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Abstract

We study the Nitsche-based finite element method for contact with Coulomb friction considering both
static and dynamic situations. We provide existence and/or uniqueness results for the discretized prob-
lems under appropriate assumptions on physical and numerical parameters. In the dynamic case, existence
and uniqueness of the space semi-discrete problem holds for every value of the friction coefficient and the
Nitsche parameter. In the static case, if the Nitsche parameter is large enough, existence is ensured for
any friction coefficient, and uniqueness can be obtained provided that the friction coefficient is below a
bound that depends on the mesh size. These results are complemented by a numerical study.
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1. Introduction

Many problems in structural engineering involve frictional contact, and are approximated numerically
using variational techniques, among them the Finite Element Method (FEM) [22, 23, 25, 32, 33, 49,
50]. Friction is generally taken into account using Coulomb’s law, that is relevant for a broad range of
applications.
The goal of this work is to present some first theoretical results for Coulomb friction discretized with the
FEM and a Nitsche’s formulation of frictional contact conditions (Nitsche-FEM). We present the method
in the small strain framework, for the dynamic and the static settings. Our main results are, first, a
well-posedness theorem in the dynamic setting, which guarantees the existence and uniqueness of a semi-
discrete solution in space. Secondly, we obtain an existence result in the static setting, which ensures, if
the Nitsche parameter is large enough, that there is at least one discrete solution, irrespectively of the
values of the friction coefficient and of the mesh size. In this static setting, uniqueness of solutions is
recovered with very restrictive conditions on the friction coefficient and the numerical parameters, which
is something expected for this problem (see, e.g., [24, 29]). These theoretical results are complemented
by a numerical study. Particularly, this is the first time, to the best of our knowledge, that numerical
results are obtained with the Nitsche-FEM for frictional elastodynamics. Part of the results presented
here have been announced, without detailed proofs, in conference proceedings [10, 12].
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Let us put our work in perspective with the litterature. Contact with Coulomb friction in elastostatics
remains a difficult problem, with still some open issues in its mathematical analysis, both for the con-
tinuous and the discrete problems. In the continuous case, there is indeed no complete characterization
of existence and uniqueness when the friction coefficient is varied (see, e.g., [20, 21, 40] for existence
results when the friction coefficient is small). Moreover it can be proved that uniqueness is lost in some
configurations and multiple solutions can be obtained, see, e.g., [4, 27]. The existence and uniqueness of
solutions to the discrete problem has been studied for instance in [28] and later on in [26, 34], for more
general formulations, especially a variable friction coefficient. Also, comparatively to the frictionless case
or to the Tresca friction case, more difficulties appear in the numerical analysis of the method: even
in situations when uniqueness can be ensured at the continuous level (see, e.g., [43]), the obtention of
optimal error estimates in H1–norm is still an open issue, see e.g., [24, 29]. Moreover special care has
to be taken in numerical solving when situations of non-uniqueness occur [28, 30, 36, 37]. In fact, it
is well known that the finite element problem admits a solution and that the solution is unique if the
friction coefficient is small enough, but the denomination small depends on the discretization parameter.
Moreover, the improvement of numerical methods to solve contact with Coulomb friction represents still
a very active research field (see for instance [3, 51]).
For Coulomb friction in elastodynamics, results are even more scattered (see [21] for a review). A
pioneering work [38] addresses the problem of frictional contact with a normal compliance law, and
existence and uniqueness of a solution is established. Another work [42] carries out the numerical analysis
of a one dimensional contact problem with Coulomb friction. In [5], resp. [7], a well-posedness result is
proven for a single particle, resp. a collection of particles, undergoing contact with Coulomb friction. A
key assumption for the proof is the analyticity of the data. When the modified mass method of Khenous,
Laborde and Renard [31] is used for the space semi-discretization with FEM of contact with Coulomb
friction, well-posedness of the semi-discrete problem in space has been established in [35] and [19]. This
latter reference provides also a convergence result.
In the last years, a Nitsche-FEM has been designed to handle contact conditions in elasticity, first for the
frictionless contact problem of Signorini, in statics, and in the small strain framework [11, 15]. Nitsche’s
formulation [41] differs from standard penalization techniques which are generally non consistent. Besides,
no Lagrange multiplier is needed and no discrete inf-sup condition must be fulfilled contrarily to mixed
methods. A formulation for the Tresca friction problem has been made in [8]. Notably, it has been
proven, without any assumption on the contact/friction set, the optimal convergence of the Nitsche-FEM
in the H1(Ω) norm, which is O(h1/2+ν) when the solution lies in H3/2+ν(Ω), 0 < ν ≤ 1/2. The numerical
analysis of this paper has been extended to the contact between two elastic bodies, with an unbiased
formulation [16], and also for Hybrid High Order (HHO) discretization on polytope meshes [9].
Nitsche’s formulation has also been extended to solve contact with Coulomb friction. This method has
been first formulated, in the static case and in small strain, in [44]. This was accompanied by several
numerical tests, in two and three dimensions, to assess the performance of a generalized Newton algorithm.
Later on, an extension to contact in large deformations with Coulomb’s friction has been performed and
tested numerically in [39], for the quasi-static setting (see also [46]).
For contact in elastodynamics, a Nitsche-FEM has been devised and analyzed in [13, 14, 17], for frictionless
contact and in small deformations. In this situation, the Nitsche-FEM leads to a well-posed semi-
discrete problem in space, as for the penalty method and the modified mass method [31]. Several implicit
or explicit time-marching schemes have been proposed, analysed and tested numerically, still in the
frictionless case. The Nitsche-FEM has never been extended to Coulomb’s friction in dynamics, though
the method has been formulated in [10].
Let us introduce some useful notations. In what follows, bold letters like u,v, indicate vector or tensor
valued quantities, while the capital ones (e.g., V,K . . .) represent functional sets involving vector fields.
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As usual, we denote by (Hs(.))d, s ∈ R, d = 1, 2, 3 the Sobolev spaces in one, two or three space dimensions

(see [1]). The usual scalar product of (Hs(D))d is denoted by (·, ·)s,D, and ‖ · ‖s,D = (·, ·)
1
2

s,D denotes the
corresponding norm. We keep the same notation when d = 1 or d > 1. The letter C stands for a generic
constant, independent of the discretization parameters.

2. Setting

Coulomb friction in small strain elasticity is first presented in the dynamic case, then in the static case.

