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 32 

Abstract 33 

Ocean frontal systems are widespread hydrological features defining the transition zone between 34 
distinct water masses. They are generally of high biological importance as they are often associated 35 
with locally enhanced primary production by phytoplankton. However, the composition of bacterial 36 
communities in the frontal zone remains poorly understood. In this study, we investigate how a coastal 37 
tidal front in Brittany (France) structures the free-living bacterioplankton communities in a spatio-38 
temporal survey across four cruises, five stations and three depths. We used 16S rRNA gene surveys 39 
to compare bacterial community structures across 134 seawater samples and defined groups of co-40 
varying taxa (modules) exhibiting coherent ecological patterns across space and time. We found that 41 
bacterial communities composition was strongly associated with the biogeochemical characteristics of 42 
the different water masses and that the front act as an ecological boundary for free-living bacteria. 43 
Seasonal variations in primary producers and their distribution in the water column appeared as the 44 
most salient parameters controlling heterotrophic bacteria which dominated the free-living community. 45 
Different dynamics of modules observed in this environment were strongly consistent with a 46 
partitioning of heterotrophic bacterioplankton in oligotroph and copiotroph ecological strategies. 47 
Oligotroph taxa, dominated by SAR11 Clade members, were relatively more abundant in low 48 
phytoplankton, high inorganic nutrients water masses, while copiotrophs and particularly opportunist 49 
taxa such as Tenacibaculum sp or Pseudoalteromonas sp reached their highest abundances during the 50 
more productive period. Overall, this study shows a remarkable coupling between bacterioplankton 51 
communities dynamics, trophic strategies, and seasonal cycles in a complex coastal environment. 52 

  53 
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1 Introduction 54 

Bacteria dominate the marine environment in abundance, diversity and activity where they 55 
support critical roles in the functioning of marine ecosystems and oceanic biogeochemical cycles  56 
(Falkowski et al., Fenchel, and Delong 2008; Cotner and Biddanda 2002; Madsen 2011). In the coastal 57 
environment, they are closely associated with other planktonic organisms (e.g. viruses, phytoplankton 58 
and zooplankton) during the recycling of organic matter and inorganic nutrients through the so-called 59 
microbial loop (Azam and Malfatti 2007; Pomeroy et al. 2007). They form complex and highly 60 
dynamic assemblage (S. J. Giovannoni and Vergin 2012), with bacterioplankton diversity variations in 61 
space and time linked to changes in functional diversity (Galand et al. 2018). Therefore, understanding 62 
how the bacterioplankton composition varies in the environment remains one of the central question 63 
to elucidate so that we can better understand coastal ecosystem functioning (Fuhrman et al. 2015). 64 

Phytoplankton development represents a major source of organic matter for heterotrophic 65 
bacteria in the water column. During their growth and upon bloom termination, algae release a complex 66 
bulk of dissolved organic matter that is almost only available for bacteria (Azam 1998; Fenchel and 67 
Jørgensen 1977). This organic matter processing requires diverse heterotrophic bacterioplankton 68 
among which one could find members of Bacteriodetes (Flavobacteriacae), Roseobacter group, 69 
Gammaproteobacteria and Verrucomicrobia (Buchan et al. 2014). These taxa contribute to the 70 
complexity of the marine ecosystem via different adaptive strategies, owing to the unequal access to 71 
their respective resource (Stocker 2012; Luo and Moran 2014). For instance, heterotrophs are generally 72 
distinguished as either oligotrophs or copiotrophs that compete at low and high nutrient concentrations 73 
respectively (Koch 2001; Giovannoni et al. 2014). They also present different degrees of ecological 74 
specialization, with generalist bacteria able to assimilate a broad variety of substrates, while specialists 75 
will compete for a narrow range of nutrients (Mou et al. 2008). Analysis of these ecological traits offer 76 
a simplified view of complex microbial communities and has gained interest for better understanding 77 
the dynamics of natural microbial communities and to gain insight into their role in the ecosystem 78 
(Krause et al. 2014; J. Raes et al. 2011; Haggerty and Dinsdale 2017). 79 

Marine fronts are common mesoscale features in the ocean and are located at the transition 80 
between water masses of different physicochemical characteristics that actively shape the distribution 81 
of microbial organisms (phytoplankton, zooplankton and bacteria). Driven by currents and mixing, 82 
local nutrient input in the vicinity of the front generally enhances primary and secondary production, 83 
making the frontal zone an area of high biological importance (Olson and Backus 1985) and of critical 84 
influence on the microbial processing of organic matter (Baltar et al. 2015; Heinänen et al. 1995). 85 
However, the bacterial communities' composition involved in such dynamic systems remains to be 86 
investigated (Baltar et al. 2016).  87 

