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Miloš Radovanović , and Xuan Vinh Nguyen

Abstract— Machine learning systems are vulnerable to
adversarial attack. By applying to the input object a small,
carefully-designed perturbation, a classifier can be tricked into
making an incorrect prediction. This phenomenon has drawn
wide interest, with many attempts made to explain it. However,
a complete understanding is yet to emerge. In this paper we adopt
a slightly different perspective, still relevant to classification.
We consider retrieval, where the output is a set of objects
most similar to a user-supplied query object, corresponding
to the set of k-nearest neighbors. We investigate the effect of
adversarial perturbation on the ranking of objects with respect to
a query. Through theoretical analysis, supported by experiments,
we demonstrate that as the intrinsic dimensionality of the data
domain rises, the amount of perturbation required to subvert
neighborhood rankings diminishes, and the vulnerability to
adversarial attack rises. We examine two modes of perturbation
of the query: either ‘closer’ to the target point, or ‘farther’ from
it. We also consider two perspectives: ‘query-centric’, examining
the effect of perturbation on the query’s own neighborhood
ranking, and ‘target-centric’, considering the ranking of the
query point in the target’s neighborhood set. All four cases
correspond to practical scenarios involving classification and
retrieval.

Index Terms— Adversarial attack, intrinsic dimensionality,
nearest neighbor.

I. INTRODUCTION

RECENT research has shown that the performance of
machine learning systems, including state-of-the-art deep
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neural networks (DNNs), can be subverted by a form of
adversarial attack. Such an attack adds a small, carefully-
designed, adversarial perturbation to an input object, so as
to influence a classification result [1], [2]. In the case of
images, the perturbation is imperceptible to humans and can
deceive a high-performing image classifier into misclassify-
ing a test image to any other desired class. This phenom-
enon has become a major security concern for real-world
applications of DNNs, such as self-driving cars and identity
recognition [3], [4].

Attempts have been made to explain adversarial attack from
different perspectives. It has been demonstrated that almost
all machine learning approaches are sensitive to adversarial
attack [5], [6], including linear classifiers, SVMs, decision
trees, and deep neural networks. It has also been demon-
strated that adversarial samples generalize well across clas-
sifiers, architectures, training sets, and even machine learning
approaches based on different paradigms [2], [7]–[10].

Deep neural networks are well-known for their excel-
lent classification performance. Consequently, many theoret-
ical contributions as well as more empirical investigations,
have focused on understanding adversarial perturbation in
the context of deep learning (DL). DL architectures have
been deconstructed, and most of their elements, functions,
model parameters, assumptions and mechanisms scrutinized
as possible origins of the sensitivity of DL to adversarial
attacks [11]. Complicating the analysis, it has been found that
even models with parameters picked at random are unstable
with respect to adversarial perturbations [12].

The search for an explanation of adversarial perturbation
has also investigated characterizing the decision boundaries
between classes. The curvature of class boundaries, in par-
ticular, seems to contribute significantly to the adversarial
effect [13]–[15]. Perhaps more importantly, their vulnerability
has also been attributed to the high dimensionality of the
input space: when accumulated over many dimensions, minor
changes can ‘snowball’ into large changes in the transfer func-
tion [7]. Reference [16] highlight that adversarial subspaces lie
near (but not on) the data sub-manifold. A theoretical study
of adversarial examples was conducted on a synthetic data
set [17] representing two concentric m-dimensional spheres. It
was proved that any model that erroneously classifies a small
fraction of the data manifold, is also vulnerable to adversarial
perturbations of size O(1/

√
m). Adversarial perturbation in

the context of a k-NN classifier was analyzed in [18], which
found that robustness characteristics are closely tied to the
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chosen value of k, and that there exist different regimes of
behavior — one regime for when k is constant, the other
for when k = �(

√
mn log n), where m is the data dimension

and n is the sample size. Adversarial resistance has also been
investigated in the context of deep k-NN networks [19], and
gradient descent based attacks have recently been developed
that target this type of network [20].

Despite the hypotheses and insights so far proposed in
the literature, gaining a full understanding of the causes
and behavior of the adversarial perturbation effect remains a
challenging and important open problem.

A. From Classification to Retrieval

The studies discussed above are concerned with classi-
fication systems, and the effects of erroneous class label
assignments. This paper adopts a slightly different point of
view, still relevant to the classification setting: it is con-
cerned with retrieval, where the output of the system is
not a class label, but a set of objects most similar to a
user-supplied query object, according to some predefined
measure of (dis)similarity. This is traditionally exemplified
by the set of k-nearest neighbors (k-NN) of the query point,
often (but not necessarily) according to Euclidean distance.
Retrieval within high-dimensional data domains is essential
to algorithms that are at the core of many data analysis
procedures, including indexing, (subspace) clustering, outlier
detection, and data mining, as well as classification.

Retrieval is also central to sensitive applications, such as
the enforcement of the protection of copyrights, in which the
task is to detect close copies of objects stored in a database.
Once detected, the upload of copyrighted material can be
blocked, or alternatively, monetized. All content identification
applications, such as those involving biometry of faces or
irises, use some form of similarity retrieval for filtering illegal
content.

