV

JAN
BMX CHS

Figure 13. Map of the selected rawinsonde sites (WMO) used for model evaluation at 00 UTC
(horizontal wind observations).

Figure 14. Annual mean wind speed bias [ms−1] at selected rawinsonde sites for 00 UTC soundings in
2010 for WRF initialized with ERA-Interim reanalysis and for GEOS-5 reanalysis at selected mandatory
reporting levels: (a) 925 hPa, (b) 850 hPa, (c) 500 hPa, and (d) 250 hPa.
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Figure 15. Seasonal mean wind direction bias [degrees] at selected rawinsonde sites for 00 UTC
soundings in 2010 for WRF initialized with ERA-Interim reanalysis and for GEOS-5 reanalysis at
925 hPa for: (a) spring, (b) summer, (c) fall, and (d) winter.

Table 5. Rawinsonde sites used in comparison of 00 UTC modeled horizontal winds.

Site WMO ID Latitude (◦N) Longitude (◦W) Location Name

UIL 72797 47.95 124.55 Quillayut, WA, USA
OAK 72493 37.75 122.22 Oakland, CA, USA
NKX 72293 32.87 117.15 Miramar, CA, USA
YQD 71867 53.97 101.10 The Pas, MB, USA
BIS 72764 46,77 100.75 Bismarck, ND, USA
FWD 72249 32.80 97.30 Fort Worth, TX, USA
OAX 72558 41.32 96.37 Valley, NE, USA
SHV 72248 32.45 93.83 Shreveport, LA, USA
MPX 72649 44.83 93.55 Chanhassen, MN, USA
INL 72747 48.67 93.38 International Falls, MN, USA
DVN 74455 41.60 90.57 Davenport, IA, USA
JAN 72235 32.32 90.07 Jackson, MS, USA
BMX 72230 33.10 86.70 Shelby County, AL, USA
APX 72634 44.91 84.72 Gaylord, MI, USA
CHS 72208 32.90 80.03 Charleston, SC, USA
GYX 74389 41.60 70.25 Gray, ME, USA
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Table 6. Model comparison to rawinsonde wind speed at mandatory reporting level 925 hPa, 00 UTC
in 2010.

WRF ERA-Interim GEOS-Chem GEOS-5

Site Count Bias RMSE Correlation Variance Bias RMSE Correlation Variance

(ms−1) (ms−1) Skill Ratio (ms−1) (ms−1) Skill Ratio

UIL 350 0.99 3.41 0.87 1.09 0.30 3.41 0.84 0.67
OAK 350 1.32 2.98 0.78 1.67 3.41 5.41 0.46 1.84
NKX 348 1.87 4.08 0.44 1.84 1.10 2.99 0.47 0.82
YQD 363 0.86 3.36 0.76 1.12 −1.24 2.67 0.86 0.68
BIS 349 0.71 3.04 0.73 1.02 −0.91 2.58 0.80 0.79

FWD 363 0.76 3.49 0.71 1.27 −1.21 3.06 0.75 0.79
OAX 364 1.59 4.30 0.71 1.13 −0.92 3.08 0.81 0.72
SHV 359 1.27 3.77 0.69 1.43 0.25 3.00 0.71 0.85
MPX 359 1.81 3.99 0.75 1.38 −0.65 3.35 0.71 0.79
INL 360 1.47 3.39 0.78 1.26 −1.01 3.14 0.73 0.70

DVN 357 1.44 4.10 0.76 1.25 −1.15 2.85 0.86 0.69
JAN 362 1.49 3.49 0.77 1.51 −0.04 2.45 0.80 0.85
BMX 362 1.21 3.32 0.78 1.37 −0.63 2.67 0.79 0.64
APX 358 2.44 4.15 0.75 1.87 −0.17 2.33 0.81 1.07
CHS 352 1.44 4.20 0.67 1.30 −0.58 2.47 0.84 0.72
GYX 362 2.63 5.54 0.71 1.54 −0.27 3.65 0.77 0.84

