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We report the first experimental observation of
doubly-periodic first-order solutions of the nonlinear
Schrödinger equation in optical fibers. We confirm, ex-
perimentally, the existence of A and B type solutions.
This is done by using the initial conditions that consists
of a strong pump and two weak sidebands. The evolu-
tion of power and phase of the main spectral compo-
nents is recorded using sophisticated heterodyne time-
domain reflectometry. Another important part of our ex-
periment is active loss compensation. With this setup,
we reach a good agreement between theory and experi-
ment. © 2020 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

The nonlinear Schrödinger equation (NLSE) describes the com-
bined action of second order dispersion and cubic nonlinearity
on a narrow-banded field envelope. It models wave evolution
in many fields of physics describing basic nonlinear phenomena
such as modulation instability (MI), which is at the origin of
more complex scenarios such as rogue waves [1] or supercontin-
uum generation [2]. MI describes the initial stages of growth of
a weak modulation at the expense of a strong continuous wave
(CW) background and is ubiquitous in physics [3]. The ampli-
fication eventually saturates and is followed by a return to the
initial state. Repeated cycles of growth and decay are referred
to as Fermi-Pasta-Ulam recurrence [4], which has been widely
investigated in hydrodynamics [5, 6] and optics [7–15]. In this
context, the family of analytical solutions of the NLSE known as
Akhmediev Breathers (AB) [16, 17] describes the nonlinear devel-
opment of MI and is recognised to be a good prototype for rogue
wave description [1]. These particular solutions of the NLSE
are periodic in time and localised (hyperbolic) in space. They
can be interpreted as the separatrices in an infinite-dimensional
phase space [8, 16]. As such, ABs account for a single stage of
growth to the apex and the asymptotic return to the initial state,
whereas they do not allow to predict the formation of multiple
recurrences observed in recent experiments [6, 7, 10–15].

Approximate expressions for the location of the first maximal
pulse compression point and for the spatial period as functions

of the excited input signal parameters have been obtained re-
cently by means of finite-gap theory and asymptotic expansions
[18]. However, exact description of these parameters requires
more general solutions. These expressions have been found by
Akhmediev et al., in the form of first-order doubly periodic so-
lutions [19]. The descriptive term ‘first-order’ means that the
real and imaginary parts of each solution of this family satisfy
a linear relationship, so that they describe a straight line in the
complex plane at each propagation step (see [19] for details).
The major properties of these solutions have been recently anal-
ysed in depth, and their Fourier coefficients that are important
for many applications have been calculated analytically in [20].
Particular solutions of the NLSE on a finite background such
as AB, Peregrine soliton, and Kuznetsov-Ma soliton are special
cases of this more general three-parameter family of solutions.
They have been observed in several experimental works [21, 22].

First-order solutions, in turn, can be subdivided in two types,
A or B, according to their location in the infinite-dimensional
phase space with respect to the separatrix represented by the
AB [6, 16]. These analytical solutions have not been observed
so far in any optical experiment due to the complexity of excit-
ing them in realistic experimental conditions. It is a challenge
to record both the phase and power evolution of the field and
its Fourier components required for a detailed comparison be-
tween experimental data and the theory. Dissipation having a
strong impact on the nonlinear stage of modulation instability
[6], another issue to address is the linear losses of fiber.

In this Letter, we report the first observation of these doubly-
periodic first-order solutions of the NLSE in an optical fiber.
Remarkably, we demonstrate that they can be excited with good
accuracy by simple three-wave initial conditions. The evolu-
tion of the power and phase along the fiber is recorded using a
sophisticated heterodyne time-domain reflectometer (HOTDR)
[12]. The optical losses inevitable in long fibers are actively
compensated with a distributed Raman amplifier. These record-
ings are compared with the first two Fourier components of the
doubly-periodic A and B type solutions found in [20].