The field of adversarial retrieval addresses several forms
of attack: the hiding of data from queries (‘evasion’), the
seeding of training sets with false data (‘poisoning’), and
the falsification of classification decisions (either targeted at
specific classes, or indiscriminate). Adversarial attack perturbs
the location of points, which impacts neighborhood set mem-
berships and rankings, which in turn undermines the ability
to determine the similarity of objects. Very early works have
investigated issues relating to attack on content-based retrieval
systems [21]–[23]. Other forms of attack have targeted face
detection and recognition using camouflage art, also known
as computer vision dazzle [24]–[26].

This paper investigates the effect of adversarial perturbation
on the ranking of objects with respect to a query, such as may
arise in both machine learning classification contexts and more
general retrieval. Through a theoretical analysis, we show
that as the intrinsic dimensionality of the data domain rises,
the amount of perturbation required to subvert neighborhood
rankings diminishes, and thus the vulnerability of queries to
adversarial attack tends to rise. We examine two modes of
perturbation of the query: either ‘closer’ to the target point,
or ‘farther’ from it. We also consider two vantage points for

the effect: ‘query-centric,’ in which we examine the effect of
perturbation on the query’s own neighborhood ranking, and
‘target-centric’, in which we consider the ranking of the query
point in the target’s neighborhood set. This gives a total of
four cases to be addressed: closer + query, closer + target,
farther + query, and farther + target.

The aforementioned cases for our analysis all have rel-
evance in real-world applications of content-based retrieval
and classification. Adversarial perturbation of a query point
in order for it to be misclassified by a nearest-neighbor
classifier is a simple example of the closer + query scenario.
In content-based retrieval, a small modification of a query
image away from a copyrighted target photo might prevent
the identification of the query as a quasi-copy of the tar-
get, thereby bypassing filters or monetization mechanisms
(farther + query). Conversely, perturbations of images can be
performed before insertion into a database so that image would
become a ‘hub’ object [27] appearing in an excessively-large
proportion of retrieval results (closer + target). Such images
could be created by dishonest content owners wishing to
increase revenue through promotion. Another possibility is to
inject adversarial content into databases perturbed so as to
appear in as few query neighborhoods as possible (a so-called
‘anti-hub’ [27]). If the perturbation is successful, the content
would be concealed from all but the most precise queries
— in this way, hiding illicit content from the general public
would be possible, whereas informed users could still access
it (farther + target).

B. Contributions
In a preliminary version of this paper, in the context of

Euclidean spaces, we provided a theoretical explanation of
the adversarial effect of perturbation for the closer + query
scenario [28], in terms of the Local Intrinsic Dimensionality
(LID) [29]–[31]. The LID characterizes the order of mag-
nitude of the growth of probability measure with respect to
a neighborhood of increasing radius. In this journal version,
besides improving the previous result, we extend the analysis
to all four of the scenarios described above. This paper
and its antecedent present new theoretical explanations of
the adversarial effect in similarity-based classification and
retrieval.

The analysis deals with distributions of inter-point distances
and not fixed point sets per se. The notion of neighbor is
considered in terms of mathematical expectation, as follows:
with respect to a sample size n, a target location z is a k-
nearest neighbor (k-NN) of reference point x by expectation
if k out of n sample points would be expected to lie within
distance d(x, z) of x.

Constructive proofs are provided within which methods are
given for perturbing a reference point x to location y, so that
by expectation as n → ∞:

• the k-NN of query x becomes the 1-NN of the perturbed
query y (the closer + query scenario);

• x is the k-NN of a targeted location, but y becomes its
1-NN (closer + target);

• the 1-NN of query x becomes the k-NN of the perturbed
query y (farther + query);
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• x is the 1-NN of a targeted location, but y becomes its
k-NN (farther + target).

Conditions on y are provided for a relationship to hold between
the required amount of perturbation on the one hand, and on
the other, the LID of the distance distribution from z or from y.
Our analysis leads to the conclusion that as the intrinsic dimen-
sionality rises, the relative amount of perturbation required to
achieve the desired effect tends to zero.

C. Differences With Previous Studies

Our analysis differs with the previous theoretical studies
focusing on adversarial classification in large dimensional
spaces. In [6], Fawzi et al. analyze the robustness to per-
turbation of classifiers on data produced according to a gen-
erative model, whose latent distribution is assumed to be
Gaussian. Their analysis makes use of the Gaussian isoperi-
metric inequality. The analysis of Shafahi et al. [32] resembles
that of [6] in that it too is based on isoperimetric inequalities,
except that the data points are distributed over the hypersphere.
Their setups do not hold asymptotically. In [17], Gilmer et al.
consider only a very specific data point distribution, the ‘con-
centric spheres dataset’. The setup holds asymptotically with
respect to the representational dimension. In the context of
metric probability spaces, Mahloujifar et al. [33] blend the
aforementioned approaches, by arguing that the isoperimetric
inequalities hold approximately over a much larger distribution
family as the dimension m goes to infinity.

Our work differs from the aforementioned results, in that:
• it does not rely on a particular choice of data point dis-

tribution (such as Gaussians or other ideal distributions,
or uniformity over the hypersphere or concentric spheres);

• it therefore is not based on any statistical concentration
phenomenon;

• it holds asymptotically with respect to the dataset size n,
as the dimension m of the space is fixed.

D. Structure of the Article

The remainder of the paper is organized as follows.
Section II gives a brief overview of feature vector extraction
and the concept of local intrinsic dimensionality, together with
a review of some of the useful properties of the LID model.
In Section III we present the statements and proofs of our main
theoretical results. This is followed in Section IV by an exper-
imental validation of the impact of intrinsic dimensionality on
the adversarial perturbation effect. Section V concludes the
paper with a discussion of some of the possible implications of
our results for deep neural networks and other state-of-the-art
learning systems, as well as adversarial retrieval.