4. Discussion

Based on the spatiotemporal distribution of GOSAT XCO2 soundings, there is very good
agreement between the two modeling systems and GOSAT in the gross seasonal comparisons,
well within the uncertainty of the individual GOSAT retrievals (0.5–2.00 ppm, reported with each
sounding). Our primary goal of this framework is to control the CO2 mole fractions introduced into
the WRF domain to be as close as possible to the mole fractions from the global model. By scaling
the surface fluxes and constraining the mole fractions in the flow at the boundary walls, we have
approached this goal of mass conservation. The largest spatiotemporal differences in XCO2 shown
in this experiment appear to be due to the model–model differences in transport of the anomalous
July biogenic source in the continental northwest and offsetting sinks in the midwest and east in the
optimized CMS-Flux biogenic fluxes. However, the very small differences in simulated XCO2 values
mask larger differences within the columns. For example, we can see model-model differences in
the transport of the surface flux anomaly in the Pacific Northwest in summer, both within and above
the boundary layer (Figure 7). Apparent model differences in vertical mixing within the boundary
layer in summer in the eastern part of North America result in lower values within the boundary
layer (<850 hPa, −0.5 to +0.1 ppm) and higher values above the boundary layer (>850 hPa, by +0.1 to
+0.5 ppm) in the mesoscale model compared to the global model. We know that this configuration of
WRF-Chem lacks convective mass transport of the CO2 tracers. This will affect the vertical transport of
CO2 into and out of the boundary layer. We also acknowledge here that diurnal variations in CMS
surface fluxes are prescribed and they might not exactly match the meteorological conditions in WRF.
A comparison of fluxes and PBL variations at shorter timescales is needed in future studies, and might
be optimized in the inversion systems e.g., [23]. The CMS-Flux optimized CO2 mole fractions also
show effects of recent fluxes in the layer closest to the surface, and then nearly homogeneous mixing
in the next several model layers, as seen in the example profile in Figures 6a and 11.

Comparison to in situ CO2 mole fractions collected during aircraft flights (NOAA aircraft program)
showed that vertical air motion above the PBL top changes significantly the horizontal distribution
of column XCO2. When comparing CO2 mole fraction biases at various tower locations (near the
surface) to biases in column XCO2, seasonal and regional biases appeared to contradict each other,
i.e., negative biases in Summer in CO2 while column XCO2 was positively biased. Detrainment of air
out of the PBL, convection, and day-to-day PBL height variations lift up CO2 molecules above the
PBL, which are advected horizontally by fast-moving air masses in the Free Troposphere. A recent
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study showed the role of deep convection at Mid-latitudes by comparing two global models coupled
to the same surface fluxes [87]. Their results suggest that the transport of continental surface fluxes by
latitudinal atmospheric transport can greatly impact the distribution of CO2 mole fractions across the
northern hemisphere. Similar to our results, they conclude that additional evaluation of vertical mixing
is needed to reduce transport errors above the PBL, esp. by deep convection and other detrainment
processes. The apparent agreement between models over the entire simulation domain was in fact
hiding large differences in the vertical distribution, hence affecting the horizontal distribution of XCO2

at finer scales. The utility of aircraft data in our analysis explained some of the observed differences in
column XCO2, not visible when comparing CO2 mole fractions at tower levels (within the PBL).

The ensemble of WRF realizations generated by perturbing the initial and boundary conditions
and the model physics provided additional information on the impact of transport errors in the
observed model–model and model-data differences. Seasonally, model-model differences are driven
alternatively by the large-scale boundary inflow (Spring and Fall) or by the near-surface vertical
mixing (Summer and Winter). Despite improving the coupling scheme with mass-conservation,
differences remain between models, which are mostly due to differences in the transport of the CMS
boundary conditions within the WRF simulation domain. Hence, model coupling is critical during
off-seasons when signals from the surface are small, but when boundary conditions are affected by
large-scale seasonal and synoptic variations. At the annual scale, transition seasons might cause
the mis-attribution of large-scale inflow of CO2 into surface flux signals within the inverse system.
Future studies will focus on the attribution of CO2 and XCO2 model-data residuals into surface and
boundary contributions.

