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ON THE RACE BETWEEN PRIMES WITH AN ODD VERSUS AN
EVEN SUM OF THE LAST k BINARY DIGITS

YOUNESS LAMZOURI AND BRUNO MARTIN

Abstract. Motivated by Newman’s phenomenon for the Thue-Morse sequence (−1)s(n),
where s(n) is the sum of the binary digits of n, we investigate a similar problem
for prime numbers. More specifically, for an integer k > 2, we explore the signs of
Sk(x) =

∑
p6x(−1)sk(p), where sk(n) is the sum of the last k binary digits of n, and

p runs over the primes. We prove that Sk(x) changes signs for infinitely many integers
x, assuming that all Dirichlet L-functions attached to primitive characters modulo 2k

do not vanish on (0, 1). Our result is unconditional for k 6 18. Furthermore, under
stronger assumptions on the zeros of Dirichlet L-functions, we show that for k > 4, the
sets {x > 2 : Sk(x) > 0} and {x > 2 : Sk(x) < 0} both have logarithmic density 1/2.

1. Introduction

Every integer n > 0 has an unique expansion in base 2:

n =
∑
j>0

εj(n)2j with εj(n) ∈ {0, 1} ∀j > 0,

where the εj(n)’s are the binary digits of n. Let s(n) =
∑

j>0 εj(n) be the sum of digits

function. The Thue-Morse sequence on {−1, 1} is defined by t = (tn)n>0 where tn =
(−1)s(n). This sequence has been extensively studied and appears in various branches of
mathematics, see for example [1]. In a seminal paper [9], Gelfond proved that for every
a ∈ Z and q ∈ N,

Tq,a(x) :=
∑
n6x

n≡a mod q

tn = o(x) (x→∞),

and asked whether such an asymptotic holds for other interesting subsets of the integers,
namely the set of prime numbers, and the set P (N) where P is a polynomial with integral
coefficients such that P (N) ⊂ N. More generally, one can ask the following question:
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2 YOUNESS LAMZOURI AND BRUNO MARTIN

given some specific subset A of N with multiplicative, algebraic or analytic structure, do
we have

(1.1)
∑
n6x
n∈A

tn = o
(∑
n6x
n∈A

1
)

(x→ +∞)?

In [9] Gelfond also proved that (1.1) holds when A is the set of k-free integers. Recently,
Mauduit and Rivat made a breakthrough by proving (1.1) when A is the set of prime
numbers [17], answering Gelfond’s question, and then when A is the set of squares [16]
(see also [3]).

Hence, for all the aforementioned examples the sequence t along A takes the values 1
and −1 with the same frequency. However, Newman [18] discovered that this distribution
hides a bias, by showing that T3,0(x) > 0 for all x > 1. This surprising fact became known
as Newman’s phenomenon. In fact, Newman established the stronger estimate

(1.2)
3α

20
6 T3,0(N)

⌊
N−2

3

⌋−α
6 5 · 3α

for all integers N > 1, where α := log 3/ log 4. This shows that T3,0(N) is very large when
N grows, and we say that a drifting phenomenon occurs in this case.

Whereas the study of the signs of Tq,a(x) turns out to be difficult in general, Drmota
and Skalba [4] could prove that Tq,0(x) > 0 for x sufficiently large when q ≡ 0 mod 3
or q = 4k + 1 with k > 1. We also mention that Drmota and Stoll [5] showed that
for every x > 1, we have T3,1(x) 6 −Cxα with some C > 0. They also proved that
T3,2(x) 6 0 with equality holding for infinitely many integers x, which shows that there is
a Newman phenomenon but no drift in this case. For more results and references about
Newman’s phenomenon and its extensions, we refer the reader to the introductions and
bibliographies of [5] and [15].

Recently, Mauduit and Moreira [15] provided the first example of a non-linear Newman
phenomenon by considering the set Q of square-free integers. More precisely, they proved
that ∑

n6x
n∈Q

tn = − 2

π2

(
1 + o(1)

)
T3,0(x), as x→∞.

In particular, we have
∑

n6x
n∈Q

tn < 0 for x sufficiently large. They also obtained similar

results for the set of k-free integers with k > 2.
In [21] (see also [22]) Shevelev conjectured that a similar phenomenon should hold for

the set of prime numbers, namely that for every x > 31, we have

S(x) :=
∑
p6x

(−1)s(p) < 0,

where p runs over the primes. He also made the stronger conjecture that

(1.3) lim
x→+∞

log(−S(x))

log x
= α.
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Figure 1. graphs of x 7→ S(x), x 7→ −3
2

T3,0(x)

log x
for 2 6 x 6 232

Heuristically, one should expect that for a ∈ {1, 2} we have∑
p6x

p≡a mod 3

tp ∼
3

ϕ(3) log x
T3,a(x), as x→∞.

