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Kindly Bent to Free Us

GABRIEL RADANNE, Inria, Paris

HANNES SAFFRICH, University of Freiburg, Germany

PETER THIEMANN, University of Freiburg, Germany

Systems programming often requires the manipulation of resources like file handles, network connections,
or dynamically allocated memory. Programmers need to follow certain protocols to handle these resources
correctly. Violating these protocols causes bugs ranging from type mismatches over data races to use-after-
free errors and memory leaks. These bugs often lead to security vulnerabilities.

While statically typed programming languages guarantee type soundness and memory safety by design,
most of them do not address issues arising from improper handling of resources. An important step towards
handling resources is the adoption of linear and affine types that enforce single-threaded resource usage.
However, the few languages supporting such types require heavy type annotations.

We present Affe, an extension of ML that manages linearity and affinity properties using kinds and con-
strained types. In addition Affe supports the exclusive and shared borrowing of affine resources, inspired by
features of Rust. Moreover, Affe retains the defining features of the ML family: it is an impure, strict, func-
tional expression language with complete principal type inference and type abstraction. Affe does not require
any linearity annotations in expressions and supports common functional programming idioms.

1 INTRODUCTION

A large proportion of systems programming is focused on the proper handling of resources, like file
handles, network connections, or dynamically allocated memory. Each of these resources comes
with a protocol that prescribes the correct use of its API. For examples, a file handle appears as the
result of opening a file. If it was opened for reading, then read operations will succeed, but write
operations will fail. Once the handle is closed, it cannot be used for reading or writing, anymore.
Dynamic allocation of memory is similar. An API call returns a pointer to a memory area, which
can then be read and written to until the area is released by another API call.
In both cases, a resource is created in a certain state and a resource handle is returned to the

program. Depending on this state, certain API calls can safely be applied to it. Finally, there is
another API call to release the resource, which renders the handle invalid. Taken to the extreme,
each API call changes the state so that a different set of API calls is enabled afterwards. Ignoring
such life cycle protocols is a common source of errors.
Most type systems provide type soundness and memory safety, but neglect the protocol aspect.

Systems that can support reasoning about protocols build on linear types [14] and/or uniqueness
types [6]. A value of linear type is guaranteed to be consumed exactly once. That is, a file that
has been opened must be closed and memory that has been allocated must be released. A value
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2 Gabriel Radanne, Hannes Saffrich, and Peter Thiemann

of unique type is guaranteed to have a single reference to it. Thus, memory can be reused on
consumption of the value.
These systems work well if one is prepared to write programs functionally in resource-passing

style. In this style, all operations in the resource’s API take the resource as a parameter and return
it in possibly modified state [1]. In typestate-oriented programming, they would also modify its
type [2]. Functional session types represent a popular example [13, 20].
Explicit resource passing places a heavy burden on the programmer and complicates the pro-

gram structure. For imperative APIs, resource-passing style is not an option at all. To this end,
Boyland and Retert [8] proposed the notion of borrowing a resource. The idea is that a linear re-
source can be borrowed to a function call. The function can work with a borrow of the resource,
but it cannot release the resource. Only the original owner of the resource has all rights to it and
can release it.
The concepts of ownership and borrowing have grown popular over time and they form the

foundation of the type system of the Rust language [21], which considers any memory-allocated
data structure a resource. Rust supports two kinds of borrows, shared and exclusive ones. Exclusive
borrows enable modification of the data structure whereas shared borrows only grant read access.
At any given time, either a single exclusive borrow is active or any number of shared borrows can
be active. Moreover, Rust makes sure that the lifetime of a borrow is properly contained in the
lifetime of its lender.
The design of Rust is geared towards programmers with a low-level imperative programming

background, like C or C++. Its management of lifetimes supports the manual way of memory
management customary in these languages very well and makes it safe. However, programmers
with a background in managed languages feel alienated from the lack of garbage collected data.
They would prefer a setting where automatic memory management with garbage collection was
the default, but where they could seemlessly switch to safe, manual resource management if that
was required. As a concrete example, consider a functional programmer who wants to safely inter-
act with a C library. Invoking a C function is easy via the existing foreign function interface, but
managing the underlying resources like malloc’d storage is not: it cannot be left to the garbage
collector, but proper release of the storage via calls to free() must be ensured by programming
conventions.
Our work provides a safe solution to programmers in this situation. We propose an extended

type system for ML-like languages that comes with linear and affine types, exclusive and shared
borrows, but all that integrated with full principal type inference, garbage collected data, and
automatic placement of borrowing regions. In our system, it is a type error to omit the call to
release the storage given a suitably typed API for storage allocation.
The most closely related contenders in this design space are Linear Haskell [7], henceforth LH,

Quill [24], and ALMS [40]. Compared to LH and Quill, the goals and means are similar as these
systems also permit abstraction over the number of uses of values and retain type inference, but
the details are different.

(1) Multiplicities in LH and Quill are either linear or unrestricted whereas we also distinguish
affine values.

(2) In Affe and in Quill multiplicities are directly attached to the type of a value. For example, in
Affe the function type α

lin
−−−→β denotes the type of a single-use function that can be called just

once, whereas the multiplicities in LH choose between α → β and α ⊸ β where the latter is
a function that promises to use its argument exactly once.

(3) Affe makes use of multiplicity contraints (like Quill) and kind subsumption (unlike Quill). Kind
subsumption results in significantly simpler, more readable inferred types.
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Kindly Bent to Free Us 3

1 module File : sig

2 type t: lin

3 val fopen: path −→ t

4 val write: &!t −→ string
aff
−−−→ unit

5 val close: t −→ unit

6 end
(a) File API

1 let main () =

2 let h = File.fopen "foo" in

3 File.write &!h "Hello␣";

4 File.write &!h "world!";

5 File.close h

(b) File example

1 let main () =

2 let h = File.fopen "foo" in

3 {| File.write &!h "Hello␣" |};

4 {| File.write &!h "world!" |};

5 File.close h

(c) File example with regions

Fig. 1. Writing files

(4) Neither LH nor Quill have borrowing whereas Affe supports two flavors: affine (exclusive,
mutable) and unrestricted (shared, immutable) borrows.

See Section 7 for further in-depth discussion of these and other related works.

1.1 First examples

As a first, well-known example we consider a simplified API for writing files shown in Fig. 1a. It
introduces a linear abstract type File.t. A call like File.fopen "foo" returns a linear handle to a
newly created file, which must be released later on with File.close as shown in Fig. 1b. Failing
to do so is a static type error. To write to the file, we must take an exclusive borrow &!h of the
handle and pass it to the File.write function. Exclusive borrows are affine: they must not be

duplicated, but there is no requirement to use them. This affinity shows up in the annotation
aff
−−−→

of the second arrow in the type of File.write: a partial application like File.write &!h captures
the affine borrow and hence the resulting function is also affine. It would be an error to use the
affine closure twice as in
let w = File.write &!h in w "Hello␣"; w "world!" (*type error*)

The remaining arrows in the API are unrestricted and we write −→ instead of the explicitly anno-

tated
un
−−→.

Every borrow is restricted to a region, i.e., a lexically scoped program fragment from which the
borrow must not escape. In Fig. 1b, there are two regions visualized in Fig. 1c, one consisting of
Line 3 and another consisting of Line 4. Both are fully contained in the scope of the linear handle
h, hence we can take one exclusive borrow &!h in each region. In both regions the borrow is
consumed immediately by passing it to File.write. Affe elaborates regions automatically before
type inference. Alternatively, programmers may mark regions explicitly (See Section 2.1).
This example demonstrates three features of our system:

(1) type and region inference without annotations in user code (Fig. 1b),
(2) types carry multiplicity annotations in the form of kinds,
(3) resource APIs can be written in direct style as linearity is a property of the type File.t.

Direct style means that there is a function like fopen that creates and returns a linear resource.
In contrast, LH forces programmers to use resource-passing style because, in LH, linearity is a
property of a function, rather than a property of a value that restricts the way that value can be
handled (as in Affe). An LH API analogous to File might provide functions like

• withFile : path −→ (handle ⊸ Unrestricted r) −→ r, which creates a new file handle and
takes a continuation that uses the handle linearly, but returns an unrestricted value1,
• writeFile : string −→ handle ⊸ handle, which returns the transformed resource handle, and
• closeFile : handle ⊸ unit, which consumes the handle by closing the file.

1For technical reasons, LH requires the programmer to use a type like Unrestricted at this point.

, Vol. 1, No. 1, Article . Publication date: June 2020.



4 Gabriel Radanne, Hannes Saffrich, and Peter Thiemann

In general, kinds can be polymorphic and constrained. Function application and composition
are the archetypical examples for functions exploiting that feature.2 For application, Affe infers
the following type.

let app f x = f x

# app : (α
κ
−→ β) −→ (α

κ
−→ β)

The reading of the inferred type is straightforward. If f is a κ-restricted function, then so is app f.
The multiplicities of α and β play no role. As usual in ML-like languages, we implicitly assume
prenex quantification by ∀κ∀α∀β . Internally, the type checker also quantifies over the kinds of α
and β , but the full prefix ∀κκ1κ2∀(α : κ1)∀(β : κ2) of the type of app is only revealed as much as
necessary for understanding the type.
For compose, Affe infers this type.

let compose f g x = f (g x)

# compose : (κ ≤ κ1)⇒ (β
κ
−→ γ) −→ (α

κ1
−−→ β)

κ
−→ (α

κ1
−−→γ)

Like in app, the multiplicities of the type variables α,β,γ do not matter. However, the multiplicity
κ of f reappears on the second to last arrow because compose f is a closure that inherits f’s multi-
plicity. The multiplicities of g and f both influence the multiplicity of the last arrow, so we would
expect its annotation to be the least upper bound κ ⊔ κ1. Thanks to subsumption of multiplicities,
it is sufficient to assume κ ≤ κ1 and g’s actual multiplicity gets subsumed to κ1. This constraint
simplification is part of our type inference algorithm. As before, printing the type scheme only
mentions the non-trivial constraint κ ≤ κ1 and omits the prenex quantification over κ,κ1 as well
as the kinds of α,β,γ .