The Ushant Front in the Iroise Sea (Brittany, France) is considered as a model for coastal tidal 88 
front (Le Fèvre 1986). Its position and characteristics are highly dynamic and influenced by 89 
atmospheric forcing and tidal currents which are strong in this area (Le et al. 2009). It occurs from May 90 
to October and leads to contrasting physicochemical environments with higher phytoplankton biomass 91 
at the frontal area (Le Fèvre et al. 1983). West of the front, stratification results in warmer oligotrophic 92 
surface waters and colder nutrient-rich deeper waters separated by a marked thermocline. East of the 93 
front, associated with highly variable conditions, permanently mixed coastal waters are characterized 94 
by an unlimited quantity of inorganic nutrients but with highly fluctuating conditions. These 95 
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contrasting water masses structure the distribution of primary producers with the dominance of small 96 
phytoplankton and dinoflagellates in surface stratified waters and diatoms in mixed waters (Birrien et 97 
al. 1991; GREPMA 1988; Videau 1987). 98 

In this study, we investigated how such contrasting physicochemical and biological parameters will  99 
drive free-living bacterioplankon community structure. We then tested the hypothesis that the 100 
contrasted distribution of primary producers will select for bacteria with different adaptative strategies. 101 
To do so, using a network analysis we defined groups of co-varying bacterial OTUs that present the 102 
same dynamic across the samples, postulating that they may share the same ecological niches. 103 

 104 

Materials and Methods 105 

  106 

1. Study site and sampling design 107 
 108 
For this study, we completed four east-west transects of about 60 km across the Iroise sea in September 109 
2014 (the 9th, 10th and 11th), March 2015 (the 10th, 11th and 12th), July 2015 (the 1st, 2nd and 3rd) 110 
and September 2015 (the 8th, 9th and 10th) aboard the R/V Albert Lucas. Station positions remained 111 
identical across cruises and were designed to span the front (Fig. 1A). Station 5 (48°25 N, 5°30 W) is 112 
the most offshore station and is characterized by a strong stratification in summer. Station 4 (48°25 N, 113 
5°20 W) and Station 3 (48°20 N, 5°10 W) are closer the front. Station 2 (48°15 N, 5°00 W) is present 114 
in the mixed area and Station 1 (48°16 N, 4°45 W) is the most coastal station, near the outflow of the 115 
Bay of Brest. At each station, we obtained CTD profiles to assess the physical characteristics of the 116 
water column and establish the depth designed to capture the important biological and chemical 117 
features of the water column at the surface, bottom and Deep Chlorophyll Maximum (DCM).  118 
 119 
  120 
2. Nutrients, phytoplankton counts and pigment analyses 121 

 122 
Seawater was sampled at each depth for nutrients, biogenic silica (BSi), chlorophyll a (Chl a), 123 
particulate organic carbon and nitrogen (POC/PON) concentrations, and microscopic phytoplankton 124 
cell counts and identification. Dissolved inorganic phosphate (DIP) and silicate (DSi) concentrations 125 
were determined from seawater filtered on Nucleopore membrane filters (47 mm) and dissolved 126 
inorganic nitrogen (DIN) on Whatman GF/F filters (25 mm). Filters for DIN and DIP were then frozen, 127 
whereas filters for DSi were kept at 4 °C in the dark. Concentrations were later determined in the 128 
laboratory by colorimetric methods using segmented flow analysis (Auto-analyser AA3HR Seal-129 
Analytical) (Aminot and Kérouel 2007). BSi was determined from particulate matter collected by 130 
filtration of 1 L of seawater through 0.6 μm polycarbonate membrane filter. The analysis was 131 
performed using the alkaline digestion method (Ragueneau and Tréguer 1994). Total Chl a and 132 
phaeopigments (Pheo) were determined in particulate organic matter collected on 25 mm Whatman 133 
GF/F filters. The filters were frozen (-20°C) and analyzed later by a fluorometric acidification 134 
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procedure in 90% acetone extracts (Holm-Hansen et al. 1965). Particulate material for POC/PON 135 
measurements was recovered on pre-combusted (450 °C, 4 h) Whatman GF/F filters. Samples were 136 
then analyzed by combustion method (Strickland and Parsons 1972), using a CHN elemental analyzer 137 
(Thermo Fischer Flash EA 1112). Phytoplankton samples were fixed with Lugol’s solution and cell 138 
counts were carried out using the Lund et al. (1958) method (Lund et al. 1958). 139 

