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Introduction

In 1874 Mertens proved three remarkable results on the distribution of prime numbers. His third theorem asserts that

p≤x 1 - 1 p -1 ∼ e γ log x, as x → ∞,
where γ is the Euler-Mascheroni constant. Rosser and Schoenfeld [START_REF] Rosser | Approximate formulas for some functions of prime numbers[END_REF] noticed that for all 2 ≤ x ≤ 10 8 , we have

(1.1) p≤x 1 - 1 p -1
> e γ log x, and suggested that "perhaps" one can prove that the difference changes sign for arbitrarily large x, in analogy to Littlewood's classical result for π(x) -Li(x). Recently, Diamond and Pintz [START_REF] Diamond | Oscillation of Mertens' product formula[END_REF] investigated this question and confirmed Rosser and Schoenfeld prediction. More precisely, they established that the quantity

(1.2) √ x p≤x 1 - 1 p -1
-e γ log x attains arbitrarily large positive and negative values as x → ∞. Let M be the set of real numbers x ≥ 2 such that > e γ log x.

Then, Diamond and Pintz result asserts that both M and its complement are unbounded. Assuming the Riemann hypothesis RH we strengthen this result by proving that both M and its complement have positive lower logarithmic densities. Recall that for a set S ⊂ [0, ∞), the upper and lower logarithmic densities of S are defined respectively by δ(S) = lim sup x→∞ 1 log x t∈S∩ [2,x] dt t , and δ(S) = lim inf x→∞ 1 log x t∈S∩ [2,x] dt t .

If δ(S) = δ(S) = δ(S) we say that δ(S) is the logarithmic density of S. We prove Theorem 1.1. Assume RH. Then δ(M) > 0 and δ(M) < 1.

Remark 1.2. Note that the assumption of the Riemann hypothesis in Theorem 1.1 is "necessary" in a certain sense. Indeed, using the work of the author with Ford and Konyagin [START_REF] Ford | The prime number race and zeros of L-functions off the critical line, part III[END_REF] one can show that the existence of certain configurations of zeros of the Riemann zeta function ζ(s) off the critical line implies that δ(M) = 0.

A natural question to ask is which of the quantities p≤x (1 -1/p) -1 and e γ log x is larger most of the time? Although Diamond and Pintz result shows that both take the lead for arbitrarily large x, the computations of Rosser and Schoenfeld seem to suggest that the product p≤x (1 -1/p) -1 predominates. Assuming the Riemann hypothesis together with a further assumption we explain this phenomenon, by showing that the difference p≤x (1 -1/p) -1 -e γ log x has a strong tendency to be positive. The hypothesis we assume is the Linear Independence hypothesis LI, which is the assumption that the positive imaginary parts of the non-trivial zeros of ζ(s) are linearly independent over Q. [START_REF] Rubinstein | Chebyshev's bias[END_REF] have previously used the hypotheses RH and LI (and their generalizations for Dirichlet L-functions) to study several prime number races, including the race between π(x) and Li(x) and the Shanks-Rényi race between π(x; q, a) and π(x; q, b) for different arithmetic progressions a, b (mod q), where π(x; q, a) is the number of primes p ≤ x such that p ≡ a (mod q). In particular, they explained and quantified Chebyshev's observation in 1853 that primes congruent to 3 (mod 4) predominate over those congruent to 1 (mod 4). In general, if a is a non-square modulo q and b is a square modulo q then π(x; q, a) has a strong tendency to be larger than π(x; q, b), a phenomenon which has become known as "Chebyshev's bias". For more on the history of this subject as well as recent developments, the reader is invited to consult the expository papers of Granville and Martin [START_REF] Granville | Prime number races[END_REF] and Martin and Scarfy [START_REF] Martin | Comparative prime number theory: a survey[END_REF]. Remark 1.4. Under RH and LI, it turns out that δ(M) = 1 -δ 0 where δ 0 is the logarithmic density of the set of real numbers x ≥ 2 for which π(x) > Li(x). We shall explain why this is the case in Section 4 below.