Since T3,0(x) + T3,1(x) + T3,2(x) =
∑

n6x tn ∈ {−1, 0,+1}, this leads to the following
conjecture which refines Shevelev’s conjectural asymptotic (1.3), in view of Newman’s
estimate (1.2).

Conjecture 1.1. As x→∞ we have

S(x) ∼ −3

2
· T3,0(x)

log x
.

We have performed numerical computations for x up to 232 ≈ 4.3 ·109, which show that
the graphs of S(x) and −3T3,0(x)/(2 log x) are very close in this region (see Figure 1).
However, we also noticed that the hypothetical convergence towards 1 of the ratio seems
extremely slow.

In this paper we study the analogous question where s(p) is replaced by sk(p), with
sk(p) being the sum of the last k binary digits of n, and k > 2 is a fixed integer. Note
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that the case k = 1 is trivial, since all primes p > 3 are odd. We shall investigate the
signs of the sum

Sk(x) :=
∑
p6x

(−1)sk(p).

We note that sk is a particular case of a weighted sum of digits: let γ = {γj}j>0 be a
sequence with γj ∈ {0, 1} for all j > 0, and introduce

(1.4) sγ(n) =
∑
j>0

γjεj(n).

Larcher and Zellinger [14] characterized the sequences γ such that a drifting phenomenon
for the sums

∑
n6x

n≡a mod 3
(−1)s

γ(n) occurs. When sγ = sk, it turns out that the sum∑
n6x

n≡a mod 3
(−1)sk(n) vanishes infinitely often for each a ∈ {0, 1, 2}.

Our first result shows that Sk(x) changes signs infinitely often, conditionally on a mild
assumption on the real zeros of Dirichlet L-functions. This assumption is commonly
known as Haselgrove’s condition H(q), and states that L(σ, χ) 6= 0 for all non-trivial
Dirichlet characters χ mod q, and all σ ∈ (0, 1). Before stating our result, we recall the Ω
notations: if f, g are both real-valued functions with g > 0, the notation f(x) = Ω+(g(x))
(resp. f(x) = Ω−(g(x)) means that

lim sup
x→∞

f(x)

g(x)
> 0

(
resp. lim inf

x→∞

f(x)

g(x)
< 0
)
,

and f(x) = Ω±(g(x)) means that f(x) = Ω+(g(x)) and f(x) = Ω−(g(x)).

Theorem 1.2. Let k > 2 be an integer and assume H(2k). Then, we have

Sk(x) = Ω±

( √x
log x

)
.

In particular, the sum Sk(x) changes signs infinitely often.

Haslegrov’s condition H(q) is known to hold for all moduli q 6 400 000 by the work
of Platt [19], so our result is unconditional for k 6 18. We should also remark that this
condition is somewhat necessary to obtain an infinite number of sign changes of Sk(x).
Indeed, one can show that if a certain L-function L(s, χ1) (where χ1 is a nonprincipal
character mod 2k) has a real zero β > 1/2, such that β > <(ρ) for all non trivial zeros ρ
of all L-functions attached to non-principal characters χ 6= χ1 mod 2k, then Sk(x) � xβ

for x large.
We have also performed numerical computations to explore the sign changes of Sk(x)

(see Figures 2, 3 and 4, which represent the graphs of S15(x), S23(x) and S27(x) respec-
tively, for 2 6 x 6 232).

As usual, we denote by π(x) the number of primes up to x, and for a ∈ Z and q ∈ N by
π(x; q, a) the number of primes p 6 x such that p ≡ a mod q. Introducing for j ∈ {0, 1}

Ej(k) := {1 6 a < 2k | a odd, s(a) ≡ j mod 2},
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Figure 2. graph of x 7→ S15(x) for 2 6 x 6 232

we have for x > 3,

Sk(x) = −1 +
∑

16a<2k

a odd

(−1)s(a)
∑
p6x

p≡a mod 2k

1 = −1 +
∑

a∈E0(k)

π(x; 2k, a)−
∑

a∈E1(k)

π(x; 2k, a).

