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Abstract 
This review focuses on a microparticle-producing technique widely used for its efficacy in 
controlling physicochemical properties: droplet-based microfluidics. The production of 
alginate hydrogel microparticles is presented, through “on-chip” and/or “off-chip” gelation of 
alginate microdroplets, using crosslinking agents. 
The review describes the various strategies applied under this technique, and the size, shape, 
concentration, stability and mechanical properties of the alginate hydrogel microparticles 
obtained. 
 

Introduction 
Hydrogel microparticles are widely used today, especially in biological and pharmaceutical 
applications. They are usually used as a matrix to encapsulate bioactive agents such as drugs, 
proteins, cells, etc. (Ahmed, 2015; Maitra and Shukla, 2014) for drug delivery (Agüero et al., 
2017), cell culture and tissue engineering. (Utech et al., 2015) Another important use is as cell-
mimicking microparticles with similar size, shape, deformability and mechanical properties. 
(Haghgooie et al., 2010; Merkel et al., 2011; Zhang et al., 2020) Hydrogels can be made of 
various biopolymers such as gelatin, agarose, alginate, pectin, etc. Alginate stands out because 
of its low cost, non-toxicity and ease of crosslinking (Lee and Mooney, 2012). 

With the increasing interest in alginate hydrogel microparticles, various preparation methods 
have been reported in the literature, including conventional emulsification (Chan et al., 2002), 
spray-drying  (Santa-Maria et al., 2012), extrusion dripping (Lee et al., 2013), microfluidics 
(Rondeau and Cooper-White, 2008; Zhang et al., 2006)  and soft lithography. (Qiu et al., 2007) 
The huge diversity of techniques and strategies can make it confusing to choose the right 
method. The present review focuses on a microparticle-producing technique widely used for 
its efficacy in controlling physicochemical properties: droplet-based microfluidics. The various 
strategies applied within this technique and the properties of the microparticles obtained are 
described in this review. 

I. Alginate hydrogel microparticles  
Hydrogels are described as hydrophilic polymeric networks which can absorb and retain large 
amounts of water within the structure. The hydrogel network is formed by polymer 
crosslinking. When crosslinking is realized by molecular entanglement, ionic, H-bonding or 
hydrophobic forces, hydrogels are called physical or reversible gels. Otherwise, when covalent 
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forces intervene, they are called chemical or permanent gels. (Caccavo et al., 2018; Hoffman, 
2012)  

 

I.1. Alginate 
Alginate is a natural polysaccharide. Although it can also be synthesized by several bacteria, 
all the commercially available alginate is produced from the extraction of brown algae (Draget, 
2009). Alginate is widely used in the biomedical field because it is biocompatible and non-toxic 
(Lee and Mooney, 2012). 

Sodium alginate (Na-alginate) is the most widely used alginate salt. It dissolves in water to a 
viscous solution. Alginate is a linear copolymer containing β-D-mannuronate (M) and α-L-
guluronate (G) residues (Figure 1). 

 

Figure 1. Chemical structures of G-block, M-block and alternating G and M-blocks in alginate. Figure 
reprinted with permission from Reference (Lee and Mooney, 2012)  

 

I.2. Gelation of alginate 
Alginate hydrogel is produced by gelation which is caused by covalent (Fundueanu et al., 1999) 
or ionic crosslinking. (Gacesa, 1988; Velings and Mestdagh, 1995) Ionic crosslinking is more 
commonly used because of its simplicity and mild conditions. It can be carried out at room 
temperature or up to 100°C, usually with divalent cations as crosslinking agents. Calcium 
chloride is the most widely used (Lee and Mooney, 2012), due to its non-toxicity (Agüero et 
al., 2017) and availability. 

Only G-blocks (Figure 1) made of consecutive G residues can participate in ionic crosslinking 
because of their favourable spatial structure (Gacesa, 1988; Lee and Mooney, 2012). Ionic 
crosslinking of alginate is described by the “egg-box” model (Grant et al., 1973) (Figure 2). 
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Figure 2. Schematic illustration of the “egg-box” model describing the ionic crosslinking of alginate by 
calcium cations. Figure reprinted with permission from Reference (Lee and Yuk, 2007)  

In this paper, we present a two-step method to produce alginate hydrogel microparticles. First, 
sodium alginate droplets are generated using droplet-based microfluidics. Second, gelation 
transforms droplets into alginate hydrogel microparticles via different strategies. 

 

II. Droplet-based microfluidics 
II.1. Principle of droplet generation 
Microfluidics is a technique used to manipulate fluids in channels of micrometric dimensions. 
Fluids are mixed by adding junctions that connect the channels. When immiscible or partially 
miscible fluids are mixed in the junction, microdroplets can be generated: this is called droplet-
based microfluidics. 

The principle is similar to that of conventional emulsification, which consists of blending two 
immiscible liquids. The advantage of droplet-based microfluidics is monodispersity and 
repeatability of droplets due to precise control over experimental conditions such as channel 
geometry, flow rates and viscosities of fluids, etc. (Seemann et al., 2011; Teh et al., 2008) 
Furthermore, monodisperse droplets can be generated without using surfactant (Liu et al., 
2006; Trivedi et al., 2009; Zhang et al., 2020), which is impossible with conventional 
emulsification. 

The droplets generated in droplet-based microfluidics can serve as microreactors to carry out 
physical, chemical or biological reactions. (Zhu and Wang, 2017) Being small (nL to µL volume), 
they require a small quantity of reactants. As droplet composition can be made identical, 
numerous identical experiments can be performed, enabling a reliable statistical approach to 
data. 

II.2. Flow properties 
In droplet-based microfluidics, a continuous fluid and a dispersed fluid are injected separately 
and then mixed in a junction. Fluids are Newtonian and droplets of the dispersed fluid are 
generated in the flow of the continuous fluid. The physicochemical properties influencing 
droplet formation are density, dynamic viscosity, surface tension between the continuous and 
the dispersed fluids, velocity of the flows and characteristic dimensions of the microfluidic 
system, such as the diameter of channels (D) for cylindrical microfluidic systems. Based on 
these properties, fluid dynamics is characterized as follows: 

1- Inertial forces and viscous forces are compared through the Reynolds number, 

calculated using the continuous fluid properties: density (C), dynamic viscosity (µC) 
and flow velocity (vC). 