Propagation of the light envelope A(z, t) in the fiber is de-
scribed by the NLSE, which, consistently with [16, 19, 20], we

http://dx.doi.org/10.1364/ao.XX.XXXXXX


Letter Optics Letters 2

conveniently write in the following dimensionless form

i
∂A
∂z

+
1
2

∂2 A
∂t2 + |A|2 A = 0, (1)

where z is the distance along the fiber and t is retarded time in the
frame moving with the group velocity. From non-dimensional
quantities, we obtain the real-world electric field E, distance Z
and retarded time T as E = A

√
P, Z = z/(γP), and T = tT0,

where T0 =
√
|β2|/(γP), and henceforth P = 490 mW, β2 =

−19× 10−27 s2/m, and γ = 1.3× 10−3W−1m−1 are the total
injected power, the anomalous group-velocity dispersion, and
the nonlinear coefficient in our experiment.

As already mentioned, there are two qualitatively different
types of doubly periodic solutions of Eq. (1). They differ by the
value of phase shift of successive maxima along the z-axis. The
solutions with all the maxima in phase are the B-type. The solu-
tions with the alternating phases of the maxima are the A-type
solutions. These two types of solutions are displayed in Fig. 1.
The left panels show the B-type and the right panels show the A-
type solutions. These analytical solutions have been computed
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Fig. 1. Left hand side panels: B-type doubly periodic solution.
Right hand side panels: A-type doubly periodic solution. (a),
(e) Spatio-temporal evolution of the power. (b), (f) Longitudi-
nal evolution of the modulus of the spectral components. (c),
(g) Spectra of the solutions at the point z = 0 (input of the
fiber). (d), (h) Phase-plane representation of these solutions.

using the expressions reported in [20]. The spatio-temporal evo-
lution of these doubly-periodic solutions are presented in Figs. 1
(a) and (e). The periodicity in the time domain is observed in the
form of a train of pulses. The periodicity in the spatial domain

appears as periodic wave evolution along the fiber. The latter
is limited in the figure by slightly more than two recurrences.
For the B-type solution, the maximum pulse compression points
appear at the same temporal positions in each recurrence, while
for the A-type solution they are shifted by half of the temporal
period.

Figures 1 (b) and (f) show the power evolution of their spec-
tral components. In each case, the central component that corre-
sponds to the CW background serves as the source of power for
the signal and idler waves and all higher-order sideband pairs
generated through multiple four-wave mixing processes. Re-
markably, all these processes are described by the exact solution
of a single equation - NLSE. The process of energy transfer re-
verses after the maximal spectral expansion leading back to the
initial spectrum after one period of evolution, thus, completing
the FPU recurrence. The input spectra of both types of solutions
are displayed in Figs. 1 (c) and (g). They are dramatically dif-
ferent: the B-type solution has a triangular-shaped spectrum at
z = 0, while the spectrum of the A-type solution contains only
odd order sidebands. The even order sidebands are exactly zero.
This suggests that A-type could be easily excited by means of
truncated three-wave input, the third-order sidebands in Fig.
1 (g) being nearly 60 dB below the main ones. Conversely, for
B-type the excitation via three waves appears to be more critical
and should be tested.

Although, in principle, exact initial conditions can be created
[23], but in reality, controlling more than three waves propagat-
ing in a fiber is difficult. In our experiments, we indeed used
a three-wave input (the pump and the signal-idler pair). This
is sufficient to excite both types of doubly-periodic solutions
with reasonable accuracy, provided that the signal-idler pair
is sufficiently weak. Indeed, as indicated by our extensive nu-
merical simulations, weak input modulations guarantee that
a higher fraction of total power remains confined in the main
three frequencies along the fiber, thus reducing the impact of
higher-order sidebands. In turn, too weak input modulations
(for fixed pump power) result into too long recurrence distances
(spatial periods). As a trade-off, in our experiment, the signal
to pump ratio is set at -20 dB (yet, typically more than one or-
der of magnitude weaker than in previous experiments [12–14]).
Given the experimental limitation in fiber length (Zmax = 16.54
km) and achievable power (P ∼ 0.5 W or 27 dBm), this is still
sufficient to observe the second peak growth (expected around
Z ∼ 12− 13 km, as shown in Fig. 1 (a),(b)), which is where
A-type and B-type solutions differ for the temporal shift.