 140 

  141 
3. Bacterioplankton community sampling 142 

 143 
Seawater for bacterial diversity analysis was collected at different depths using Niskin bottles and 144 
directly poured in 5 L sterile carboys previously rinsed three times with the sample. For each depth, 145 
three biological replicates samplings were done, consisting of three different Niskin deployments, 146 
except Station 4 in September 2014. Filtrations started in the on-shore laboratory 3 to 4 hours after 147 
sampling. Water samples were size-fractionated using three in-line filters of different porosity: 10 µm, 148 
3 µm (PC membrane filters, Millipore®) and 0.22 µm (Sterivex® filters, with PES membrane). In this 149 
study, we focused only on the 0.22-3 µm free-living fraction. All filters were frozen in liquid nitrogen 150 
before storage at -80 °C. In total, 2 to 5 liters of seawater were filtered each time, depending on filter 151 
saturation.  152 
 153 
 154 
4. DNA extraction and sequencing 155 
 156 
Half-filters were directly placed in Matrix B® tubes (filled with 0.1 mm silicate beads, MP 157 
Biomedicals) with lysis buffer (Tris pH 7.0, EDTA pH 8.0 and NaCl), SDS 10% and Sarkosyl 10% 158 
and subjected to physical lysis for 5 minutes on a vortex plate. The liquid fraction was then collected 159 
in order to perform a phenol-chloroform extraction using PCI (Phenol, Cholorophorm Isoamyl alcohol 160 
with a ratio of 25:24:1) and a precipitation step with isopropanol and 5 M sodium acetate. DNA was 161 
resuspended in 100 µL of sterile water. 162 
Bacterial diversity was assessed by targeting the v4-v5 hypervariable regions of 16S rDNA with the 163 
primers 518F (CCAGCAGCYGCGGTAAN) / 926R (CCGTCAATTCNTTTRAGT– 164 
CCGTCAATTTCTTTGAGT - CCGTCTATTCCTTTGANT) (Nelson et al. 2014). PCR products 165 
were purified using Ampure XP® kit and DNA quantity was measured using Picogreen® staining and 166 
a plate fluorescence reader (TECAN® infinite M200 Pro). Each sample was diluted to the same 167 
concentration and pooled before sequencing on an Illumina MiSeq sequencer at the Marine Biological 168 
Laboratory (Woods Hole MA, USA).  169 
  170 
 171 
5. Bioinformatics analysis 172 
 173 
We obtained 22,523,398 raw reads, with a range from 31,583 to 2,001,687 reads per sample. Reads 174 
were merged and quality-filtered according to recommendations in Minoche et al. (Minoche et al., 175 
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2011) using the Illumina-utils scripts (Eren et al. 2013). Those steps removed 17 % of all the sequences. 176 
We used the Swarm algorithm (Mahé et al. 2014) to cluster the 18,876,655 remaining sequences into 177 
1,611,447 operational taxonomic unit OTUs. Chimera detection was done using vsearch de novo 178 
(Rognes et al. 2016) resulting in  281,825 filtered OTUs. Taxonomic annotation for each OTU was 179 
done with the SILVA database v123 (Quast et al. 2012) using the mothur classify.seqs command 180 
(Schloss et al. 2009). 19,516 OTUs (1,247,339 sequences) were affiliated with non-bacterial  taxa (e.g. 181 
archaea, chloroplasts, mitochondria, eukaryota) and removed from the dataset. As a result, we obtained 182 
262,308 OTUs for 134 samples, with a large number of singletons (205,292 OTUs), that were kept 183 
along the statistical analysis. 184 
 185 
 186 
6. Statistical analysis 187 
 188 
Libraries were normalized for read number using DESeq package in R (Anders and Huber 2010). A 189 
visualization of the bacterial community structure similarity was assessed with an NMDS based on 190 
Bray-Curtis dissimilarities using vegan R package (Oksanen et al. 2007). Influence of depth, station 191 
and sampling time on bacterial communities was investigated using a permutational multivariate 192 
analysis of variance (PERMANOVA) based on Bray-Curtis dissimilarities and 999 permutations. We 193 
used principal coordinate analysis (PCA) ordination to characterize water samples environmental 194 
parameters. Finally, we examined the presence of biomarker OTUs (i.e. OTUs with a significant higher 195 
relative abundance in a given condition) of the different stations within each cruise using the LEfSe 196 
software (Segata et al. 2011).   197 
 198 
7. Network analysis 199 
 200 
Network analysis was done based on a truncated matrix only containing the most abundant OTUs with 201 
more than 50 sequences in at least three samples. The filtered matrix contained 681 OTUs that 202 
accounted for 79% of all the sequences. This filtering step was necessary to avoid false positive 203 
correlations in the network analysis. Our module detection analysis followed part of the pipeline of 204 
Chafee et al. (Chafee et al. 2018). First, the application of SPIEC-EASI computes pairwise co-variance 205 
based correlation between OTUs in order to address the sparsity and composition issues inherent to 206 
microbial abundance data (Kurtz et al. 2015). The possible interaction was then inferred using the 207 
glasso probabilistic inference model with a lambda.min.ratio of 0.01. Based on this model, only the 208 
significant covariance values were extracted and transformed into a correlation matrix using the 209 
cov2cor() function. 210 
We then delineated network modules as groups of highly interconnected OTUs that presented very 211 
close variations in relative abundances across the studied samples. Those modules were defined using 212 
the Louvain algorithm (Blondel et al. 2008). We used Gephi (Bastian et al. 2009) and Force Atlas 2 213 
layout algorithm to generate a vizualization of the main correlations (>0.3). Module eigengenes (ME,  214 
the first principal component, considered a representative of the OTUs distribution of a given module) 215 
were calculated based on the relative abundance matrix using WGCNA function moduleEigengenes() 216 
(Langfelder and Horvath 2008). Those ME were used to calculate Pearson correlations between the 217 
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different modules and the environmental variables, using the WGCNA commands moduleTraitCor(), 218 
moduleTraitPvalue(). 219 
We used the methods proposed by Newton et al. to infer the trophic strategy of  OTUs within each 220 
modules (Newton and Shade 2016). In that study, they differentiated opportunist taxa with high 221 
abundance variability in space and time, and marathoners with low abundance variability. They 222 
distinguished these using the Coefficient of Variation (CV) of OTU dynamic combined with their 223 
abundance and prevalence in the samples. Based on their method, we defined high CV opportunist 224 
OTUs (or HCV) as OTUs above 5% upper boundary of the linear modeling 95% confidence interval 225 
in a CV plot against OTU occurrence. Conversely, we defined low CV marathoners OTUs (or LCV) 226 
as OTUs below the 5% lower boundary of the linear modeling. In our analysis, OTU occurrence was 227 
defined by a relative abundance > 0.05%. 228 
 229 