In particular, we have S2(x) = −1 + π(x; 4, 3)− π(x; 4, 1) and S3(x) = −1 + π(x; 8, 3) +
π(x; 8, 5)− π(x; 8, 1)− π(x; 8, 7). One can easily see that |E0(k)| = |E1(k)| for k > 2, and
hence we have Sk(x) = o(π(x)) (x → ∞) by the prime number theorem for arithmetic
progressions. In order to study the sign changes of Sk(x), we shall use comparative
prime number theory arguments (see [7] for a survey of this area). In particular, the
case k = 2 of Theorem 1.2 follows from Littlewood’s work [10]. When k = 2, 3, the odd
quadratic residues modulo 2k are not equally distributed in E0(k) and E1(k) (indeed 1 is
the only quadratic residue modulo 4 and modulo 8), and this induces a Chebychev’s bias
phenomenon, which can be readily seen in Theorem 1.5 below. However, the case k > 4 is
completely different. Indeed, we prove in Proposition 3.1 below that for k > 4, E0(k) and
E1(k) contain the same number of quadratic residues. In this case, Theorem 1.2 follows
from the following result, which is a generalization of the works of Knapowski-Turán [13]
and Kátai [12].
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Figure 3. graph of x 7→ S23(x) for 2 6 x 6 232

Theorem 1.3. Let q > 2 be an integer and assume H(q). Let A,B be disjoint subsets of
(Z/qZ)∗ such that |A| = |B|, and A and B contain the same number of quadratic residues.
Then we have ∑

a∈A

π(x; q, a)−
∑
b∈B

π(x; q, b) = Ω±

( √
x

log x

)
.

Let χ4 denote the nontrivial character modulo 4. Assuming the Riemann hypothesis for
L(s, χ4), Kaczorowski [11] proved that the set of real numbers x > 2 such that S2(x) > 0
(respectively S2(x) < 0) has a positive lower logarithmic density. Recall that for a set
A ⊂ [0,∞), the upper and lower logarithmic densities of A are defined respectively by

δ(A) = lim sup
x→∞

1

log x

∫
t∈A∩[2,x]

dt

t
, and δ(A) = lim inf

x→∞

1

log x

∫
t∈A∩[2,x]

dt

t
.

If δ(A) = δ(A) = δ(A) we say that δ(A) is the logarithmic density of A. Using the work
of Rubinstein and Sarnak [20] we prove a similar result for k = 3. Let λ > 0 and define

A+
k (λ) =

{
x > 2 |Sk(x) > λ

√
x

log x

}
and A−k (λ) =

{
x > 2 |Sk(x) < −λ

√
x

log x

}
.
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Figure 4. graph of x 7→ S27(x) for 2 6 x 6 232

We also let χ8(·) =
(

8
·

)
be the Kronecker symbol modulo 8. Then we prove

Theorem 1.4. Assume the Riemann hypothesis for L(s, χ8). There exists a positive
constant c such that

δ
(
A+

3 (λ)
)
� exp

(
− exp(cλ)

)
, and δ

(
A−3 (λ)

)
� exp

(
− exp(cλ)

)
.

We should note that the assumption of the Riemann hypothesis in Theorem 1.4 is
“necessary” in a certain sense. Indeed, using the work of Ford, Konyagin and Lamzouri
[8] one can show that the existence of certain configurations of zeros of L(s, χ8) off the
critical line implies that δ

(
A+

3 (λ)
)

= 0 (respectively δ
(
A−3 (λ)

)
= 0).

Rubinstein and Sarnak [20] solved several long standing problems in comparative prime
number theory conditionally on the generalized Riemann hypothesis GRH and the Linear
Independence hypothesis LI, which is the assumption that the nonnegative imaginary
parts of the nontrivial zeros of Dirichlet L-functions attached to primitive characters
modulo q are linearly independent over Q. In particular, they showed that δ

(
A+

2 (0)
)

=

1−δ
(
A−2 (0)

)
= 0.9959... under GRH and LI. Using their approach we prove the following

result.
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Theorem 1.5. Assume GRH and LI. The logarithmic densities of A+
k (0) and A−k (0) exist

and are positive. Moreover, for k > 4 we have

δ
(
A+
k (0)

)
= δ

(
A−k (0)

)
=

1

2
,

while for k = 3 we have

δ
(
A+

3 (0)
)

= 0.982201... and δ
(
A−3 (0)

)
= 1− δ

(
A+

3 (0)
)

= 0.017798...

The logarithmic density δ
(
A+

3 (0)
)

was computed following the approach of Rubinstein-
Sarnak (see Section 4 of [20]). We provide the main steps of the method in §5.

Acknowledgements. The authors would like to thank the anonymous referee for
carefully reading the paper and for his comments and suggestions.

2. Preliminary results

For an integer q > 2 and A ⊆ (Z/qZ)∗ we define

π(x,A) :=
∑
a∈A

π(x; q, a).