A convenient finite phase-space representation of the solu-
tions can be given by reporting the associated trajectories in the
phase-plane (η cos(∆Φ), η sin(∆Φ)), as displayed in Figs. 1 (d)
and (h). Here, η is the power of the first-order Fourier coefficient
normalised to its maximum value and ∆Φ is the phase difference
between the zero (pump) and the first (signal) order Fourier coef-
ficients of the solutions. The B-type solutions are located inside
a separatrix (AB, not shown), which means that two consecutive
growth-decay cycles follow the same path in the right half of the
phase plane. In contrast, the A-type solution are located outside
the separatrix, which means that the two consecutive cycles are
located in the opposite half planes. This leads to the π-shift of
the maxima of the two cycles. In both cases suitable initial condi-
tions are represented by the closest approach to the origin which
yields the shallowest modulation (minimum of η(z)). As clear
from Figs. 1 (d) and (h), this requires an input phase ∆Φ = 0
for B-type, and ∆Φ = ±π

2 for A-type, consistently with what
already shown in previous experiments [12].
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Importantly, we emphasize that those illustrated in Fig. 1
are two particular solutions of Eq. (1), out of a full family char-
acterized by three arbitrary parameters, denoted α1, α2, α3 as
in [19, 20]. These parameters are non-zero roots of a fourth-
order polynomial (Eqs. (13,16) from [19]). They control the
two (spatial and temporal) periods as well as the maximum
amplitude. In our case, these three parameters are calculated
numerically by matching, at the input of the fiber (z = 0), the
amplitudes and the relative phases of the zero- and first-order
Fourier components of the analytical solution with the ampli-
tudes and relative phases of the three waves in the experiment.
We obtain α1 = 0.426, α2 = 0.728, α3 = 1.026 for B-type, and
α1,2 = 0.565± i0.129, α3 = 0.980 for A-type, which allows to
uniquely specify the solution. Note that α1,2 are real for B-type
and complex conjugate for A-type, while α3 ' 1, as discussed in
more detail in [20].

Our present experimental setup is similar to the one used in
[13, 14]. A simplified sketch of it is depicted in Fig. 2. Here, we

Fig. 2. Sketch of the experimental setup. f1 and f2 are the cen-
tral frequencies of the main laser and the local oscillator re-
spectively. The phase between them is locked to f2 − f1 = 800
MHz. fm = 38.2 GHz is the modulation frequency.

provide the most important characteristics of the setup (for a
more detailed description of this complex experimental appara-
tus, see [24]). A 1550 nm CW laser signal is weakly modulated
with a phase modulator, creating a frequency comb with trian-
gular profile. An intensity modulator further shapes the signal
to form 50 ns square pulses with a 4.9 kHz repetition rate in or-
der to avoid stimulated Brillouin scattering [25]. The triangular
frequency comb, at the output of the phase modulator is trun-
cated to 3 waves with a Waveshaper. The latter also allows us
to control the powers and phases of each of the remaining spec-
tral components. These components are boosted by an erbium
doped fiber amplifier and injected in a 16.54 km long SMF-28
optical fiber. The input pump power is PP = 480 mW (total
power P ' 490 mW), and the modulation frequency (sideband
detuning) is fm = 38.2 GHz, located close to the expected peak
gain frequency fpeak =

√
2/(2πT0) ' 41 GHz. The z-dependent

relative phase of the pump, signal and idler waves, defined as
∆Φ(z) = φP(z)− φS(z), is measured via HOTDR using the beat-
ing between the local oscillator and the Rayleigh backscattered
signal from the waves propagating in the fiber.

Although the linear loss in SMF-28 is very low (0.2 dB/km),
the overall attenuation over the fiber length can strongly affect
the dynamics. An active compensation of the losses is imple-
mented using Raman amplification from a counter-propagating
pump at 1450 nm. It provides the maximum amplification at

1550 nm, i.e. 13.2 THz away from the Raman pump. Such com-
pensation scheme keeps the total power nearly constant over the
whole fiber length. Consequently, experiments are performed in
a ‘quasi-lossless’ optical fiber. This, in turn, allows us to make a
direct comparison between experimental measurements and the
theory derived from the integrable (conservative) NLSE.