In this experiment, the meteorological evaluation of the WRF results was approximately
comparable to the GEOS-Chem GEOS-5 results, and neither compared well in all respects with
the rawinsonde observations. At the selected sites, the GEOS-5 winds were slow by up to 3 ms−1

at nearly all of the sites and mandatory levels that we used for comparison, while the WRF winds
were closer to observations at higher levels. We had hoped to see better performance from the
increased resolution, both horizontal and vertical, in WRF. Perhaps the horizontal resolution in
WRF is still too coarse to take advantage of any truly mesoscale effects. We also did not assimilate
meteorological observations into WRF; this was by design, as the primary focus of the experiment was
to identify differences in transport of the CO2 originating from the CMS-Flux optimized biogenic fluxes.
The WRF resolution, the assimilation of meteorological data in WRF, and changes to the boundary
layer parameterizations within WRF could be tested to review the conclusions we see here. The two
different re-analysis driver data used here might also cause differences in simulated XCO2 and CO2

mole fractions. No reconciliation was performed, because both models re-interpret driver data to a
certain extent (through advection and diffusion schemes), acting as an additional layer of complexity.
However, a comparison of ERA-Interim and GEOS-5 driver data would potentially bring additional
information about transport differences and explain some of the differences noted here.

One of the main objectives of satellite XCO2 programs is to provide observations for assimilation
into atmospheric inversions to improve the quality of inferred surface fluxes. GOSAT and other
satellite missions ( e.g., OCO-2) provide good coverage of the North American domain in the summer,
the season with the most biogenic activity. However, coverage in other seasons is limited, and must be
supplemented with other CO2 observations, forcing the challenge of assimilating both column and
surface observations in the same inversion. It is an interesting thought experiment to see what the
model–model differences would be if we did have complete satellite sampling coverage over the course
of a year. We sampled each model at its own horizontal grid resolution at the hour of the day with the
most GOSAT XCO2 soundings (20 UTC), created simulated XCO2 from CO2 columns interpolated to
the pressure levels commonly used in the ACOS algorithm, and examined model–model differences
in the same way as we did with the simulated GOSAT soundings. We compared the differences for
summer, the season with the best GOSAT spatial coverage (See Figures A4–A6). WRF values below
850 hPa are lower than the CMS-Flux values in the east, and WRF values are higher over most of
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the continent above 850 hPa. These results are reasonably consistent with the summer results that
are shown in Figures 5 and 7, which are conditioned on the spatiotemporal coverage of the GOSAT
soundings. This is encouraging. While we will never have perfect coverage in every season with a
satellite XCO2 product, the results presented here show that model-model differences do not appear to
be overly dependent on the GOSAT sampling coverage. Future studies should also consider temporal
correlations in the residuals when denser sampling is available ( e.g., OCO-2 or OCO-3) to examine the
signatures of surface fluxes as compared to transport differences.

We have created a viable framework for comparing the transport of surface fluxes optimized
in one model in another model. Theoretically, this allows for comparisons using different grid
resolutions, meteorological drivers, and model parameterization options. In this experiment, we do
see some differences between models in horizontal winds and boundary layer mixing, but see no clear
advantage of the mesoscale model in the simulation of the satellite-derived XCO2. The framework does
provide a computationally feasible laboratory for investigating other possible model configurations.
Repeating the experiment in WRF with perturbations and using other configurations (boundary layer
physics parameterizations) yield an ensemble of results that better establish an envelope of transport
uncertainty for the CMS-Flux optimized biogenic flux solution. Additional sources of uncertainties,
such as driver meteorological fields, assimilation of observed meteorology, or finer model resolution,
might provide a more accurate range of transport simulations to establish an optimal configuration of
the regional modeling system.