As usual we let Λ denote the von Mangoldt function defined by Λ(n) = log p if n = pk,
and Λ(n) = 0 otherwise. We shall use the standard notation ψ(x; q, a) :=

∑
n6x

n≡a mod q
Λ(n)

and for A ⊆ (Z/qZ)∗ we define

ψ(x,A) :=
∑
a∈A

ψ(x; q, a), and ψ̃(x,A) :=
ψ(x+, A) + ψ(x−, A)

2
.

We also set Kq := {a2 | a ∈ (Z/qZ)∗}, and define

Nq(a) := |{b mod q | b2 ≡ a mod q}| =

{
Nq(1) if a ∈ Kq,

0 otherwise.

Lemma 2.1. Let A,B be disjoints subsets of (Z/qZ)∗. Then, we have

(2.1)

π(x,A)− π(x,B) =

∑
b∈B Nq(b)−

∑
a∈ANq(a)

ϕ(q)

√
x

log x
+
ψ(x,A)− ψ(x,B)

log x

+

∫ x

2

ψ(t, A)− ψ(t, B)

t(log t)2
dt+Oq

( √
x

(log x)2

)
.

Proof. For a ∈ (Z/qZ)∗ we define

Π(x; q, a) :=
∑
n6x

n≡a mod q

Λ(n)

log n
.
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On the one hand we have

Π(x; q, a) = π(x; q, a) +
1

2

∑
p6
√
x

p2≡a mod q

1 +O(x1/3)(2.2)

= π(x; q, a) +
1

ϕ(q)

√
x

log x
Nq(a) +O

( √
x

(log x)2

)
,

where we use the prime number theorem for arithmetic progressions in the form π(x; a, q) =
x

log x
+O

(
x

(log x)2

)
. On the other hand, integrating by parts gives

(2.3) Π(x; q, a) =
ψ(x; q, a)

log x
+

∫ x

2

ψ(t; q, a)

t(log t)2
dt.

Summing (2.2) and (2.3) over a ∈ A and b ∈ B completes the proof. �

Let A,B be disjoint subsets of (Z/qZ)∗ such that |A| = |B|. Let χ be a non-principal
character modulo q and define ψ(x, χ) :=

∑
n6x χ(n)Λ(n). Then, observe that

(2.4) ψ(x,A)− ψ(x,B) =
1

ϕ(q)

∑
χ 6=χ0 mod q

cA,B(χ)ψ(x, χ),

where

(2.5) cA,B(χ) :=
(∑
a∈A

χ(a)−
∑
b∈B

χ(b)
)
.

The Mellin transform of ψ(x,A)− ψ(x,B) is defined by

(2.6) G(s, A,B) :=

∫ ∞
0

(
ψ(x,A)− ψ(x,B)

) dx
xs+1

,

and is absolutely convergent for <(s) > 1 since ψ(x,A)− ψ(x,B) = Oq(x). Moreover, in
this region we have

(2.7) G(s, A,B) = − 1

sϕ(q)

∑
χ 6=χ0 mod q

cA,B(χ)
L′

L
(s, χ).

This gives a meromorphic continuation for G to the whole complex plane.
For a non-principal character χ modulo q, we let ρχ = βχ+ iγχ runs over the non-trivial

zeros of L(s, χ), and put Zq = ∪χ 6=χ0{ρχ}. We also let m(ρχ) be the multiplicity of ρχ,
and define

κ(ρ) :=
∑

χ 6=χ0 mod q
ρχ=ρ

cA,B(χ)m(ρχ).

We have the following explicit formulas for ψ(x,A)−ψ(x,B) in terms of the zeros ρ ∈ Zq.
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Lemma 2.2. Let x > 2. Let A,B be disjoint subsets of (Z/qZ)∗ such that |A| = |B|.
Then, we have
(2.8)

ψ̃(x,A)−ψ̃(x,B) = − 1

ϕ(q)

∑
ρ∈Zq

κ(ρ)
xρ

ρ
− 1

ϕ(q)

∑
χ 6=χ0 mod q

cA,B(χ)

(
1 + χ(−1)

2

)
log x+Oq(1),

and

(2.9) ψ(x,A)− ψ(x,B) = − 1

ϕ(q)

∑
ρ∈Zq
|=(ρ)|6T

κ(ρ)
xρ

ρ
+Oq

(
x log2(xT )

T
+ log x

)
,

for T > 1.