𝑅𝑒 =
𝜌𝐶×𝑣𝐶×D

𝜇𝐶
       (1) 
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Typically for microfluidics, values of Re are lower than 1: the flow is laminar and the 
effect of inertia can be ignored. Thus the average velocity v is evaluated from D and 
the volumetric flow rate Q as follows:  

𝑣 =
𝑄

𝜋(D/2)2
 (2) 

 

2- The generation of droplets in a microfluidic junction creates a free interface between 

the two fluids, characterized by the interfacial energy CD. The corresponding capillary 
effects are in competition with gravity effects. The length above which gravity effects 
dominate capillary effects is the capillary length lc: 

𝑙𝑐 = √
𝛾CD

Δρ×𝑔
 (3) 

with g the gravity acceleration and Δρ the difference in density between the two fluids. 
For instance, with fluorinated oil FC70 as the continuous fluid and ethanol as the 
dispersed fluid, lc is equal to 2.4 mm (Zhang et al., 2015). Hence gravity does not 
influence the deformation of the interfaces in millimetric or sub-millimetric channels. 

 

3- Shear stress and interfacial energy are compared through the capillary number Ca. 
When generating droplets of a dispersed fluid in a continuous fluid, Ca is usually 

calculated using vC and µC of the continuous fluid, and CD of the interface between the 
continuous and the dispersed fluid:  

Ca =
𝜇𝐶×𝑣𝐶

𝛾CD
 (4) 

II.3. Microfluidic geometry 
Microfluidic devices can be in the form of either chips with  microchannels and junctions 
produced by soft lithography, or an assembly of capillaries and junctions (Ren et al., 2013). In 
terms of materials, polydimethylsiloxane (PDMS) is the most commonly used for microfluidic 
chips (Liu et al., 2006; Zhang et al., 2006). For capillaries, both glass (Baroud et al., 2010; Hu 
et al., 2012)  and fluoropolymer can be used. (Trivedi et al., 2009; Zhang et al., 2020) 
The channel geometry of a microfluidic device influences droplet generation. Three frequently 
used geometries are “cross-flow”, “co-flow” and “flow-focusing” (Figure 3). 

II.3.1. Cross-flow 
For cross-flow geometry, continuous fluid and dispersed fluid mix with an angle θ (0° < θ ≤ 
180°) at the junction (Figure 3 (a)). Where the two fluids meet, first an interface is formed due 
to the immiscibility of the two fluids. Shear force then pushes the head of the dispersed fluid 
into the continuous fluid until a part breaks off: the droplet is formed. Then it circulates in the 
channel of the continuous fluid. (Teh et al., 2008)  

Cross-flow geometry is often called T-junction geometry, where two fluids flow orthogonally 
(Figure 3 (a) i). However, other shapes of junctions can also be used, such as a junction with 
an arbitrary angle θ (Figure 3 (a) ii), or a Y-shaped junction (Figure 3 (a) iv). For two fluids facing 
each other (θ = 180°, Figure 3 (a) iii), the geometry is called “head-on”. A combination of two 
junctions (Figure 3 (a) v, vi) can also be used to introduce two different dispersed fluids and 
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one continuous fluid. Cross-flow geometry is widely used due to its ease of assembly and 
handling. (Seemann et al., 2011; Zhu and Wang, 2017)  

 

 

Figure 3. Schematic illustrations (a) “cross-flow”, (b) “co-flow” and (c) “flow-focusing” geometries for 
a microfluidic device. Q and w denote respectively flow rate and channel width. Subscripts d, c, o and 
or denote respectively dispersed fluid, continuous fluid, outlet channel and orifice. Figure reprinted 
with permission from Reference (Zhu and Wang, 2017)  

 

II.3.2. Co-flow 
For co-flow geometry, two immiscible fluids flow in two concentric channels (Figure 3 (b)). 
Droplets are formed at the outlet of the inner channel. 

 

II.3.3. Flow-focusing 
Flow-focusing geometry is actually similar to co-flow geometry. The distinction presented in 
the literature (Zhu and Wang, 2017) is somewhat ambiguous, leading some to consider flow-
focusing as a special co-flow geometry. (Seemann et al., 2011) For flow-focusing geometry, 
two immiscible fluids are focused through an orifice, which allows smaller droplets to be 
generated than with co-flow geometry. 
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II.4. Droplet generation regime 
For each geometry, droplets can be generated following three different break-off mechanisms. 
The transition from one mechanism to another can be achieved by varying capillary numbers 
Ca. (Zhu and Wang, 2017) Figure 4 shows an example of three mechanisms for a cross-flow 
geometry. 

 

Figure 4. Three break-off mechanisms of droplet generation with a cross-flow geometry: (a) squeezing, 
(b) dripping and (c) jetting. The arrow indicates the droplet flow direction. Figure reprinted with 
permission from Reference (Zagnoni et al., 2010). Copyright 2010 American Chemical Society.  

II.4.1. Squeezing 
As Figure 4 (a) shows, as it is injected into the principal channel, the dispersed fluid is pushed 
forward by the continuous fluid. A thin “neck” is thus formed. Because the continuous fluid 
applies weak shear force, the forming droplet reaches the opposing channel wall without 
breaking off. The neck becomes thinner until it breaks, so that a plug-shaped droplet confined 
by channel wall is formed. Squeezing mechanism appears when Ca is low (Ca ≤ 0.01). (De 
Menech M. et al., 2008) 

 

II.4.2. Dripping 
As Figure 4 (b) shows, the shear force applied is now higher. The forming droplet breaks off 
before touching the opposing channel wall. A spherical droplet is formed with a diameter 
smaller than that of the channel. This dripping mechanism appears at a higher Ca (Ca ≥ 0.02). 
(De Menech M. et al., 2008) 

II.4.3. Jetting 
As Figure 4 (c) shows, a liquid jet is emitted from the dispersed fluid channel. It flows and 
remains attached to the channel wall, due to a strong shear force from the continuous fluid. 
(Christopher and Anna, 2007) The jet breaks up into droplets at the end because of Rayleigh-
Plateau instability. (Zhu and Wang, 2017) Droplets of polydisperse sizes are formed. This 
jetting mechanism appears at the highest Ca (Ca ≈ 0.2). 

III. Gelation 
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III.1. Internal gelation 
For internal gelation, crosslinking agents are either soluble or insoluble/slightly soluble in 
water. 