All the scripts used for this analysis are available at: https://loimai.github.io/BBobs/ 230 

 231 

Results 232 

1. Environmental settings 233 

This study was carried out between September 2014 and September 2015 in the Iroise Sea, off 234 
Brittany (Northeast Atlantic), in the vicinity of the Ushant island. The Ushant front position and 235 
characteristics were estimated using Satellite Surface Temperature (SST) maps (Fig. 1) and CTD data 236 
collected at the dates of sampling (suppl. data 1). The March 2015 sampling took place before the onset 237 
of the Ushant front and presented a homogeneous temperature around 10 °C across all the stations. 238 
High nutrient concentrations at all stations (Si(OH)4: 1.82 to 4.38 µM, nitrates: 5.88 to 12.13 µM, 239 
suppl. data 2), low surface Chl a (<1 µg.L-1 except for Station 1, suppl. data 3) and overall low 240 
phytoplankton cells counts observed during this cruise (suppl. data 2) indicated that sampling occurred 241 
prior to the development of the phytoplankton spring blooms. In summer (September 2014, July 2015 242 
and September 2015), SST maps showed a sharp transition between coastal and offshore temperatures 243 
confirming the presence of a frontal system. The different observed stratification regimes (suppl. data 244 
1) coincided with distinct physicochemical patterns and phytoplanktonic patterns across seasons (Fig. 245 
1B, suppl. data 2). In late summer (September samples), offshore deep waters shared close 246 
characteristics with winter waters (March sample, Temperature: 11.7 to 12.3 °C), with few 247 
phytoplankton cells, similar concentration of Si(OH)4 (1.61 to 3 µM) and nitrates (3.99 to 6.41 µM). 248 
Conversely, surface waters presented high temperatures (14.7 to 18.2 °C), a nutrient depletion 249 
(Si(OH)4: 0.02 to 1.65 µM, N02+N03: 0.00 to 0.09 µM) and high phytoplankton cell counts. In early 250 
summer (July), inorganic nutrient concentrations were overall lower than in September, probably 251 
consumed by the spring bloom coinciding with the onset of the front around May-June. A significant 252 
bloom occurred at stations 2 and 3, on the 27th of June, five days before the sampling period as seen 253 
in the satellite surface Chl a observations (suppl. Data 3 B.). 254 

 255 
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2. Bacterial community dynamics in the Iroise Sea 256 

In the Iroise Sea, free-living bacterial communities structure presented clear time and spatial 257 
patterns as shown in the NMDS ordination plot (Fig. 1C, for each cruise separately see suppl. Data 4). 258 
Firstly, community structure displayed strong seasonality, with sample primarily grouping by sampling 259 
cruises. We also observed similar communities in stratified waters of September 2014 and 2015 260 
samples (Fig. 1C), suggesting that these seasonal pattern were recurring .  261 

Besides, we also observed an important spatial influence, as within each sampling cruise,  262 
communities were markedly different between stations. In winter samples, communities were highly 263 
similar throughout the water column (Depth was non-significant, Permanova Pr(>f) =0.225), but 264 
presented a coastal to offshore gradient (Station was significant, Permanova Pr(>f) =0.001, suppl. Data 265 
4) that followed a gradient of  salinity, temperature and inorganic nutrient (sup. data 2). Conversely, in 266 
September, when the front was the strongest, free-living bacterial communities were much more 267 
heterogeneous with clear patterns associated to the set-up of the front : stratification resulted in  highly 268 
diverging communities with depth (Depth Pr(>f) = 0.004), while this pattern was not seen for the mixed 269 
and coastal samples (Depth was not significant, Pr(>f) = 0.222 and 0.434, suppl. Data 4). In July, the 270 
patterns were mostly associated with depth for all the stations, except station 1 (suppl. Data 4).  271 
Overall, bacterial communities structure followed the different water masses, mirroring environmental 272 
physicochemical variations represented in the PCA plot of environmental variables (Fig. 1B): deep 273 
water communities in the summer crews remained more similar to winter communities (Fig. 1C). In 274 
contrast, surface bacterial communities in stratified regimes and in most of the stations in July departed 275 
from this typical winter structure. In addition, for these summer cruises, the DCM samples either cluster 276 
with surface or deep samples. This could be explained by the difficulty to sample the DCM precisely, 277 
as its depth can vary between the CTD measurements and the biological sampling. 278 