Experimental data for the B-type solutions are presented in
Fig. 3 by solid lines. This solution is excited when the initial
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Fig. 3. Evolution, along the fiber, of (a) the pump (blue lines)
and the signal (red lines) powers, (b) the relative phase. (c)
Phase-plane representation. Dotted lines correspond to the
B-type first-order solution of the NLSE and solid lines to the
experimental data. Each component is normalized with re-
spect to the maximum value of the analytical solution. The
initial relative phase is set to ∆Φ(z = 0) = 0.

relative phase is ∆Φ(z = 0) = 0 [12]. The evolution of the pump
(blue lines) and the signal (red lines) powers along the fiber are
displayed in Fig. 3 (a). The pump power first decreases from its
initial value and reaches a minimum at Z = 4.3 km. At the same
interval, the signal power increases starting from its initial value
and reaches a maximum at the same point where the pump is
minimal. The maximum level of the signal power at this point is
about 30 times of the initial value. The signal power decreases
afterwards to complete one full cycle of growth and decay. The
second cycle of this periodic dynamics is observed in the range
Z ' 8− 15 km. Around Z = 15 km the pump power grows to
its second maximum, which is around 70% of the initial power.
Fig. 3 (b) shows the evolution of the relative phase along the
fiber. These curves are also periodic. The two cycles correspond
to those for power curves. The same dynamics in the phase-
plane (η sin(∆Φ), η cos(∆Φ)) is shown in Fig. 3 (c) [8]. Here,
η = PS

max(PS)
. The phase trajectory remains in the right half of

the plane for both cycles of evolution. This behaviour is exactly
what we expect for B-type solutions.

We compared these experimental results with the first-order
solutions of the NLSE. The dotted lines in Fig. 3 correspond to
the zero-order and the first-order Fourier coefficients of B-type
solution shown in Fig. 1, calculated from Eqs. (13-16) in [20],
and whose parameters were determined through the perfect
match condition between the initial three central waves and
the experimental three-wave input. The experimental data are
in good agreement with this solution during the two cycles of
evolution. In particular, the distance between minima of the
pump is found in excellent agreement with the spatial period
Zper = 8.12 km of the solution, which is fixed (along with tem-
poral period and amplitude) by the choice of the three arbitrary
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parameters discussed above. We attribute the discrepancies ob-
served beyond the two cycles to the imperfect loss compensation
by the back-propagating Raman pump. Indeed, the signal at the
end of the fiber is amplified more than in the central part. The
latter is the region where the lowest powers are reached [25].
Conditions for a quasi-transparent fiber are reached only along
15 km of propagation, whereas the signals in the last few kilo-
meters of the fiber are over-amplified. This over-compensation
leads to a higher total power in the last section, thus changing
the parameters of the wave conversion process. Therefore this
region (hatched in Figs. 3-4) should be omitted when comparing
experimental data with the theory. Moreover, the gap of the
envelope maxima between the experiments and the analytical
solutions doesn’t come from an incomplete compensation of the
losses as the dynamic of the process (location of the extrema) fits
with the theory. It is probably due to averaging process of the
measurements and data processing.

Next, we set ∆Φ(z = 0) = −π
2 , in order to excite the A-type

solution. The corresponding experimental recordings are plotted
by solid lines in Fig. 4. As in the previous case, the evolution
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Fig. 4. Same as in Fig. 3 but for the A-type solution. Here
∆Φ(z = 0) = −π

2 .

along the fiber length of the pump (blue lines) and the signal (red
lines) are presented in Fig. 4 (a). The power evolution curves are
very similar to the B-type case. The location of the minima of
the pump coincide pretty well with the location of the maxima
of signal power, namely at Z = 4.4 km and Z = 13.1 km. The
signal power at the point of the maximal pulse compression is
higher than its initial value by a factor of 30. The last maximum
of the pump power is 70% of its initial value.