Rubinstein and Sarnak

Curiously, a similar phenomenon to Chebyshev's bias for primes in arithmetic progressions does not appear when we consider the analogous problem of comparing the Mertens products

(1.3) p≤x p≡a mod q 1 - 1 p -1
, for different arithmetic progressions a (mod q). Indeed, Williams [START_REF] Williams | Merten's theorem for arithmetic progressions[END_REF] proved that for any (a, q) = 1, there exists a constant c(a, q) > 0 such that

p≤x p≡a mod q 1 - 1 p -1
∼ c(a, q)(log x) 1/φ(q) , as x → ∞.

Thus, if c(a, q) > c(b, q) then the residue class a (mod q) is guaranteed to win the Mertens product race as soon as x exceeds a certain number that depends only on a, b and q. Languasco and Zaccagnini [START_REF] Languasco | On the constant in the Mertens product for arithmetic progressions[END_REF] computed many of the constants c(a, q) and showed that for example c(3, 4) > c(1, 4), but c(2, 7) > c(3, 7) although 2 is a quadratic residue and 3 is a quadratic non-residue modulo 7. The difference from Chebyshev's bias probably lies in the fact that the product (1.3) is heavily affected by the small primes p ≡ a (mod q) due to the factor 1/p. Therefore, if an arithmetic progression contains many small primes, then it has a better chance to win in the Mertens product race.

Concerning the size of the oscillations of the difference (1.2), Diamond and Pintz [START_REF] Diamond | Oscillation of Mertens' product formula[END_REF] proved that

√ x p≤x 1 - 1 p -1
-e γ log x = Ω ± (log log log x) .

Montgomery [START_REF] Montgomery | The zeta function and prime numbers[END_REF] used probabilistic arguments to conjecture the maximal size of π(x)-Li(x). Following his approach we make the following conjecture Conjecture 1.5. As x → ∞ we have

lim sup x→∞ √ x (log log log x) 2 p≤x 1 - 1 p -1 -e γ log x = e γ 2π , and 
lim inf x→∞ √ x (log log log x) 2 p≤x 1 - 1 p -1 -e γ log x = - e γ 2π .
2. An explicit formula for the remainder and the origin of the bias

Let E M (x) := √ x(log x) log p≤x 1 - 1 p -1 -log log x -γ .
Then, observe that (2.1)

p≤x 1 - 1 p -1 > e γ log x if and only if E M (x) > 0.
The key ingredient in the proofs of Theorems 1.1 and 1.3 is the following unconditional explicit formula for E M (x) is terms of the non-trivial zeros of ζ(s).

Proposition 2.1. For any real numbers x, T ≥ 5 we have

E M (x) = 1 + |Im(ρ)|<T x ρ-1/2 ρ -1 + O   1 log x |Im(ρ)|<T x Re(ρ)-1/2 Im(ρ) 2 + √ x(log(xT )) 2 T + 1 log x   ,
where ρ runs over the non-trivial zeros of ζ(s).

From this formula one can deduce that the source of the bias is the constant 1 which comes from the contribution of the squares of primes (see Lemma 2.3 below). Indeed, if we assume the Riemann hypothesis, we get the following corollary.

Corollary 2.2. Assume the Riemann hypothesis, and let 1/2 + iγ n runs over the nontrivial zeros of ζ(s). Then, for any real numbers x, T ≥ 5 we have

(2.2) E M (x) = 1 + 2Re 0<γn<T x iγn -1/2 + iγ n + O √ x(log(xT )) 2 T + 1 log x .
Proof. This follows from Proposition 2.1 along with the fact that

(2.3) |γn|<T 1 γ 2 n 1
by the Riemann-von Mangoldt formula.

In order to prove Proposition 2.1 we first need the following lemmas.

Lemma 2.3. For any real number x ≥ 2 we have

log p≤x 1 - 1 p -1 = n≤x Λ(n) n log n + 1 √ x log x + O 1 √ x(log x) 2 .
Proof. We have

(2.4) log p≤x 1 - 1 p -1 = p≤x ∞ k=1 1 kp k = n≤x Λ(n) n log n + k≥2 x 1/k <p≤x 1 kp k = n≤x Λ(n) n log n + √ x<p≤x 1 2p 2 + O x -2/3 .
Furthermore, by the prime number theorem, we have

√ x<p≤x 1 p 2 = x √ x dπ(t) t 2 = x √ x dt t 2 log t + O x -1/2 e √ log x .
We use the change of variable u = log t -(log x)/2 to deduce that

x √ x dt t 2 log t = 1 √ x (log x)/2 0 2e -u 2u + log x du = 2 √ x log x (log x)/2 0 e -u du + O 1 √ x(log x) 2 = 2 √ x log x + O 1 √ x(log x) 2 .
Inserting this estimate in (2.4) completes the proof.