III.1.1. Water-soluble crosslinking agents 
With water-soluble crosslinking agents such as calcium chloride or barium chloride, alginate is 
crosslinked directly at the interior of droplets. These agents are mixed with Na-alginate before 
or after droplet generation, using different strategies, as presented below in detail. 

III.1.1.1. Mixing crosslinking agents before droplet generation 
Trivedi et al. worked on cell encapsulation by alginate hydrogel microparticles. (Trivedi et al., 
2009) For the preparation of microparticles, an aqueous solution of cell-containing Na-
alginate (1 %) and a solution of barium chloride (50 mM) were injected into the capillary and 
mixed via a Y-shaped junction (Figure 5 (a)). At the exit from the mixing region, highly viscous 
silicone oil (10 centistokes) without surfactant was injected by flow-focusing in order to 
generate droplets. However, the mixing of Na-alginate and barium cations triggered ionic 
crosslinking, causing gelation which impacted droplet generation. Finally, instead of 
generating droplets as expected, a jet of gel was produced with a partially formed droplet 
head and a long gelatinous tail (Figure 5 (b)). 

 

Figure 5. (a) Schematic diagram of mixing Na-alginate/cells and barium chloride solutions before 
droplet generation in a microfluidic device assembled from fluoropolymer capillaries and junctions. (b) 
Image of the jet of gel produced in oil. Figure reprinted from Reference (Trivedi et al., 2009) 

The problem can be solved by using low concentrations of Na-alginate and calcium chloride 
solutions. In this case, gelation proceeds after droplet generation and is enhanced by using 
partially miscible fluids. Rondeau and Cooper-White used dimethyl carbonate (DMC) as the 
continuous fluid (Rondeau and Cooper-White, 2008) (Figure 6). The solubility of water in DMC 
is about 3 wt% at room temperature. (Stephenson and Stuart, 1986) Aqueous solutions of Na-
alginate (0.5 wt%) and calcium chloride (0.25 wt%) were injected respectively from inlets A 
and B (Figure 6 (a)). After a short pre-gelation channel, DMC was injected from inlet C. Na-
alginate/CaCl2 droplets were generated in DMC (no mention of surfactant usage) by flow-
focusing. Along the serpentine channel, because of the low solubility of water in DMC, water 
diffused gradually from droplets into DMC, causing the shrinkage of droplets along the 
channel. Internal gelation occurred at the same time. Microparticles with a diameter of 20µm 
were observed at the outlet of the channel and collected in an aqueous solution of calcium 
chloride (2N) to reinforce the gelation (Figure 6 (b)). The diameter of Ca-alginate hydrogel 
microparticles was influenced by the experimental parameters such as the initial 
concentration of Na-alginate, flow rates of fluids and channel size.  
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Figure 6. (a) Schematic diagram of a PDMS-based microfluidic device using DMC as the continuous fluid 
in which water is partially soluble. Droplet shrinkage is observed for an initial concentration of Na-
alginate of 0.5 wt%. (b) Micrograph of Ca-alginate hydrogel microparticles collected in an aqueous 
solution of calcium chloride. Figure reprinted with permission from Reference (Rondeau and Cooper-
White, 2008). Copyright 2008 American Chemical Society. 

Following the work of Rondeau and Cooper-White, we tested, in a T-junction (Figure 7), the 
direct generation of droplets of Ca-alginate in dimethyl carbonate (DMC) without surfactant 
from a mixture of more diluted Na-alginate and calcium chloride solutions (both at 0.06 wt% 
after mixing). However, this solution was not clear and local gelification was occasionally 
observed with the naked eye. When these gels entered the channel, droplets were generated 
in a discontinuous way. This indicates that, even at very low concentrations, thorough mixing 
of Na-alginate and calcium chloride solutions leads to gelation, disturbing droplet generation.  

 

Figure 7. Schematic diagram of the generation of droplets of Ca-alginate with DMC as the continuous 
fluid and an aqueous mixed solution of Na-alginate and CaCl2 as the dispersed fluid. The arrow indicates 
the flow direction. 

 

To deal with this issue, Zhang et al. experimented with reducing the mixing region before 
droplet generation. (Zhang et al., 2006) Using a 5-channel microfluidic device, they mixed Na-
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alginate fluid (0.5 wt%), calcium chloride fluids (0.1 wt%) and mineral oil fluids with a 
surfactant (Span 80, no concentration mentioned) as shown in Figure 8. Droplets were 
generated by co-flow. However, instead of producing discrete droplets, a line of knots 
connected with each other was formed. This phenomenon persisted with a wide range of flow 
rates of oil due to viscosity which increased instantly when Na-alginate and calcium chloride 
were mixed, because of  rapid gelation. It was therefore difficult to generate droplets at the 
junction, despite the use of surfactant. 

 

Figure 8. Image of connected knots formed after mixing Na-alginate and calcium chloride solutions in 
mineral oil with surfactant, in a PDMS-based microfluidic chip. Figure reprinted with permission from 
Reference (Zhang et al., 2006). Copyright 2006 American Chemical Society.  

 

In a microfluidic device (Figure 9) of similar design to Zhang et al., we were able to generate 
discrete droplets by using extremely diluted solutions of Na-alginate (0.006 wt%) and calcium 
chloride (0.002 wt%). The continuous fluid was dimethyl carbonate (DMC) without surfactant. 
Droplets were observed after the cross-junction (point A in Figure 9 (a)). Since they were 
relatively close to each other in the channel, causing coalescence at the outlet (point B in 
Figure 9 (a)), a second flow of DMC was introduced as a spacer using a T-junction. When the 
second DMC flow rate was relatively low, the generation of droplets upstream was not 
disturbed, so that droplets were uniform (Figure 9 (b)). However, the coalescence at the outlet 
persisted. Thus, high second DMC flow rates were applied to sufficiently increase the distance 
between droplets. Nevertheless, this quickly disturbed the generation of droplets upstream, 
as indicated by heterogeneities in droplet size and frequency (Figure 9 (c)). Using surfactant 
would solve this problem. 
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Figure 9. (a) Schematic diagram of generating Ca-alginate droplets in dimethyl carbonate (DMC) using 
a cross-junction. The T-junction served to introduce DMC as a spacer to increase the distance between 
droplets. Micrograph of droplets observed at point A when (b) the generation of droplets was not 
disturbed by introducing the spacer and (c) when it was disturbed. 