Using the LefSe algorithm (Segata et al. 2011), we found that some stations displayed specific 279 
biomarker OTUs within each sampling time (suppl. Data 5).  Biomarkers such as OTU1 (Amylibacter) 280 
and OTU4 (Planktomarina) were found at the most near-shore station (Station 1) in September 2014 281 
and March 2015 and other biomarkers were found in surface stratified waters in early summer (OTU29 282 
NS4 marine group) and late summer (OTU10 Synechococcus) cruises, but no biomarker was identified 283 
for the mixed and frontal stations except in July 2015 at Station 2 with OTU35 (Aliivibrio) and OTU74 284 
(Pseudoalteromonas). 285 

 286 
8. Description of modules  287 

We further investigated groups of co-varying OTUs that could potentially share the same 288 
ecological niches in this partitioned marine environment via a co-occurrence network analysis. In the 289 
inferred network, we were able to identify 14 sub-networks (Fig. 2A and 2B) defining groups of OTUs 290 
(termed modules) with similar distribution patterns across the entire study. Two modules (5 and 4) 291 
were dominant in our dataset and respectively accounted for 32.7% and 20.9% of all sequences. Eight 292 
modules represented between 1.6% and 14.2%, and four were rarer with less than 1% abundance. The 293 
OTU taxonomy in each module is summarized in suppl. Data 6 and Fig. 4 presents the distribution of 294 
the dominant families among each module. 295 
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Since its eigengene could characterize each module, we investigated to which extent module 296 
distribution could be correlated (i.e. Pearson correlation) with environmental parameters (Fig. 2C). 297 
Correlation patterns partitioned modules into three significant sub-networks. The first one mostly 298 
comprises modules 5 and 13 representing 32.7 and 6.8% of the dataset respectively that correlated 299 
positively to inorganic nutrient concentrations and negatively to temperature and Particulate Organic 300 
Matter (POC, PON) values. Their relative abundance in the different samples showed that they were 301 
dominant in oligotrophic waters: together they ranged from 39% at Station 1 to 72% at Station 5 of the 302 
late winter communities, and 54% to 59% of the deep stratified waters in September (Fig. 3).  SAR11 303 
Surface 1 (46.7% of the module sequences), ZD0405 marine group (12%) and SAR86 Clade (6.4%) 304 
dominate the main module (module 5). Module 13 showed a different diversity as being dominated by 305 
members of Marinimicrobia (15.8%), SAR11 Deep 1 (12%), SAR11 Surface 1 (8.9%) and 306 
Salinisphaeraceae (7.9%). 307 

Modules 4, 8, 2 and 1 contributed to the second sub-network, representing 20.9, 14.2, 5.5 and 308 
5.4% of the dataset respectively. They presented clear inverse correlations compared with modules of 309 
the first group: they correlated positively with temperature, POM and Diatoms but negatively with 310 
inorganic nutrient concentrations. In relative abundance, they dominated the samples of July and in the 311 
surface and coastal stations. Their taxonomy was distinct from the first group; i.e. together they 312 
gathered the majority of Flavobacteriaceae (70%) and Rhodobacteraceae (88%). Also, module 9 was 313 
enhanced in July 2015 but was almost exclusively present in Station 2 and strongly correlated with 314 
ammonium (0.72, p < 0001). Its taxonomy was also particular as dominated by Vibrionaceae (58%) 315 
and Pseudoalteromonadaceae (30%). 316 

The third sub-network (modules 6 and 3) was less abundant and presented different correlations 317 
with environmental parameters. They respectively account for 1.6 and 2.6% of the dataset, were 318 
correlated with specific phytoplankton groups (dinoflagellates, nanophytoplankton) and were 319 
dominant in the surface and DCM of stratified waters in September where they made up to 34% of the 320 
community. Among them, module 3 was constituted almost exclusively of Cyanobacteria (94%) 321 
affiliated with the Synechococcus genus.  322 

To examine whether the modules gather OTUs that exhibited different ecological behavior (i.e. 323 
marathoners or opportunist), we computed the coefficient of variation (CV) for all OTU used in the 324 
network analysis and plotted this metric against OTU occurrence as proposed in Newton et al. (Newton 325 
and Shade 2016). We then examined their module membership (suppl. Data 7 and Fig. 4B): modules 326 
showed a clear gradient ranging from relatively low CV (LCV) OTUs (modules 4, 11, 14, 5 and 13) to 327 
high CV (HCV) OTUs (modules 9, 10, 7 and 2). 328 

  329 
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Discussion 330 

 331 
The spatial and temporal dynamics of bacterial communities associated with a coastal tidal front 332 
 333 

In this study, we investigated the spatiotemporal variations of free-living bacterial community 334 
composition over one year across contrasting coastal water masses characterized by a seasonal tidal 335 
front structure. For each cruise (season) we observed a spatial influence on bacterioplankton 336 
community composition. However, in the studied area, winter communities were comparatively much 337 
more homogeneous with only an influence from coast to the offshore. At this time of the year, the river 338 
debit were at the highest and this is known to influence free-living bacterial communities in coastal 339 
area (Tréguer et al. 2014; Pizzetti et al. 2016). In summer, bacterial communities diverged according 340 
to the station and depth, highlighting the importance of the onset of a tidal front and open ocean 341 
stratification for bacterioplankton community structure. This was mainly due to the sharp divergence 342 
of summer surface samples, as deep summer samples remained closer to winter ones (Fig. 1C). The 343 
existence of two contrasting types of bacterioplankton dynamics (winter and deep vs. summer surfaces) 344 
reflects similar patterns in sample ordination based on biogeochemical parameters and can be 345 
associated to phytoplankton development, temperature increase or lowering in inorganic nutrient 346 
concentrations, which are key parameters influencing bacterial communities dynamic in marine coastal 347 
environment (Fuhrman et al. 2015 ; Giovannoni and Vergin 2012). 348 