5. Conclusions

We have established a framework for effectively nesting a mesoscale model within a global
model achieving approximate mass conservation of the trace gas CO2. The CMS-Flux and WRF
simulated column-averaged GOSAT XCO2 samples are comparable within a few parts per million with
some spatial differences, across all seasons and all geographic locations in the WRF North American
domain. Our mass-conserved coupling scheme shows a significant improvement when evaluated
against GOSAT data (0.1 to 0.5 ppm) as compared to traditional coupling schemes (0.5 to 1.5 ppm),
more consistent with the model-data differences of the CMS-Flux inversion system. The models used
here have very different horizontal and vertical resolutions and computational grids. The framework
presented here makes it possible to follow the CO2 from surface fluxes optimized in a global model
into a regional domain, allowing for the testing of various transport options.

Although simulations of entire columns agree when averaged over the domain between the
models, noticeable vertical differences in the distribution of the CO2 within the column are shown by
comparison to discrete flask samples from the NOAA aircraft program. These differences originate
from vertical mixing in the PBL and in the transport of air masses from the boundaries into the WRF
simulation domain. These differences, small when considering total column XCO2 from the models
(less than 1 ppm on average) will affect the inverse sources and sinks across North America, attributing
signals to the surface fluxes and the CMS-Flux boundaries differently for each model. Comparison
to NOAA tower data revealed biases in Spring and Fall due to large-scale transport while Summer
and Winter were affected by vertical mixing differences. A large fraction of the model differences in
column XCO2 arose from the northwestern US and propagated into the simulation domain following
the Mid-latitudinal Jet Stream. The differences are primarily explained by the vertical transport of CO2

molecules above the PBL top, where wind speed increases significantly, modifying the distribution
of CO2 in the horizontal dimension. Unfortunately, both of the models show significant biases with
respect to meteorological observations that vary with season. At the sites we examined, wind speeds
are low in GEOS-5 in all seasons, especially at higher altitudes. WRF shows positive biases near the
surface, while GEOS-Chem shows negative wind speed biases from the surface up to 250 hPa. There is
the potential for significant transport bias with either modeling system, and in this experiment, WRF is
not obviously better. Assimilating meteorological observations in WRF should reduce the wind bias
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in WRF, but the vertical mixing requires the calibration of the physical parameterizations to reduce
vertical mixing differences across models.
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Appendix A. The WRF CMS-Flux Modeling Environment

The 4D-Var CMS-Flux inversion system assimilates satellite XCO2 to inform correction of biogenic
surface fluxes. The CMS-Flux surface fluxes, including the optimized biogenic flux, and the optimized
CO2 mole fractions are coupled off-line into the WRF-CMS system (Figure A1). Satellite XCO2 are
simulated at the times and locations of GOSAT XCO2 soundings in 2010 in the atmospheric CO2 of
both modeling systems, allowing for comparison of the satellite XCO2 with the model simulations.
An ensemble of WRF simulations can be created using multiple model physics parameterization
choices for boundary layer processes, yielding a multi-physics transport ensemble of XCO2 simulations.
These can then be assimilated in the CMS-Flux inversion system as multiple realizations of satellite
retrievals to test the sensitivity of the CMS-Flux inversion system to transport errors and uncertainties.

The WRF North American domain is a 27 km resolution, Lambert Conformal projection
encompassing approximately 10◦ N–65◦ N and40◦ W–155◦ W. Figure A2 shows the mapping of
the CMS-Flux GEOS-Chem rectangular 4◦ latitude × 5◦ longitude grid to the WRF domain.