Thus, in most cases where immiscible fluids are used, mixing Na-alginate and water-soluble 
crosslinking agents prior to droplet generation is not an efficient approach due to gelation. 
This problem can be solved by using partially miscible fluids, which makes it possible to apply 
lower concentrations of Na-alginate and water-soluble crosslinking agents. However mixing 
should be limited to achieve incomplete pre-gelation. Another possible solution consists of 
using extremely diluted aqueous solutions of Na-alginate and crosslinking agents, which 
requires the use of surfactant to avoid coalescence. Other strategies involve performing the 
gelation after the droplet generation. 

 

III.1.1.2. Mixing crosslinking agents after droplet generation 
Xu et al. prevented rapid gelation by delaying the direct contact between Na-alginate and 
calcium cations. (Xu et al., 2008) In a first cross-junction, two face-to-face channels were used 
to introduce calcium chloride (2 wt%) and Na-alginate (2 wt%) solutions (Figure 10 (a)) 
perpendicularly to a flow of water. Thus, after the first cross-junction, a flow of water (acting 
as a buffer) separates the flows of Na-alginate and calcium chloride. Then octyl alcohol oil (no 
mention of surfactant) was injected at a second cross-junction. Droplets of Na-alginate/CaCl2 
were generated by flow-focusing. In the “synthesizing channel” (Figure 10 (a)), within each 
droplet, mixing Na-alginate and calcium chloride induced internal gelation. In this way 
droplets were transformed into Ca-alginate hydrogel microparticles (Figure 10 (b)). 
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Figure 10. (a) Schematic diagram of Ca-alginate hydrogel microparticles prepared in a poly(methyl 
methacrylate) (PMMA) based microfluidic device. (b) Micrographs of Ca-alginate hydrogel 
microparticles. Figure reprinted with permission from Reference (Xu et al., 2008) 

 

Another strategy to delay gelation was carried out by Liu et al. (Liu et al., 2006) involving 
coalescence of Na-alginate droplets with calcium chloride droplets generated separately. First, 
on a microfluidic chip (Figure 11 (a)), Na-alginate (2 wt%) droplets (Figure 11 (b)) and calcium 
chloride (2 wt%) droplets (Figure 11 (c)) were generated in soybean oil without surfactant by  
flow-focusing using two independent cross-junctions. Then droplets converged via a T-
junction (Figure 11 (d)) followed by two successive circular expansion chambers (Figure 11 (d, 
e)). Thus, droplets could collide either at the T-junction or in circular chambers. Within the 
coalesced droplets, Na-alginate was crosslinked by calcium cations forming Ca-alginate 
hydrogel microparticles. With different flow rates and channel geometries, various shapes and 
sizes of microparticles could be produced (Figure 11 (f)). 
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Figure 11. (a) Schematic diagram of the PDMS-based microfluidic device. (b) Flow-focusing channel to 
generate alginate droplets. (c) Flow-focusing channel to generate CaCl2 droplets. (d) T-junction 
followed by a first circular expansion chamber. (e) A second circular expansion chamber. (f) Ca-alginate 
hydrogel microparticles of different shapes and sizes. Figure reprinted with permission from Reference 
(Liu et al., 2006). Copyright 2006 American Chemical Society. 

 

Droplets could also be coalesced by exploiting physicochemical parameters between the 
continuous fluid and the dispersed fluid. (Trivedi et al., 2010; Trivedi et al., 2009) As shown in 
Figure 12 (a), droplets of Na-alginate (1 wt%) containing cells were generated upstream in a 
highly viscous silicone oil (10 centistoke) by flow-focusing without surfactant. An aqueous 
solution of barium chloride (50 mM) was injected downstream by a T-junction. With the help 
of dye, observations at the T-junction indicated that barium chloride fluid merged 
spontaneously with Na-alginate/cells droplets (Figure 12 (b)), instead of forming independent 

barium chloride droplets. However, when using low-viscosity and low-interfacial energy CD 
soybean oil, independent droplets of barium chloride were observed (Figure 12 (c)). They 
coalesced downstream with Na-alginate/cells droplets. This implied that successful 
coalescence of droplets could only take place with appropriate interfacial energy and viscosity 
(Trivedi et al., 2009) 
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Figure 12. (a) Schematic diagram of Ba-alginate microparticle preparation for cell encapsulation in a 
microfluidic device assembled from fluoropolymer capillaries and junctions. Droplets observed at the 
T-junction when (b) highly viscous silicone oil (10 centistoke) and (c) low-viscosity soybean oil is used 
as the continuous fluid.  Figure reprinted from Reference (Trivedi et al., 2010). 

 

III.1.2. Water insoluble or weakly soluble crosslinking agents 
In the case of crosslinking agents insoluble or weakly soluble in water, mixing them with 
alginate in water does not lead to instant gelation since there are no available cations. In the 
case of crosslinking agents which are pH-sensitive, such as calcium carbonate (CaCO3), an acid 
is used in the continuous fluid to release the cations from inert crosslinking agents. Therefore, 
gelation by the available cations happens after droplet generation. 

In the work of Zhang et al. (Zhang et al., 2007), fine particles of CaCO3 (0.1 wt%) were dispersed 
in an aqueous solution of Na-alginate (2 wt%). Soybean oil with a surfactant (Span 80, 3 wt%) 
and containing acetic acid (5 wt%) was used as the continuous fluid (Figure 13 (a)). Droplets 
of Na-alginate/CaCO3 were generated by flow-focusing in soybean oil/acetic acid (Figure 13 
(b)). Droplets pH decreased because of the acetic acid in the oil. As a result, calcium cations 
were released from calcium carbonate, causing internal gelation of the alginate. Finally, Ca-
alginate hydrogel microparticles were collected in oil (Figure 13 (c)). However, when collected 
on a substrate they had a “pancake” shape and were soluble in aqueous solution owing to 
insufficient gelation. Moreover, no improvement was observed from increasing the 
concentration of acetic acid or that of CaCO3. A higher concentration of CaCO3 particles would 
give rise to their aggregation in the channel. (Zhang et al., 2007) 
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Figure 13. (a) Schematic diagram of the preparation of Ca-alginate hydrogel microparticles by using 
calcium carbonate to perform internal gelation of alginate in a PDMS-based microfluidic device. 
Micrograph of (b) droplets generated in the channel and (c) Ca-alginate hydrogel microparticles 
collected in oil. Figure reprinted with permission from Reference (Zhang et al., 2007) 