Proof. The first estimate (2.8) follows from Eq. (2.4) together with the classical explicit
formula (see for example Eq. (3) of Chapter 19 of [2])

(2.10) ψ̃(x, χ) = −
∑
ρχ

xρχ

ρχ
−
(

1 + χ(−1)

2

)
log x+Oq(1).

where ψ̃(x, χ) = (ψ(x+, χ) +ψ(x−, χ))/2. The second estimate follows from the following
truncated form of the explicit formula (see Eq. (7) of Chapter 16 of [2])

(2.11) ψ(x, χ) = −
∑

|=(ρχ)|6T

xρχ

ρχ
+O

(
x log2(xT )

T
+ log x

)
,

which is valid for T > 1. �

By (2.7), the poles of G(s, A,B) in the critical strip 0 < <(s) < 1 are precisely the
zeros ρ ∈ Zq for which κ(ρ) 6= 0. As a consequence of the explicit formula (2.8), we shall
deduce that there are infinitely many such poles in the critical strip.

Corollary 2.3. Let A,B be disjoint subsets of (Z/qZ)∗ such that |A| = |B|. Then
G(s, A,B) has infinitely many poles in the critical strip.

Proof. Suppose by contradiction that there are only finitely many ρ ∈ Zq such that

κ(ρ) 6= 0. Then, it follows from the explicit formula (2.8) that ψ̃(x,A) − ψ̃(x,B) =
f(x) + Oq(1), where f is a continuous function of x. However, this contradicts the fact

that ψ̃(x,A)− ψ̃(x,B) has jump discontinuities of order log x (for example at x = p where
p is a prime such that p ≡ a mod q with a ∈ A). �

We next show that if all the poles of G(s, A,B) lie on the critical line <(s) = 1/2,
then the third term on the right hand side of (2.1) is small. This will be one of the main
ingredients in the proof of Theorem 1.3.
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Lemma 2.4. Let A,B be disjoint subsets of (Z/qZ)∗ such that |A| = |B|. Assume that
all the poles of G(s, A,B) lie on the critical line <(s) = 1/2. Then, we have∫ x

2

ψ(t, A)− ψ(t, B)

t(log t)2
dt�q

√
x

(log x)2
.

Proof. Let

Ψ(x,A,B) =

∫ x

2

(ψ(t, A)− ψ(t, B))dt.

Integrating the explicit formula (2.9) with respect to t, and letting T →∞ gives

Ψ(x,A,B) = − 1

ϕ(q)

∑
ρ∈Zq

κ(ρ)
xρ+1

ρ(ρ+ 1)
+O (x log x)� x3/2,

since <(ρ) = 1/2 when κ(ρ) 6= 0, and
∑

ρ∈Zq 1/|ρ|2 �q 1. Therefore, by a simple integra-
tion by parts we obtain∫ x

2

ψ(t, A)− ψ(t, B)

t(log t)2
dt =

Ψ(x,A,B)

x(log x)2
+

∫ x

2

Ψ(t, A,B)

(t log t)2

(
1 +

2

log t

)
dt�

√
x

(log x)2
,

as desired. �

3. Sign changes of π(x,A)− π(x,B): Proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.3. By Corollary 2.3, we know that the Mellin transform G(s, A,B)
has infinitely many poles in the critical strip. These correspond to the zeros ρ ∈ Zq
with κ(ρ) 6= 0. Furthermore, none of these poles is real by hypothesis H(q). We shall
distinguish two cases:

Case 1: There is a ρ ∈ Zq with κ(ρ) 6= 0 such that <(ρ) > 1/2.

In this case, it is more convenient to work with the quantity Π(x, S) :=
∑

a∈S Π(x; q, a),
and to consider the Mellin transform
(3.1)

g(s) =

∫ ∞
0

(Π(x,A)−Π(x,B))
dx

xs+1
=

1

sϕ(q)

∑
χ 6=χ0 mod q

cA,B(χ) logL(s, χ), for <(s) > 1.

Let σc be the abscissa of convergence of g(s). The identity (3.1) provides an analytic con-
tinuation for g at s = σc. Hence, applying Theorem II.1.11 of [24] (which is a standard
consequence of the Phragmen-Landau Theorem), we have for every ε > 0,

Π(x,A)− Π(x,B) = Ω±(xσc−ε).

But σc > supκ(ρ)6=0<(ρ) > 1/2, since every ρ with κ(ρ) 6= 0 induces a logarithmic singu-
larity for g(s). The result follows upon noting that, according to (2.2),

π(x,A)− π(x,B) = Π(x,A)− Π(x,B) +Oq

( √
x

log2 x

)
.
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Case 2: All the zeros ρ ∈ Zq with κ(ρ) 6= 0 satisfy <(ρ) = 1/2.

In this case, it follows from Theorem II.1.12 of [24] that

ψ(x,A)− ψ(x,B) = Ω±(x1/2).

On the other hand, we infer from Lemmas 2.1 and 2.4 that

π(x,A)− π(x,B) =
ψ(x,A)− ψ(x,B)

log x
+Oq

( √
x

(log x)2

)
.