Figure 4 (b) displays the evolution of the relative phase along
the fiber. As can be seen, the relative phase does not return to the
initial value, but rather increases monotonically. This means that
the apex in the second cycle is phase-shifted by π from the first
one. The phase-plane projection is shown in Fig. 4 (c). The first
growth-decay cycle occurs in the right half of the phase-plane
while the second cycle occurs in the left half, which is the key
feature of the A-type solution. Compared with previous case,
this is equivalent to have crossed the separatrix.

These experimental results are also compared with the A-type
solution of the NLSE. The dotted lines in Fig. 4 are calculated
from the 0th and 1st order Fourier coefficients, according to Eqs.
(15,16,23,24) in [20]. The agreement between the analytical solu-
tion and the experimental data are reasonably good, especially
for the relative phase evolution in Fig. 4 (b). The observed dis-
tance between maximal pulse compression points (maximum
signal) fits within 1 % with the theoretical value Zhal f = 8.64 km,

which is equal to half period of the evolution (in this case the full
period is the return of the phase to its initial value) [20]. Again,
similar to the result in Fig. 3, the agreement is less accurate at
the fiber end, due to an imperfect loss compensation.

In conclusion, we have reported the first observation of the
doubly-periodic first-order solutions of the NLSE. This has been
achieved in a loss-compensated optical fiber via HOTDR tech-
nique, which allowed us to record the evolutions of both powers
and relative phases of the pump and signal waves. A direct
comparison of the experimental data with analytical predictions
is the result of these measurements. The agreement with the
Fourier expansion [20] of the first-order doubly-periodic solu-
tions [19] is good. We have shown also that these solutions are
robust: while being composed of many spectral components,
they can be excited by using simple initial conditions limited to
the three main waves. We switched the excitation from the A-
type to the B-type solutions by merely tuning the initial relative
phase of the three waves. Our successful observation of these
solutions of the NLSE suggests that they can serve as a useful
theoretical background for nonlinear experiments in many other
physical contexts. Our experiments also pave the way to the
observation of more complex solutions, such as the rogue waves
on the doubly-periodic background recently derived in [26].

Funding. Agence Nationale de la Recherche (Programme In-
vestissements d’Avenir); Ministry of Higher Education and Re-
search; Hauts de France Council; European Regional Develop-
ment Fund (Photonics for Society P4S, FUHNKC, EXAT).

Disclosures. The authors declare no conflicts of interest.

REFERENCES

1. N. Akhmediev, J. Soto-Crespo, and A. Ankiewicz, Phys. Lett. A 373,
2137 (2009).

2. J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, Opt.
Express 17, 21497 (2009).

3. V. Zakharov and L. Ostrovsky, Phys. D 238, 540 (2009).
4. E. Fermi, J. Pasta, and S. Ulam, Collect Papers of Enrico Fermi, vol. 2

(Univ. Chicago Press, 1965).
5. B. M. Lake, H. C. Yuen, H. Rungaldier, and W. E. Ferguson, J. Fluid

Mech. 83, 49–74 (1977).
6. O. Kimmoun, H. C. Hsu, H. Branger, M. S. Li, Y. Y. Chen, C. Kharif,

M. Onorato, E. J. R. Kelleher, B. Kibler, N. Akhmediev, and A. Chab-
choub, Sci. Reports 6, 28516 (2016).

7. G. Van Simaeys, P. Emplit, and M. Haelterman, Phys. Rev. Lett. 87,
033902 (2001).

8. S. Trillo and S. Wabnitz, Opt. Lett. 16, 986 (1991).
9. K. Hammani, B. Wetzel, B. Kibler, J. Fatome, C. Finot, G. Millot,

N. Akhmediev, and J. M. Dudley, Opt. Lett. 36, 2140 (2011).
10. D. Pierangeli, M. Flammini, L. Zhang, G. Marcucci, A. Agranat,

P. Grinevich, P. Santini, C. Conti, and E. DelRe, Phys. Rev. X 8, 041017
(2018).

11. A. Mussot, A. Kudlinski, M. Droques, P. Szriftgiser, and N. Akhmediev,
Phys. Rev. X 4, 011054 (2014).

12. A. Mussot, C. Naveau, M. Conforti, A. Kudlinski, F. Copie, P. Szriftgiser,
and S. Trillo, Nat. Photonics 12, 303 (2018).