II. BACKGROUND

A. Feature Vector Extraction

The core function of a general content retrieval architecture
is that of feature extraction, in which a global vector repre-
sentation is generated from content according to its nature
(such as text, audio, or still images) and the definition of
content similarity (such as in topic, in style, or in color).

Ideally, similar contents should be represented by feature
vectors close together in the feature space, and dissimilar
contents by vectors far from each other. In this way, the task
of similar content retrieval ultimately reduces to that of feature
vector retrieval according to an appropriate feature vector
extraction function. We denote the extraction function by
f : C → R

m , which produces a vector x of m feature values
from a content object c ∈ C.

The lemmas and theorems presented in the following
sections deal with points in Euclidean space, which we inter-
pret as the underlying feature representations of objects in
some content-based classification or retrieval context.

B. Intrinsic Dimensionality

Over the past decades, many characterizations have been
proposed for the global intrinsic dimensionality of sets or the
local intrinsic dimensionality of a point in a set (see [34]
and the references therein). This section summarizes the
generalized expansion dimension (GED) [34] and its exten-
sion to continuous distance distributions, the local intrinsic
dimensionality (LID) [29], [30].

As a motivating example from m-dimensional Euclidean
space, consider the situation which the volumes V1 and V2 are
known for two balls of differing radii r1 and r2, respectively,
centered at a common reference point. The dimension m can
be deduced from the ratios of the volumes and the distances
to the reference point, as follows:

V2

V1
=

(
r2

r1

)m

�⇒ m = ln (V2/V1)

ln (r2/r1)
.

For a finite data set, GED formulations are obtained by
estimating the volume of balls by the numbers of data set
points they enclose [34], [35].

Instead of regarding intrinsic dimensionality as a charac-
teristic of a collection of data points (as evidenced by their
distances) the GED was recently extended to a statistical set-
ting, in which the distribution of distances from a given point
is modeled as a continuous random variable [29], [36]. The
notion of volume is naturally analogous to that of probability
measure. ID can then be modeled as a function of distances
r > 0, by letting the radii of the two balls be r1 = r and
r2 = (1 + �)r , and letting � → 0+. For an illustration of the
intrinsic dimensionality of distance distributions, see Figure 1.

Definition 1 ([29], [30]): Let F be a real-valued function.
If there exists an open interval I containing r > 0 over which
F is non-zero and continuously differentiable, then the local
intrinsic dimensionality (LID) of F at r is given by

IDF (r) � lim
�→0+

ln (F((1 + �)r)/F(r))

ln (1 + �)
= r · F �(r)

F(r)
.

The second equality follows by applying l’Hôpital’s rule to
the limit.

In this paper, we will make use of the local intrinsic dimen-
sionality model to characterize the properties of a distribution
in the vicinity of a point of interest within its domain, in terms
of a secondary or ‘local’ distribution of distances induced by
the original, ‘global’ distribution.
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Fig. 1. The random distance variables X and Y have different LID values at distance r . Although the total probability measures within distance r are the
same (that is, Fx(r) = Fy(r)), IDFY (r) is greater than one would expect for a locally uniform distribution of points in R

2, while IDFX (r) is less.

Let D be a distribution over a domain S equipped with dis-
tance measure d(x, y). With respect to a given reference point
x ∈ S, D induces a univariate distribution Dx taking values
determined by distances relative to x. More precisely, the event
of drawing sample y ∈ R

m from the ‘global’ distribution D
determines the event of generating the value d(x, y) in the
‘local’ distribution Dx. For a given point x ∈ S within the
domain, we denote by Fx the cumulative distribution function
of Dx; given a value r , Fx(r) is the probability that a sample y
drawn from the ‘global’ distribution D lies within distance r
of x — that is, the probability of satisfying d(x, y) ≤ r .

The local intrinsic dimensionality with respect to x, denoted
as LID(x), characterizes the close neighborhood of point x by
taking the limit of IDFx(r) as r → 0+, whenever this limit
exists:

LID(x) � IDFx(0) � lim
r→0+ IDFx(r) .

Although for the purposes of this paper we will assume that
the domain is the vector space R

m with the Euclidean norm
d(x, y) � 
x − y
, the LID model is in fact more general,
and places no assumptions on the distribution Dx or distance
measure d(x, y) beyond what is necessary for the definition
of LID(x) to hold.

The smallest distances from point x can be regarded as
‘extreme events’ associated with the lower tail of the under-
lying distribution. The modeling of neighborhood distance
values can thus be investigated from the viewpoint of extreme
value theory (EVT). In [30], it is shown that the EVT represen-
tation of the cumulative distribution Fx completely determines
function IDFx, and that the EVT index is in fact identical to
LID(x).

Theorem 1 [30]: Let F : R
≥0 → R be a real-valued

function, and assume that IDF (0) exists. Let r and w be
positive values for which F(r) and F(w) are both posi-
tive. If F is non-zero and continuously differentiable every-
where in an open interval containing [min{r, w},max{r, w}],
then

F(r)

F(w)
=

( r

w

)IDF (0) · GF,w(r), where

GF,w(r) � exp

(∫ w

r

IDF (0)− IDF (t)

t
dt

)
,

whenever the integral exists.

Moreover, let c > 1 be a constant. Then

lim
w→0+

0<w/c≤r≤cw

GF,w(r) = 1 .