The coverage of GOSAT soundings differs by season. Figure A3 shows the counts of GOSAT
XCO2 soundings in summer 2010 for each grid box in the GEOS-Chem grid. In the main text, results are
not shown for grid cells with fewer than 10 samples in a season.

https://carbon.nasa.gov
http://co2.jpl.nasa.gov
http://dx.doi.org/10.3334/ORNLDAAC/1338
 http://www.esrl.noaa.gov/raobs/fsl-format-new.cgi.
https://github.com/psu-inversion/WRF_Boundary_Coupling
https://doi.org/10.26208/deck-h130
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Figure A1. The coupled WRF CMS-Flux modeling environment.
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Figure A2. Mapping of the WRF North American domain to the CMS-Flux GEOS-Chem grid. Light
gray lines indicate the boundaries of the GEOS-Chem grid cells. Shading indicates the number of WRF
grid cells assigned to each GEOS-Chem grid cell.
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Figure A3. GOSAT XCO2 sample counts for summer 2010 aggregated to the GEOS-Chem CMS-Flux
grid (light gray lines).
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Figure A4. Model-model XCO2 differences aggregated to the CMS-Flux GEOS-Chem grid assuming a
simulated satellite XCO2 sounding in each grid box for the WRF and CMS-Flux modeling systems at 20
UTC every day in the summer (June, July, August) of 2010. This figure shows the mean model-model
differences for the entire column. Compare these full column results to Figure 4b in the main text.
Figures A5 and A6 show differences in the upper and lower portions of the column.
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JJA Mean WRF-CMS XCO2 Difference [ppm] for Levels 4-20 at 20 UTC
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Figure A5. Model-model differences in the upper column (above ∼850 hPa). compare these results to
Figure 6b in the main text.

JJA Mean WRF-CMS XCO2 Difference [ppm] for Levels 1-3 at 20 UTC
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Figure A6. Model-model differences in the lower column (surface to 850 hPa). Compare these results
to Figure 6b in the main text.
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Table A1. Model comparison to rawinsonde wind speed at mandatory reporting level 850 hPa, 00 UTC
in 2010.

WRF ERA-Interim GEOS-Chem GEOS-5

Site Count Bias RMSE Correlation Variance Bias RMSE Correlation Variance

(ms−1) (ms−1) Skill Ratio (ms−1) (ms−1) Skill Ratio

UIL 351 0.57 3.45 0.87 0.88 0.20 3.46 0.87 0.71
OAK 358 0.05 2.71 0.81 1.13 1.56 4.24 0.61 1.19
NKX 347 1.00 2.88 0.67 1.14 −0.16 2.65 0.64 0.84
YQD 363 0.53 3.77 0.74 1.10 −0.91 2.54 0.88 0.83
BIS 362 0.55 3.82 0.74 0.98 −1.18 2.99 0.86 0.81

FWD 363 0.29 3.95 0.70 1.05 −1.35 3.53 0.77 0.82
OAX 364 0.77 4.38 0.72 1.05 −1.37 3.43 0.83 0.83
SHV 359 0.64 3.83 0.71 1.12 −0.42 3.25 0.76 0.89
MPX 361 0.94 4.29 0.72 1.10 −1.31 3.91 0.75 0.79
INL 361 0.88 4.10 0.75 1.23 −1.20 3.68 0.76 0.75

DVN 358 0.99 4.60 0.72 1.21 −1.09 2.85 0.89 0.74
JAN 362 0.74 3.72 0.77 1.01 −0.78 2.98 0.84 0.71
BMX 363 0.75 3.55 0.79 1.17 −0.81 2.56 0.88 0.78
APX 358 1.66 4.63 0.74 1.27 −0.90 3.44 0.81 0.62
CHS 356 0.59 3.77 0.73 1.15 −1.16 2.91 0.84 0.86
GYX 362 0.97 5.48 0.69 1.17 −0.87 3.99 0.80 0.63

Table A2. Model comparison to rawinsonde wind speed at mandatory reporting level 500 hPa, 00 UTC
in 2010.