13. C. Naveau, P. Szriftgiser, A. Kudlinski, M. Conforti, S. Trillo, and A. Mus-
sot, Opt. Lett. 44, 763 (2019).

14. C. Naveau, P. Szriftgiser, A. Kudlinski, M. Conforti, S. Trillo, and A. Mus-
sot, Opt. Lett. 44, 5426 (2019).

15. X. Hu, W. Chen, Y. Lu, Z. Yu, M. Chen, and Z. Meng, IEEE Photon.
Tech. Lett. 30, 47 (2018).

16. N. N. Akhmediev and V. I. Korneev, Theor. Math. Phys. 69, 1089
(1986).

17. M. Erkintalo, G. Genty, B. Wetzel, and J. Dudley, Phys. Lett. A 375,
2029 (2011).



Letter Optics Letters 5

18. P. Grinevich and P. Santini, Phys. Lett. A 382, 973 (2018).
19. N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, Theor. Math. Phys.

72, 809 (1987).
20. M. Conforti, A. Mussot, A. Kudlinski, S. Trillo, and N. Akhmediev, Phys.

Rev. A 101, 023843 (2020).
21. B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev,

and J. M. Dudley, Nat. Phys. 6, 790 (2010).
22. B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhme-

diev, F. Dias, and J. M. Dudley, Sci. Reports 2, 463 (2012).
23. G. Xu, K. Hammani, A. Chabchoub, J. M. Dudley, B. Kibler, and C. Finot,

Phys. Rev. E 99, 012207 (2019).
24. G. Vanderhaegen, P. Szriftgiser, A. Kudlinski, M. Conforti, S. Trillo,

M. Droques, and A. Mussot, To be published Opt. Express (2020).
25. C. Headley and G. Agrawal, Raman Amplification in Fiber Optical

Communication Systems (Academic Press, 2005).
26. J. Chen, D. E. Pelinovsky, and R. E. White, Phys. Rev. E 100, 052219

(2019).



Letter Optics Letters 6

FULL REFERENCES

1. N. Akhmediev, J. Soto-Crespo, and A. Ankiewicz, “Extreme waves that
appear from nowhere: On the nature of rogue waves,” Phys. Lett. A
373, 2137 – 2145 (2009).

2. J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, “Modula-
tion instability, akhmediev breathers and continuous wave supercontin-
uum generation,” Opt. Express 17, 21497–21508 (2009).

3. V. Zakharov and L. Ostrovsky, “Modulation instability: The beginning,”
Phys. D 238, 540–548 (2009).

4. E. Fermi, J. Pasta, and S. Ulam, Collect Papers of Enrico Fermi, vol. 2
(Univ. Chicago Press, 1965).

5. B. M. Lake, H. C. Yuen, H. Rungaldier, and W. E. Ferguson, “Nonlin-
ear deep-water waves: theory and experiment. part 2. evolution of a
continuous wave train,” J. Fluid Mech. 83, 49–74 (1977).

6. O. Kimmoun, H. C. Hsu, H. Branger, M. S. Li, Y. Y. Chen, C. Kharif,
M. Onorato, E. J. R. Kelleher, B. Kibler, N. Akhmediev, and A. Chab-
choub, “Modulation Instability and Phase-Shifted Fermi-Pasta-Ulam
Recurrence,” Sci. Reports 6, 28516 (2016).

7. G. Van Simaeys, P. Emplit, and M. Haelterman, “Experimental demon-
stration of the fermi-pasta-ulam recurrence in a modulationally unstable
optical wave,” Phys. Rev. Lett. 87, 033902 (2001).

8. S. Trillo and S. Wabnitz, “Dynamics of the nonlinear modulational
instability in optical fibers,” Opt. Lett. 16, 986–988 (1991).

9. K. Hammani, B. Wetzel, B. Kibler, J. Fatome, C. Finot, G. Millot,
N. Akhmediev, and J. M. Dudley, “Spectral dynamics of modulation
instability described using Akhmediev breather theory,” Opt. Lett. 36,
2140–2142 (2011).