2.1. The dynamic problem

We consider an elastic body Ω in Rd with d = 2, 3. Small strain assumptions are made (as well as plane
strain when d = 2). The boundary ∂Ω of Ω is polygonal (d = 2) or polyhedral (d = 3). The outward
unit normal vector on ∂Ω is denoted n. We suppose that ∂Ω consists in three nonoverlapping parts ΓD,
ΓN and the contact boundary ΓC , with meas(ΓD) > 0 and meas(ΓC) > 0. The contact boundary is
supposed to be a straight line segment when d = 2 or a polygon when d = 3 to simplify. In the reference
configuration, the body is in frictional contact on ΓC with a rigid foundation and we suppose that the
unknown contact zone during deformation is included into ΓC . The body is clamped on ΓD for the sake
of simplicity. It is subjected to volume forces f in Ω and to surface loads g on ΓN .
We consider the unilateral contact problem with Coulomb friction in linear elastodynamics during a time
interval [0, T ) where T > 0 is the final time. We denote by ΩT := (0, T )×Ω the time-space domain, and
similarly ΓDT := (0, T ) × ΓD, ΓNT := (0, T ) × ΓN and ΓCT := (0, T ) × ΓC . The problem then consists
in finding the displacement field u : [0, T )× Ω→ Rd verifying the equations and conditions (1)–(5):

ρü− divσ(u) = f in ΩT , (1)

are the equations of motion for the body where the notation ẋ is used for the time-derivative of a
vector field x so that u̇ is the velocity of the elastic body and ü its acceleration. The notation σ =
(σij), 1 ≤ i, j ≤ d, stands for the stress tensor field and div denotes the divergence operator of tensor
valued functions. The stress tensor is defined using the constitutive relation σ(u) = A ε(u) where

ε(v) = (∇v + ∇v
T

)/2 represents the linearized strain tensor field and A is the fourth order symmetric
elasticity tensor having the usual uniform ellipticity and boundedness properties. The density of the
elastic material denoted by ρ is supposed to be constant to simplify (this is not restrictive and the results
can be extended straightforwardly for a variable density). The prescribed displacements and density of
forces are expressed by the equations:

u = 0 on ΓDT ,

σ(u)n = g on ΓNT .
(2)

For any displacement field v and for any density of surface forces σ(v)n defined on ∂Ω we adopt the
following notation:

v = vnn + vt and σ(v)n = σn(v)n + σt(v),

where vt (resp. σt(v)) are the tangential components of v (resp. σ(v)n). The conditions describing
unilateral contact on ΓCT are:

un ≤ 0, σn(u) ≤ 0, σn(u)un = 0 (3)
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and those modelling Coulomb friction on ΓCT can be written as follows

u̇t = 0 =⇒ |σt(u)| ≤ −Fσn(u)

u̇t 6= 0 =⇒ σt(u) = Fσn(u)
u̇t

|u̇t|
(4)

where F > 0 stands for the friction coefficient (F = 0 corresponds to the frictionless case).
Finally we need to add the initial conditions

u(0, ·) = u0, u̇(0, ·) = u̇0 in Ω, (5)

where u0 is the initial displacement and u̇0 is the initial velocity. Note additionally that the initial
displacement u0 should satisfy the compatibility condition u0n ≤ 0 on ΓC .

Remark 2.1. A quasi-static problem can be obtained if the inertial terms are neglected in the equations
of motion. Then (1) simply becomes

−divσ(u) = f in ΩT , (6)

while the other equations (2)–(4) remain unchanged and (5) merely reduces to u(0, ·) = u0 in Ω.

2.2. The static problem

It consists of considering the quasi-static model and to approximate u̇t(t, x) using a time increment:
u̇t(t, x) ≈ (ut(t, x) − ut(t −∆t, x))/∆t. Supposing to simplify that ut(t −∆t, x) equals zero yields the
static friction model where (4) becomes

ut = 0 =⇒ |σt(u)| ≤ −Fσn(u)

ut 6= 0 =⇒ σt(u) = Fσn(u)
ut

|ut|
.

(7)

The static model consists then for a fixed t to find a displacement field u : Ω → Rd satisfying (2), (3),
(6) and (7).

3. Nitsche finite element discretizations

In this section we derive Nitsche-FEM for the dynamic and static settings presented above.

3.1. Preliminaries

We make use of the notation [·]
R−

, that stands for the projection onto R− (i.e., [x]
R−

= 1
2 (x − |x|) for

x ∈ R). Moreover, for any α ∈ R+, we introduce the notation [·]α for the orthogonal projection onto
B(0, α) ⊂ Rd−1, where B(0, α) is the closed ball centered at the origin 0 and of radius α. This operation
can be defined analytically, for x ∈ Rd−1 by:

[x]α =

{
x if |x| ≤ α,

α
x

|x|
otherwise.

It is easy to check that

|[x]α − [y]α| ≤ |x− y|, ([x]α − [y]α)2 ≤ ([x]α − [y]α)(x− y), (8)

4



for all x,y ∈ Rd−1. Let α, β ∈ R+, it holds, for all x ∈ Rd−1:

|[x]β − [x]α| ≤ |β − α|. (9)

The derivation of a Nitsche-based method comes from the observation that the unilateral contact con-
ditions (3), the static (resp. dynamic) Coulomb friction conditions (7) (resp. (4)) can be reformulated
with only one equation as seen hereafter.

Proposition 3.1. Let γ be a positive function defined on ΓC .
The unilateral contact conditions (3) can be reformulated as follows:

σn(u) = [σn(u)− γ un]
R−
. (10)

Suppose that (3) holds. Then the static (resp. dynamic) Coulomb friction conditions (7) (resp. (4)) can
be reformulated as follows:

σt(u) = [σt(u)− γut](−Fσn(u)) = [σt(u)− γut](−F [σn(u)−γun]
R−

) , (11)

respectively

σt(u) = [σt(u)− γu̇t](−Fσn(u)) = [σt(u)− γu̇t](−F [σn(u)−γun]
R−

) . (12)

Proof: To establish equality (10) a direct proof can be found in [11, Proposition 2.1] (see also, e.g.,
[2, 44, 15]). The second identity (11) is a direct adaption of the proof made for the Tresca friction case
in [8, Proposition 2.4] with some additional changes in the notations. Note that the second equality of
(11) follows straightforwardly from (10). To render the paper more self contained, we next prove that
the first equality in (11) is equivalent to (7).
• First we suppose that (7) holds.
Consider the case ut = 0, we get |σt(u)| ≤ −Fσn(u). Due to the property of the projection it results
that σt(u) = [σt(u)](−Fσn(u)).

In the case ut 6= 0, we have |σt(u)| = −Fσn(u) so σt(u) = [σt(u)](−Fσn(u)). In addition σt(u) either

vanishes (obvious case) or −γut = ασt(u) with α > 0, hence

σt(u) = [σt(u)](−Fσn(u)) = [(1 + α)σt(u)](−Fσn(u)) = [σt(u)− γut](−Fσn(u))

which proves (11).
• Suppose now that the condition (11) holds. Whatever the value of ut = 0 is, we deduce immediately
from (11) that |σt(u)| ≤ −Fσn(u). Therefore we only have to consider the case ut 6= 0 in (7). From
σt(u) = [σt(u)− γut](−Fσn(u)) we see that:

- if σt(u) = 0 then necessarily σn(u) = 0 (since F 6= 0), so (7) holds,
- if σt(u) 6= 0 then necessarily σn(u) < 0 and there exists β ∈ (0, 1) such that σt(u) = β(σt(u)− γut),
so

−γut =
1− β
β

σt(u), (13)

with the quantity (1 − β)/β > 0. Therefore (11) becomes σt(u) =
[
β−1σt(u)

]
(−Fσn(u))

, so |σt(u)| =

−Fσn(u) and finally (13) implies σt(u) = Fσn(u)ut/|ut|. Hence (7) is proved.
The equivalence between (12) and (4) is handled as the previous one by changing ut with u̇t. �
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We introduce the following Hilbert space:

V :=
{

v ∈
(
H1(Ω)

)d
: v = 0 on ΓD

}
.