1.2 Contributions

• A polymorphic type system that encodes linearity and affinity with borrowing in lexical regions.
Polymorphism covers types and kinds that express multiplicity constraints on the number of
uses of a value. This type system is a conservative extension of systems for existing ML-like
languages.
• Expressive type soundness theorem with respect to a big-step linearity-aware semantics.
• An extension of the HM(X ) framework [26] for constrained type inference to equip the type
system with full, principal type inference.
• Soundness proof of the inference algorithm.
• Automatic inference of regions for borrows.
• A prototype implementation of the type inference algorithm, including all constraint simplifica-
tion and extendedwith algebraic datatypes and patternmatching, available at https://affe.netlify.com/.

As Affe is built on top of the HM(X ) framework, which is a general framework for expressing
constraint-based typing and type inference, the extension of our work with features like type-
classes, ad-hoc overloading, traits, etc is possible and orthogonal to the presentation in this paper.
While the system is geared towards type inference, it is nonetheless compatible with type annota-
tions and thereby amenable to extensions where type inference may no longer be possible.

2 LINEARITY, AFFINITY, AND BORROWS ATWORK

Affe supports the resource-passing style common in functional encodings of session types (e.g.,
[29]; see also Appendix A.1 in the supplement) as well as other functional resource handling. But
it really shines when manipulating mutable resources like buffers or connection pools using a
mix of functional and imperative programming styles. To support this usage pattern of linearity,

2Compared to Quill [24] the signatures of application and composition are simpler because Affe supports kind subsumption.
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Kindly Bent to Free Us 5

module Array : sig

type (α : κ) t : lin

val create : (α : un)⇒ int × α −→ α t

val free : (α : aff)⇒α t −→ unit

val length : &(α t) −→ int

val get : (α : un)⇒ &(α t) × int −→ α

val set : (α : aff)⇒ &!(α t) × int × α −→ unit

val map : (&α −→ β) × &(α t) −→ β t

val iter : (α −→ unit) × α t −→ unit

end

Fig. 2. Linear arrays

Affe relies on the notion of borrowing [8]. Our first example of linear arrays demonstrates simple
borrowing and imperative programming; the second example demonstrates reborrowing and the
interaction between closures and borrowing by implementing a Sudoko solver based on a hybrid
copy-on-write data structure; the third example demonstrates advanced uses of regions with iter-
ators on linear values and the low-level primitives needed to implement them. Further examples
are available in Appendix A.

2.1 Imperative programming with linear arrays

The API for mutable linear arrays (Fig. 2) aims to safely handle manual allocation and deallocation
of arrays that may contain affine or linear elements. A program would first use create (n, v) to
create an array of size n initialized with value v. The value vmust be unrestricted as it is duplicated
to initialize all array elements. To free an array the elements must be affine. Thanks to subkinding,
the type of free is pleasingly simple: any type α whose kind is less than or equal to aff is acceptable.
The length function is always applicable. The get function is only applicable if the element type is
unrestricted as one element is duplicated. To set an array element displaces the previous content,
which must be at least affine.

The map function can transform arrays with arbitrary elements. In particular, it can turn unre-
stricted elements into linear (affine) ones. It takes a borrow of the input array and returns a newly
created output array. As freeing requires affine elements, we provide the iter function which
takes a suitable finalizer and an array with arbitrary elements, which is consumed. Indeed such
an iteration is the only way to free an array with linear elements. A real-life API would provide
a combination of map and iter as a “destructive” map that consumes its input array. Assuming a
uniform representation, such a destructive map might be implemented by in-place update.
To manage the different kinds of accessing the array we distinguish between constructors, de-

structors, observers, and mutators. Constructors and destructors like create and free manipulate
the whole array. The constructor create yields a linear resource which is consumed by free. Dur-
ing the lifetime of the array resource a, we can split off shared borrows &a that provide a read-only
view or exclusive borrows &!a for read-write views. Observer functions such as length and get

expect a shared borrow argument, mutator functions such as set expect an exclusive borrow.
Each borrow is tied to a region whose lifetime is properly contained in the lifetime of the re-

source. In a region, we can split off as many shared borrows of a resource as we like, but we can
take only one exclusive borrow. In a subsidiary region, we can take shared borrows of any borrow
or we can take an exclusive borrow of an exclusive borrow from an enclosing region. Borrows are
confined to their regions. Inside the region, shared borrows are unrestricted (un) whereas exclusive
borrows are affine (aff).
Using the API we can create an array of Fibonacci numbers in an imperative coding style:

1 let mk_fib_array n =

2 let a = create (n, 1) in

3 for i = 2 to n - 1 do
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6 Gabriel Radanne, Hannes Saffrich, and Peter Thiemann

4 let x = get (&a, i-1) + get (&a, i-2) in

5 set (&!a, i, x)

6 done;

7 a

8 # mk_fib_array : int −→ int Array.t

After creation of the array, the presence of a borrow in the for loop prevents access to the
“raw” resource inside the loop’s body. In particular, the resource cannot be freed through a borrow.
Line 4 contains two shared borrows in the same expression which forms a region by itself (recall
that shared borrows are unrestricted and may thus be duplicated). These borrows are split off the
exclusive borrow used in Line 5 which belongs to the next enclosing region corresponding to the
loop body. The whole array can be returned in Line 7 because the borrows are no longer in scope.
More precisely, here is is an annotated excerpt with regions explicitly marked by braces {| ... |}:

3 for i = 2 to n - 1 do {|

4 let x = {| get (&a, i-1) + get (&a, i-2) |} in

5 set (&!a, i, x)

6 |} done;

One region consists of the header expression of the let in Line 4. It is contained in another
region spanning the body of the for loop. Affe guarantees that borrows never escape the smallest
enclosing region. It employs a system of indexed kinds like affr and unr where r is a positive integer
that corresponds to the lexical nesting depth of regions. For instance, the type of &!a in Line 5 has
kind aff1 whereas the type of &a in Line 4 has kind un2 and the typing of the inner region is such
that types with kind indexes greater than or equal to 2 cannot escape. In the example, borrows
cannot escape because they are consumed immediately by get and set.

2.2 Solving sudokus with hybrid data-structures

This section presents an implementation of a backtracking Sudoku solver using a safe API for
persistent arrays that supports both mutable updates and immutable versioning. The implemen-
tation showcases safe mixing of resource allocation and deallocation in the presence of exclusive
(mutable) and immutable borrows. It also demonstrates two new aspects: the interaction between
closures and borrows and the notion of reborrowing.
Recently introduced persistent data structures permit transient mutations where non-linear

uses lead to degraded performance [9] or to dynamic and static checks [32]. In particular, per-
sistent Hash-Array-Mapped-Tries (HAMT) have been used with similar APIs in several non-pure
functional languages (OCaml, Clojure, . . . ). Affine types help formalize the performance contract
between the programmer and the library, while borrows avoid the need to thread state explicitly,
as usually required by an API for immutable data types.
Our implementation of a backtracking Sudoku solver abstracts this scenario. The solver main-

tains a two-dimensional array to represent the state of the game and uses backtracking when there
are several choices to proceed. As choice points may be revisited several times, it seems advanta-
geous to select a persistent data structure for the array. However, local changes between choice
points may be implemented as cheap in-place mutations.
Fig. 3 contains an API HYBARRAY along with an implementation CowArray that enables using mu-

table and immutable modifications to the board through affine types and borrows. The signature
differs slightly from the Array signature. As our application requires the get function, the array
elements must be unrestricted, but the structure itself remains linear so as to be implemented in
terms of Array. The in-placemutation function set_mutwith type &!(α t)× int× α −→ unitworks
on an exclusive borrow whereas the persistent set operation has type &(α t)× int× α −→ α t. It
takes a shared borrow because it only reads from the argument array, but returns a fresh, modified
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Kindly Bent to Free Us 7

module type HYBARRAY = sig

include ARRAY

val set : &(α t) × int × α −→ α t

val set_mut : &!(α t) × int × α −→ unit

end

module CowArray : HYBARRAY = struct

include Array

let set (a, i0, x0) =

Array.mapi ((fun (i, x) −→ if i = i0 then x0 else x), a)

let set_mut = Array.set

end

Fig. 3. Signature and Implementation of hybrid arrays

val propagate : int −→ int −→ &!Matrix.t −→ int −→ unit

val solve : int −→ int −→ Matrix.t −→ unit

1 type board = IntSet.t Matrix.t

2

3 let propagate_line i0 j0 board n =

4 for j = j0+1 to 8 do

5 let cell = Matrix.get (&board, i0 , j) in

6 let cell' = IntSet.remove n cell in

7 Matrix.set_mut (&!board, i0, j, cell')

8 done

9

10 let propagate i j board n =

11 propagate_line i j &!board n;

12 propagate_column i j &!board n;

13 propagate_square i j &!board n

14 let rec solve i j board =

15 begin if is_solved &board then Matrix.print &board else

16 let (new_i, new_j) = next_pos (i,j) in

17 let try_solution n =

18 let new_board =

19 Matrix.set (&board, i, j, IntSet.singleton n) in

20 propagate i j &!new_board n;

21 if is_valid &new_board then

22 solve new_i new_j new_board

23 in

24 let cell = Matrix.get (&board, i, j) in

25 IntSet.iter try_solution cell;

26 end;

27 free board

Fig. 4. Excerpt of the Sudoku solver

structure. The module CowArray, also in Fig. 3, contains a very simple implementation of HYBARRAY
that represents hybrid arrays as regular arrays and uses copy-on-write for persistent modifications.
The function mapi: (int× &α −→ β)× &(α t) −→ β t is a simple variation on Array.mapwhere the
mapping function also takes the position of the element. Recall that Array.map always creates a
new array for the result.
In the example code, we make use of a two-dimensional version Matrix of the CowArray data-

structure. The only difference is that the API functions get, set, and set_mut now take two index
parameters of type int instead of one. The internal working is exactly the same.
Our implementation of a Sudoku solver ( Fig. 4) represents the board as a 2D-matrix (Line 1).