Given a data sample S ⊆ S and a reference point x ∈ S,
the distributional interpretation sees the observed distances
from x to the vectors of S as samples of the distribution Fx,
from which the intrinsic dimensionality is estimated. Practical
methods that have been developed for the estimation of the
EVT index, including expansion-based estimators [36] and the
well-known Hill estimator and its variants [37], can all be
applied to LID (for a survey, see [38]). Recently, techniques
have been developed that use expansion from neighboring
points to stabilize LID estimation, allowing for smaller neigh-
borhood samples to be used [39].

III. NEIGHBORHOOD PERTURBATION THEOREMS

A. Distance and Distributional Rank

This section presents the main theoretical contribution of
the paper. It provides conditions for which the perturbation
of a test point can affect its ‘rank’ within a distribution of
distances from some reference location z ∈ S. With respect
to z ∈ S, any point x ∈ S determines a distance r = 
x − z
,
which in turn determines a probability p = Fz(r). The point x
(or more precisely, its distance r to z) determines at the p-th
quantile of the distance distribution Dz: compared to x, any
sample drawn from the global distribution D has probability p
of being closer to z. Therefore, with regard to the distribution
Dz, the point x is given a ‘distributional rank’ within the
space of all samples in S, in which the proportion of samples
ahead of it in the ranking is simply the value p determining
its quantile within Dz.

We begin our analysis with the effect of perturbation on the
distributional rank (or quantile), rather than on the traditional
distance-based neighbor ranking determined with respect to
some fixed sample set. However, for a given point x deter-
mining the p-th distance quantile (that is, r = 
x − z
 such
that p = Fz(r)), the probability p does determine the expected
rank of x, which is naturally defined as the expected number of
sample points having distance to z that is smaller than that of z
(which for a sample of size n is simply np). It is for this notion
of expected rank that we ultimately derive our main results.
Note that the question of quantile estimation, rank variance,
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TABLE I

SUMMARY OF THE NOTATION USED IN SECTIONS II AND III

and other distributional properties of fixed finite samples has
been well studied elsewhere (see for example [40]).

For two different perturbation strategies, the results pre-
sented in this section indicate that as the local intrinsic
dimensionality rises, the amount of perturbation required to
significantly modify an expected rank tends to zero. For the
analysis to hold, the distance distributions are assumed to be
smooth in two senses at once:

1) The distributions of distances must have cumulative
distribution functions that satisfy the LID smoothness
assumptions (cf. Def. 1 and Th. 1)

2) The LID values must themselves be continuous over
some open interval containing the original point. The
precise notion of continuity will be introduced in
Section III-C .

It should be noted that unlike classical treatments of intrinsic
dimensionality in machine learning in which the data is
assumed to be restricted to a Riemannian (smooth) manifold

Fig. 2. Relationships among the point x, its perturbed version y, and the
location z.

of a given (intrinsic) dimensionality, our local distributional
assumptions are in fact much more general.

B. Perturbation and Distribution

We begin by establishing a technical lemma about the
conditions by which a perturbation moving x onto y affects the
expected ranking relationships between y and location z ∈ S.

Lemma 1 considers a point x at distance v from z. A
perturbation of x produces a new point y, whose distance
from x can be expressed as δv for some proportion δ > 0.
The lemma gives sufficient conditions on δ to substantially
change the distributional rank. Figure 2 illustrates the different
relationships among x, y, z, v, and δ assumed in the statement
of the lemma.

The lemma shows that a sufficiently-large perturbation
pushing x to a point y closer to (resp. farther from) z decreases
(resp. increases) the distributional rank relative to Fz from
Fz(
x − z
) to at most pt < Fz(
x − z
) (resp. at least
pt > Fz(
x − z
)).

Lemma 1: Consider the following construction depending
on x, z and δ > 0:

1) Let px = Fz(
x − z
), and let v = 
x − z
.
2) Let y ∈ S be any point at distance δv from x.
3) Let pt ∈ (0, 1) be the targeted distributional rank of y

relative to z.
4) Let I = [r, r ] be the interval of the distances from z for

which Fz(r) = pt ,∀r ∈ I .

Then, the construction satisfies

• for pt ≤ px (closer to):
Fz(
y − z
) < pt whenever δ > 1 − r/v.

• for pt ≥ px (farther from):
Fz(
y − z
) > pt whenever δ > r/v − 1.

Proof: Denote ψ the angle between y − x and z − x as
illustrated in Figure 2. By construction, we obtain:


y − z
2 = 
y − x + x − z
2

= 
y − x
2 + 
z − x
2 − 2 (y − x) · (z − x)

= δ2v2 + v2 − 2δv2 cosψ .

In the first case, we push y towards z so that its distributional
rank is lower than the target pt . The monotonicity of the
cumulative distribution function Fz and the definition of the
interval I , ensures that:

Fz(
y − z
) < pt ⇐⇒ 
y − z
 < r

⇐⇒ δ2 − 2δ cosψ +
(

1 − r2/v2
)
< 0.

Trivially, if the starting point x already has a distributional rank
px < pt , it implies that v < r as well, and the above inequality
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is satisfied for δ = 0. More interestingly, when px ≥ pt ,
the inequality is satisfied for the following conditions:

| sinψ| < r/v

|δ − cosψ| <
√

r2/v2 − sin2 ψ .