Combining these estimates completes the proof. �

We shall deduce Theorem 1.2 from Theorem 1.3 when k > 4, by showing that E0(k)
and E1(k) have the same number of quadratic residues.

Proposition 3.1. If k > 4, then there are as many quadratic residues in E0(k) as in
E1(k).

Proof. As k > 4, a is an odd quadratic residue modulo 2k if and only if a = 8m + 1
with m ∈ Z (see [23] Theorem 16 p. 243). Hence, there are exactly 2k−3 odd quadratic
residues and they are given by 8m + 1 with m running from 0 to 2k−3 − 1. Noting that
s(8m + 1) = s(m) + 1 for m > 0 there are as many odd quadratic residues in E0(k)
as integers m between 0 and 2k−3 − 1 with an odd sum of digits, that is 2k−2 since∑

06m<2N (−1)s(m) = 0 for all N > 1. �

Proof of Theorem 1.2. The case k > 4 follows from Theorem 1.3 and Proposition 3.1, so
it only remains to consider the case k = 3. Note that in this case, we have

(3.2) ψ(x,E0(3))−ψ(x,E1(3)) =
1

4

∑
χ 6=χ0
χ mod 8

(χ(1) +χ(7)−χ(3)−χ(5))ψ(x, χ) = ψ(x, χ8),

and hence G(s, E0(3), E1(3)) = −1
s
L′

L
(s, χ8). It is known that L(s, χ8) has no zeroes on

(0,∞). If the Riemann hypothesis is false for L(s, χ8), then proceeding as in case 1 of the
proof of Theorem 1.3 we obtain π(x,E0) − π(x,E1) = Ω±(

√
x). Finally, if the Riemann

hypothesis is true for L(s, χ8), then the result follows from Theorem 1.4. �

4. Consequences of GRH and LI: Proof of Theorems 1.4 and 1.5

4.1. Consequences of GRH: Proof of Theorem 1.4. Let 1/2 + iγ runs over the
non-trivial zeros of L(s, χ8). Then, it follows from (2.11) and (3.2) that

ψ(x,E0(3))− ψ(x,E1(3))√
x

=
∑
|γ|<x

xiγ

1
2

+ iγ
+O

(
log2 x√

x

)
= 2

∑
0<γ<x

sin(γ log x)

γ
+O(1),

and hence by Lemmas 2.1 and 2.4 we obtain

(4.1)
log x√
x
S3(x) = 2

∑
0<γ<x

sin(γ log x)

γ
+O(1).
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Let λ > 0. Then, it follows from the work of Rubinstein and Sarnak (see Section 2.2 of
[20]), that

(4.2)
1

Y
meas

{
2 6 y 6 Y :

∑
0<γ<eY

sin(γy)

γ
> λ

}
� exp

(
− exp(c0λ)

)
,

and

(4.3)
1

Y
meas

{
2 6 y 6 Y :

∑
0<γ<eY

sin(γy)

γ
< −λ

}
� exp

(
− exp(c0λ)

)
,

for some absolute positive constant c0, where meas denotes the Lebesgue measure on R.
Let X be large and put Y = logX. Then, by making the change of variable y = log x we
deduce that

(4.4)

1

logX

∫
x∈[2,X]

S3(x)>λ
√
x/ log x

dx

x
=

1

Y
meas

{
log 2 6 y 6 Y : S3(ey) > λ

ey/2

y

}
� exp

(
− exp(c0λ)

)
by (4.1) and (4.2). Finally, the corresponding lower bound for δ

(
A−3 (λ)

)
follows along

the same lines by using (4.1) and (4.3).

4.2. Consequences of GRH and LI: Proof of Theorem 1.5. Let a1, . . . , an be dis-
tinct reduced residues modulo q, and define

Eq;a1,...,an(x) :=
(
E(x; q, a1), . . . , E(x; q, an)

)
,

where

E(x; q, a) :=
log x√
x

(ϕ(q)π(x; q, a)− π(x)) .

As before, we let {γχ} be the sequence of imaginary parts of the nontrivial zeros of L(s, χ),
and put Γ =

⋃
χ 6=χ0 mod q{γχ}. If we assume LI then all of the non-negative values of γχ

are linearly independent over Q, and in particular are distinct. Let {U(γχ)}γχ∈Γ,γχ>0

be a sequence of independent random variables uniformly distributed on the unit circle.
Rubinstein and Sarnak [20] proved, under GRH and LI, that for any Lebesgue measurable
set S ⊂ Rn whose boundary has measure zero, we have

(4.5) lim
X→∞

∫
x∈[2,X]

Eq;a1,...,an (x)∈S

dx

x
=

∫
S

dµq;a1,...,an ,

where µq;a1,...,an is an absolutely continuous measure on Rn, whose density function is
real analytic. In fact, it follows from their work that µq;a1,...,an is the probability measure
corresponding to the random vector
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X(q, a1), . . . , X(q, an)

)
, where

(4.6) X(q, a) := 1−Nq(a) +
∑
χ 6=χ0
χ mod q

<

2χ(a)
∑
γχ>0

U(γχ)√
1
4

+ γ2
χ

 .