Suppose that u0 ∈ V, with u0n ≤ 0 a.e. on ΓC , and that u̇0 ∈
(
L2(Ω)

)d
. Suppose also that

f ∈ C 0([0, T ];
(
L2(Ω)

)d
) and g ∈ C 0([0, T ];

(
L2(ΓN )

)d
), which imply that they belong respectively to(

L2(ΩT )
)d

and
(
L2(ΓNT )

)d
.

Let us define now the following forms:

a(u,v) :=

∫
Ω

σ(u) : ε(v) dΩ, L(t)(v) :=

∫
Ω

f(t) · v dΩ +

∫
ΓN

g(t) · v dΓ,

for any u and v in V, for all t ∈ [0, T ).
Let Vh ⊂ V be a family of finite dimensional vector spaces (see [18]) indexed by h coming from a family
T h of triangulations of the domain Ω (h = maxK∈T h hK where hK is the diameter of the triangle K).
The family of triangulations is supposed:

• regular, i.e., there exists σ > 0 such that ∀K ∈ T h, hK/ρK ≤ σ where ρK denotes the radius of the
inscribed ball in K,

• conformal to the subdivision of the boundary into ΓD, ΓN and ΓC , which means that a face of an
element K ∈ T h is not allowed to have simultaneous non-empty intersection with more than one
part of the subdivision,

• quasi-uniform, i.e., there exists c > 0, such that, ∀h > 0, ∀K ∈ T h, hK ≥ ch.

To fix ideas, we choose a standard Lagrange finite element method of degree k with k = 1 or k = 2, i.e.:

Vh =
{

vh ∈ (C 0(Ω))d : vh|K ∈ (Pk(K))d,∀K ∈ T h,vh = 0 on ΓD

}
.

As usual for Nitsche’s method (see e.g., [47, 6]), we introduce the following mesh- and parameter-
dependent scalar product in Vh:

(vh,wh)γ := (vh,wh)1,Ω + (γ
1
2 vhn, γ

1
2whn)0,ΓC + (γ

1
2 vht , γ

1
2 wh

t )0,ΓC .

We denote by ‖ · ‖γ := (·, ·)
1
2
γ the associated norm.

We recall finally the discrete trace inequalities, proven in [8, Lemma 3.2] (see also [48, Lemma 2.1, p.24]
for the scalar case):

Lemma 3.2. There exists C > 0, independent of the parameter γ0 and of the mesh size h, such that:

‖γ− 1
2σn(vh)‖20,ΓC ≤ Cγ

−1
0 ‖vh‖21,Ω, ‖γ− 1

2σt(v
h)‖20,ΓC ≤ Cγ

−1
0 ‖vh‖21,Ω (14)

for all vh ∈ Vh.
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3.2. Nitsche discretizations
We provide the Nitsche-FEM formulations for the dynamic and static problems described in the previous
sections, following the same path as in [10]. We consider in what follows γ, a positive piecewise constant
function on the contact interface ΓC which satisfies

γ|K∩ΓC
=

γ0

hK
, (15)

for every K that has a non-empty intersection of dimension d−1 with ΓC , and where γ0 is a positive given
constant (the Nitsche parameter). Note that the value of γ on element intersections has no influence.
Given θ a fixed parameter, we introduce the discrete linear operators

Pn
θ,γ :

Vh → L2(ΓC)
vh 7→ θσn(vh)− γvhn

Pt
θ,γ :

Vh → (L2(ΓC))d−1

vh 7→ θσt(v
h)− γvht

and

Qt
γ :

Vh ×Vh → L2(ΓC)
(vh, v̇h) 7→ σt(v

h)− γv̇ht
.

Define as well the bilinear form:

Aθγ(uh,vh) := a(uh,vh)−
∫

ΓC

θ

γ
σ(uh)n · σ(vh)n dΓ.

The Nitsche-FEM for the dynamic setting (1)–(5) reads:

Find uh : [0, T ]→ Vh such that for t ∈ [0, T ] :

〈ρüh(t),vh〉+Aθγ(uh(t),vh) +

∫
ΓC

1

γ
[Pn

1,γ(uh(t))]
R−

Pn
θ,γ(vh) dΓ

+

∫
ΓC

1

γ
[Qt

γ(uh(t), u̇h(t))](−F [Pn
1,γ(uh(t))]

R−
) ·Pt

θ,γ(vh) dΓ = L(t)(vh), ∀ vh ∈ Vh,

uh(0, ·) = uh0 , u̇h(0, ·) = u̇h0 ,

(16)

where uh0 (resp. u̇h0 ) is an approximation in Vh of the initial displacement u0 (resp. the initial velocity
u̇0), for instance the Lagrange interpolant or the L2(Ω) projection of u0 (resp. u̇0). The notation 〈·, ·〉
stands for the L2(Ω) inner product.

Remark 3.3. For the quasi-static problem, the Nitsche-FEM reads:

Find uh : [0, T ]→ Vh such that for t ∈ [0, T ] :

Aθγ(uh(t),vh) +

∫
ΓC

1

γ
[Pn

1,γ(uh(t))]
R−

Pn
θ,γ(vh) dΓ

+

∫
ΓC

1

γ
[Qt

γ(uh(t), u̇h(t))](−F [Pn
1,γ(uh(t))]

R−
) ·Pt

θ,γ(vh) dΓ = L(t)(vh), ∀ vh ∈ Vh,

uh(0, ·) = uh0

(17)

Finally, the Nitsche-FEM for the static setting (2), (3), (6) and (7) reads:

Find uh ∈ Vh such that:

Aθγ(uh,vh) +

∫
ΓC

1

γ
[Pn

1,γ(uh)]
R−

Pn
θ,γ(vh) dΓ

+

∫
ΓC

1

γ

[
Pt

1,γ(uh)
](
−F [Pn

1,γ(uh)]
R−

) ·Pt
θ,γ(vh) dΓ = L(vh), ∀ vh ∈ Vh.

(18)
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4. Existence and uniqueness results

The aim of this section is to provide existence and uniqueness results, first in the dynamic setting
(Problem (16)), and then in statics (Problem (18)).

4.1. The dynamic case

In contrast with the standard (mixed) finite element semi-discretization, Nitsche’s formulation leads to
a well-posed (Lipschitz) system of differential equations, as it will be shown below. In order to prove
well-posedness we reformulate (16) as a system of (non-linear) second-order differential equations. To
this purpose, using Riesz’s representation theorem in (Vh, (·, ·)γ) we first introduce the mass operator
Mh : Vh → Vh, which is defined for all vh,wh ∈ Vh by

(Mhvh,wh)γ = 〈ρvh,wh〉.

Still using Riesz’s representation theorem, we define the (non-linear) operator Bh : (Vh)2 → Vh, by
means of the formula

(Bh(vh, v̇h),wh)γ = Aθγ(vh,wh) +

∫
ΓC

1

γ
[Pn

1,γ(vh)]
R−

Pn
θ,γ(wh) dΓ

+

∫
ΓC

1

γ
[Qt

γ(vh, v̇h)](−F [Pn
1,γ(vh)]

R−
) ·Pt

θ,γ(wh) dΓ,

for all vh, v̇h,wh ∈ Vh. Finally, we denote by Lh(t) the vector in Vh such that, for all t ∈ [0, T ] and for
every wh in Vh:

(Lh(t),wh)γ = L(t)(wh).