Each cell contains an integer set of type IntSet.t that represents admissible solutions so far. This
type is immutable, i.e., IntSet.remove produces a new value.
The main functions are solve and propagate with the typings shown on top of Fig. 4. The types

of propagate_line etc are the same as for propagate. From the types, we can see that solve takes
ownership of the board, whereas propagate only takes a mutable borrow. Hence, the propagate

functions can only modify or read the board, whereas solve has full control.
The Sudoku solver solve iterates over the cells and tries each possible solution (Line 17). When

a value is picked for the current cell, it creates a choice point in new_board, where the current
cell is updated with an immutable modification (Line 19), and propagate the changes with the
propagate function. The propagate function uses direct mutation through an exclusive borrow
of the matrix as it need not preserve the previous version of the board. The implementation of
propagate is split into three parts for lines, columns, and square, which are all very similar to
function propagate_lines (Line 3).
As the board parameter to the propagate function is an exclusive borrow, it should be han-

dled in an affine manner. To pass it safely to the three helper functions, the body of propagate
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8 Gabriel Radanne, Hannes Saffrich, and Peter Thiemann

reborrows (i.e., it takes a borrow of a borrow) the board three times in Line 11-Line 13. The func-
tion propagate_line also contains two reborrows of the exclusive borrow argument board, an im-
mutable one (Line 5) and an exclusive one (Line 7). It demonstrates the facility to take immutable
borrows from exclusive ones.
The typing ensures that the mutations do not compromise the state at the choice point, be-

cause they operate on a new state new_board created for one particular branch of the choice. As
the set function only requires an unrestricted shared borrow, the closure try_solution remains
unrestricted even though it captures the borrow &board. The price is that try_solution cannot
escape from &board’s region. In this example, the inferred region corresponds to the begin/end
scope. Hence, try_solution can be used in the iteration in Line 25. As board is linear we must free
it outside of the region before returning (Line 27).
While presented for copy-on-write arrays, the API can easily be adapted to other persistent data

structures with transient mutability such as Relaxed-Radix BalanceVectors (RRB) [32] or persistent
HAMTs [4, 16] to provide a convenient programming style without compromising performance.

2.3 Iterators and regions

In the examples so far, regions do not appear in type signatures. But for certain programming
idioms, we want to extend the scope of a region across a function boundary. For instance, how
should we fold on an array of linear objects? Here is a first attempt at the type of a fold function:

val fold : (α:κ)⇒ (α −→ β
κ
−→ β) −→ α Array.t −→ β

lin
−−−→ β

This type puts no restrictions on the element type of the array, but it requires the fold function
to consume the array and all its elements. The last function arrow is linear because the array type
(from Section 2.1) is linear.

If we want to work on borrows of linear and affine resources, then the typing gets more involved
because we must make sure those borrows are not leaked in the result. We obtain the following
signature for bfold, the borrowing fold operation:

val bfold : (β:κ),(κ ≤ linr )⇒ (&(affr+1,α) −→ β
affr+1
−−−−−−→β) −→ &(κ1,α Array.t) −→ β

κ1
−−→ β

The folded function receives a shared borrow of the element in the array. The typing of the call-
back ensures that this borrow is neither captured nor returned by the function. This encapsulation
is implemented with a universally quantified kind index variable r . The signature prescribes the
type &(affr+1,α) for the shared borrow of the resource with an affine kind at region nesting r + 1.
The return type of the callback is constrained to kind κ ≤ linr . The important part of this con-
straint is the r index, which ensures that the callback cannot return the borrowed argument from
the more deeply nested scope. The input of the fold is a shared borrow of the array, which ensures
that we have the right to share borrows of the inner content and make multiple concurrent folds.
As an easy example, we fold over an array of files all_files : File.t Array.t to compute the

sum of their sizes:
let total_size_of files = bfold (fun f s −→ File.size f + s) files 0

let total_size = total_size_of &all_files

This approach is not sufficient if we want to mutate the elements of the array during iteration.
To this end, we need to take an exclusive borrow of the structure to iterate on:
val iter_mut : (&!(affr+1,α) −→ unit) −→ &!(κ1,α Array.t) −→ unit

While the distinction between mutable and immutable iteration functions seems unfortunate, it
is typical of programming with borrows and is also present in the Rust standard library. It enables
the programmer to explicitly state how different iterations may be composed and optimized. It also
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Kindly Bent to Free Us 9

enables different implementations such as using parallel iterations in the immutable case. Affe’s
region variables ensure that the content iterated on can never be leaked outside of the iteration
function. This pattern is essential in many use cases of linearity such as pools of linear objects (see
Appendix A.2).

To close this discussion, let’s see which primitives are needed to implement functions like bfold
and iter_mut. The naive sequential implementations of both functions boil down to a loop over
the index range of the array:

1 let rec bfold_helper f a z i =

2 if i < 0 then z

3 else bfold_helper f &&a (f (get_sb &&a i) z) (i-1)

4 let bfold f a z =

5 let l = length &&a - 1 in

6 bfold_helper f &&a z l

1 let rec iter_helper f a i =

2 if i < 0 then ()

3 else (f (get_eb &&!a i); iter_helper f &&!a (i-1))

4 let iter_mut f a =

5 let l = length &&a - 1 in

6 iter_helper f &&!a l

Observe that we are proposing two different primitives

• get_sb : &(κ, α Array.t) −→ int
κ
−→ &(κ, α)

to get a shared borrow from a shared borrow of an array and

• get_eb : &!(κ, α Array.t) −→ int
κ
−→ &!(κ, α) (* Unsafe! *)

to get an exclusive borrow from an exclusive borrow of an array.

These primitives have the same underlying implemention (the same as get from Section 2.1). Their
types arise from the intuition that the borrow of a structure should entitle to borrows of its sub-
structures, roughly, the borrow of an array could be considered as array of borrows. However,
only get_sb is safe: the shared borrow of the array entitles us to obtain shared borrows for the
elements in the same region as the shared borrow for the array freezes the array inside the region.
This freeze extends to the elements because lifetime of the array fully overlaps with the lifetime
of its elements. Considering get_eb, we see that we may obtain two different exclusive borrows of
the same array element inside a region. Clearly, the exclusive borrow for the element should live
in a nested region where the array is not accessible. Hence, the safe alternative is to use a different
function for obtaining borrows of elements

with_eborrow : (β:κ),(κ ≤ linr )⇒ &!(κ1,α Array.t) −→ int −→ (&!(affr+1,α) −→ β)
κ1
−−→ β

Hence, the helper function for iter_mut should read like this

1 let rec iter_helper f a i =

2 if i < 0 then ()

3 else (with_eborrow &!a i f; iter_helper f &!a (i-1))

which also explains the occurrence of affr+1 in the type of iter_mut.
We conclude that borrows of datastructures create the need for differently typed access func-

tions that are tailored for different use cases. The argumentation whether such an access function
is safe is sometimes subtle and gives rise to nonobvious types.

3 THE AFFE LANGUAGE

Affe is aminimalML-like languagewith let-polymorphism and abstract types. Its type systemman-
ages linearity and borrowing using kinds and (kind-) constrained types. For ease of presentation,
we consider a simplified internal language.
• Pattern matching is demonstrated on pairs rather than algebraic datatypes.
• There are separate operators for borrowing and reborrowing (taking the borrow of a borrow);
the surface language unifies these operators using ad-hoc polymorphism / typeclasses.
• Regions are explicit in the code andmust be annotated using the algorithmspresented in Section 3.2.
• Regions are identified using nesting levels instead of region variables.
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Expressions

e ::= c | x | (e e ′) | λx .e | let x = e in e ′

| (e, e ′) | matchϕ x ,y = e in e
′ (Pairs)

| {|e |}n
{x 7→b}

(Region)

| &bx | &&bx (Borrows)

| create | observe

| update | destroy (Resources)

b ::= U | A (Borrow specification)

ϕ ::= id | &b (Match Specification)

Types

τ ::= α | τ × τ ′ | T τ (ML types)

| τ
k
−→τ ′ (Function types)

| &b(k, τ ) (Borrowed Type)

Kinds

k ::= κ | Qn ∀n ∈ N ∪ {∞} (Kinds)

Q ::= U | A | L (Quality)

Constrained type and kind schemes

C ::= (k ≤ k ′) (Constraints)

σ ::= ∀κ∀(α : k).(C⇒τ ) (Type scheme)

θ ::= ∀κ .(C⇒k→k) (Kind scheme)

Fig. 5. Syntax

The rest of this section formalizes Affe: the syntax (Section 3.1), the statics in terms of a re-
gion annotation pass (Section 3.2) and syntax-directed typing (Section 3.3), and a dynamics that is
linearity- and resource-aware (Section 3.4).