 

The same principle was also applied by Akbari and Pirbodaghi to prepare cell-encapsulating 
microparticles (Figure 14). (Akbari and Pirbodaghi, 2014) At a first T-junction, a fluid of Na-
alginate (1.5 wt%) containing cells flowed into the middle channel (Figure 14 (a)), while the 
Na-alginate fluid (1.5 wt%) containing CaCO3 nanoparticles (35 mM) was introduced by two 
side channels (Figure 14 (b)). This geometry was used to create a coaxial stream while avoiding 
direct mechanical contact between cells and the potentially damaging CaCO3 particles. At a 
second T-junction, fluorocarbon oil with surfactant (fluorinated surfactant, 1 wt%) was 
injected. Droplets of Na-alginate/cells/CaCO3 were then generated by flow-focusing. After 
droplet collection, acetic acid (0.1 vol%) dissolved in oil was added to release calcium cations 
within droplets, causing gelation of alginate. Droplets were thus transformed into Ca-alginate 
hydrogel microparticles, some with cells encapsulated (Figure 14 (c)). 
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Figure 14. (a) Schematic diagram of a PDMS-based microfluidic device for the generation of droplets. 
(b) Micrograph of the two T-junctions in the microfluidic device. (c) Confocal microscopic image of Ca-
alginate hydrogel microparticles, some with cells encapsulated (Green fluorescence represents live 
cells stained by calcein AM). Figure reprinted with permission from Reference (Akbari and Pirbodaghi, 
2014) 

In order to obtain a homogeneous internal structure of hydrogel microparticles, Utech et al. 
used a slightly water-soluble calcium-ethylenediaminetetraacetic acid (Ca-EDTA) complex as 
the crosslinking agent (Utech et al., 2015). An aqueous solution of Na-alginate (2 wt%) mixed 
with Ca-EDTA (50x10-3M) was first prepared. This homogeneous mixture was used as the 
dispersed fluid for the microfluidic system. The continuous fluid was a fluorinated carbon oil 
with a biocompatible surfactant (1 wt%) containing acetic acid (0.05 vol%). Droplets of Na-
alginate/Ca-EDTA were generated in oil/acetic acid by flow-focusing (Figure 15 (a)). Due to the 
use of acetic acid, calcium cations were released from Ca-EDTA in each droplet (Figure 15 (b)), 
causing internal gelation of the alginate. The Ca-alginate hydrogel microparticles formed 
(Figure 15 (c)) had a homogeneous internal structure and were stable in an aqueous medium 
without dissolution. It should be noted that, the solubility of Ca-EDTA in water being low (0.26 
M at 20°C), the concentration of Ca-EDTA in the Na-alginate solution was limited in order to 
keep the solution homogeneous. 

 

Figure 15. (a) Micrograph of the T-junction in a microfluidic device, where droplets of Na-alginate/Ca-
EDTA were generated in oil/acetic acid. (b) Schematic illustration of the crosslinking process in each 
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droplet. (c) Micrograph of Ca-alginate hydrogel microparticles in an aqueous medium. Figure reprinted 
with permission from Reference (Utech et al., 2015) 

In conclusion, internal gelation of alginate can be realized by using crosslinking agents that are 
soluble or insoluble/slightly soluble in water. When water-soluble crosslinking agents are used, 
the instant gelation can disturb droplet generation. The problem can be solved by using 
partially miscible fluids with limited mixing prior to droplet generation, or by using extremely 
diluted solutions and surfactant. 

If water-insoluble/slightly soluble crosslinking agents are used, they are mixed with alginate 
before droplet generation. For pH-sensitive cross-linking agents, acid is then needed to release 
cations, after which internal gelation takes place. A homogeneous microparticle internal 
structure can be achieved by choosing appropriate crosslinking agents. However, because of 
low solubility in water, it is important to limit the concentration of crosslinking agents to avoid 
precipitates in the channel. 

 

III.2. External gelation 
In external gelation, crosslinking agents come from outside the alginate droplets and are 
diffused into the alginate droplets or the microparticles formed, inducing crosslinking. Unlike 
internal gelation, in which crosslinking agents are always introduced “on-chip” (in the 
microfluidic device), in external gelation, crosslinking agents can be introduced both “on-chip” 
and/or “off-chip” (outside the microfluidic device). 

 

III.2.1. On-chip introduction of crosslinking agents 
Crosslinking agents can be introduced on-chip, contained in the continuous fluid, as described 
in Zhang et al. (Zhang et al., 2007) Calcium acetate (Ca(CH3COO)2, 2 wt%) was dissolved in 
soybean oil, the continuous fluid. In the microfluidic device detailed previously (III.1.2.), Na-
alginate (2 wt%) droplets were generated by flow-focusing (Figure 16 (a)) in oil/calcium 
acetate, with surfactant (Span 80, 3 wt%). Calcium acetate diffused and dissolved in Na-
alginate droplets along the channel (Figure 16 (b)), causing external gelation on-chip. Finally, 
Ca-alginate hydrogel microparticles were collected in oil (Figure 16 (c)). They showed better 
stability in an aqueous medium and had a higher Young’s modulus compared with those 
produced by internal gelation (III.1.2.). Consequently, stronger gelation was achieved by 
external gelation. 
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Figure 16. (a) Schematic diagram of the preparation of Ca-alginate hydrogel microparticles via on-chip 
external gelation in a PDMS-based microfluidic device. Micrographs of Ca-alginate hydrogel 
microparticles (b) in the downstream channel and (c) in the collecting container in soybean oil. Figure 
reprinted with permission from Reference (Zhang et al., 2007) 

 

Smaller microparticles can be obtained without necessarily reducing channel size, by using 
partially miscible fluids. Sugaya et al. used methyl acetate as the continuous fluid. (Sugaya et 
al., 2011) Na-alginate (0.025-0.15 wt%) droplets were generated in methyl acetate (no 
mention of surfactant usage) by flow-focusing (Figure 17 (a)). In the following channel, 
because of the solubility of water in methyl acetate (8 wt%), water dissolved gradually from 
the droplets into methyl acetate. Thus, the droplets shrank and became more concentrated 
downstream. Calcium chloride solution (1M) was then injected by side channels and flowed 
with the droplets by co-flow. Calcium cations diffused into the droplets, inducing on-chip 
external gelation of alginate. Finally, Ca-alginate hydrogel microparticles with a diameter of 
less than 20µm were obtained (Figure 17 (b)).  