Lemma 2.4. For any α > 1 and x, T ≥ 5 we have

n≤x Λ(n) n α = - ζ ζ (α) + x 1-α 1 -α - |Im(ρ)|≤T x ρ-α ρ -α + O x -α log x + x 1-α T 4 α + (log x) 2 + (log T ) 2 log x + 1 T ∞ n=1 Λ(n) n α+1/ log x .
Proof. Since there are O(log T ) non-trivial zeros of ζ(s) with ordinate in [T, T + 1], then there exists a point T 0 ∈ [T, T + 1] which is at a distance 1/ log T from the nearest zero of ζ(s). Let c = 1/ log x and consider the integral

(2.5) 1 2πi c+iT 0 c-iT 0 - ζ ζ (α + s) x s s ds.
First, by Perron's formula the integral above equals

n≤x Λ(n) n α + O ∞ n=1 Λ(n) n α+c min 1, 1 T 0 | log(x/n)| .
To bound the error term of this last estimate, we first handle the terms n ≤ x/2 and n ≥ 2x. These satisfy | log(x/n)| ≥ log 2, and hence their contribution is

1 T ∞ n=1 Λ(n) n α+c .
Now for x/2 < n < 2x, we let r = n-x. The terms with |r| ≤ 1 contribute x -α log x. Furthermore, if |r| ≥ 1 we use the bound | log(x/n)| |r|/x. Hence, the contribution of these terms is

x 1-α log x T 1≤|r|≤x 1 |r| x 1-α (log x) 2 T .
Therefore, we deduce that the integral (2.5) equals

(2.6) n≤x Λ(n) n α + O x -α log x + x 1-α (log x) 2 T + 1 T ∞ n=1 Λ(n) n α+1/ log x .
We now move the contour of integration in (2.5) to the line Re(s) = -U where U > 0 is large and U = 2n + α for any n ∈ N. We encounter simple poles at 0, 1 -α and z -α for every zero z of ζ(s) with |Im(z)| ≤ T 0 and Re(z) > -U . Evaluating the residues there, we find that our integral equals

(2.7) - ζ ζ (α) + x 1-α 1 -α - |Im(ρ)|≤T 0 x ρ-α ρ -α + n≤(U -α)/2
x -2n-α 2n + α + I,

where

I = 1 2πi -U -iT 0 c-iT 0 + -U +iT 0 -U -iT 0 + c+iT 0 -U +iT 0 - ζ ζ (α + s) x s s ds.
To bound the first and third integrals, we first note that for all Re(s) = σ ≥ 1 -α + c we have

- ζ ζ (α + s) ≤ ∞ n=1 Λ(n) n α+σ .
On the other hand, if Re(s) = σ ≤ 1 -α + c we use the following estimate for ζ /ζ(s) (see for example equation (4) of Chapter 15 of Davenport [START_REF] Davenport | Multiplicative number theory. Revised and with a preface by Hugh L. Montgomery[END_REF])

(2.8) ζ ζ (σ + it) = |t-Im(ρ)|≤1 1 σ + it -ρ + O(log(|t| + 2)).
Then, using our assumption on T 0 we obtain 1 2πi