3.1 Syntax

Figure 5 defines the syntax of Affe. Expressions are as usual in an ML-like language. The novel
aspects are match specifications, regions, and borrows.
A borrow &bx is always taken from a variable x . The borrow annotation b indicates whether the

borrow is exclusive/affine (A) or shared/unrestricted (U). If x is already borrowed, then we need to
use the reborrow expression &&bx . A region {|e |}n

{x 7→b}
is annotated with its nesting n, the variable

x thatmay be borrowed in e , and the kind of borrow b. Amatch is indexedwith amatch specification

ϕ that indicates whether the match operates on borrows (ϕ = &b ) or not (ϕ = id). We consider
four primitive operations to manipulate resources: create, observe, update and destroy. They
serve a prototypes to demonstrate the typing and handling of resources. For a concrete type of
resource, there are further arguments and perhaps different versions of the operations. But the
typing and behavior of the operations is analogous to the prototype operations. Moreover, observe
and update serve as eliminators for borrow types.
Many types are indexed with kinds. A kind k is either a kind variable κ or a constant (linear L,

affine A, or unrestricted U) indexed by a nesting level n ∈ N ∪ {∞}.
A typeτ is either a type variable, a pair type, a function type indexed by a kind, a type application

T τ of an abstract type constructor T, or a borrowed type &b(k, τ ).
Type schemes σ add quantification over kind variables κ, kinded type variables (α : k), and

constraints C to a type, where a constraint is a list of inequalities over kinds.
Abstract type constructors possess kind schemes θ which relate the kinds of the type construc-

tors’ arguments to the kind of the constructed type.
Generally, we write lists with an overbar and (sometimes) an index as in τi .

3.2 Automatic region annotation

In the surface language (Section 2) region annotations are optional. In the internal language, re-
gions must be syntactically explicit and annotated with a nesting index and a scoped variable. This
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section defines a transformation p  p ′ which automatically inserts region annotations in pro-
grams. The input p is a program with optional region annotations of the form {|e |} . The output p ′

is a program with explicit annotations of the form {|e |}n
{x 7→b}

such that no borrow occurs outside

a region. We give an informal presentation of our code transformation and defer the complete
definition to Appendix B. This code transformation aims to find, for each borrow &bx , the biggest
region satisfying the following rules:

(1) The region should contain at least &bx .
(2) The region must be contained in the scope of x .
(3) An exclusive borrow &Ax should never share a region with any other borrow of x .
(4) The variable x cannot occur in the region of &bx .

The transformation starts from each borrow &bx and grows its associated region until enlarging
it would include the binding for x or lead to a conflicting use of x or a conflicting borrow for x . As
an example, consider the following program:

λa. let x = (f &Aa) in

д (&Ax);
f (&Ux) (&Ux)

 

λa.{| let x = (f &Aa) in

{|д (&Ax)|}2
{x 7→A}

;

{| f (&Ux) (&Ux)|}2
{x 7→U}

|}1{a 7→A}

As variable a only has one borrow, its region covers its whole lexical scope. Variable x has multiple
conflicting borrows and requires more consideration. We place a first region around the exclusive
borrow and its function application, and a second region around both shared borrows. This place-
ment of region is optimal: making any region bigger would cause a borrowing error. In particular,
it is essential to place the second borrow around both occurrence of (&Ux : we want the function
to receive both borrows, but its result must not contain any borrow (otherwise it would escape).
Region indices are assigned after placement, so it is trivial to ensure well-nested regions where
the inner regions have higher indices than the outer ones.
Programmers may also annotate regions explicitly. The transformation considers an annotation

as an upper bound on the contained regions. In the following program, a manual annotation has
been inserted to ensure no borrow enters the reference r :

let r = ref 0 in
λa. set r {|д (&Ua)|};

f (&Ua)

 

let r = ref 0 in
λa. set r {|д (&Ua)|}1

{a 7→U}
;

{| f (&Ua)|}1
{a 7→U}

The rules allowmerging the two regions around the borrows &Ua. However the explicit annotation
indicates that the region should stay around the closure passed as argument of set . This feature is
useful to control captures by imperative APIs.
The code transformation is purely syntactic and must be used before typing. It only produces

well-nested annotations: if {| . . . |}n
b
is nested inside {| . . . |}n

′

b ′
, then n > n′. Furthermore, there is

at most one region per borrow, and exactly one region per exclusive borrow. In the rest of this
article, we assume that all terms have been annotated by this code transformation and respect
these properties.

3.3 Typing

To avoid distraction, this section focuses on the essential and novel parts of the type system. A
complete description is available in Appendix D. Here we only discuss the following judgments:
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Lat-UAL

U ≤ A ≤ L

Lat-Level

Q ≤ Q ′ n ≤ n′

Qn ≤L Q
′
n′

U0

A0

L0

Un

An

Ln

U∞

A∞

L∞

Fig. 6. La�ice ordering – k ≤L k
′

Γ ::= · | Γ;B (Environments)

B ::= ∅ (Empty)

| (α : θ ) (Types)

| (x : σ ) (Variables)

| [x : σ ]nb (Suspended)

| (x ÷ σ )kb (Borrows)

Fig. 7. Type environments

(σ ≤ U∞) ⊢e (x : σ ) = (x : σ ) ⋉ (x : σ ) (Both)
· ⊢e (x ÷ σ )

k
U
= (x ÷ σ )k

U
⋉ (x ÷ σ )k

U
(Borrow)

· ⊢e Bx = Bx ⋉ ∅ (Left)
· ⊢e Bx = ∅ ⋉ Bx (Right)

· ⊢e (x : σ ) = [x : σ ]n
b
⋉ (x : σ ) (Susp)

(b′ ≤ b) ⊢e (x ÷ σ )
k
b
= [x : σ ]n

b′
⋉ (x ÷ σ )k

b
(SuspB)

· ⊢e [x : σ ]n
′

b
= [x : σ ]n

U
⋉ [x : σ ]n

′

b
(SuspS)

Fig. 8. Spli�ing rules for bindings – C ⊢e B = Bl ⋉ Br

C | Γ ⊢s e : τ — Expression e has type τ in environment Γ under constraints C .
C | Γ ⊢s τ : k — Type τ has kind k in environment Γ under constraints C .
D ⊢eC — Constraint D entails constraint C .
D =eC — Constraints C and D are equivalent.

Kinds and constraints. Affe uses kinds and constrained types to indicate linear and affine types.
A kind k is either a kind variable, κ, or a constant Qn . The quality Q describes the use pattern of
the type: unrestricted U, affine A, or linear L. The level n ∈ N ∪ {∞} describes the nested regions
in which the value can be used. Level 0 refers to the top-level scope outside any region; we often
elide it and write A forA0. Level∞ refers to an empty region that is infinitely nested. For instance,
the constraint (κ ≤ U∞) indicates that κ must be unrestricted, but can be local to a region. Kinds
form a lattice described in Fig. 6. Unrestricted values may be used where affine ones are expected
and affine ones are less restricted than linear ones as reflected in Lat-UAL. Values usable at level
n may be used at any more deeply nested level n′ as defined in the Lat-Level axioms. Constraints
are conjunctions of inequality constraints over this kind lattice, i.e., they specify upper or lower
bounds for kind variables or relate two kind variables.

Environments and bindings. Affe controls the use of variables by supporting new modes of bind-
ing in type environments Γ, as defined in Fig. 7. Environments contain standard bindings of type
variables to kind schemes, (α : θ ), value bindings (x : σ ), but also suspended and borrow bindings.
A suspended binding, [x : σ ]n

b
, indicates that x is earmarked for a borrowing use in a nested region

marked with x but cannot be used directly. A borrow binding, (x ÷σ )k
b
, replaces such a suspended

binding on entry to the x-region. It indicates that the borrow &bx can be used directly. Kind k
restricts the lifetime of the borrow to the region (see rules Region and BorrowBinding in Fig. 9
and the upcoming discussion of these rules).
Constraints on an environment control substructural properties by restricting the types of vari-

ables. The constraint (Γ ≤ k) stands for the conjunction of (σ ≤ k), for all (x : σ ) in Γ, which
in turn means that k ′ ≤ k where k ′ is the kind of the variable’s type scheme σ . Borrow bindings
follow the same rules, but suspended bindings are forbidden in an environment Γ constrained like
that. This intuitive explanation is sufficient to understand the Var and Abs rules shown in Fig. 9.
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Instance

σ = ∀κi∀(α j : kj ). C⇒τ

ψ = [κi 7→ ki ,α j 7→ τj ]

ψ (C),ψ (τ ) = Inst(Γ,σ )

Var

(x : σ ) ∈ Γ Cx , τx = Inst(Γ,σ )
C ⊢eCx ∧ (Γ\{x} ≤ A∞)