Remark that, due to the assumptions on f and g, Lh is continuous from [0, T ] onto (Vh, ‖ · ‖γ).
With the above notation, Problem (16) reads:

Find uh : [0, T ]→ Vh such that for t ∈ [0, T ] :

Mhüh(t) + Bh(uh(t), u̇h(t)) = Lh(t),

uh(0, ·) = uh0 , u̇h(0, ·) = u̇h0 .

(19)

We then show that Problem (16) (or equivalently Problem (19)) is well-posed.

Theorem 4.1. The operator Bh is Lipschitz-continuous in the following sense: there exists a constant
C > 0, independent of h, θ, γ0 and F such that, for all (vh1 , v̇

h
1 ), (vh2 , v̇

h
2 ) ∈ (Vh)2:

‖Bh(vh1 , v̇
h
1 )−Bh(vh2 , v̇

h
2 )‖γ

≤ C(1 + γ
− 1

2
0 )(1 + |θ|γ−

1
2

0 )(1 + F )‖vh1 − vh2‖γ + C(1 + |θ|γ−
1
2

0 )‖v̇h1 − v̇h2‖γ . (20)

As a consequence, for every value of θ ∈ R and γ0 > 0, Problem (16) admits one unique solution
uh ∈ C 2([0, T ],Vh).
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Proof: Let us pick vh1 ,v
h
2 , v̇

h
1 , v̇

h
2 ,w

h ∈ Vh, then:

|(Bh(vh1 , v̇
h
1 )−Bh(vh2 , v̇

h
2 ),wh)γ |

≤
∣∣Aθγ(vh1 − vh2 ,w

h)
∣∣+

∣∣∣∣∫
ΓC

1

γ

(
[Pn

1,γ(vh1 )]
R−
− [Pn

1,γ(vh2 )]
R−

)
Pn
θ,γ(wh) dΓ

∣∣∣∣
+

∣∣∣∣∫
ΓC

1

γ

(
[Qt

γ(vh1 , v̇
h
1 )]−F [Pn

1,γ(vh1 )]
R−
− [Qt

γ(vh2 , v̇
h
2 )]−F [Pn

1,γ(vh2 )]
R−

)
Pt
θ,γ(wh) dΓ

∣∣∣∣
≤ C(1 + |θ|γ−1

0 )‖vh1 − vh2‖1,Ω‖wh‖1,Ω +

∫
ΓC

1

γ

∣∣[Pn
1,γ(vh1 )]

R−
− [Pn

1,γ(vh2 )]
R−

∣∣ |Pn
θ,γ(wh)| dΓ

+

∫
ΓC

1

γ

∣∣∣[Qt
γ(vh1 , v̇

h
1 )]−F [Pn

1,γ(vh1 )]
R−
− [Qt

γ(vh2 , v̇
h
2 )]−F [Pn

1,γ(vh2 )]
R−

∣∣∣ |Pt
θ,γ(wh)| dΓ,

as the estimate (14) yields ‖Aθγ‖ ≤ C(1 + |θ|γ−1
0 ).

With the inequality |[x]
R−
− [y]

R−
| ≤ |x − y| , for all x, y ∈ R, and using the linearity of Pn

1,γ , we note
that: ∫

ΓC

1

γ

∣∣[Pn
1,γ(vh1 )]

R−
− [Pn

1,γ(vh2 )]
R−

∣∣ |Pn
θ,γ(wh)| dΓ

≤
∫

ΓC

1

γ
|Pn

1,γ(vh1 − vh2 )||Pn
θ,γ(wh)| dΓ

≤ ‖γ− 1
2 Pn

1,γ(vh1 − vh2 )‖0,ΓC‖γ−
1
2 Pn

θ,γ(wh)‖0,ΓC
≤

(
‖γ 1

2 (vh1,n − vh2,n)‖0,ΓC + ‖γ− 1
2σn(vh1 − vh2 )‖0,ΓC

)(
‖γ 1

2whn‖0,ΓC + |θ|‖γ− 1
2σn(wh)‖0,ΓC

)
≤

(
‖γ 1

2 (vh1,n − vh2,n)‖0,ΓC + Cγ
− 1

2
0 ‖vh1 − vh2‖1,Ω

)(
‖γ 1

2whn‖0,ΓC + C|θ|γ−
1
2

0 ‖wh‖1,Ω
)

≤ C(1 + γ
− 1

2
0 )(1 + |θ|γ−

1
2

0 )‖vh1 − vh2‖γ‖wh‖γ . (21)

In the last lines, we used the Cauchy-Schwarz and triangular inequalities, the estimate (14) and the
continuity of the trace operator from H1(Ω) to L2(ΓC).
Besides, using a triangular inequality, together with properties (8) and (9):∫

ΓC

1

γ

∣∣∣[Qt
γ(vh1 , v̇

h
1 )]−F [Pn

1,γ(vh1 )]
R−
− [Qt

γ(vh2 , v̇
h
2 )]−F [Pn

1,γ(vh2 )]
R−

∣∣∣ |Pt
θ,γ(wh)| dΓ

≤
∫

ΓC

1

γ

∣∣∣[Qt
γ(vh1 , v̇

h
1 )]−F [Pn

1,γ(vh1 )]
R−
− [Qt

γ(vh2 , v̇
h
2 )]−F [Pn

1,γ(vh1 )]
R−

∣∣∣ |Pt
θ,γ(wh)| dΓ

+

∫
ΓC

1

γ

∣∣∣[Qt
γ(vh2 , v̇

h
2 )]−F [Pn

1,γ(vh1 )]
R−
− [Qt

γ(vh2 , v̇
h
2 )]−F [Pn

1,γ(vh2 )]
R−

∣∣∣ |Pt
θ,γ(wh)| dΓ

≤
∫

ΓC

1

γ

∣∣Qt
γ(vh1 , v̇

h
1 )−Qt

γ(vh2 , v̇
h
2 )
∣∣ |Pt

θ,γ(wh)| dΓ

+

∫
ΓC

F

γ

∣∣[Pn
1,γ(vh1 )]

R−
− [Pn

1,γ(vh2 )]
R−

∣∣ |Pt
θ,γ(wh)| dΓ

≤
∫

ΓC

1

γ

(∣∣Qt
γ(vh1 − vh2 , v̇

h
1 − v̇h2 )

∣∣+ F
∣∣Pn

1,γ(vh1 − vh2 )
∣∣) |Pt

θ,γ(wh)| dΓ. (22)
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Then, we apply Cauchy-Schwarz inequality, use the discrete trace inequalities(14) and get:∫
ΓC

1

γ

∣∣∣[Qt
γ(vh1 , v̇

h
1 )]−F [Pn

1,γ(vh1 )]
R−
− [Qt

γ(vh2 , v̇
h
2 )]−F [Pn

1,γ(vh2 )]
R−

∣∣∣ |Pt
θ,γ(wh)| dΓ

≤
(
‖γ 1

2 (v̇h1,t − v̇h2,t)− γ−
1
2 σt(v

h
1 − vh2 )‖0,ΓC + F‖γ 1

2 (vh1,n − vh2,n)

−γ− 1
2 σn(vh1 − vh2 )‖0,ΓC

)
‖γ− 1

2 Pt
θ,γ(wh)‖0,ΓC

≤ C
(
‖v̇h1 − v̇h2‖γ + (1 + γ

− 1
2

0 )(1 + F )‖vh1 − vh2‖γ
)

(1 + |θ|γ−
1
2

0 )‖wh‖γ .