 

Figure 17. (a) Schematic diagram of a PDMS-based microfluidic device for the preparation of Ca-
alginate hydrogel microparticles using methyl acetate as the continuous fluid, in which water is 
partially soluble. (b) Micrograph of Ca-alginate hydrogel microparticles collected in water. Figure 
reprinted from Reference (Sugaya et al., 2011)  
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III.2.2. Off-chip introduction of crosslinking agents 
The crosslinking agent can be introduced off-chip, as done by Hu et al. (Hu et al., 2012) to 
study the influence of external gelation conditions on the shape of microparticles. Na-alginate 
(1.5 wt%) droplets were first generated in n-decanol with surfactant (Span 80, 5 wt%), using 
concentric glass capillaries (Figure 18 (A)). For off-chip external gelation, droplets were 
collected in a two-phase gelation bath: the upper phase of n-decanol with surfactant (Span 80, 
5 wt%) containing calcium chloride (15 wt%) allowed for pre-gelation of alginate; the bottom 
phase, an aqueous solution of barium acetate (15 wt%), strengthened the gelation. Glycerol 
(0-70 wt%) was added to the bottom phase to regulate viscosity. Ca-alginate hydrogel particles 
of different shapes (Figure 18 (B)) were obtained by varying gelation conditions such as the 

interfacial energy CD, the concentration and type of surfactant, the height h between the end 
of the capillary and the surface of the gelation bath, and the viscosity of the bottom phase in 
the gelation bath. The shape of microparticles was shown to depend on forces applied to the 
surface of droplets when they passed through the interface in the gelation bath. The force 

from CD maintains the spherical form of droplets, while the viscous force causes deformation. 
The final shape resulted from the overall effect of these two forces. (Hu et al., 2012) 

 

Figure 18. (A) Schematic diagram of the preparation of Ca-alginate hydrogel microparticles using a 
microfluidic device constructed with glass capillaries, and off-chip gelation in a two-phase gelation bath. 
(B) Micrographs of Ca-alginate hydrogel microparticles of different shapes prepared under different 
experimental conditions. Figure reprinted with permission from Reference (Hu et al., 2012) 
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In our group, we also collected Na-alginate droplets in an aqueous solution containing calcium 
chloride (Figure 19 (a)) for off-chip introduction of the crosslinking agent, but without pre-
gelation. Na-alginate (0.06 wt%) droplets were first generated in dimethyl carbonate (DMC) 
in a T-junction, without using surfactant. The channel outlet (point B in Figure 19 (a)) was 
immersed in an aqueous solution of calcium chloride (0.1-1 wt%). An interface was created at 
the channel outlet (Figure 19 (b)) because of the non-total miscibility between DMC and water. 
Na-alginate droplets passed through the interface and entered the calcium chloride solution, 
leading to off-chip external gelation. After gelation, Ca-alginate hydrogel microparticles were 
droplet-shaped (Figure 19 (c)) and tadpole-shaped (Figure 19 (d)), as in Figure 18 (B, b-c). The 
shape of the microparticles varied with the flow rates, the concentration of Na-alginate and 
that of calcium chloride. It is likely that the deformation mechanism involved the forces 
applied to droplets at the interface, as explained by Hu et al. (Hu et al., 2012) 

 

Figure 19. (a) Schematic diagram of the preparation of Ca-alginate hydrogel microparticles by off-chip 
external gelation without pre-gelation. Droplets were generated using a microfluidic device assembled 
from fluoropolymer capillaries and a T-junction. Micrographs of (b) the channel outlet immersed in an 
aqueous solution of calcium chloride; Ca-alginate hydrogel microparticles prepared by collecting 
droplets in an aqueous solution of calcium chloride at concentrations of (c) 1 wt% and (d) 0.1 wt%. 

 

Off-chip external gelation can also be performed as a separate step after extraction of Na-
alginate microparticles from the collecting bath. In Zhang et al. (Zhang et al., 2020), Na-
alginate (0.006-1 wt%) droplets were generated in dimethyl carbonate (DMC) without 
surfactant by a T-junction (Figure 20 (a)). Because water is slightly soluble in DMC, 3 wt%, 
water diffused gradually from droplets into DMC, causing the droplets to shrink as they passed 
through the channel. Furthermore, since alginate dissolution in the continuous fluid can be 
ignored (Rondeau and Cooper-White, 2008), with the loss of water, the alginate concentration 
in droplets increased. Collected in DMC, droplets continued to shrink and were finally 
transformed into spherical condensed Na-alginate microparticles. After evaporation of DMC 
in air, an aqueous solution of calcium chloride (0.5-10 wt%) was added to the dried Na-alginate 
microparticles, inducing off-chip external gelation. Observations showed that this process was 
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accompanied by the swelling of the microparticles without deformation (Figure 20 (b-c)). In 
the end, spherical Ca-alginate hydrogel microparticles were obtained. They were insoluble in 
water, indicating efficient gelation. Moreover, the concentration of calcium chloride had no 
significant effect on the size of the Ca-alginate microparticles. 

 

Figure 20. (a) Schematic diagram of a two-step preparation of Ca-alginate hydrogel microparticles 
using a microfluidic device constructed from fluoropolymer capillaries and junctions. Micrographs of 
(b) dried Na-alginate microparticles in air and (c) corresponding Ca-alginate microparticles after 
gelation in calcium chloride solution. Figure reprinted and adapted with permission from Reference 
(Zhang et al., 2020) 

 

In conclusion, external gelation of alginate can be performed both on-chip and off-chip. For 
on-chip external gelation, crosslinking agents can be added in the continuous fluid, i.e. the oil. 
However, as for ionic crosslinking (Chapter I.2), limited concentrations of crosslinking agents 
can be used, since most of them are slightly soluble in oil. On the other hand, if partially 
miscible fluids are used, after droplet shrinkage in oil, aqueous solutions of crosslinking agents 
can be injected downstream and flow coaxially with droplets. 

For off-chip external gelation, since crosslinking agents can be dissolved in an aqueous 
solution, their concentrations can vary over a much larger range. Ca-alginate microparticles 
can be deformed owing to the non-total miscibility between the oil phase and the aqueous 
solution. However, it remains possible to produce spherical microparticles by controlling 
experimental conditions and methods. Thus, off-chip external gelation can be used to produce 
shape-controlled microparticles. 