C | Γ ⊢s x : τx

Abs

C | Γ; (x : τ2) ⊢s e : τ1
C ⊢e(Γ ≤ k)

C | Γ ⊢s λx .e : τ2
k
−→τ1

App

C | Γ1 ⊢s e1 : τ2
k
−→τ1 C | Γ2 ⊢s e2 : τ

′
2

C ⊢e Γ = Γ1 ⋉ Γ2 C ⊢e(τ
′
2 ≤ τ2)

C | Γ ⊢s(e1 e2) : τ1

Region

[x : τx ]
n
b ∈ Γ C ⊢e Γ 

x
n Γ
′

C | Γ′ ⊢s e : τ C ⊢e(τ ≤ Ln−1)

C | Γ ⊢s{|e |}
n
{x 7→b} : τ

Borrow

(x ÷ σ )kb ∈ Γ Cx , τx = Inst(Γ,σ )
C ⊢eCx ∧ (Γ\{x} ≤ A∞)

C | Γ ⊢s &
bx : &b(k, τx )

Reborrow

C | Γ ⊢s x : &b(k, τ )

C | Γ ⊢s &&
bx : &b(k, τ )

BorrowBinding

C ⊢e(bn ≤ k) ∧ (k ≤ b∞)

b ∈ {U,A}

C ⊢e [x : σ ]nb  
x
n (x ÷ σ )

k
b

Fig. 9. Selected typing rules (C | Γ ⊢s e : τ ) and borrowing rules (C ⊢e Γ 
x
n Γ
′)

Rule Var looks up the type scheme of the variable x in the environment Γ and instantiates it
with Inst(Γ,σ ). Instantiation follows the HM(X ) formulation and takes as input a scheme σ and
an environment Γ and returns a constraint C and a type τ . The rule also checks that the other
bindings in Γ can be safely discarded by imposing the constraint (Γ\{x} ≤ A∞). It enforces that all
remaining bindings (except x ) are affine or unrestricted and can therefore be discarded.

Rule Abs ensures the kind annotation on the arrow type (τ2
k
−→τ1) reflects the restrictions on

captured variables via the constraint (Γ ≤ k). If, for instance, any binding in Γ is affine, it gives
rise to the constraint (An ≤ k) and the arrow kind is at least affine at nesting level n. Capturing a
borrow is perfectly fine: the kind of the borrow is also a lower bound of the arrow kind k which
restricts the closure to the region of the borrow. Capturing a suspended binding is forbidden.

Copying and Splitting. The App typing rule in Fig. 9 demonstrates how Affe deals with dupli-
cation and dropping of values. The splitting C ⊢e Γ = Γ1 ⋉ Γ2 in the rule decomposes the type
environment Γ in two parts, Γ1 and Γ2, which are used to typecheck the components of the appli-
cation.
Fig. 8 shows the action of splitting rules on single bindings. If x ’s type is unrestricted, rule

Both indicates that we can duplicate it. Similarly, unrestricted borrows can be duplicated with
rule Borrow. Left and Right rules are always applicable and move a binding either to the left
or right environment. The rules Susp, SuspB and SuspS split off suspended bindings to the left
while conserving access to the binding on the right. A suspended binding can later be turned into
a borrow inside a region. Splitting of suspended bindings is asymmetric. It must follow the order
of execution from left to right, which means that a resource can be used first as a borrow on the
left and then later as a full resource on the right. The Susp rule works with a full resource, rule
SuspB with a borrow, and rule SuspS with a suspended binding.
Splitting applies whenever an expression has multiple subexpressions: function applications, let

bindings and pairs. In the expression let a = create 8 x in f {|length &Ua |}
{a 7→U}

a, the rule Susp
splits off a borrow from the resource a to use it in the left argument. As usual, a borrow cannot be
active in the same scope as its resource. The region around its use ensures that the borrow in the
left argument does not escape, which brings us to the next topic.
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Regions. Borrowing is crucial to support an imperative programming style. To guarantee the
validity of a borrow, its lifetime must be properly contained in its ancestor’s lifetime. Affe ensures
proper nesting of lifetimes by using regions. The expression {|e |}n

{x 7→b}
indicates a region at nesting

level n in which a b-borrow can be taken of x .
The typing for a region (rule Region in Fig. 9) replaces suspended bindings by borrow bindings

(rule BorrowBinding), typechecks the body of the region, and ensures that the borrow does not
leak outside. This last check is done with indices that correspond to the nesting level of the region.
The kind k of the borrow is indexed with the level n corresponding to its region, thanks to the
constraint (bn ≤ k). The constraint (τ ≤ Ln−1) ensures that the return type of the region must live
at some enclosing, lower level.
As an example, consider the expression {| f (&Uc)|}n

{x 7→U}
where c is a linear channel in an envi-

ronment Γ. The first step is to check that [c : channel]U is in Γ. When entering the region, rule
Region imposesC ⊢e Γ 

x
n Γ
′, which defines Γ′ corresponding to Γ where the suspended binding

is replaced by the borrow binding (c÷channel)k
U
. To constrain the borrow to this region we impose

the constraint C ⊢e(Un ≤ k) ∧ (k ≤ U∞), which affirms that the borrow is unrestricted, but can
only be used in nesting levels n and higher. Rule Region also imposes the constraint (τ ≤ Ln−1),
which prevents the borrow, having kind k of level ≥ n, from escaping the region’s body of type τ .

Pattern matching. Elimination of pairs is done using a matching construct (matchϕ x , x ′ =

e1 in e2). This construct is mostly standard, except it can operate both on a normal pair and a
borrow of a pair. The intuition is as follows: A syntactic marker ϕ indicates if it applies to a pair
(ϕ = id) or a borrow (ϕ = &b). If ϕ = id, the typing simplifies to the usual elimination of a pair.
Otherwise, e1 is expected to be a borrow of type &b(k, τ1× τ

′
1) and the variables x and x ′ have type

&b(k, τ1) and &b(k, τ ′1), respectively. Thus, the borrow of a pair is considered as a pair of borrows
of its components.

Resource management. To demonstrate how Affe deals with resources, we introduce an abstract
type R τ whose content of type τ must be unrestricted (U0) and which is equipped with the four
operations introduced in Section 3.1:
• create: ∀κα (α : κα ). (κα ≤ U0)⇒α −→R α
• observe: ∀κκα (α : κα ). (κα ≤ U0)⇒&U(κ,R α) −→α

• update: ∀κκα (α : κα ). (κα ≤ U0)⇒&A(κ,R α) −→α
A

−→ Unit

• destroy: ∀κα (α : κα ). (κα ≤ U0)⇒R α −→ Unit

3.4 Semantics

It is straightforward to give a standard semantics for Affe, but such a semantics would not be
very informative. In this section, we give a big-step semantics that performs explicit bookkeeping
of the number of times a value is used and of the mode in which a reference to a resource is
used (e.g., borrowed or not). This bookkeeping is based on a set of permissions that regulate the
currently allowed mode of access to resources and closures. It enables us to state and prove a
highly informative type soundness result (see Section 5) with expressive invariants that ensure
proper resource usage.
The dynamics of Affe is given in big-step functional style [3, 28, 34]. A function eval manipulates

the semantic objects defined in Fig. 10. The semantics is defined in terms of elaborated expressions
e with kind, constraint, and splitting annotations inserted by the typechecker. A splitting sp is
evidence of the splitting relation for type environments used in the typing rules.
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Elaborated expressions

e ::= x | x[k; τ] | λkx .e | (e e ′)sp

| (e, e ′)ksp | matchϕ x ,y =sp e in e
′ (Pairs)

| let x =sp e in e
′ (Mono let)

| letfun (x : σ ) =sp λ
ky.e in e ′ (Poly let)

| {|e |}n
{x 7→b}

(Region)

| &bx | &&bx (Borrows)

| create | observe

| update | destroy (Resources)

Splittings

sp : (C ⊢e Γ = Γl ⋉ Γr )

Storables

w ::= STPOLY(γ ,κ,C,k, x , e) (Poly Closures)

| STCLOS(γ ,k, x , e) (Closures)

| STPAIR(k, r , r ′) (Pairs)

| STRSRC(r ) (Resources)

| • (Freed Resource)

Environment

ρ ::= UA ℓ (Locations)

π ::= {} | π + ρ (Permissions)

r ::= ρ | c (Results)

γ ::= · | γ (x 7→ r ) (Enviroments)

δ ::= · | δ (ℓ 7→ w) (Stores)
Fig. 10. Syntax of internal language

Let-polymorphism in the surface language gives rise to elaborated letfun expressions anno-
tated with a type scheme σ and a kind k indicating their usage restriction (linear, affine, etc) rela-
tive to the variables and constraints of σ . Their use gives rise to explicit instantiation of the kind
and type variables. Pairs come with a kind tag k indicating the usage restriction.
Addresses ρ are composed of a raw location ℓ, which is just a pointer into a store, and a stack

of modifiers that indicates the borrows and reborrows that have been taken from ℓ. Once we have
taken an unrestricted borrow (from a raw location or a borrowed one), then we can take further
unrestricted borrows from it, but no more affine ones.
A permission π is a set of addresses that may be accessed during evaluation. A well-formed

permission contains at most one address for each raw location.
Non-trivial results are boxed in the semantics. So, a result r is either an address or a primitive

constant (e.g., a number).
A value environment γ maps variables to results.
A storablew describes the content of a location in the store. There are five kinds of storables. A

poly closure represents a polymorphic function. It consists of an environment and the components
of an elaborated abstraction. A closure represents a monomorphic function in the usual way. A
resource contains a result and the hole • fills a released location.
A store δ is a partial map from raw locations to storables. The function salloc : store −→

storable −→ ( loc ∗ store ) is such that salloc delta w allocates an unused location in delta and
fills it with w. It returns the location and the extended store.
The evaluation function is indexed by a step count i so that each invocation is guaranteed to

terminate either with an error, a timeout, or a result. Its return type is a monad α sem which
combines error reporting and timeout:

1 type α sem = Error of string | TimeOut | Ok of α

2 val eval: store−→perm−→venv−→int−→exp−→(store *perm *result) sem

Function eval evaluates the given expression in the context of an initial store, a permission to use
addresses in the store, a value environment, and a step count. If successful, it returns the final store,
the remaining permissions, and the actual result.
We give some excerpts of the definition of eval in Fig. 11 and leave the full definition for

Appendix F. The definition uses OCaml syntax with extensive pretty printing. The pervasive let ∗
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let rec eval
(δ :store) (π :perm) (γ :venv) i e
: (store× perm× result) sem =
if i=0 then TimeOut else
let i' = i − 1 in
match e with

| App (e1, e2, sp) −→
let (γ 1, γ 2) = vsplit γ sp in

let∗ (δ1, π 1, r1) = eval δ π γ 1 i' e1 in
let∗ ℓ1 = getloc r1 in
let∗? () = ℓ1 ∈ π 1 in
let∗ w = δ1(ℓ1) in
let∗ (γ ', k', x', e') = getstclos w in

let π 1' = if k' ≤ U then π 1 else π 1 − ℓ1 in

let∗ δ1' = δ1(ℓ1)← (if k' ≤ U then w else •) in
let∗ (δ2, π 2, r2) = eval δ1' π 1' γ 2 i' e2 in
let∗ (δ3, π 3, r3) = eval δ2 π 2 γ '(x'7→ r2) i' e' in
Ok (δ3, π 3, r3)

| Borrow (b, x) −→
let+ ρ = γ (x) in
let∗? () = ρ ? b && ρ ∈ π in

Ok (δ , π , ρ)

| Varinst (x, k ) −→
let∗ rx = γ (x) in
let∗ ℓ = getloc rx in
let∗? () = ℓ ∈ π in

let∗ w = δ (ℓ) in
let∗ (γ ', κ', C ', k', x', e') = getstpoly w in

let π ' =

if C'{k\>κ'} =e [(k' ≤ U)]{k\>κ'}
then π else π − ℓ

in

let w = STCLOS (γ ', k'{k\>κ'}, x', e'{k\>κ'}) in
let (ℓ', δ ') = salloc δ w in

Ok (δ ', π ' + ℓ', ℓ')

| Region (e, n, x, τ x , b) −→
let+ ρ = γ (x) in
let∗ ρ' = b.ρ in

let∗ π ' = reach ρ τx δ in

let∗ π '' = b.π ' in
let γ ' = γ (x 7→ρ') in
let π = (π ∪ π '') \ π ' in
let∗ (δ1, π 1, r1) = eval δ π γ ' i' e in
let π 1 = (π 1 \ π '') ∪ π ' in
Ok (δ1, π 1, r1)

Fig. 11. Big-step interpretation

operator acts as monadic bind for the sem monad. The operator let ∗? : bool −→ ( unit −→ α sem
) −→ α sem converts a boolean argument into success or failure in the monad.

1 let (let*?) : bool −→ (unit −→ β sem) −→ β sem =

2 fun b f −→ if b then f () else Error ("test␣failed")

The function header of eval checks whether time is up and otherwise proceeds processing the
expression.
The Varinst case corresponds to instantiation. It obtains the variable’s value, checks that it is

a location, checks the permission (the let ∗? clause), obtains the storable w at that location, and
checks that it is a poly closure (STPOLY). Next, it updates the permission: if the poly closure is
unrestricted, then the location remains in the permission set, otherwise it is removed. Finally, we
allocate a newmonomorphic closure, add it to the permissions, and return the pointer as the result
along with the updated store and permissions.
The App case implements (elaborated) function application. We first apply the splitting sp to

gamma and evaluate subterm e1 with its part of the environment and the decremented timer i ' .
The result must be a location that we are permitted to use. Moreover, there must be amonomorphic
STCLOS stored at that location. The permission to further use this closure remains in force only if
the closure is unrestricted. Finally, we evaluate the argument, then the function body, and return
its result.
The Region case implements a region. It obtains the address for x, the suspended binding, and

extends it with the intended borrow b. This extension may fail if we try to take an affine bor-
row of an unrestricted borrow. Next, we rebind x to the borrow’s address, extend the permission
accordingly, and execute the region’s body. Finally, we withdraw the permission and return the
result.
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The Borrow case obtains the address for x, checks that it is a borrow of the correct mode b and
whether it is permitted to use it. It just returns the address.

4 INFERENCE

An important contribution of Affe is its principal type inference. Our type inference algorithm
is based on the HM(X ) framework [26], a Hindley-Milner type system for a language with con-
strained types where constraints are expressed in an arbitrary theoryX . IfX has certain properties,
then HM(X ) guarantees principal type inference. We apply HM(X ) to a concrete constraint lan-
guage which we name CL . We adapt and extend HM(X )’s rules to support kind inference, track
linearity, and handle borrows and regions. We formulate constraint solving and simplification al-
gorithms for CL . Finally, we prove that the inference algorithm computes principal types.

4.1 Preliminaries

In the context of inference, it is critical to know which elements are input and output of inference
judgments. In the following, when presenting a new judgment, we write input parameters in bold

green. The remaining parameters are output parameters.

Usage Environments. To determine if a variable is used in an affine manner, we track its uses
and the associated kinds. In the expression f x x , x is used twice. If x is of type τ , which is of
kind k , we add the constraint (k ≤ U). To infer such constraints, our inference judgment not only
takes an environment as parameter but also returns a usage environment, denoted Σ, which summa-
rizes usages of variables and borrows. Usage environments are defined like normal environments.
In Section 3.3, we use relations to split environments and to transform suspended bindings into
borrows inside a region. These relations take a constraint parameter which validates the transfor-
mations. In the context of inference, we define new judgments which infer the constraints.
• C ⇚ Σ = Σ1 ⋉ Σ2. Given two usage environments Σ1 and Σ2, we return Σ, the merged environ-
ment, and C , a set of constraints that must be respected.
• C ⇚ Σ  

x
n Σ

′. Given a usage environment Σ′, a nesting level n, and a variable name x , we
return Σwhere the borrow binding of x in Σ

′, if it exists, is replaced by a suspended binding. We
also return the constraints C .

Both relations are total and non-ambiguous in term of their input (i.e., functions), and use the
rules presented in Sections 3.3 and 3.3. The relations used for syntax-directed typing can trivially
be defined in terms of these new relations by using constraint entailment. All relations are fully
described in Appendix D.2.

Constraint Normalization. TheHM(X ) framework assumes the existence of a function “normalize”
which takes a constraint C and a substitutionψ and returns a simplified constraint C ′ and an up-
dated substitution ψ ′. Normalization returns a normal form such thatψ ′ is a most general unifier.
For now, we simply assume the existence of such a function for our constraint system and defer
details to Section 4.3.

4.2 Type Inference

We write Σ |(C,ψ ) | Γ ⊢w e : τ when e has type τ in Γ under the constraints C and unifierψ with a
usage environment Σ. Γ and e are the input parameters of our inference algorithm. Unlike in the
syntax-directed version, Γ contains only regular and type bindings. Suspended and borrow bind-
ings can only be present in Σ. We revisit some of the syntax-directed rules presented in Section 3.3
to highlight the novelties of our inference algorithm and the differences with the syntax-directed
system in Fig. 12. The complete type inference rules are shown in Appendix E.
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VarI

(x : ∀κi∀(α j : kj ). C⇒τ ) ∈ Γ κ ′i ,α
′
j fresh

(C,ψ ) = normalize(Cx , [κi 7→ κ ′i ,α j 7→ α ′j ])

(x : σ ) |(C,ψ |fv(Γ)) | Γ ⊢w x : ψτ

AbsI

α ,κ fresh Σx |(C
′
,ψ ′) | Γ; (x : α) ⊢w e : τ

D = C ′ ∧ (Σx\{x} ≤ κ) ∧Weak(x :α )(Σx )
(C,ψ ) = normalize(D,ψ ′)

Σx\{x} |(C,ψ\{α ,κ}) | Γ ⊢w λx .e : ψ (α)
ψ (κ)
−−−→τ

RegionI

Σ
′ |(C ′,ψ ′) | Γ ⊢w e : τ Cr ⇚ Σ 

x
n Σ
′

(Cτ ,ψτ ) | Γ ⊢w τ : kτ
D = C ′ ∧Cτ ∧ (kτ ≤ Ln−1) ∧Cr
(C,ψ ) = normalize(D,ψ ′ ⊔ψτ )

Σ |(C,ψ ) | Γ ⊢w{|e |}
n
{x 7→b} : τ

AppI

α ,κ fresh Σ1 |(C1,ψ1) | Γ ⊢w e1 : τ1
Cs ⇚ Σ = Σ1 ⋉ Σ2 Σ2 |(C2,ψ2) | Γ ⊢w e2 : τ2