Taking this bound into account, we now combine the above estimations to obtain:

|(Bh(vh1 , v̇
h
1 )−Bh(vh2 , v̇

h
2 ),wh)γ |

≤ C(1 + γ
− 1

2
0 )(1 + |θ|γ−

1
2

0 )(1 + F )‖vh1 − vh2‖γ‖wh‖γ + C(1 + |θ|γ−
1
2

0 )‖v̇h1 − v̇h2‖γ‖wh‖γ .

It results that

‖Bh(vh1 , v̇
h
1 )−Bh(vh2 , v̇

h
2 )‖γ (23)

= sup
wh∈Vh

(Bh(vh1 , v̇
h
1 )−Bh(vh2 , v̇

h
2 ),wh)γ

‖wh‖γ

≤ C(1 + γ
− 1

2
0 )(1 + |θ|γ−

1
2

0 )(1 + F )‖vh1 − vh2‖γ + C(1 + |θ|γ−
1
2

0 )‖v̇h1 − v̇h2‖γ .

This proves the first assertion of the theorem.
Then we recast (19) in the canonical form of a first-order system:

d

dt
xh(t) = Fh(t,xh(t)), xh(0) = xh0 ,

where:

xh(t) :=

[
u̇h

uh

]
(t), xh0 :=

[
u̇h0
uh0 ,

]
, Fh(t,xh(t)) :=

[
(Mh)−1(Lh(t)−Bh(uh(t), u̇h(t)))

u̇h(t)

]
.

It holds for arbitrary t ∈ [0, T ] and xh1 ,x
h
2 ∈ (Vh)2:

‖Fh(t,xh1 )− Fh(t,xh2 )‖2γ×γ = ‖(Mh)−1(Bh(uh2 , u̇
h
2 )−Bh(uh1 , u̇

h
1 )‖2γ + ‖u̇h1 − u̇h2‖2γ ,

where ‖ · ‖γ×γ denotes the product norm on (Vh)2.
From (20) and re-arranging the terms we get (for a more precise estimate of the subordinated matrix
norm term ‖(Mh)−1‖γ , see [13]):

‖(Mh)−1(Bh(uh2 , u̇
h
2 )−Bh(uh1 , u̇

h
1 ))‖γ ≤ ‖(Mh)−1‖γ‖Bh(uh2 , u̇

h
2 )−Bh(uh1 , u̇

h
1 )‖γ

≤ C(ρ, γ0, h, |θ|,F )(‖uh2 − uh1‖γ + ‖u̇h2 − u̇h1‖γ).

≤ C(ρ, γ0, h, |θ|,F )‖xh2 − xh1‖γ×γ .

Hence
‖Fh(t,xh1 )− Fh(t,xh2 )‖γ×γ ≤ C(ρ, γ0, h, |θ|,F )‖xh2 − xh1‖γ×γ .

So the second assertion of the theorem results of the Lipschitz-continuity of Fh and of the Cauchy-
Lipschitz (Picard-Lindelöf) theorem. �

Remark 4.2. Note that there is no condition on γ0 for the space (semi-)discretization, which remains
well-posed even if γ0 is small. The same remark applies for the friction coefficient.
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4.2. The static case

In this section we prove that the discrete problem (18) admits solutions when γ0 is large (here the denom-
ination “large” depends on θ) and that the solution is unique under an additional smallness assumption
on Fγ0h

−1.
The proof of the unique solution uses the Banach-Picard fixed point theorem for contractive functions in
a metric space. Surprisingly the calculus in the existence theorem proved thanks to the Brouwer theorem
is slightly more complicated since we have to use distances instead of norm terms. The main result of
this section is stated below:

Theorem 4.3. For any value of θ ∈ R, Problem (18) admits at least a solution when γ0 is large enough.
Moreover, if the quantity F 2γ0h

−1 is small enough, this solution is unique.

Proof: Let us first introduce the problem of (Tresca) friction with a fixed threshold g ∈ L2(ΓC), which
admits a unique solution according to [8]:

P(g)



Find uh ∈ Vh such that:

Aθγ(uh,vh) +

∫
ΓC

1

γ
[Pn

1,γ(uh)]
R−

Pn
θ,γ(vh) dΓ

+

∫
ΓC

1

γ
[Pt

1,γ(uh)]g ·Pt
θ,γ(vh) dΓ = L(vh), ∀ vh ∈ Vh.

Remark now that the solutions to Coulomb discrete problem (16) are the fixed points of the application
φh : Vh → Vh defined as follows: φh(wh) is the solution to P(−F [Pn

1,γ(wh)]
R−

).
Step 1. To apply the Banach fixed point theorem in a metric space, we have to prove that the mapping
φh is contractive on Vh. Set for vh and wh in Vh:

d(vh,wh) = a(vh −wh,vh −wh)1/2 + ‖γ− 1
2 ([Pn

1,γ(vh)]
R−
− [Pn

1,γ(wh)]
R−

)‖0,ΓC .

It is easy to check that d(·, ·) is a distance on Vh.

Let wh
1 ,w

h
2 ∈ Vh, and denote by

uh1 := φh(wh
1 ), uh2 := φh(wh

2 )

the respective solutions to P(−F [Pn
1,γ(wh

1 )]
R−

) and P(−F [Pn
1,γ(wh

2 )]
R−

). To lighten the notations in the

proof, we write x1 (resp. x2) instead of −F [Pn
1,γ(wh

1 )]
R−

(resp. −F [Pn
1,γ(wh

2 )]
R−

).

We can write for all vh ∈ Vh

Aθγ(uh1 ,v
h) +

∫
ΓC

1

γ
[Pn

1,γ(uh1 )]
R−

Pn
θ,γ(vh) dΓ +

∫
ΓC

1

γ
[Pt

1,γ(uh1 )]x1P
t
θ,γ(vh) dΓ = L(vh), (24)

and

Aθγ(uh2 ,v
h) +

∫
ΓC

1

γ
[Pn

1,γ(uh2 ))]
R−

Pn
θ,γ(vh) dΓ +

∫
ΓC

1

γ
[Pt

1,γ(uh2 )]x2
Pt
θ,γ(vh) dΓ = L(vh). (25)

So by taking vh = uh1 −uh2 in (24) and vh = uh2 −uh1 in (25), and after summation of the two equalities,
we obtain:

Aθγ(uh1 − uh2 ,u
h
1 − uh2 ) +

∫
ΓC

1

γ

(
[Pn

1,γ(uh1 )]
R−
− [Pn

1,γ(uh2 )]
R−

)
Pn
θ,γ(uh1 − uh2 ) dΓ

+

∫
ΓC

1

γ

(
[Pt

1,γ(uh1 )]x1
− [Pt

1,γ(uh2 )]x2

)
Pt
θ,γ(uh1 − uh2 ) dΓ = 0.
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Then we obtain after splitting the term associated to friction:

Aθγ(uh1 − uh2 ,u
h
1 − uh2 ) +

∫
ΓC

1

γ

(
[Pn

1,γ(uh1 )]
R−
− [Pn

1,γ(uh2 )]
R−

)
Pn
θ,γ(uh1 − uh2 ) dΓ

+

∫
ΓC

1

γ

(
[Pt

1,γ(uh1 )]x1 − [Pt
1,γ(uh2 )]x1

)
Pt
θ,γ(uh1 − uh2 ) dΓ

+

∫
ΓC

1

γ

(
[Pt

1,γ(uh2 )]x1
− [Pt

1,γ(uh2 )]x2

)
Pt
θ,γ(uh1 − uh2 ) dΓ = 0. (26)

We now use the splitting Pn
θ,γ(·) = Pn

1,γ(·) + (θ − 1)σn(·) (and the same for the tangential counterpart):

Aθγ(uh1 − uh2 ,u
h
1 − uh2 ) +

∫
ΓC

1

γ

(
[Pn

1,γ(uh1 )]
R−
− [Pn

1,γ(uh2 )]
R−

)
Pn

1,γ(uh1 − uh2 ) dΓ

+(θ − 1)

∫
ΓC

1

γ

(
[Pn

1,γ(uh1 )]
R−
− [Pn

1,γ(uh2 )]
R−

)
σn(uh1 − uh2 ) dΓ

+

∫
ΓC

1

γ

(
[Pt

1,γ(uh1 )]x1
− [Pt

1,γ(uh2 )]x1

)
Pt

1,γ(uh1 − uh2 ) dΓ

+(θ − 1)

∫
ΓC

1

γ

(
[Pt

1,γ(uh1 )]x1
− [Pt

1,γ(uh2 )]x1

)
σt(u

h
1 − uh2 ) dΓ

+

∫
ΓC

1

γ

(
[Pt

1,γ(uh2 )]x1
− [Pt

1,γ(uh2 )]x2

)
Pt
θ,γ(uh1 − uh2 ) dΓ = 0. (27)

By using the second property in (8) and the inequality (x+ y)2 ≤ 2(x2 + y2) we get

1

2
d2(uh1 ,u

h
2 )− θ‖γ− 1

2σ(uh1 − uh2 )n‖20,ΓC + ‖γ− 1
2 ([Pt

1,γ(uh1 )]x1 − [Pt
1,γ(uh2 )]x1)‖20,ΓC

≤ Aθγ(uh1 − uh2 ,u
h
1 − uh2 ) + ‖γ− 1

2 ([Pn
1,γ(uh1 )]

R−
− [Pn

1,γ(uh2 )]
R−

)‖20,ΓC
+‖γ− 1

2 ([Pt
1,γ(uh1 )]x1

− [Pt
1,γ(uh2 )]x1

)‖20,ΓC

≤ (1− θ)
∫

ΓC

1

γ

(
[Pn

1,γ(uh1 )]
R−
− [Pn

1,γ(uh2 )]
R−

)
σn(uh1 − uh2 ) dΓ

+(1− θ)
∫

ΓC

1

γ

(
[Pt

1,γ(uh1 )]x1
− [Pt

1,γ(uh2 )]x1

)
σt(u

h
1 − uh2 ) dΓ

−
∫

ΓC

1

γ

(
[Pt

1,γ(uh2 )]x1 − [Pt
1,γ(uh2 )]x2

)
Pt
θ,γ(uh1 − uh2 ) dΓ. (28)

With the notation T1 for the right part of the previous inequality, we deduce by using Cauchy-Schwarz
inequality:

T1 ≤ |1− θ|‖γ− 1
2 ([Pn

1,γ(uh1 )]
R−
− [Pn

1,γ(uh2 )]
R−

)‖0,ΓC‖γ−
1
2σn(uh1 − uh2 )‖0,ΓC

+|1− θ|‖γ− 1
2 ([Pt

1,γ(uh1 )]x1
− [Pt

1,γ(uh2 )]x1
)‖0,ΓC‖γ−

1
2σt(u

h
1 − uh2 )‖0,ΓC

+‖γ− 1
2 ([Pt

1,γ(uh2 )]x1
− [Pt

1,γ(uh2 )]x2
)‖0,ΓC‖γ−

1
2 Pt

θ,γ(uh1 − uh2 )‖0,ΓC . (29)
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Applying Young’s inequality for β1, β2 > 0 and (9) together with the definitions of x1, x2, we obtain:

T1 ≤ |1− θ|β1

2
‖γ− 1

2σn(uh1 − uh2 )‖20,ΓC +
|1− θ|

2β1
‖γ− 1

2 ([Pn
1,γ(uh1 )]

R−
− [Pn

1,γ(uh2 )]
R−

)‖20,ΓC

+
|1− θ|β2

2
‖γ− 1

2σt(u
h
1 − uh2 )‖20,ΓC +

|1− θ|
2β2

‖γ− 1
2 ([Pt

1,γ(uh1 )]x1
− [Pt

1,γ(uh2 )]x1
)‖20,ΓC

+
1

4
‖γ− 1

2 ([Pn
1,γ(wh

1 )]
R−
− [Pn

1,γ(wh
2 )]

R−
)‖20,ΓC + F 2‖γ− 1

2 Pt
θ,γ(uh1 − uh2 )‖20,ΓC . (30)

Applying the triangular inequality, and then the continuity of the trace from H1(Ω) into L2(ΓC) as well
as the assumption of quasi-uniformity of the mesh T h yields:

‖γ− 1
2 Pt

θ,γ(uh1 − uh2 )‖0,ΓC ≤ ‖γ
1
2 (uh1t − uh2t)‖0,ΓC + |θ|‖γ− 1

2σt(u
h
1 − uh2 )‖0,ΓC

≤ C2γ
1
2
0 h
− 1

2 ‖uh1 − uh2‖1,Ω + |θ|‖γ− 1
2σt(u

h
1 − uh2 )‖0,ΓC ,

(31)

with C2 > 0.
Let us now combine the previous results:

1

2
d2(uh1 ,u

h
2 )− |1− θ|

2β1
‖γ− 1

2 ([Pn
1,γ(uh1 )]

R−
− [Pn

1,γ(uh2 )]
R−

)‖20,ΓC(
1− |1− θ|

2β2

)
‖γ− 1

2 ([Pt
1,γ(uh1 )]x1

− [Pt
1,γ(uh2 )]x1

)‖20,ΓC

≤
(
|1− θ|β1

2
+ θ

)
‖γ− 1

2σn(uh1 − uh2 )‖20,ΓC +

(
|1− θ|β2

2
+ 2F 2θ2 + θ

)
‖γ− 1

2σt(u
h
1 − uh2 )‖20,ΓC

+2F 2C2γ0h
−1‖uh1 − uh2‖21,Ω +

1

4
‖γ− 1

2 ([Pn
1,γ(wh

1 )]
R−
− [Pn

1,γ(wh
2 )]

R−
)‖20,ΓC (32)

If θ = 1, then

1

2
d2(uh1 ,u

h
2 ) + ‖γ− 1

2 ([Pt
1,γ(uh1 )]x1

− [Pt
1,γ(uh2 )]x1

)‖20,ΓC

≤ ‖γ− 1
2σn(uh1 − uh2 )‖20,ΓC + (1 + 2F 2)‖γ− 1

2σt(u
h
1 − uh2 )‖20,ΓC

+2F 2C2γ0h
−1‖uh1 − uh2‖21,Ω +

1

4
‖γ− 1

2 ([Pn
1,γ(wh

1 )]
R−
− [Pn

1,γ(wh
2 )]

R−
)‖20,ΓC

≤ C
(
γ−1

0 + F 2(γ−1
0 + γ0h

−1)
)
‖uh1 − uh2‖21,Ω +

1

4
d2(wh

1 ,w
h
2 ).