Not surprisingly, the lower bound on δ is minimized for ψ = 0
— that is, when y is pushed directly towards z. This allows
us to state that, for any admissible angle ψ , we have δ >
1 − r/v. Note that the upper bound on δ is not meaningful
if larger than 1. Pushing y exactly onto z makes δ = 1, and
Fz(
y − z
) = 0 — that is, always lower than pt > 0.

In the second case, we push y away from z so that its dis-
tributional rank is larger than the target pt . The monotonicity
of the cumulative distribution function Fz and the definition
of the interval I, ensures that:

Fz(
y − z
) > pt ⇐⇒ 
y − z
 > r

⇐⇒ δ2 − 2δ cosψ +
(

1 − r2/v2
)
> 0.

Trivially, if the starting point x already has a distributional rank
px > pt , it implies that v > r as well, and the above inequality
is satisfied for δ = 0. More interestingly, when px ≤ pt so

that r/v ≥ 1, the polynomial δ2 − 2δ cosψ + 1 − r2/v2
)

has two real roots, and is strictly positive if and only if δ is
strictly outside their interval. The lowest root being negative,
this means that δ is greater than the upper root:

δ > cosψ +
√

r2/v2 − sin2ψ.

Not surprisingly, this lower bound is minimized for ψ = π ,
i.e. x is pushed in the opposite direction of z. This allows us
to state that, for any angle ψ , δ > r/v − 1.

This lemma considers the changes after perturbation from
x to y in the distributional rank relative to a nearby fixed
vantage point z. A variant of the lemma can be stated that
instead considers the change in distributional rank of z when
the vantage point shifts from x to y. We omit the proof, since
the techniques are entirely analogous to those of Lemma 1.

Lemma 2: Consider the following construction depending
on x, z and δ > 0:

1) Let px = Fx(
z − x
), and let v = 
z − x
.
2) Let y ∈ S be any point at distance δv from x.
3) Let pt ∈ (0, 1) be the targeted distributional rank of z

relative to y.
4) Let I = [r , r ] be the interval of the distances from y for

which Fy(r) = pt ,∀r ∈ I .
Then, the construction satisfies

• for pt ≤ px (closer to):
Fy(
z − y
) < pt whenever δ > 1 − r/v.

• for pt ≥ px (farther from):
Fy(
z − y
) > pt whenever δ > r/v − 1.

C. Effects of Perturbation on Expected Rank

We now turn our attention to the relationship between local
intrinsic dimensionality and the effect of perturbations on
neighborhoods, under certain assumptions of the smoothness
of the underlying data distribution. We say that the local
intrinsic dimensionality is itself continuous at x ∈ S if the
following conditions hold:

1) There exists a distance ρ > 0 for which all points
z ∈ R

m with 
z − x
 ≤ ρ admit a distance distribution
Dz whose cumulative distribution function Fz is con-
tinuously differentiable and positive within some open
interval with lower bound 0.

2) For any sequence z → x of points satisfying Condition
1, convergence in distribution of the sequence of random
distance variables defined at z to the distance variable
defined at x; that is, the condition limz→x Fz(ε) = Fx(ε)
holds for any distance ε ∈ (0, ρ).

3) For each z satisfying Condition 1, LID(z) exists and is
positive.

4) limz→x LID(z) = LID(x).

Condition 1 implies that F−1
z (pt) is well-defined for pt <

Fz(ρ), and that the intervals I defined in Lemmas 1 and 2
reduce to a singleton: r = r = r < ρ. For the remainder of
this section, we assume that the local intrinsic dimensionality
is continuous at point x ∈ S.

The main theorem of this paper is a theoretical statement
concerning the effect of perturbation on expected rank. As in
the statement of Lemma 1, we consider the situation in which
a given point x is perturbed to a new location y, all from
the perspective of the distance distribution Dz associated
with a point of interest z ∈ S, where z �= x, y. We again
denote the distances of x and y to z by v = 
x − z
 and
δv = 
y − z
, respectively, for the appropriate choice of
δ > 0. In order to determine the expected ranks of x and
y relative to the distribution of distances to z, the analysis
also takes into account an additional parameter: n, a sample
size. Denoting the expected rank of x by kx = npx (where
px is the distributional rank of x with respect to Dz), the
question tackled by the analysis is: how large must δ be to
achieve a target expected rank kt after perturbation to y? Note
that since the theorem concerns expected rank and not sample
rank, the argument makes no recourse to any particular sample
set.

The theorem uses Lemma 1 to show that as the number
n of samples increases, a sufficiently-large perturbation of a
test point closer to (respectively, away from) a target loca-
tion of expected rank kx reduces (respectively, increases) the
expected rank of the target below (respectively, above) kt . The
proportional amount of perturbation required, δ, is a decreasing
function of both LID and n.

Theorem 2: Let kx , kt , and δ be positive real constants. For
any sufficiently small real value ε > 0, there exists a positive
integer n0 > max{kx, kt } for which the following construction
holds for all choices of integer n ≥ n0.

Let z ∈ S be any point that would achieve a fixed expected
rank kx = n · Fz(
x − z
) relative to its own distance
distribution Dz, against a sample of size n. Let v = 
x − z
.
Let y ∈ S be the result of perturbing x by a distance δv. Then
the following implications hold regarding the expected rank
ky = n · Fz(
y − z
) of the perturbed point y, in relation to a
targeted expected rank kt �= kx :

• When kt < kx (the target expected rank is less than that
of x),

δ > 1 − (kt/kx)
1/LID(x) + ε �⇒ ky < kt .
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• When kt > kx (the target expected rank is more than that
of x),

δ > (kt/kx)
1/LID(x) − 1 + ε �⇒ ky > kt .