Note that the inner sum is almost surely convergent by Kolmogorov’s three series theorem,
since E

(
U(γχ)

)
= 0 and

∑
γχ>0(1

4
+ γ2

χ)−1 < ∞. Using (4.5) we shall prove the following
result which implies Theorem 1.5.

Theorem 4.1. Assume GRH and LI. Let A,B be disjoint subsets of (Z/qZ)∗ such that
|A| = |B|. Let TA,B be the set of real numbers x > 2 such that∑

a∈A

π(x; q, a) >
∑
b∈B

π(x; q, b).

Then δ(TA,B) exists and δ(TA,B) = 1 − δ(TB,A) > 0. Moreover, we have δ(TA,B) = 1/2 if
A and B contain the same number of quadratic residues, and δ(TA,B) < 1/2 if A contains
more quadratic residues than B.

Proof. Let A = {a1, . . . , an} and B = {b1, . . ., bn}. Then, note that

π(x,A) > π(x,B) ⇐⇒
n∑
j=1

E(x; q, aj) >
n∑
j=1

E(x; q, bj).

Therefore, it follows from (4.5) that

(4.7)

δ(TA,B) = lim
X→∞

∫
x∈[2,X]

π(x,A)>π(x,B)

dx

x
=

∫
∑n
j=1 xj>

∑2n
`=n+1 x`

dµq;a1,...,an,b1,...,bn

= P

(
n∑
j=1

X(q, aj) >
n∑
j=1

X(q, bj)

)
.

Moreover, since µq;a1,...,an,b1,...,bn is absolutely continuous and its density function is real
analytic, then for any c ∈ R and any open interval I ⊂ R we have

P

(
n∑
j=1

X(q, aj)−
n∑
j=1

X(q, bj) = c

)
= 0,

and

(4.8) P

(
n∑
j=1

X(q, aj)−
n∑
j=1

X(q, bj) ∈ I

)
> 0.

In particular, this shows that δ(TA,B) = 1− δ(TB,A) > 0.



RACES BETWEEN PRIMES WITH AN ODD VS AN EVEN SUM OF THE LAST BINARY DIGITS 15

Now, since U(γχ) is a symmetric random variable (−U(γχ) and U(γχ) are identically
distributed), then

P

(
n∑
j=1

X(q, aj)−
n∑
j=1

X(q, bj) >
n∑
j=1

Nq(bj)−
n∑
j=1

Nq(aj)

)

= P

(
n∑
j=1

X(q, aj)−
n∑
j=1

X(q, bj) <
n∑
j=1

Nq(bj)−
n∑
j=1

Nq(aj)

)
=

1

2
.

The result follows from (4.8) upon noting that
∑n

j=1Nq(aj) >
∑n

j=1Nq(bj) if and only if
A contains more quadratic residues than B. �

Proof of Theorem 1.5. The theorem follows from combining Proposition 3.1 and Theorem
4.1. �

5. Computation of δ(A+
3 (0))

First, it follows from (4.7) that

δ(A+
3 (0)) = P(X(8, 3) +X(8, 3) > X(8, 7) +X(8, 1)),

where the random variables X(q, a) are defined in (4.6). Moreover, we have

X(8, 3) +X(8, 3)−X(8, 7)−X(8, 1)

=4 + 2
∑
χ 6=χ0
χ mod q

<

(χ(5) + χ(3)− χ(7)− χ(1)
) ∑
γχ>0

U(γχ)√
1
4

+ γ2
χ


=4− 8

∑
γ>0

<(Uγ)√
1
4

+ γ2
,

where γ varies over the imaginary parts of the non-trivial zeros of L(s, χ8), and {Uγ}γ
is a sequence of independent random variables uniformly distributed on the unit cercle.
Since the Uγ are symmetric about 0, we deduce that

δ(A+
3 (0)) = P(X > 0) =

∫ ∞
0

dµ,

where

X = 1 + 2
∑
γ>0

<(Uγ)√
1
4

+ γ2
,

and µ is the probability measure of X. The Fourier transform of µ is given by

µ̂(t) = eit
∏
γ>0

J0

(
2t√

1
4

+ γ2

)
,
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where J0(z) =
∑∞

m=0

(−1)m( 1
2
z)2m

(m!)2
is the Bessel function of the first kind of order 0. Since

µ̂(t) has exactly the same form as the Fourier transforms corresponding to the densities
computed by Rubinstein and Sarnak (see Section 4 of [20]), we can compute δ(A+

3 (0))
using the same approach. For the sake of completeness, we will include all the main steps
of this method. In what follows, E1, E2, . . . shall be understood as error terms.