So φh is contractive if γ−1
0 and F 2γ0h

−1 are small enough.
Suppose now that θ 6= 1. We choose in (32) β1 = β2 = 4|1− θ|, so

1

2
d2(uh1 ,u

h
2 )− 1

8
‖γ− 1

2 ([Pn
1,γ(uh1 )]

R−
− [Pn

1,γ(uh2 )]
R−

)‖20,ΓC

+
7

8
‖γ− 1

2 ([Pt
1,γ(uh1 )]x1

− [Pt
1,γ(uh2 )]x1

)‖20,ΓC

≤
(
2(1− θ)2 + θ

)
‖γ− 1

2σn(uh1 − uh2 )‖20,ΓC +
(
2(1− θ)2 + θ + 2F 2θ2

)
‖γ− 1

2σt(u
h
1 − uh2 )‖20,ΓC

+2F 2C2γ0h
−1‖uh1 − uh2‖21,Ω +

1

4
d2(wh

1 ,w
h
2 ).
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So

3

8
d2(uh1 ,u

h
2 ) ≤ C

(
γ−1

0

(
2(1− θ)2 + θ + 2F 2θ2

)
+ F 2γ0h

−1
)
‖uh1 − uh2‖21,Ω +

1

4
d2(wh

1 ,w
h
2 ).

If γ−1
0 and F 2γ0h

−1 are small enough such that e.g.,

C
(
γ−1

0

(
2(1− θ)2 + θ + 2F 2θ2

)
+ F 2γ0h

−1
)
‖uh1 − uh2‖21,Ω ≤

1

16
d2(uh1 ,u

h
2 )

then φh is contractive and (16) admits a unique solution according to the Banach-Picard fixed point
theorem.
Step 2. Now we consider Brouwer fixed point theorem to establish existence in a more general case
without conditions on the friction coefficient and on the mesh size.
•We first prove continuity of φh. We consider again the last inequality in (28) where the right part of the
inequality, denoted T1 as before, is bounded as in (30) excepted for the last term of (29) which remains
unchanged. Choosing β1 = β2 = |1− θ|/2 yields

Aθγ(uh1 − uh2 ,u
h
1 − uh2 ) ≤ |1− θ|2

4
‖γ− 1

2σn(uh1 − uh2 )‖20,ΓC +
|1− θ|2

4
‖γ− 1

2σt(u
h
1 − uh2 )‖20,ΓC

+‖γ− 1
2 ([Pt

1,γ(uh2 )]x1
− [Pt

1,γ(uh2 )]x2
)‖0,ΓC‖γ−

1
2 Pt

θ,γ(uh1 − uh2 )‖0,ΓC .

Bounding ‖γ− 1
2 ([Pt

1,γ(uh2 )]x1
− [Pt

1,γ(uh2 )]x2
)‖0,ΓC using (9) together with the definitions of x1, x2, bound-

ing ‖γ− 1
2 Pt

θ,γ(uh1 − uh2 )‖0,ΓC as in (31), and applying two Young inequalities with β3 > 0 and β4 > 0
gives:

‖γ− 1
2 ([Pt

1,γ(uh2 )]x1 − [Pt
1,γ(uh2 )]x2

)‖0,ΓC‖γ−
1
2 Pt

θ,γ(uh1 − uh2 )‖0,ΓC

≤ F‖γ− 1
2 ([Pn

1,γ(wh
1 )]

R−
− [Pn

1,γ(wh
2 )]

R−
)‖0,ΓC

(
C2γ

1
2
0 h
− 1

2 ‖uh1 − uh2‖1,Ω + |θ|‖γ− 1
2σt(u

h
1 − uh2 )‖0,ΓC

)
≤ β3‖uh1 − uh2‖21,Ω +

(
C2

2γ0h
−1

4β3
+

1

4β4

)
F 2‖γ− 1

2 ([Pn
1,γ(wh

1 )]
R−
− [Pn

1,γ(wh
2 )]

R−
)‖20,ΓC

+β4|θ|2‖γ−
1
2σt(u

h
1 − uh2 )‖20,ΓC .

Putting together both previous estimates, choosing β3 and β4 small enough, using four times (14), the
definition of Aθγ and the V-ellipticity of a gives the following estimate (here C(θ) and C(γ0, h,F , θ)
denote positive constants depending on θ and γ0, h,F , θ, respectively):

(C − C(θ)γ−1
0 )‖uh1 − uh2‖21,Ω ≤ C

(
γ0h
−1 + 1

)
F 2‖γ− 1

2 ([Pn
1,γ(wh

1 )]
R−
− [Pn

1,γ(wh
2 )]

R−
)‖20,ΓC

≤ C(γ0, h,F , θ)‖wh
1 −wh

2‖21,Ω

where the last bound is obtained by using |[x]
R−
− [y]

R−
| ≤ |x − y|, estimate (14) and the continuity of

the trace operator (as in (31)). As a result φh is continuous when γ−1
0 is small enough.

• We next prove boundedness of φh. Let wh ∈ Vh, denote by uh := φh(wh) and as before we lighten
the notations by writing x instead of −F [Pn

1,γ(wh)]
R−

. Choosing vh = uh in P(−F [Pn
1,γ(wh)]

R−
) gives

Aθγ(uh,uh) +

∫
ΓC

1

γ
[Pn

1,γ(uh)]
R−

Pn
θ,γ(uh) dΓ +

∫
ΓC

1

γ
[Pt

1,γ(uh)]xP
t
θ,γ(uh) dΓ = L(uh).
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Then we obtain after splitting as in (26) and (27):

Aθγ(uh,uh) +

∫
ΓC

1

γ
[Pn

1,γ(uh)]
R−

Pn
1,γ(uh) dΓ + (θ − 1)

∫
ΓC

1

γ
[Pn

1,γ(uh)]
R−
σn(uh) dΓ

+

∫
ΓC

1

γ
[Pt

1,γ(uh)]xP
t
1,γ(uh) dΓ + (θ − 1)

∫
ΓC

1

γ
[Pt

1,γ(uh)]xσt(u
h) dΓ = L(uh).