These observations of a frontal zone as a sharp ecological transition for bacterioplankton 349 
among different water masses are consistent with reports in stratified waters (Cram et al. 2015; 350 
Ghiglione et al. 2008) and from other frontal areas (Baltar et al. 2016 ) confirming their role as 351 
ecological boundaries in the oceans (Raes et al. 2018). Interestingly, the frontal area itself around 352 
station 3-4 did not exhibit a specific bacterial composition (Fig. 2C and Fig 4), but could rather result 353 
from mixing between adjacent communities, as already suggested for the phytoplankton and 354 
zooplankton (Sournia 1994) and in another marine boundaries such as a shelf break (Zorz et al. 2019). 355 
We could not identify any biomarker OTUs associated with frontal stations. Hence, bacterioplankton 356 
communities associated with enhanced productivity at the Ushant front (Videau 1987) could result 357 
from an increase in resident plankton density (Franks 1992) rather than the emergence of distinct 358 
communities.  359 

In addition, we observed a remarkable seasonal recurrence between the two September cruises, 360 
within each station and depth. This pattern was comparatively more accentuated toward the open ocean 361 
(station 4 and 5) than near shore (stations 1 to 3). This temporal dynamic is coherent with previous 362 
reports of seasonal patterns in single stations as shown in the North Sea (Chafee et al. 2018) or the 363 
English Channel (Gilbert et al. 2012) time series. Our results suggest that despite a substantial 364 
heterogeneity in our system, such seasonal recurrence patterns also extend to stations along 365 
geographical and bathyal gradients.  366 
  367 
 368 
Distinct bacterioplankton trophic strategies associated with tidal front temporal and spatial dynamics 369 

Using network analysis on samples exhibiting strong temporal and spatial variations, we could 370 
define modules of ecologically coherent OTUs. As suggested elsewhere, such modules can be 371 



 

 
11 

considered as OTUs potentially sharing the same environmental niches with coherent ecological 372 
strategies (Eiler et al. 2012). In association with previously characterized dominant taxa in each 373 
module, we aim at identifying higher order bacterioplankton community organization and revealing 374 
ecological drivers of community dynamics in the frontal zone. 375 

Our study gives evidence of module partitioning into two major heterotrophs-dominated sub-376 
networks, exhibiting distinct inverse covariance patterns (Fig. 2A and 2B). Their correlations with 377 
environmental variables also clearly separated conditions between water masses with active primary 378 
producers (low nutrients and high POM values) that were present in summer surface samples, and 379 
conditions with overall low development of phytoplankton typical of winter and deep samples. 380 
Development and decay of phytoplankton lead to the release of dissolved organic matter, which is 381 
almost only available for heterotrophic bacteria (Azam and Malfatti 2007). Thus, these two different 382 
conditions likely selected for copiotrophic or oligotrophic heterotrophic free-living bacteria adapted to 383 
different concentrations of organic matter in the environment (Giovannoni et al. 2014 . The taxonomic 384 
affiliation was highly coherent with these observations. Modules 5 and 13 are dominated by SAR11 385 
clades, which typically thrive in basal concentrations of organic matter (Morris et al. 2002) or members 386 
of taxa typical of the sub-euphotic zones such as Marinimicrobia, or SAR11 Deep 1 (Agogué et al. 387 
2011). Conversely, modules 4, 8, 2, 1 and 9 were dominated by members of the Rhodobacteraceae and 388 
Flavobacteriaceae, typically associated with phytoplankton-derived organic matter (Buchan et al. 389 
2014; Teeling et al. 2012). Thus, the availability of phytoplankton-derived organic matter will drive 390 
heterotroph dynamics.  391 

The last sub-network with module 3, dominated by Synechococcus, highlights the contribution 392 
of phototrophic bacteria. These cyanobacteria became strongly dominant in the surface of well 393 
stratified-waters in late summer, which is already known to favor these small phytoplanktonic cells 394 
(Taylor and Joint 1990; Cadier et al. 2017). 395 

Interestingly, known chemoautotrophs involved in the nitrification such as Nitrospinaea did 396 
not form a separate module and were included in the oligotrophic module 13. Nitrification in the water 397 
column is typically found in the sub-euphotic zone as nitrite-oxidizing bacteria could be light-sensitive 398 
(Lomas and Lipschultz 2006) and can be outcompeted by phytoplankton for the uptake of nitrite (Smith 399 
et al. 2014; Wan et al. 2018). This fact could explain why they exhibit a dynamic similar to oligotrophic 400 
bacteria. 401 
 402 
 403 
Differential bacterioplankton responses to organic matter availability 404 
 405 