10. D. Pierangeli, M. Flammini, L. Zhang, G. Marcucci, A. Agranat,
P. Grinevich, P. Santini, C. Conti, and E. DelRe, “Observation of Fermi-
Pasta-Ulam-Tsingou Recurrence and Its Exact Dynamics,” Phys. Rev.
X 8, 041017 (2018).

11. A. Mussot, A. Kudlinski, M. Droques, P. Szriftgiser, and N. Akhmediev,
“Fermi-Pasta-Ulam Recurrence in Nonlinear Fiber Optics: The Role of
Reversible and Irreversible Losses,” Phys. Rev. X 4, 011054 (2014).

12. A. Mussot, C. Naveau, M. Conforti, A. Kudlinski, F. Copie, P. Szriftgiser,
and S. Trillo, “Fibre multi-wave mixing combs reveal the broken sym-
metry of Fermi–Pasta–Ulam recurrence,” Nat. Photonics 12, 303–308
(2018).

13. C. Naveau, P. Szriftgiser, A. Kudlinski, M. Conforti, S. Trillo, and A. Mus-
sot, “Full-field characterization of breather dynamics over the whole
length of an optical fiber,” Opt. Lett. 44, 763–766 (2019).

14. C. Naveau, P. Szriftgiser, A. Kudlinski, M. Conforti, S. Trillo, and A. Mus-
sot, “Experimental characterization of recurrences and separatrix cross-
ing in modulational instability,” Opt. Lett. 44, 5426–5429 (2019).

15. X. Hu, W. Chen, Y. Lu, Z. Yu, M. Chen, and Z. Meng, “Distributed
measurement of fermi-pasta-ulam recurrence in optical fibers,” IEEE
Photon. Tech. Lett. 30, 47–50 (2018).

16. N. N. Akhmediev and V. I. Korneev, “Modulation instability and periodic
solutions of the nonlinear schrödinger equation,” Theor. Math. Phys.
69, 1089–1093 (1986).

17. M. Erkintalo, G. Genty, B. Wetzel, and J. Dudley, “Akhmediev breather
evolution in optical fiber for realistic initial conditions,” Phys. Lett. A 375,
2029–2034 (2011).

18. P. Grinevich and P. Santini, “The exact rogue wave recurrence in the
NLS periodic setting via matched asymptotic expansions, for 1 and 2
unstable modes,” Phys. Lett. A 382, 973–979 (2018).

19. N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Exact first-order
solutions of the nonlinear Schrödinger equation,” Theor. Math. Phys.
72, 809–818 (1987).

20. M. Conforti, A. Mussot, A. Kudlinski, S. Trillo, and N. Akhmediev, “Dou-
bly periodic solutions of the focusing nonlinear schrödinger equation:
Recurrence, period doubling, and amplification outside the conven-
tional modulation-instability band,” Phys. Rev. A 101, 023843 (2020).

21. B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev,
and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat.
Phys. 6, 790–795 (2010).

22. B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhme-
diev, F. Dias, and J. M. Dudley, “Observation of Kuznetsov-Ma soliton

dynamics in optical fibre,” Sci. Reports 2, 463 (2012).
23. G. Xu, K. Hammani, A. Chabchoub, J. M. Dudley, B. Kibler, and C. Finot,

“Phase evolution of peregrine-like breathers in optics and hydrodynam-
ics,” Phys. Rev. E 99, 012207 (2019).

24. G. Vanderhaegen, P. Szriftgiser, A. Kudlinski, M. Conforti, S. Trillo,
M. Droques, and A. Mussot, “Observation of four fermi-pasta-ulam-
tsingou recurrences in an ultra-low-loss optical fiber,” To be published
Opt. Express (2020).

25. C. Headley and G. Agrawal, Raman Amplification in Fiber Optical
Communication Systems (Academic Press, 2005).

26. J. Chen, D. E. Pelinovsky, and R. E. White, “Rogue waves on the double-
periodic background in the focusing nonlinear schrödinger equation,”
Phys. Rev. E 100, 052219 (2019).