D = C1 ∧C2 ∧ (τ1 ≤ τ2
κ
−→α) ∧Cs

ψ ′ = ψ1 ⊔ψ2 (C,ψ ) = normalize(D,ψ ′)

Σ |(C,ψ ) | Γ ⊢w(e1 e2) : ψ (α)

Weak(x :σ )(Σ) = if (x ∈ Σ) then True else (σ ≤ A∞)

Fig. 12. Selected inference rules – Σ |(C,ψ ) | Γ ⊢w e : τ

Environments and Bindings. In the syntax-directed system, the Var rule ensure that linear vari-
ables are not discarded at the leaves. In the inference algorithm, we operate in the opposite direc-
tion: we collect data from the leaves and enforce linearity at binders. This policy is reflected in
the VarI and AbsI rules. Typing for variables is very similar to traditional Hindley-Milner type
inference. To keep track of linearity, we record that x was used with the scheme σ by returning
a usage environment Σ = {(x : σ )}. This usage environment is in turn used at each binder to
enforce proper usage of linear variable via the Weak property as shown for lambda expressions
in the AbsI rule. First, we typecheck the body of the lambda and obtain a usage environment Σx .
As in the syntax-directed type system, we introduce the constraint (Σ\{x} ≤ κ) which properly
accounts for captures in the body of the lambda expression. We then introduce the constraint
Weak(x :σ )(Σ), which fails if we try to abandon a linear variable. The Weak constraint is introduced
at each binding construct. Finally, we normalize constraints to ensure that the inference algorithm
always return the simplest possible constraints and unifiers.

Splitting and Regions. Inference versions of the App and Region rules are similar to the original
ones, but now return the usage environment Σ. As such, we use the “inference” version of the
relations on the environment, C ⇚ Σ = Σ1 ⋉ Σ2 and C ⇚ Σ 

x
n Σ

′, which returns the necessary
constraints. We then collect all constraints and normalize them.

4.3 Constraints

To properly define our type system, we need to define CL , a constraint system equippedwith an en-
tailment relation noted ⊢e and a normalizing function. For concision, we first demonstrate the con-
straint solving algorithm with an example. We then state the various properties that make it suit-
able for use in the HM(X ) framework. The complete constraint system is defined in Appendix C.

4.3.1 Constraints normalization by example. Consider the expression λ f .λx .((f x), x). The infer-
ence algorithm yields the following constraints:

Γ = (αf : κf )(αx : κx ) . . .

C = (αf ≤ γ
κ1
−→ β) ∧ (γ ≤ αx ) ∧ (β × αx ≤ αr ) ∧ (κx ≤ U)
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U

κx

κr

κγ κβ κ3

κf

κ1

Before

κβ κ3

κ1

After

Fig. 13. Graph representing the example constraints

The first step of the algorithm uses Herbrand unification to obtain a type skeleton.

(γ
κ3
−→ β)

κ2
−→γ

κ1
−→ β × γ

In addition, we obtain the following kind constraints:

(κx ≤ U) ∧ (κγ ≤ κx ) ∧ (κx ≤ κr ) ∧ (κβ ≤ κr ) ∧ (κ3 ≤ κf ) ∧ (κf ≤ κ1)

We translate these constraints into a relation whose graph is shown in Fig. 13. The algorithm
then proceeds as follow:

• From the constraints above, we deduce the graph shown with plain arrows on the left of Fig. 13.
• We add all the dashed arrows by saturating lattice inequalities. For clarity, we only show U.
• We identify the connected component circled in green. We deduce κγ = κx = U.
• We take the transitive closure, which adds the arrow in blue from κ3 to κ1.
• We remove the remaining nodes not present in the type skeleton (colored in red): κr and κf .
• We clean up the graph (transitive reduction, remove unneeded constants, . . . ), and obtain the
graph shown on the right. We deduce κ3 ≤ κ1.

The final constraint is thus

κγ = κx = U ∧ κ3 ≤ κ1

If we were to generalize, we would obtain the type scheme:

∀κβκ1κ2κ3(γ : U)(β : κβ ). (κ3 ≤ κ1)⇒(γ
κ3
−→ β)

κ2
−→γ

κ1
−→ β × γ

We can further simplify this type by exploiting variance. As κ1 and κ2 are only used in covariant
position, they can be replaced by their lower bounds,κ3 andU. By removing the unused quantifiers,
we obtain a much simplified equivalent type:

∀κ(γ : U).(γ
κ
−→ β) −→γ

κ
−→ β × γ

4.3.2 Properties of the constraint system. To apply HM(X ) to CL , normalize must compute princi-
pal normal forms and CL must be regular.

Property 1 (Principal normal form). Normalization computes principal normal forms for CL ,

i.e. given a constraint D ∈ CL , a substitution ϕ and (C,ψ ) = normalize(D,ϕ), then ϕ ≤ ψ , C =eψD
andψC = C .

Property 2 (Regular constraint system). CL is regular, ie, for x , x ′ two types or kinds, ⊢e(x =

x ′) implies fv(x) = fv(x ′)
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These properties are sufficient to state that HM(CL) provides principal type inference. The
next section shows that these properties carry over to the inference algorithm for our extension of
HM(X )with kind inference, affine types, and borrows. This algorithm includes sound and complete
constraint simplification. In addition, we may add “best-effort” simplification rules which help
reduce the size of inferred signatures [36].

4.4 Soundness and Principality

The extended inference algorithm is sound and complete with respect to our extension of HM(X ).
The first theorem states that inference is sound with respect to the syntax-directed type system.

Theorem 4.1 (Soundness of inference). Given a type environment Γ containing only value

bindings, Γ |τ containing only type bindings, and a term e :

if Σ |(C,ψ ) | Γ; Γτ ⊢w e : τ
then C |ψ (Σ; Γτ ) ⊢s e : τ , ψC = C andψτ = τ

The syntax-directed derivation holds with the usage environment Σ instead of the originally
provided environment Γ. Indeed, Γ does not contain suspended and borrow bindings. Those are
discovered on the fly and recorded in Σ. Type bindings are taken directly from the syntax-directed
derivation.
The second theorem states that inference is complete: for any given syntax-directed typing

derivation, our inference algorithm can find a derivation that gives a type at least as general.

Definition 4.2 (Instance relation). Given a constraint C and two schemes σ = ∀α .D⇒τ and
σ ′ = ∀α ′.D ′⇒τ ′. ThenC ⊢e σ � σ ′ iff C ⊢e D[α → τ ′′] andC ∧ D ′ ⊢e(τ [α → τ ′′] ≤ τ ′)

Definition 4.3 (Flattened Environment). A flattened environment, written as ⇓ Γ, is the environ-
ment where all the binders are replaced by normal ones. More formally:

⇓Γ =
{

(x : τ ) ∈ Γ | ∨(&bx : &b(k, τ )) ∈ Γ ∨ [x : τ ]nb ∈ Γ
}

∪ {(α : k) | (α : k) ∈ Γ}

Theorem 4.4 (Principality). Let True | Γ ⊢s e : σ a closed typing judgment. Then Σ |(C,ψ ) | ⇓

Γ ⊢w e : τ such that:

(True,σo) = gen(C,ψ Γ, τ ) ⊢e σo � σ

5 METATHEORY

There are several connections between the type system and the operational semantics, which we
state as a single type soundness theorem. The theorem relies on several standard notions like store
typing ⊢ δ : ∆ and agreement of the results in the value environment with the type environment
∆ ⊢ γ : Γ that we define formally in Appendix Gwhere we also present selected cases of the proofs.
The non-standard part is the handling of permissions. With getloc(π ) we extract the underlying
raw locations from the permissions as in getloc(UA ℓ) = ℓ andwith reachδ (γ )we transitively trace
the addresses reachable from γ in store δ . We write ∆ ≤ ∆

′ and δ ≤ δ ′ for extending the domain of
the store type and of the store, respectively. The permission set contains the set of addresses that
can be used during evaluation. It is managed by the region expression as well as by creation and
use of resources as shown in Section 3.4. We distinguish several parts of the value environment γ
that correspond to the different kinds of bindings in the type environment: γ L for active entries
of direct references to linear resources, closures, etc; γA for affine borrows or resources; γU for
unrestricted values including unrestricted borrows; and γ# for suspended entries. The judgment
∆ ⊢ γ : Γ is defined in terms of this structure. We treat reachδ (γ ) as a multiset to properly discuss
linearity and affinity. We use the notationM(x) for the number of times x occurs in multiset M .
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Theorem 5.1 (Type Soundness). Suppose that

(A1) C | Γ ⊢s e : τ
(A2) ∆ ⊢ γ : Γ
(A3) ⊢ δ : ∆
(A4) π is wellformed and getloc(π ) ⊆ dom(δ ) \ δ−1(•)
(A5) reach0(γ ) ⊆ π , reachδ (γ ) ⊆ ↓π .
(A6) getloc(γ L), getloc(γA), getloc(γU), and getloc(γ#) are all disjoint
(A7) Incoming Resources:

(a) ∀ℓ ∈ getloc(reachδ (γ )), δ (ℓ) , •.
(b) ∀ℓ ∈ Θ = getloc(reachδ (γ L,γA,γA# )), Θ(ℓ) = 1.