WRF ERA-Interim GEOS-Chem GEOS-5

Site Count Bias RMSE Correlation Variance Bias RMSE Correlation Variance

(ms−1) (ms−1) Skill Ratio (ms−1) (ms−1) Skill Ratio

UIL 350 −0.40 3.85 0.91 0.91 0.02 5.11 0.84 0.86
OAK 355 −0.16 3.61 0.93 0.97 −0.28 5.29 0.85 0.88
NKX 347 −0.54 3.43 0.93 0.96 −3.21 6.77 0.77 0.80
YQD 364 0.21 4.60 0.84 0.92 −0.80 3.34 0.92 0.80
BIS 361 0.66 5.03 0.82 1.03 −0.29 3.46 0.91 0.85

FWD 362 −0.42 4.14 0.92 1.10 −0.51 4.12 0.91 0.98
OAX 361 0.01 4.64 0.87 1.00 −0.61 4.16 0.89 0.83
SHV 355 −0.30 4.66 0.91 1.14 −0.95 4.47 0.91 0.90
MPX 359 0.36 5.27 0.83 0.94 −1.61 5.37 0.83 0.73
INL 360 0.31 5.32 0.82 1.02 −1.51 4.96 0.84 0.81

DVN 357 −0.15 4.88 0.87 1.04 −1.14 3.59 0.94 0.81
JAN 361 −0.16 4.39 0.92 0.95 −0.78 4.67 0.91 0.82
BMX 358 −0.22 4.39 0.92 0.95 −0.84 3.53 0.95 0.89
APX 359 0.78 5.09 0.86 0.99 −1.16 4.38 0.88 0.78
CHS 353 0.19 4.70 0.92 0.94 −1.03 4.17 0.94 0.76
GYX 361 0.06 5.60 0.85 1.02 −0.64 5.85 0.83 0.79
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Table A3. Model comparison to rawinsonde wind speed at mandatory reporting level 250 hPa, 00 UTC
in 2010.

WRF ERA-Interim GEOS-Chem GEOS-5

Site Count Bias RMSE Correlation Variance Bias RMSE Correlation Variance

(ms−1) (ms−1) Skill Ratio (ms−1) (ms−1) Skill Ratio

UIL 345 −1.72 5.06 0.95 0.91 −0.40 7.87 0.85 0.80
OAK 354 0.64 4.52 0.95 0.98 −1.23 8.76 0.81 0.93
NKX 344 −0.53 5.03 0.94 1.11 −2.05 10.45 0.76 1.21
YQD 361 −0.68 5.97 0.90 0.91 −1.67 4.43 0.95 0.83
BIS 358 −0.37 7.14 0.88 0.95 −1.37 5.25 0.94 0.83

FWD 361 −0.39 5.80 0.94 0.95 −1.25 6.56 0.93 0.87
OAX 357 −0.55 6.21 0.91 0.94 −1.57 5.04 0.95 0.89
SHV 358 −0.79 6.11 0.95 0.89 −2.24 8.75 0.90 0.74
MPX 357 −0.23 6.77 0.90 0.91 −2.13 7.46 0.88 0.78
INL 360 0.01 7.12 0.88 0.96 −2.28 7.51 0.87 0.82

DVN 353 −0.09 7.25 0.89 0.97 −1.00 4.17 0.97 0.86
JAN 362 −0.10 6.17 0.95 0.86 −2.21 8.72 0.90 0.75
BMX 355 0.02 5.93 0.95 0.90 −1.72 5.97 0.95 0.87
APX 358 −0.54 7.36 0.88 0.94 −2.34 6.23 0.93 0.83
CHS 351 −0.05 5.94 0.96 0.93 −2.04 6.09 0.96 0.83
GYX 360 −1.76 8.78 0.86 0.86 −1.34 8.72 0.87 0.80
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