 

IV. Properties of alginate hydrogel microparticles 
After preparation, alginate hydrogel microparticles should be characterized to obtain better 
knowledge of their properties, which will determine their further applications. This section 
discusses characterization approaches and factors influencing particle properties. 
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IV.1. Size 
Size is one of the most important properties of alginate hydrogel microparticles. For example, 
in drug delivery, microparticle size and size distribution affect drug release kinetics. (Uyen et 
al., 2020) Size can be measured by optical or light-scattering (sub-micrometer range) 
microscopy (Joye and Mcclements, 2014), or using microgrippers. (Zhang, 2020) 

Droplet-based microfluidics allows monodisperse microparticles to be produced with accurate 
control of size and size distribution. Table 1 shows the average size attained under droplet-
based microfluidics using different gelation methods. Figure 21 shows an example of the 
narrow size distribution of Na-alginate and Ca-alginate microparticles produced by droplet-
based microfluidics (Zhang et al., 2020), indicating the monodispersity of the particle size. This 
is an advantage compared to conventional emulsification, which yields a broader size 
distribution. (Xu et al., 2009)  

Table 1. Average size of alginate microparticles prepared using droplet-based microfluidics 
with different gelation methods. 

Average size of 
microparticles 

Gelation method Reference 

1-50 µm 
10-300 nm 

Internal gelation with water-soluble 
crosslinking agents mixed with Na-
alginate before droplet generation 

Rondeau and Cooper-White 
2008* 

50-300 µm 

Internal gelation with water-soluble 
crosslinking agents mixed with Na-
alginate after droplet generation 

Xu et al. 2008 

20-50 µm Liu et al. 2006 

22-42 µm Trivedi et al. 2009 

60-100 µm Internal gelation with water-insoluble 
crosslinking agents mixed with Na-
alginate after droplet generation 

Zhang et al. 2007 

26 µm Akbari and Pirbodaghi 2014 

10-50 µm 
Internal gelation with slightly water-

soluble crosslinking agents mixed with 
Na-alginate after droplet generation 

Utech et al. 2015 

50-70 µm 
External gelation with on-chip 

introduction of crosslinking agents 

Zhang et al. 2007 

6-10 µm Sugaya et al. 2011* 

100-200 µm 
External gelation with off-chip 

introduction of crosslinking agents 
Hu et al. 2012 
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7-40 µm Zhang et al. 2020* 

* Partially miscible fluids were used. 

 

Figure 21. Size distribution of microparticles of Na-alginate (blue) and Ca-alginate (orange) produced 
using droplet-based microfluidics. The curves show Gaussian fitting. Figure reprinted and adapted with 
permission from Reference (Zhang et al., 2020) 

 

With droplet-based microfluidics, the size of alginate hydrogel microparticles is influenced by 
several factors linked to the fluids used to generate them. When immiscible fluids are used, 
the size of alginate hydrogel microparticles is completely dependent on the size of the droplets 
first generated. Droplet size is influenced by channel size, and smaller droplets can be 
generated by using narrower channels. Other important factors are flow rates, alginate 
concentration (Rondeau and Cooper-White, 2008; Zhang et al., 2020), and fluid viscosities. 
(Seemann et al., 2011; Teh et al., 2008) However, reducing channel size increases hydraulic 
resistance, as well as the pressure required to generate droplets. Moreover, it should be noted 
that in most cases, the Na-alginate solution used is relatively viscous. Therefore, high pressure 
may cause leakage or even destruction of the microfluidic device. (Akbari and Pirbodaghi, 
2014; Utech et al., 2015) Thus, even when channel diameter is decreased and/or the flow rate 
of the continuous fluid is increased, producing droplets of a diameter below 10 µm remains 
challenging.  

Droplets of this size can be obtained without applying high pressure (Table 1), by using 
partially miscible fluids with low solubility in each other. (Rondeau and Cooper-White, 2008; 
Sugaya et al., 2011; Zhang et al., 2020) The dispersed fluid is an aqueous solution containing 
Na-alginate; the continuous fluid is an organic solvent that is partially miscible with water and 
in which water has low solubility. The partial miscibility between the continuous and the 

dispersed fluids should be slight enough so that interfacial energy CD still allows the 
generation of droplets. The low solubility of water in the continuous fluid allows water 
diffusion from droplets into it, causing the droplets to shrink. As a result, the initially-obtained 
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diluted large droplets are transformed into concentrated small droplets or microparticles. 
Thus, their size is no longer dependent on the size of droplets initially generated, but varies 
with the interaction between water and the continuous fluid. 

 

IV.2. Shape 
The shape of microparticles is another important property. A specific shape is sometimes 
needed; for example, red blood cell-mimicking microparticles are often required in a 
biconcave shape. (Merkel et al., 2011) In drug delivery, the shape of microparticles has an 
impact on the drug-release profile. (Freiberg and Zhu, 2004) The overall shape of 
microparticles can be observed by using optical microscopy. Confocal microscopy of 
fluorescent samples can be used to form a spatial 3D image. (Joye and Mcclements, 2014) 
Better resolution can be obtained by using atomic force microscopy (AFM) or scanning 
electron microscopy (SEM). (Zhang et al., 2020) 

With droplet-based microfluidics, the spherical droplets initially generated can be 
transformed into spherical alginate hydrogel microparticles after gelation. Non-spherical 
microparticles can also be obtained. For example, as presented previously, Liu et al. first 
generated droplets of Na-alginate and calcium chloride separately. (Liu et al., 2006) Then the 
droplets were fused in a specifically designed microfluidic device, leading to gelation. By 
varying the channel geometry and controlling the flow rates of fluids, Ca-alginate 
microparticles of different shapes were obtained (Figure 11 (f)). A different method was 
presented by Hu et al. (Hu et al., 2012) Na-alginate droplets were first generated and then 
collected in a two-phase gelation bath. Spherical droplets were deformed via interfacial 
energy derived from surfactant and viscous force. Thus, different shapes were produced 
(Figure 18 (B)) by controlling the surfactant used and the viscosity of the gelation bath. 