Proof: For a given choice of n, consider the construction
in the statement of Lemma 1, with px = kx/n and pt = kt/n,
where x, y, z, v and δ are as defined above, and where
r is defined such that Fz(r) = pt . Using the local ID
characterization formula of Theorem 1, we observe that

kt

kx
= pt

px
= Fz(r)

Fz(v)
=

( r

v

)LID(z) · GFz,v (r) .

Rearranging, we obtain

r

v
=

(
kt

kx · GFz,v (r)

)1/LID(z)

.

Applying a logarithmic transformation, and substituting for
GFz,v (r), we arrive at

ln
r

v
= 1

LID(z)
ln

kt

kx
− 1

LID(z)

∫ v

r

LID(z)− IDFz(u)

u
du .

Note again that LID(z) is assumed to be positive, and also
that kt �= kx implies that r �= v. Hence, for any supplied
value of ε such that 0 < ε < r

v , there exists a sufficiently
small distance value w > 0 such that for all 0 < u < w, the
absolute difference between IDFz(u) and its limit LID(z) can
be bounded by

|IDFz(u)− LID(z)| ≤ w ≤ LID(z) ln(ϕ)

| ln( vr )|
,

where the upper bound is a function of ε via the new real-
valued variable

ϕ = min
r + vε

r
,

r

r − vε

}
> 1 .

Moreover, by choosing n0 sufficiently large, we can guarantee
that, for all n ≥ n0, w also satisfies

w ≥ max{F−1
z (kx/n), F−1

z (kt/n)} = max{v, r}.
Therefore, we may conclude that for any choice of ε ∈

(0, r/v), there exists n0 > 0 such that, whenever n >= n0,∣∣
ln

r

v
− 1

LID(z)
ln

kt

kx

∣∣ ≤ 1

LID(z)

∣∣∣∣
∫ v

r

LID(z)− IDFz(u)

u
du

∣∣

≤ ln ϕ

| ln( vr )|
∣∣∫ v

r

1

u
du

∣∣ = ln ϕ.

Rearranging, the condition yields

ln
r

vϕ
≤ 1

LID(z)
ln

kt

kx
≤ ln

rϕ

v

ln

(
r

v
· r − vε

r

)
≤ 1

LID(z)
ln

kt

kx
≤ ln

(
r

v
· r + vε

r

)

ln
( r

v
− ε

)
≤ 1

LID(z)
ln

kt

kx
≤ ln

( r

v
+ ε

)

r

v
− ε ≤

(
kt

kx

)1/LID(z)

≤ r

v
+ ε .

Using these bounds together with Lemma 1, for kt < kx we
see that

δ > 1 − (kt/kx)
1/LID(x) + ε �⇒ δ > 1 − r/v

�⇒ ky < kt ,

and for kt > kx we see that

δ > (kt/kx)
1/LID(x) − 1 + ε �⇒ δ > r/v − 1

�⇒ ky > kt

as required.
Some remarks are in order:
• For a fixed choice of the ratio kt/kx , Theorem 2 shows

that the proportion of perturbation required to achieve the
target rank is a decreasing function of LID.

• For large LID, through the use of the expansion eu =
1 + u + o(u), the amount of perturbation required can be
seen to scale as

δ >
1

LID(x)

∣∣∣ln kt

kx

∣∣∣ + ε + o

(
1

LID(x)

)
.

• Using the formulation of Lemma 2 in which the roles of
Fz and Fy are interchanged, together with the assumption
of the local continuity of LID, the statements in Theo-
rem 2 regarding the ranks achieved with respect to Dz
can be shown to apply to the ranks with respect to Dy.

Corollary 3: Let kx , kt , and δ be positive real constants. For
any sufficiently small real value ε > 0, there exists a positive
integer n0 > max{kx, kt } for which the following construction
holds for all choices of integer n ≥ n0.

Let z ∈ S be any point that would achieve a fixed expected
rank kx = n · Fz(
x − z
) relative to the distance distribution
Dx, against a sample of size n. Let v = 
z −x
. Let y ∈ S be
the result of perturbing x by a distance δv. Then the following
implications hold regarding the expected rank ky = n ·Fy(
z−
y
) of relative to the distance distribution Dy of the perturbed
point y, in relation to a targeted expected rank kt �= kx :

• When kt < kx (the target expected rank is less than that
of x),

δ > 1 − (kt/kx)
1/LID(x) + ε �⇒ ky < kt .

• When kt > kx (the target expected rank is more than that
of x),

δ > (kt/kx)
1/LID(x) − 1 + ε �⇒ ky > kt .

We will later discuss some of the implications of our
theory, in Section V. Next though, as a validation of the
theory presented here, we empirically evaluate the effects of
perturbation on real and synthetic data.

IV. EXPERIMENTAL VALIDATION

Theorem 2 provides sufficiency conditions on the propor-
tional perturbation δ that hold asymptotically, as the number
of data samples tends to infinity. This theorem should therefore
not be interpreted as guaranteeing the success or failure
of individual perturbations in a practical scenario — they
do not imply that any given test point within a fixed data
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Fig. 3. Mean perturbation δ (y-axis) vs. estimated LID (x-axis / log scale). Colors correspond to different dataset sizes. The red curve shows the theoretical
sufficiency bound.