(1) First, one has

δ(A+
3 (0)) = P(X > 0) = P(Y > −1) =

∫ +∞

−1

dω,

where Y = X− 1 and ω is the probability measure of Y. The Fourier transform of
ω is given by

(5.1) ω̂(t) =
∏
γ>0

J0

(
2t√

1
4

+ γ2

)
.

(2) By the symmetry of ω around zero and the Fourier inversion formula we obtain

δ(A+
3 (0)) =

1

2
+

1

2

∫ 1

−1

dω =
1

2
+

1

2π

∫
R

sin(t)

t
ω̂(t)dt.

(3) Let ε > 0 be a parameter to be chosen. Applying the Poisson summation formula

ε
∑
n∈Z

φ(εn) =
∑
n∈Z

φ̂(n/ε)

to φ(t) = 1
2π

sin(t)
t
ω̂(t) gives

1

2π

∫
R

sin(t)

t
ω̂(t)dt =

1

2π

∑
n∈Z

sin(εn)

n
ω̂(εn) + E1.

(4) We truncate the last sum over n to get∑
n∈Z

sin(εn)

n
ω̂(εn) =

∑
−C6nε6C

sin(εn)

n
ω̂(εn) + E2,

for some positive constant C to be chosen.
(5) To evaluate ω̂, we truncate the product (5.1) over the γ’s to obtain

ω̂(t) =
∏

0<γ6X

J0

(
2t√

1
4

+ γ2

) ∏
γ>X

J0

(
2t√

1
4

+ γ2

)

=
∏

0<γ6X

J0

(
2t√

1
4

+ γ2

)(
1 + b1(X)t2) + E3,
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where b1(X) is defined by∏
γ>X

J0

( 2t√
1
4

+ γ2

)
= 1 + b1(X)t2 +OX(t4) (t→ 0),

so that

b1(X) = −
∑
γ>X

(1
4

+ γ2)−1 = −
∑
γ>0

(1
4

+ γ2)−1 +
∑

0<γ6X

(1
4

+ γ2)−1.

Combining these steps leads to approximate δ(A+
3 (0)) by the quantity

(5.2)
1

2
+

1

2π

∑
−C6nε6C

sin(nε)

n

(
1 + b1(X)(nε)2

) ∏
0<γ6X

J0

(
2nε√
1
4

+ γ2

)
.

We use the list of the first 105 zeros of the Dirichlet L-function L(s, χ8) compiled by
Tomás Oliveira e Silva [6] so that we can choose X = 7675. We also set ε = 1/20 and
C = 25 as in [20], and check that with these values, some technical conditions arising in
Rubinstein and Sarnak’s method are met. We hence obtain the following approximate
value for the density

δ(A+
3 (0)) = 0.982201...

We remark that using the approach of Rubinstein-Sarnak, we can rigorously prove that
the error made by these approximations is less than 5 · 10−6. However, our numerical
computations show that the first six digits of the density δ(A+

3 (0)) do not change once
the value of X exceeds 2000.

Finally, it remains to explain how to compute b1(X), or equivalently
∑

γ>0(1
4

+ γ2)−1.

Following [20, p. 191], we have under GRH∑
γ>0

1
1
4

+ γ2
=

1

2
log
( 8

π

)
− γ0

2
− log(2)

2
+
L′(1, χ8)

L(1, χ8)
,

where γ0 is the Euler constant. According to [2, p. 50] we have

L(1, χ8) = − 1√
8

(
log(sin(π/8)) + log(sin(7π/8))− log(sin(3π/8))− log(sin(5π/8))

)
.

Furthermore, L′(1, χ8) can be computed (see [20, p. 192]) by differentiating the formula

Γ(s)L(s, χ8) =

∫ ∞
0

(∑
n>1

χ8(n)e−nx
)
xs−1dx (s > 0)

which eventually gives

L′(1, χ8) = γ0L(1, χ8) +

∫ ∞
0

e−x + e−7x − e−3x − e−5x

1− e−8x
log(x)dx.

All of the computations (and also the graphs in the introduction) were performed using
the computational software SAGE.
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E-mail address: Bruno.Martin@univ-littoral.fr