Using the OTU coefficients of variation to distinguish rather marathoners or opportunist taxa, 406 
we examined whether heterotrophic bacteria had different responses to organic matter availability in 407 
summer samples. Their dynamic and composition was highly coherent with a partitioning of the 408 
microbial loop between different taxa (Bryson et al. 2017). For instance, several modules presented a 409 
majority of HCV OTUs (Fig. 4B): Tenacibaculum sp. (a Flavobacteriaceae dominating Module 2) was 410 
highly abundant reaching up to 20.7% of the sequences in the 2015 July surface waters shortly after 411 
significant phytoplankton bloom. One single Tenacibaculum OTU dominated the surface of 4 stations 412 
over a 40km distance just a few days after a phytoplankton bloom. This dynamic of Tenacibaculum 413 
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genus is coherent with previous observations of a recurrent population increase after seasonal 414 
phytoplankton blooms in coastal water (Teeling et al. 2016) while being part of the rare biosphere 415 
otherwise (Alonso‐Sáez, Díaz‐Pérez, and Morán 2015). During the same period, module 9, dominated 416 
by Vibrionales (Aliivibrio sp) and Alteromonadales (Pseudoalteromonas sp.) class, was especially 417 
abundant at Station 2, reaching up to 27% of the sequences (Fig. 3). These taxa are known copiotroph 418 
bacteria that can sharply increase in abundance in response to high substrate loading (Tada et al. 2012). 419 
These results strongly support an opportunist lifestyle of bacteria in modules 2 and 9. When they are 420 
dominant, bacteria with such an opportunist strategy have a critical role as they can contribute to a 421 
substantial fraction of organic matter recycling (Pedler et al. 2014).  422 

In contrast, module 4 was mostly composed of LCV OTUs with a cosmopolitan distribution 423 
across time, depth and geography. The dominant family in module 4, the Rhodobacteraceae, are known 424 
as generalist bacteria with a versatile substrate utilization (Moran et al. 2004; R. J. Newton et al. 2010). 425 
Some of the free-living Rhodobacteraceae grow on low molecular weight organic compounds and 426 
numerous studies pointed out that they compete for the same substrate as SAR11 Clade, but are more 427 
competitive at higher organic matter concentrations. They can be very successful in coastal waters, an 428 
example being a representative of the genus Planktomarina that is dominant in the North Sea (Voget 429 
et al. 2015). Other dominant taxa of this module, such as SAR86 Clade, Methylophilaceae or members 430 
of SAR116 Clade are widespread in marine environments and are also known to target small organic 431 
molecules (Dupont et al. 2012; Huggett et al. 2012; Oh et al. 2010). 432 

Module 8 presented mixed CV values among its OTUs. Many members of this module, such 433 
as Flavobacteriaceae (Buchan et al. 2014), Verrucomicrobiacea (Martinez-Garcia et al. 2012) or 434 
Cryomorphaceae (Bowman 2014), can use complex algal-derived substrates and present a typical 435 
increase in abundance after phytoplankton blooms (Teeling et al. 2016). We interpret these 436 
observations to be a result of the relatively low sampling time resolution that probably fails to resolve 437 
rapid OTU variations of other opportunistic bacteria. 438 

Overall, this study allowed us to delineate several groups of bacterioplankton trophic strategies and 439 
their variations in response to biogeochemical cycles in a highly dynamic coastal environment. 440 
Oligotrophs, typically represented by SAR11 OTUs, were present in all water masses. They 441 
outcompete other heterotrophic organisms in low labile organic matter environments such as winter 442 
and deep offshore water masses, while copiotrophs communities develop during the high productivity 443 
period. Within copiotrophs, several taxa show patterns of adaptation to rapidly changing conditions in 444 
their substrate availability: opportunist taxa can rapidly become highly dominant (represented by 445 
Tenacibaculum and Alteromonadales) after local events such as phytoplankton bloom, while more 446 
generalist taxa such as Rhodobacteraceae exhibit a ubiquitous distribution. It is likely that this 447 
dichotomy between oligotroph and copiotroph is an over-simplification in trophic strategies, as 448 
suggested by numerous studies (Bryson et al. 2017; Mayali et al. 2012). Heterotrophs could instead 449 
follow a gradient from oligotrophy to copiotrophy, and only finer analysis such as growth rate 450 
measurements or dissolved organic matter quantification could help to better describe the trophic 451 
strategies of heterotrophs (Kirchman 2016). However, these complex heterotrophic community 452 
dynamics observed in this study highlight the central role of free-living bacteria in organic matter 453 
cycling. Indeed, previous studies of the Iroise Sea nutrient cycling demonstrated that after the initial 454 
depletion of winter nutrients pool, phytoplankton growth strongly relies on nutrients recycled through 455 
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the microbial loop (LHelguen et al. 2005), through which they are remineralized several times in a 456 
seasonal cycle (Birrien et al. 1991). In this system, bacteria could be directly responsible for up to 25% 457 
of urea with the remaining originating from ciliates mainly, which also mostly feed on bacteria 458 
(LHelguen et al. 2005) 459 