Fig. 4. Mean perturbation δ (y-axis) vs. log10 n (x-axis). Colors correspond to different dataset dimensionalities. Dashed lines show the theoretical sufficiency
bounds.

configuration always admits a perturbation that results in the
transformation of an object rank from kx to kt . Nevertheless,
the theorem does illustrate an important trend: as the intrinsic
dimensionality LID(x) increases, the minimum sufficiency
bound on the perturbation proportion δ does tend to zero.
In this section, we present several experiments in which the
perturbation sufficiency bounds of Theorem 2 is contrasted
with the empirical effect of perturbation on object rank.

Given a data set S ⊂ S of size n, an embedding dimen-
sion m, and a set of nq query points, for each of the four
cases described by the theorems, we record the minimum
perturbation proportion δ applied to each query in order to
achieve the following effects.

• closer + query: Move query point x closer to its k-NN z,
reducing the rank of z in the NN list from k to 1. This is
an application of Theorem 2 where x is moved to query
point y and the distributional rank is given by Fy (the
query-centric setting).

• closer + target: Dataset point x being the k-NN of a
targeted query z, move x closer to the target reducing its
rank in the NN list of z from k to 1. This is an application
of Theorem 2 where the dataset point x is moved to y and
the distributional rank is given by Fz (the target-centric
setting).

• farther + query: Move query point x farther from its
1-NN z, increasing the rank of z in the NN list from 1
to k (or above). This is an application where x is moved
to query point y and the distributional rank is given by
Fy (the query-centric setting).

• farther + target: Dataset point x being the 1-NN of
a targeted query z, move x farther from the target
increasing the rank of x in the NN list of z from 1 to k
(or above). This is an application of Theorem 2 where

the dataset point x is moved to y and the distributional
rank is given by Fz (the target-centric setting).

Our experimental results show a clear association between the
LID at the query and the amount of perturbation.

A. Synthetic Data

We consider a simple setting involving the standardized
Gaussian (normal) distribution with i.i.d. components, from
which we independently draw data sets with n ∈ {104, 105,
. . . , 109} points, and varying dimensionality m ∈ {2, 5, 10, 20,
50, 100, 200, 500, 1000}. The normal distribution possesses
the convenient property that the LID at each point is
theoretically equal to the representational dimension m.
Figures 3 and 4 show the empirically observed trends for
nq = 100 query points and k = 1000.

Figures 3 and 4 show the observed minimum δ averaged
over all query points, for each of the four cases. Figure 3
plots this amount against the dimensionality m for each choice
of n, while Figure 4 provides an alternative view of the
same results by plotting the average minimum δ against n,
for selected values of m. Two clear trends are noticeable:
the observed minimum δ (i) decreases with LID(x), and
(ii) decreases with n. For comparison, the theoretical bounds
from Theorem 2 are also plotted (in red color). In Figure 3,
the observed perturbation amounts are mostly above the the-
oretical sufficiency bounds, providing empirical support for
the theorems, despite their being guaranteed to hold only
asymptotically, as the data size n increases. On the other
hand, the second trend is more clearly observed in Figure 4:
for sufficiently large data size n, the empirical perturbation
amounts do tend toward the theoretical sufficiency bounds
(depicted with dashed lines).
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Fig. 5. Probability of attack success (color-coded) as a function of perturbation level δ (y-axis) and LID (x-axis) for n = 106 and k = 1000. The red surface
shows the theoretical sufficiency bound.

Fig. 6. Experiments on three real data sets, plotting the minimum perturbation required δ (y-axis) vs. estimated LID (x-axis). Red curve: theoretical bound
from Theorem 2. Green bars: empirical mean and standard deviation.

The last experiment focuses on an adversarial retrieval
scenario. The adversary applies a fixed perturbation level δ
and the experiment records whether the goal of the attack is
achieved. For the closer scenario, the attack succeeds when the
k-NN becomes the closest neighbor. For the farther scenario,
the attack succeeds when the rank of the first neighbor
becomes greater or equal to k. Figure 5 shows a surface plot
of the probability of success (average over nq queries) as a
function of δ and d for n = 106 and k = 1000. The plot shows
a phase transition in which the probability of success quickly
goes from 0 to 1 at a critical relationship between δ and LID,
at values that exceed the sufficiency bound (the surface shown
in red). Again, we observe the same trend: the critical degree
of perturbation decreases as LID increases.

B. Real Data

On real data we illustrate the closer + target case through
experiments that (i) support the asymptotic behavior of
Theorem 2 with distributional rank Fy when n is extremely
large, and (ii) demonstrate that δ decreases as LID increases.
LID values were obtained using the maximum likelihood
estimator described by [36], computed from the distances of
the 100 nearest neighbors for each query point.

Figure 6(a) plots the values for perturbation δ when using
the BIGANN_SIFT1B data set [41], where d = 128 and
n = 109. Here, we chose nq = 10, 000 and k = 100. In order
to estimate the mean minimum perturbation, we group the LID
values into integer bins. The mean and standard deviation of

the perturbation levels for each bin is reported in green in
this figure, whenever there are sufficiently many samples to
compute reliable statistics. In this experiment, n is extremely
large, revealing the asymptotic behavior of Theorem 2. Very
few values for δ are below the theoretical sufficiency bound
(only 2.2% of the query points). This experiment uses descrip-
tors with estimated LID in the low to moderate range, smaller
than the space dimension m. In contrast, Figures 6(b) and 6(c)
show complementary configurations where estimated LID are
larger, but still much smaller than the space dimension m.
Another difference is that n is much smaller for these datasets.
Figure 6(b) plots δ against LID for the ImageNet data set [42].
This data set consists of n = 1,281,167 training images and
50,000 test images. We take nq = 10,000 images from the
test set as queries and k = 1,000. Figure 6(c) corresponds
to the case of the CIFAR-10 data set [43], which consists
of n = 50,000 training images. 10,000 test images are also
provided, which we use as queries with k = 1,000. Both data
sets are fed into a deep neural network to extract high level
features. Specifically, we extract m = 2048 features from the
global average pooling layer in the Resnet-50 network [44].