-U -iT 0 c-iT 0 - ζ ζ (α + s) x s s ds (log T ) 2 T 1-α+c -U x σ dσ + 1 T ∞ n=1 Λ(n) n α c 1-α+c x n σ dσ (log T ) 2 x 1-α T log x + 1 T ∞ n=1 Λ(n) n α c 1-α+c x n σ dσ.
To bound the second term in the right hand side of this estimate, we split the sum according to n ≤ x/2, x/2 < n < 2x, and n ≥ 2x. For the first and third terms, we use that

c 1-α+c x n σ dσ (x/n) c + (x/n) 1-α+c | log(x/n)| 1 n c + x 1-α n 1-α+c ,
while for the middle terms, we simply bound the integrand trivially, to obtain

c 1-α+c x n σ dσ (α -1)2 α .
Hence, we derive

∞ n=1 Λ(n) n α c 1-α+c x n σ dσ (α -1)2 α x/2<n Λ(n) n α + x 1-α ∞ n=1 Λ(n) n 1+c + ∞ n=1 Λ(n) n α+c x 1-α (4 α + log x) + ∞ n=1 Λ(n) n α+c ,
by the prime number theorem. Therefore, we obtain

1 2πi -U -iT 0 c-iT 0 - ζ ζ (α + s) x s s ds x 1-α T 4 α + log x + (log T ) 2 log x + 1 T ∞ n=1 Λ(n) n α+1/ log x .
A similar bound holds for

1 2πi c+iT 0 -U +iT 0 -ζ /ζ(α + s) x s
s ds. Moreover, by (2.8) we obtain 1 2πi

-U +iT 0 -U -iT 0 - ζ ζ (α + s) x s s ds (log T ) 2 x U .
Combining these estimates and letting U → ∞, we deduce that (2.9)

I x 1-α T 4 α + log x + (log T ) 2 log x + 1 T ∞ n=1 Λ(n) n α+1/ log x . Furthermore, note that n≤(U -α)/2 x -2n-α 2n + α ≤ ∞ n=1 x -2n-α 2n + α x -2-α ,
and

T ≤|Im(ρ)|≤T 0 x ρ-α ρ -α x 1-α log T T .
Inserting these two estimates in (2.7) and using (2.6) and (2.9) completes the proof.

Lemma 2.5. For any x ≥ 2 we have

lim σ→1 + log ζ(σ) + ∞ σ x 1-α 1 -α dα = log log x + γ.
Proof. Let σ > 1 and y 0 = (σ -1) log x. Using the change of variables y = (α -1) log x we obtain

∞ σ x 1-α 1 -α dα = - ∞ y 0 e -y y dy = log log x + log(σ -1) + 1 y 0 1 -e -y y dy - ∞ 1 
e -y y dy.

Moreover, since log ζ(σ) = -log(σ -1) + O(σ -1), we derive

lim σ→1 + log ζ(σ) + ∞ σ x 1-α 1 -α dα = log log x + 1 0 1 -e -y y dy - ∞ 1 e -y y dy.
Finally, note that (see for example Section 5.1 of Abramowitz-Stegun [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF])

1 0 1 -e -y y dy - ∞ 1
e -y y dy = γ.

We are now ready to prove the explicit formula for E M (x).

Proof of Proposition 2.1. Let σ > 1 be fixed. Then by Lemma 2.4 we have

(2.10) n≤x Λ(n) n σ log n = ∞ σ n≤x Λ(n) n α dα = log ζ(σ) + ∞ σ x 1-α 1 -α dα - |Im(ρ)|≤T ∞ σ x ρ-α ρ -α dα + E 1 ,
where

E 1 1 T log x + (log T ) 2 (log x) 2 + 1 x + 1 T ∞ n=1 Λ(n) n 1+1/ log x log n 1 T log x + (log T ) 2 (log x) 2 + 1 x .
Taking the limit as σ → 1 + of both sides of (2.10) and using Lemma 2.5 we deduce that (2.11

) n≤x Λ(n) n log n = log log x + γ - |Im(ρ)|≤T x ρ ∞ 1 x -α ρ -α dα + O log x T + (log T ) 2 T (log x) 2 + 1 .
To evaluate the integral in the right hand side of this estimate, we make the change of variable u = (α -1) log x to obtain

∞ 1 x -α ρ -α dα = 1 x ∞ 0 e -u (ρ -1) log x -u du.
Note that |(ρ -1) log x -u| ≥ |Im(ρ)| log x for all u ∈ R, and hence

1 (ρ -1) log x -u = 1 (ρ -1) log x + O u (Im(ρ) log x) 2 .
Therefore, we obtain

∞ 1 x -α ρ -α dα = 1 x(log x)(ρ -1) + O 1 x(log x) 2 (Im(ρ)) 2 .
Inserting this estimate in (2.11) and appealing to Lemma 2.3 completes the proof.