Using the property in (8) with y = 0, Cauchy-Schwarz and Young inequalities as in (29), (30), we get

Aθγ(uh,uh) + ‖γ− 1
2 [Pn

1,γ(uh)]
R−
‖20,ΓC + ‖γ− 1

2 [Pt
1,γ(uh)]x‖20,ΓC

−|1− θ|β1

2
‖γ− 1

2σn(uh)‖20,ΓC −
|1− θ|

2β1
‖γ− 1

2 [Pn
1,γ(uh)]

R−
‖20,ΓC

−|1− θ|β2

2
‖γ− 1

2σt(u
h)‖20,ΓC −

|1− θ|
2β2

‖γ− 1
2 [Pt

1,γ(uh)]x‖20,ΓC ≤ L(uh).

If θ 6= 1, we choose β1 = β2 = |1− θ|/2 and use three times (14) to conclude that if γ−1
0 is small enough

(here the denomination small depends on θ) there is a positive constant C s.t. Ca(uh,uh) ≤ L(uh), so
‖uh‖1,Ω is bounded and the conclusion follows. The same conclusion holds for the simpler case θ = 1. �

5. Numerical experiments

We achieve the numerical implementation with the open source finite element library GetFEM++ [45].
We study, in two dimensions, the impact of a disc on a rigid support in the dynamic setting. The physical
parameters are the following: the diameter of the disc is D = 40, the Lamé coefficients are λ = 30 and
µ = 30, the material density is ρ = 1, the volume load in the vertical direction is set to ‖f‖ = 0.05 (gravity,
oriented towards the support). On the upper part of the boundary we apply a homogeneous Neumann
condition g = 0 and the lower part of the boundary is the contact with Coulomb’s friction region. We have
chosen an initial vertical displacement (u0 = 1) and no initial velocity (u̇0 = 0). There is an initial gap
between the disc and the support. For space semi-discretization, Lagrange isoparametric finite elements
of order k = 2 have been used. The mesh size is h = 4. Integrals of the non-linear term on ΓCT are
computed with standard quadrature formulas of order 4. The Nitsche parameters are θ = 1, γ0 = 1000.
We limit ourselves to the symmetric variant θ = 1 that has attractive properties of energy conservation
in the dynamic, frictionless, setting [13, 14, 17]. We first present the results obtained by combination
of Nitsche-FEM and Verlet scheme which is a second order, explicit, consistent scheme. We denote by
τ > 0 the time step. We consider a uniform discretization of the time interval [0, T ] : (t0, ..., tN ), with
tn = nτ, n = 0, .., N . Let α ∈ [0, 1], we use the notation xh,n+α = (1− α)xh,n + αxh,n+1 and we denote
by uh,n, u̇h,n, üh,n the discretized displacement, velocity and acceleration at time step tn. The time
discretization of the space semi-discrete problem (16), with the velocity-Verlet scheme, reads:

Find uh,n+1, u̇h,n+1, üh,n+1 ∈ Vh such that :

Mhüh,n+1 + Bh(uh,n+1, u̇h,n+1) = Lh,n+1,

uh,n+1 = uh,n + τ u̇h,n +
τ2

2
üh,n,

u̇h,n+1 = u̇h,n + τ üh,n+ 1
2

with initial conditions uh,0 = uh0 , u̇
h,0 = u̇h0 , ü

h,0 = üh0 , and the notation Lh,n+1 = Lh(tn+1), the initial
value üh0 being obtained through Mhüh,0 = Lh,0−Bh(uh0 , u̇

h
0 ). The value of the time-step has been fixed
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Figure 1: Impact of a disc, with Coulomb’s friction (F = 0.7) and symmetric Nitsche-FEM (θ = 1) with Verlet’s scheme.
Deformed configuration and Von Mises stress at t=0, 8, 12, 15, 20, 23.

to τ = 0.01. A snapshot of the evolution of the disc during the first bounce can be seen Figure 1. The
Von Mises stress as well as the deformed configuration are depicted.
We compare our results with the penalty method, combined with the velocity-Verlet scheme:

Find uh,n+1, u̇h,n+1, üh,n+1 ∈ Vh such that :

Mhüh,n+1 + Bh
p(uh,n+1, u̇h,n+1) = Lh,n+1,

uh,n+1 = uh,n + τ u̇h,n +
τ2

2
üh,n,

u̇h,n+1 = u̇h,n + τ üh,n+ 1
2
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with the non linear operator Bh
p : (Vh)2 → Vh, defined by

(Bh
p(vh, v̇h),wh)γ = a(vh,wh) +

∫
ΓC

γ [vhn]
R+w

h
n dΓ +

∫
ΓC

γ [v̇ht ](F [vhn]
R+

) ·wh
t dΓ.

Note that we still use the notation γ for the penalty parameter.
For each method and two different friction coefficients (F = 0.1 and F = 0.7), we depict, for the
lowest point on ΓC , the normal and tangential displacement, and the normal and tangential stress. The
comparison between the penalty method and the Nitsche method can be seen Figures 2 and 3 for a friction
coefficient equal to 0.1, and in Figures 4 and 5 for a friction coefficient equal to 0.7, for a total duration
T = 150, which allows five impacts. It can be seen that, as expected, the non penetration condition is
better respected with the Nitsche method. Moreover we can see that the approximation of the stress is
polluted by spurious oscillations on the friction zone which are more important for the last two rebounds
in the case of the penalty method.

Figure 2: Nitsche’s method with Verlet scheme for τ = 0.01, γ0 = 1000,F = 0.1.

Figure 3: Penalty method with Verlet scheme for τ = 0.01, γ0 = 1000,F = 0.1.
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Figure 4: Nitsche’s method with Verlet scheme for τ = 0.01, γ0 = 1000,F = 0.7.

Figure 5: Penalty method with Verlet scheme for τ = 0.01, γ0 = 1000,F = 0.7.

We also depict the discrete energies, defined, for Nitsche’s method as follows ∀t ∈ [0, T ]:

Eh,n(t) =
1

2
ρ‖u̇h,n(t)‖20,Ω +

1

2
a(uh,n(t),uh,n(t))− 1

2

(
‖γ− 1

2σn(uh,n)‖20,ΓC − ‖γ
− 1

2 [Pn
1,γ(uh,n)]

R−
‖20,ΓC

)
.

For the penalty method, the discrete energy is:

Eh,np (t) =
1

2
ρ‖u̇h,n(t)‖20,Ω +

1

2
a(uh,n(t),uh,n(t)) +

1

2

∫
ΓC

γ [uhn]2
R+
dΓ.
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Figures 6, 7 depict the evolution of discrete energies. They allow to assess the effect of dissipation caused
by friction, which depends on the magnitude of the friction coefficient. The evolution of the discrete
energy is comparable for the two methods.

Figure 6: Discrete energy evolution for Nitsche’s method. Left: F = 0.1, Right: F = 0.7.

Figure 7: Discrete energy evolution for penalty method. Left: F = 0.1, Right: F = 0.7.

Acknowledgements

For funding, F. Chouly thanks Région Bourgogne Franche–Comté (Convention Région 2015C-4991), the
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[34] T. Ligurský, Theoretical analysis of discrete contact problems with Coulomb friction, Appl. Math.
57 (2012) 263–295.

[35] T. Ligurský, Y. Renard, A well-posed semi-discretization of elastodynamic contact problems with
friction, Quart. J. Mech. Appl. Math. 64 (2011) 215–238.
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