  460 
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Conclusion 461 

Here, using a complex 3D (vertical, horizontal, and temporal) survey of free-living bacterial diversity 462 
in correlation with the seasonal dynamics of a coastal tidal front, we have shown that such complex 463 
mesoscale features controls the dynamic of free-living bacterial communities. The Ushant tidal front 464 
acts as an ecological boundary for those communities. We illustrated the link between different water 465 
masses on this dynamic with for instance photosynthetic bacteria enriched in oligotrophic stratified 466 
waters in late summer. Using a network analysis, we were able to gain insight on ecologically coherent 467 
modules of free-living bacteria driven by the availability of organic matter produced by the 468 
phytoplankton. This has major implication for our understanding of the microbial loop in coastal 469 
systems. In the future, these observations should be confirmed with measurements and characterization 470 
of dissolved organic matter quantity and quality in the water column as well as direct measurement of 471 
growth rates in order to more precisely describe bacterial trophic strategies. Moreover, to better 472 
understand these systems, future studies should include the characterization of other key members of 473 
the planktonic communities such as viruses, ammonium oxidizing archaea, eukaryotic phytoplankton 474 
and grazers, as well as particle-attached bacteria that are central for organic matter and biogeochemical 475 
cycles. 476 

  477 
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Figures legends 478 

 479 

Figure 1 | Environmental and bacterial communities characteristics of the Iroise Sea for the different 480 
cruises. 481 
A. Map of the Satellite Sea Surface Temperatures (SST) in the Iroise Sea for each cruise (September 2014 the 482 
8th, March 2015 the 6th, July 2015 the 2nd and September 2015 the 8th), highlighting in the summer cruises the 483 
presence of the Ushant front that separates offshore warm stratified waters and coastal cooler mixed waters. The 484 
shape corresponds to the different stations sampled, with at each time 2 or 3 depths. Surface waters are highly 485 
dynamic and some eddies are conspicuous during September 2015, bringing cold water into surface stratified 486 
waters. Thus SST map are not enough to define the frontal area and vertical profiles are needed to characterize 487 
the different water masses (suppl. Data 1) B. Principal Component Analysis of the environmental characteristics 488 
for the different samples (n=49) based on temperature, inorganic nutrients (Si(OH)4, NO3+NO2, PO4) 489 
concentrations and microscopic count of the different phytoplanktonic groups (Diatom, Nanophytoplankton, 490 
Cryptohyceae and Dinoflagellate) C. NMDS of the bacterial diversity based on Bray-Curtis dissimilarities 491 
among the different cruises, stations and depth (stress=0.091). For bacterial diversity, biological triplicates were 492 
done for each station and depth, explaining the higher number of samples (n=135). 493 
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 494 

Figure 2 | Visualization of the different modules and their main characteristics 495 
A. Representation of the main connectivity between the different modules detected with the Louvain algorithm. 496 
Each node represent a module, each edge represents the median of the positive correlations between two 497 
modules. Only the strongest connections are shown. 498 
B. Network visualisation of the dataset. Each node represents an OTU, while each edge represent a positive 499 
correlation (>0.3) obtained from the covariance matrix calculated with SPIEC-EASI. The node size depends on 500 
the abundance of one OTU (in number of sequences) in the entire dataset. The edge size depends on the value 501 
of the correlation. Nodes colors represent the OTU affiliation to the different Louvain communities. Network 502 
was represented using Gephi and Force Atlas layout algorithm. C. Presentation of the 14 modules detected. 503 
Pearson correlations between each module eigengene and the different environmental data are presented in the 504 
heatmap. OM : Organic Matter, PAR: Photosynthetically Available Radiation, PON : Particulate Organic 505 
Nitrogen, POC: Particulate Organic Carbon.  Only the significant correlations (p.value > 10-4) are shown. The 506 
number of OTUs in each module and the relative abundance of each module (in % of all the reads) are detailed. 507 
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 508 

Figure 3 | Module dynamics across the different campaigns, stations and depths  509 

Relative abundance of the different modules in each campaign, station and depth. The value shown resulted of 510 
the mean of the triplicates done for each sampling. The legend includes the different hypotheses of the modules' 511 
trophic strategies based on their correlations to the environmental parameters, their taxonomy and their dynamic. 512 
Oligotrophic modules are likely to present heterotrophic bacteria adapted to low organic matter levels, while 513 
copiotrophic bacteria are likely more competitive under higher organic matter levels. Finally the photosynthetic 514 
module is almost only composed of Cyanobacteria. 515 
 516 



 
18 

 517 



 

 
19 

Figure 4 | Modules' taxonomy and Coefficient of Variation of their OTUs 518 

A. Relative abundance of the 30 main families in each module. B. Proportion of OTUs (in % of all the OTUs 519 
in a module) that present a High Coefficient of Variation (HCV) in red, or a Low Coefficient of Variation 520 
(LCV) in blue defined based on Newton method (Newton et al., 2016).  521 
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