As can be seen from Figures 6(b) and 6(c), the observed
amount of perturbation decreases as the LID grows. As
expected, the theoretical curves pass through the data clouds
because n is too small for the asymptotic trends to fully assert
themselves: around 25% of the query points have an empirical
minimum perturbation smaller than the asymptotical lower
bound.
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V. CONCLUSION

This paper has presented a theoretical explanation of the
effect of adversarial perturbation on nearest neighborhoods
under the Euclidean distance metric: the larger the local intrin-
sic dimensionality and data-set size, the smaller the amount of
adversarial perturbation required to transition between 1-NNs
and k-NNs (by expectation). These theoretical trends are
confirmed experimentally for synthetic and real data sets.
Our results demonstrate that this vulnerability to adversar-
ial attack is inevitable as the data scales in both size and
intrinsic dimensionality, regardless of the nature of the data,
the direction of perturbation (closer or farther) and vantage
point (query-centric or target-centric).

The traditional view of dimensionality in practice has been
to treat it as a parameter of the entire representation space.
Our analysis in terms of LID shows that the effects of
dimensionality are not necessarily dependent of the properties
of the representation space. In situations where the dimen-
sional characteristics are observed to vary from locality to
locality, our analysis underscores the need for applications
of perturbation — including the defense and detection of
adversarial attack — to take the variability of local intrinsic
dimensionality into account.

A. Adversarial Retrieval

The impact of this article on adversarial retrieval is straight-
forward where vectors x, y, z correspond to feature vectors
of pieces of content. However, this theoretical paper does
not consider the final step of a practical attack, which is the
inversion of the feature extraction: the crafting of a perturbed
content object whose feature vector maps to the vector y as
defined in Section III. The generation of perturbed objects
is equivalent to a local inversion of the feature extraction
operation. From original content producing a feature vector x,
we look for perceptually similar content whose feature vector
is y, provably very close to x. Previous research has addressed
this issue in the context of image retrieval based on local
descriptors [21]–[23].

Current state-of-the-art image search frameworks work
with global descriptors extracted by deep neural networks.
The local inversion of this feature extraction is feasible in
practice due to the existence of efficient back-propagation
mechanisms [2], [45]. Very recent works apply such local
inversion techniques in the context of adversarial image
retrieval, where perturbed query images have been generated
that are visually or semantically close to their corresponding
original images [46], [47].

B. Adversarial Classification

Our analysis also has implications for adversarial classi-
fication — in particular, we have proven strong theoretical
statements concerning the effect of perturbation on 1-NN
classification. The 1-NN classifier has long been known to
be ‘asymptotically optimal,’ in that the probability of error is
bounded from above by twice the Bayes error, as the training
set size tends to infinity [48], [49]. In this sense, half the
classification information in an infinite sample set can be
regarded as residing with the nearest neighbor of the test item.

Within Euclidean space or other vector spaces, 1-NN
classification admits a relatively straightforward perturbation
strategy that is particularly amenable to theoretical analysis.
In order to transform a test point so that it is misclassified
into a given target class, it is sufficient to select a point from
the target class (presumably but not necessarily the candidate
closest to the test point), and perturb the test point toward the
target point along the straight line joining them. Assuming
that all data points are distinct, as the amount of perturbation
increases, the perturbed point would eventually find itself with
the target point as its 1-NN.

The question remains open as to whether a quantitative
explanation analogous to those of our theorem can be found for
other classification models, or for other similarity measures.
However, it is our conjecture that the general trends should
hold even for deep neural networks and other classifiers
of continuously-distributed data. Intuitively, even when the
distance is not Euclidean, and even when the component of the
class region containing the target is not convex, an argument
similar to (but perhaps considerably looser than) that of
Lemma 1 is likely to hold, provided that a transformation
exists between the original domain and an appropriate Euclid-
ean domain. The theorems could then be applied within the
Euclidean domain, which under reverse transformation would
serve to establish the trends in the original domain. The
details would depend very much on the interplay between the
underlying data distribution and data model, and so we will
not pursue them here.

Sophisticated features, such as the ones resulting from a
deep learning process, are often very effective in classification
and recognition tasks. Our analysis suggests that their higher
dimensionality, however, renders them very vulnerable to
adversarial attack. This is consistent with recently-proposed
uses of LID for the characterization of adversarial examples
for deep learning classification [50], where it was found that
adversarial examples tend to be associated with higher LID
estimates. Reference [51] has questioned whether high LID
is a property of all adversarial examples, or whether it is a
side effect of particular types of attacks. For this reason, for
deep neural networks and other state-of-the-art classifiers, a
systematic and comprehensive empirical investigation of the
relationship between intrinsic dimensionality and adversarial
perturbation would be a very worthwhile topic for future
research.
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