IV.3. Concentration 
After preparation, the concentration of alginate in the microparticles can be calculated 
approximately. For instance, Zhang et al. used partially miscible fluids. (Zhang et al., 2020) An 
aqueous solution of Na-alginate was prepared with a known concentration. After droplet 
generation, droplet shrinkage occurred during passage through the channel due to water 
diffusion into the continuous fluid. Droplets were hence transformed into microparticles. As 
the diffusion of Na-alginate into the continuous fluid is negligible (Rondeau and Cooper-White, 
2008), the quantity of Na-alginate is constant. It can be calculated by multiplying the droplet 
volume and initial concentration. Finally, by measuring microparticle size, the concentration 
of Na-alginate can be calculated. The final concentration of Na-alginate varies from 20 to 100 
wt%, depending on the initial concentration and diameter of the droplets generated. (Zhang 
et al., 2020) Furthermore, as presented in Utech et al., the homogeneity of composition of 
microparticles can be determined with the help of fluorescence technology. (Utech et al., 2015) 

IV.4. Stability 
In most cases, surfactant is added in the continuous fluid (Trivedi et al., 2009; Utech et al., 

2015; Zhang et al., 2007) to lower interfacial energy CD. Note that for each of the above 
studies, use or non-use of surfactant is mentioned when indicated by the authors. Surfactant 
facilitates the creation of a new interface, and thus the formation of droplets. It also stabilizes 
the formed droplets by preventing their coalescence. (Seemann et al., 2011) Before the 
application of microparticles, the surfactant should be dissolved (Akbari and Pirbodaghi, 2014), 
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except for biocompatible surfactant (Utech et al., 2015), although protocols for removing 
surfactant are rarely reported in the literature. To remove the oil used during the preparation, 
microparticles should be washed several times with an aqueous solution, followed by 
centrifugation. (Zhang et al., 2007) 

However, despite its advantages, the use of surfactant may be undesirable. Surfactant has 
been shown to impact the surface properties of microparticles, such as morphology (Sundberg 
et al., 1990) and surface hydrophobicity. (Kidane et al., 2002) Additionally, if rinsing is 
insufficient, the traces of surfactant on microparticles can damage the devices during 
application. In this situation, microparticles should be prepared without surfactant, which is 
possible with droplet-based microfluidics. In the microchannel, the coalescence of droplets 
can be avoided by enlarging the distance between droplets, which can be achieved by 
regulating flow rates. Furthermore, gelation, either on-chip or off-chip, solidifies droplets and 
thus helps to avoid coalescence as well. Another strategy consists of using partially miscible 
fluids. This means that the droplets shrink and become more and more condensed during 
passage through the channel. At the outlet, either gelation (Rondeau and Cooper-White, 2008) 
or a final shrinkage (Zhang et al., 2020) can help avoid coalescence. 

Moreover, for their stability, alginate hydrogel microparticles should be insoluble in water. 
This can be achieved by adopting proper gelation methods using a sufficient quantity of 
crosslinking agents for effective gelation. 

 

IV.5. Mechanical properties 
Mechanical properties of alginate hydrogel microparticles are usually characterized by 
measuring the Young’s modulus, which varies with several factors. According to the type of 
bond between alginate and crosslinking agents, covalent crosslinking results in a higher 
Young’s modulus than ionic crosslinking in microparticles. (Caccavo et al., 2018) For ionic 
crosslinking, different cations present different affinities, i.e. different forces with alginate, 
thus different Young’s moduli. (Mørch et al., 2006) In addition, the Young’s modulus increases 
with the concentration of alginate. (Markert et al., 2013)  To measure the Young’s modulus of 
a microparticle, it needs to be deformed under a known force, which can be either 
compressive or tensile. (Guevorkian and Maître, 2017) The techniques used in the literature 
include micropipette aspiration (Kleinberger et al., 2013), compression (Carin et al., 2003; 
Wang et al., 2005) or Atomic Force Microscopy (AFM). (Zhang et al., 2020; Zhang et al., 2007) 

 

IV.5.1. Micropipette aspiration technique 
In the micropipette aspiration technique, controlled pressure is used to pull on the sample 
surface. When this pressure is high enough, the sample behaves like a viscoelastic fluid flowing 
inside the micropipette. (Guevorkian and Maître, 2017) With a known pressure applied, the 
Young’s modulus is calculated via equations based on corresponding models. (Kleinberger et 
al., 2013) 

IV.5.2. Compression technique 
This technique consists in compressing a microparticle between two parallel plates (Carin et 
al., 2003) or between the flat end of a glass fiber and a glass surface. (Wang et al., 2005) A 
force transducer is connected to the equipment to measure the force applied. By varying the 
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force, microparticle deformation can be recorded. Finally, according to the force-deformation 
curve and equations based on theoretical models, the Young’s modulus is calculated. 

However, both the micropipette aspiration technique and the compression technique are 
unsuitable for microparticles with high resistance to deformation. (Zhang et al., 2020) In this 
case, Atomic Force Microscopy can be used. 

IV.5.3. Atomic Force Microscopy 
For Atomic Force Microscopy (AFM), the indentation depth (order of 100 nm) is generally 
about 100 times less than the diameter of the microparticle (order of 10 µm). Hence the 
Young’s modulus represents the local mechanical property on the surface, depending on the 
measuring point, as in Zhang et al. (Zhang et al., 2020) As the surface of their microparticles 
was smooth, variation in the local mechanical property was explained by the porous inner 
structure observed by Scanning Electron Microscopy (SEM) (Figure 22). 

 

Figure 22. SEM photographs of 2 Na-alginate microparticles (a) and (b), magnified 1000x (a1 and b1) 
and 5000x (a2 and b2). Na-alginate microparticles were prepared following the method mentioned in 
the publication (Zhang et al. 2020). Figure reprinted and adapted with permission from Reference 
(Zhang et al., 2020) 
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V. Conclusion 
This review focuses on a microparticle-producing technique widely used for its efficacy in 
controlling physicochemical properties: droplet-based microfluidics.  
To transform alginate microdroplets into alginate hydrogel microparticles, gelation is 
indispensable. It is realized by crosslinking, which requires crosslinking agents to be 
introduced either inside or outside the microdroplets, causing respectively internal gelation 
or external gelation. In external gelation, crosslinking agents can be introduced both “on-chip” 
and/or “off-chip” (outside the microfluidic device). The review describes the various strategies 
applied under this technique, and the size, shape, concentration, stability and mechanical 
properties of the alginate hydrogel microparticles obtained. 
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