Proof of Theorem 1.1

In this section we shall use the explicit formula (2.2) along with the work of Rubinstein and Sarnak [START_REF] Rubinstein | Chebyshev's bias[END_REF] to prove that both M and its complement have positive lower logarithmic densities.

Proof of Theorem 1.1. Let Y be large and x = e Y . First, by making the change of variable y = log t we deduce that (3.1)

1 log x t∈M∩[2,x] dt t = 1 Y meas {log 2 ≤ y ≤ Y : e y ∈ M} = 1 Y meas {log 2 ≤ y ≤ Y : E M (e y ) > 0} .
By Corollary 2.2 and equation (2.3) we have for all T ≥ 5 and y ≥ 2

E M (e y ) = 2 0<γn<T sin(γ n y) γ n + O 1 + (y + log T ) 2 e y/2
T .

Therefore, we deduce that if Y is large enough, then there exists a suitably large constant A > 0 such that

(3.2) 2   0<γn<e Y sin(γ n y) γ n -A   < E M (e y ) < 2   0<γn<e Y sin(γ n y) γ n + A   , for all 2 ≤ y ≤ Y .
Based on the approach of Littlewood [START_REF] Littlewood | Distributions des nombres premiers[END_REF], Rubinstein and Sarnak proved in Section 2.2 of [START_REF] Rubinstein | Chebyshev's bias[END_REF] that for all λ 1 we have

(3.3) 1 Y meas    2 ≤ y ≤ Y : 0<γn<e Y sin(γ n y) γ n > λ    c 1 exp -exp(-c 2 λ) , and (3.4) 1 Y meas  
  2 ≤ y Y : 0<γn<e Y sin(γ n y) γ n < -λ    ≥ c 1 exp -exp(-c 2 λ) ,
for some absolute positive constants c 1 , c 2 , if Y is large enough. Therefore, combining equations (3.1), (3.2) and (3.3) we obtain

1 log x t∈M∩[2,x] dt t ≥ 1 Y meas    2 ≤ y ≤ Y : 0<γn<e Y sin(γ n y) γ n > A    ≥ c 1 2 exp -exp(-c 2 A) ,
if Y is large enough. Thus, we deduce that δ(M) ≥ c 1 2 exp -exp(-c 2 A) > 0. Similarly, by (3.4) we have

1 log x t∈M∩[2,x] dt t ≤ 1 Y meas    2 ≤ y ≤ Y : 0<γn<e Y sin(γ n y) γ n > -A    + O 1 Y ≤ 1 - c 1 2 exp -exp(-c 2 A) .
Hence, we get δ(M) ≤ 1 -c 1 2 exp -exp(-c 2 A) < 1, as desired.

4.

A limiting distribution for E M (x) and proof of Theorem 1.3

Assuming the Riemann hypothesis and using the explicit formula (2.2) we deduce that the quantity E M (x) has a logarithmic limiting distribution. This follows from the fact that E M (e y ) is a B 2 -almost periodic function. More precisely, we have Proposition 4.1. Assume RH. Then there exists a probability measure µ M on R such that lim

x→∞ 1 log x x 2 f E M (t) dt t = ∞ -∞ f (t)dµ M ,
for all bounded continuous functions on R.

Proof. This follows from the analysis in Rubinstein and Sarnak [START_REF] Rubinstein | Chebyshev's bias[END_REF], and its generalization by Akbary, Ng and Shahabi [START_REF] Akbary | Limiting distributions of the classical error terms of prime number theory[END_REF].

If in addition to RH we assume LI, then by Theorem 1.9 of Akbary, Ng and Shahabi [START_REF] Akbary | Limiting distributions of the classical error terms of prime number theory[END_REF] we have the following explicit formula for the Fourier transform of µ M (4.1)

µ M (t) = ∞ -∞ e -it dµ M = e -it γn>0 J 0   2t 1 4 + γ 2 n   ,
for all t ∈ R, where J 0 (t) = ∞ m=0 (-1) m (t/2) 2m /m! 2 is the Bessel function of order 0. We deduce Proposition 4.2. Assume RH and LI. Let X(γ n ) be a sequence of independent random variables, indexed by the positive imaginary parts of the non-trivial zeros of ζ(s), and uniformly distributed on the unit circle. Then µ M is the distribution of the random variable

Z = 1 + 2Re γn>0 X(γ n ) 1 4 + γ 2 n .
Proof. Note that J 0 (t) = E e -itReX where X is a random variable uniformly distributed on the unit circle. Therefore, since the X(γ n ) are independent we obtain that

E e -itZ = e -it γn>0 E   exp   -i 2t 1 4 + γ 2 n ReX(γ n )     = µ M (t).
Since the Fourier transform completely characterizes the distribution, we deduce that µ M is the probability distribution of the random variable Z.

Proof of Theorem 1.3. Since Z is the sum of continuous random variables, then by Proposition 4.2 the probability distribution µ M is absolutely continuous. Let > 0 be given, and f 1 be a continuous function such that

f 1 (x) =      1 if x ≥ 0 ∈ [0, 1] if -< x < 0 0 if x < -.
Then it follows from Propositions 4.1 and 4.2 that

δ(M) ≤ lim x→∞ 1 log x x 2 f 1 E M (t) dt t = ∞ -∞ f 1 (t)dµ M ≤ µ M (-, ∞) = P(Z > 0)+O( ), since µ M is absolutely continuous. Similarly, if f 2 is a continuous function such that f 2 (x) =      1 if x ≥ ∈ [0, 1] if 0 < x < 0 if x ≤ 0. Then δ(M) ≥ lim x→∞ 1 log x x 2 f 2 E M (t) dt t = ∞ -∞ f 2 (t)dµ M ≥ µ M ( , ∞) = P(Z > 0) + O( ).
Therefore, letting → 0 we deduce that (4.2) δ(M) = P(Z > 0).

Assuming RH and LI, Rubinstein and Sarnak [START_REF] Rubinstein | Chebyshev's bias[END_REF] proved that the limiting logarithmic distribution of (π(x) -Li(x))(log x)/ √ x is the probability distribution of the random variable

Z = -1 + 2Re γn>0 X(γ n ) 1 4 + γ 2 n .
Since the X(γ n ) are symmetric random variables, it follows that Z and -Z have the same distribution and hence P (Z > 0) = P ( Z < 0) = 1 -P ( Z > 0). Finally, it follows from the same argument leading to (4.2) that P ( Z > 0) is the logarithmic density of the set of real numbers x ≥ 2 for which π(x) > Li(x) and hence, from the computations of Rubinstein and Sarnak [START_REF] Rubinstein | Chebyshev's bias[END_REF] we have P (Z > 0) = 0.99999973... In the remaining part of this section, we shall explain the heuristic behind Conjecture 1.5. Note that Improving on a result of Montgomery [START_REF] Montgomery | The zeta function and prime numbers[END_REF], Monach [START_REF] Monach | Numerical investigation of several problems in number theory[END_REF] showed that for V 1 we have

P(Z > V ) = exp -C 0 √ V exp √ 2πV (1 + o(1)) ,
for some explicit constant C 0 > 0. Therefore, if the convergence in (4.4) is "sufficiently uniform" in Y , then one would deduce that Inserting these estimates in (4.3) yields Conjecture 1.5.
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 13 Assume RH and LI. Then the set M has logarithmic density δ(M) = 0.99999973...

1 = 1 = 1 Y

 111 e γ (log x) exp E M (x) √ x log x .Moreover, by Corollary 2.2 and the Riemann-von Mangoldt formula we haveE M e γ (log x) 1 + E M (x) √ x log x + O (log x) 2 x = e γ log x + e γ E M (x) √ x + O (log x) 3 x .Furthermore, by the argument in the proof of Theorem 1.3 we have, under RH and LImeas {1 ≤ y ≤ Y : E M (e y ) > V } = P(Z > V ).

1 )

 1 (log log y) 2 , and inf 1≤y≤Y E m (e y ) = -1 2π + o(1) (log log y) 2 .
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