For all i ∈ N, if R' = eval δ π γ i e and R′ , TimeOut, then ∃ δ ′, π ′, r ′, ∆′ such that

(R1) R′ = Ok(δ ′, π ′, r ′)
(R2) ∆ ≤ ∆

′, δ ≤ δ ′, ⊢ δ ′ : ∆′

(R3) ∆′ ⊢ r ′ : τ
(R4) π ′ is wellformed and getloc(π ′) ⊆ dom(δ ′) \ δ ′−1(•).
(R5) reach0(r ′) ⊆ π ′, reachδ ′(r ′) ⊆ ↓π ′ ∩(reachδ ′(γ ) \ reachδ ′(γ#) ∪ dom(δ

′) \ dom(δ )).
(R6) Frame:

For all ℓ ∈ dom(δ ) \ getloc(reachδ ′(γ )) it must be that

• δ ′(ℓ) = δ (ℓ) and

• for any ρ with getloc(ρ) = {ℓ}, ρ ∈ π ⇔ ρ ∈ π ′.

(R7) Unrestricted values, resources, and borrows:

For all ρ ∈ reachδ ′(γU,γU# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ), δ ′(ℓ) = δ (ℓ) , •
and ρ ∈ π ′.

(R8) Affine borrows and resources:

For all ρ ∈ reachδ ′(γA,γA# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ). If ρ , ℓ, then
δ ′(ℓ) , •. If ρ ∈ reachδ ′(γ

A

# ), then ρ ∈ π
′.

(R9) Resources: Let Θ = reachδ (γ L). Let Θ′ = reachδ ′(γ L).
For all ℓ ∈ Θ it must be that Θ(ℓ) = Θ

′(ℓ) = 1, ℓ < π ′, and if δ (ℓ) is a resource, then δ ′(ℓ) = •.
(R10) No thin air permission:

π ′ ⊆ π ∪ (dom(δ ′) \ dom(δ )).

The proof of the theorem is by functional induction on the evaluation judgment, which is in-
dexed by the strictly decreasing counter i .
The assumptions A1-A3 and results R1-R3 state the standard soundness properties for lambda

calculi with references.
The rest of the statement accounts for the substructural properties and borrowing in the pres-

ence of explicit resource management. Incoming resources are always active (i.e., not freed). Linear
and affine resources as well as suspended affine borrows have exactly one pointer in the environ-
ment. The Frame condition states that only store locations reachable from the current environment
can change and that all permissions outside the reachable locations remain the same. Unrestricted
values, resources, and borrows do not change their underlying resource and do not spend their
permission. Affine borrows and resources may or may not spend their permission. Borrows are
not freed, but resources may be freed. Incoming suspended borrows have no permission attached
to them and their permission has been retracted on exit of their region. A linear resource is always
freed. Outgoing permissions are either inherited from the caller or they refer to newly created
values.
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6 LIMITATIONS AND EXTENSIONS

6.1 Flow sensitivity

The type system defined so far does not support any form of flow sensitivity. Therefore, code
patterns that rely on subtle flow-sensitive usage of permissions and linearity will most likely not
typecheck in Affe. For example, the following merge function on linear lists cannot be expressed
directly, because matching against l1 and l2 consumes both lists.

1 let rec merge l1 l2 = match l1, l2 with

2 | h1::t1, h2::t2 −→

3 if &h1 < &h2

4 then h1::(merge t1 l2) (* Must expand l2 to h2::t2 here *)

5 else h2::(merge l1 t2)

6 | ....

Patterns like this require a richer logic, such as provided by Mezzo [31]. However, Weiss et al.
[42] formalize Rust’s notion of non-lexical lifetimes which partially supports such code patterns.
We believe this notion can be adapted to Affe’s notion of regions.

Non-Lexical Regions. The notion of non-lexical lifetimes is a recent addition to Rust. With this
feature code is acceptable even if borrowing does not respect lexical scoping as in this example:

let a = &x in (f a; g &!x)

This code pattern is dynamically safe because a is not used after the function call f a. Here, this
can be made explicit by transforming the code to (let a = &x in f a); g &!x. However, this is
not possible in programs with branches who uses different dynamic patterns. Non-lexical lifetimes
(NLL) handle such a pattern by removing expressions that do not mention a from its region; in this
example, NLL removes the last expression. InAffe, regions are lexical andmarked by the expression
{|e |}n

b
. During inference, kind constraints prevent escaping from a region.

To add support for non-lexical lifetimes, we could replace the lexical region by an annotation
on each expression indicating which borrows are live in this expression. When exploring a subex-
pression, we would compare the annotations, and automatically apply the Region rule when they
differ. This approach is equivalent to inlining the Region rule in all the other rules.
Applied to the program above, only the first two expressions would be annotated to be “in the

region associated with &x”, but not the last expression. Thanks to these annotations, type checking
the sequence would check that the borrow does not escape the left-hand side (i.e., the second
expression f a).

6.2 Capabilities and Identity

In Affe the tracking of linearity does not rely on any notion of “identity”: the type system cannot
specify that two objects are the same, simply that they share the same usage pattern with regards
to linearity. A language like Alms [40], on the other hand, often relies on a notion of identity
to express capabilities. For instance, the Alms typing Array.create : int −→ α −→ ∃ β. (α, β)

array uses β as a unique identification of the array. Functions such as Array.acquire : (α, β)

array −→ β cap are used to obtain capabilities to operate on the array.
While such uses are partially covered by borrows and regions, a notion of identity associated

to regions would enable us to express regions directly in type signatures. For instance, the get_eb
function shown in Section 2.3 could be made safe by creating a restricted inner region on function
application, with the signature: &!(κ, α Array.t) −→ int −→ ∃ (κ' < κ) &!(κ', α)

This approach relies on existential types to model identities. At present, Affe does not support
existentials as it would forgo principal type inference. However, existentials are compatible with
the HM(X) framework [35] and would make a very desirable addition to Affe. Work on GADTs in
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OCaml and Haskell demonstrates that existential types can be put to use without compromising
inference in the rest of the language, by integrating unpacking and pattern matching.

6.3 Ad-hoc Polymorphism and Borrows

In our formalization, we use two operators, &bx and &&bx to distinguish between borrows and
borrows of borrows. Such a distinction is inconvenient for programming. Using a typeclass-like
mechanism, we can replace these operators by a single overloaded operator, &bx , which expects x
to be Borrowable and would then desugar to the more precise operators. A similar solution is used
in Rust through the Borrow and Defer traits. This approach also enables method calls on objects
without explicit borrows, such as foo.len() where len expects a shared borrow.

Ad-hoc polymorphism fits demonstrably in the HM(X ) framework of constrained types and pre-
serves all properties of our language such as principal type inference. Its soundness is orthogonal
to linear types and has been explored in the literature [27].

6.4 A Richer Region System

Affe requires that each region is identified by an index drawn from a partial order that is compat-
ible with the nesting of regions. This order can be implemented in many ways, including region
variables as often used in algebraic effects systems, existentials, etc.

For simplicity, the formalization uses the concrete implementation with natural numbers for
indices. The proofs only rely on the existence of a partial order and could be adapted to one of
the more abstract approaches. In particular, Affe could reuse regions variables provided by the
ongoing work on effect systems for OCaml [11].

6.5 Standard Features

Algebraic Datatypes. Algebraic data types are a staple of functional programming and fit nicely
in our paradigm. Indeed, it is sufficient to ensure that the kinds of the constructor arguments are
less than or equal to the kind of the datatype. Hence, it is forbidden to include affine elements in
an unrestricted datatype, whereas the elements in a linear list may be linear or unrestricted. Our
prototype implements non-recursive algebraic datatypes with pattern matching.

Branching constructs. Our formalization of Affe does not cover conditionals. In the typing rules, a
conditional is supported as usual by checking all branches with the same constraint and typing
environment and requiring the return types to match. It materializes in the inference algorithm as
a straightforward (symmetric) join relation which is used for all elimination rules on sum types.
This extension is implemented in our prototype.

6.6 Concurrency

While our present semantic model does not consider concurrency, some design decisions were
taken with a possible extension to concurrency in mind. The main impact of this foresight is the
distinction between exclusive borrows and shared borrows, which materializes in the metatheory.
The intended contract of the shared borrow is that it can be duplicated and that the program con-
sistently observes the same state of the underlying resource inside its region even in the presence
of concurrency.
The exclusive borrow, on the other hand, is propagated according to the evaluation order with

the intention that any suspended binding split of from an exclusive borrow has finished its action
on the resource before the borrow gets exercised. In the presence of concurrency, this intended
semantics of the exclusive borrow should guarantee freedom of data races.
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System F° [23] UL ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ Coq System F
Alms [40] UA ✔ ✘ ~ ✔ ✔ ✔ ✔ Local ✘ ML
Quill [24] UL ✘ ✘ ✘ ✔ ✘ ✘ ✘ Principal Manual Qual. types
Lin. Haskell [7] UL ~ ✘ ✘ ✔ ✘ ~ ~ Non-pr. Manual Haskell
Mezzo [5, 31] UA ✔ ~ ~ ✔ ✔ ✔ ✔ Local Coq ML
Rust [19, 21] UA ✔ ✔ ✔ ~ ✘ ✔ ✔ Local Coq —
Plaid [2, 12] UA ✔ ✘ ✔ ✔ ✔ ✘ ✔ ✘ Manual Java
Affe UAL ✔ ✔ ✔ ✔ ✘ ✘ ~ Principal Manual ML/HM(X)

Fig. 14. Comparison matrix

That is, if a thread closes over a borrow, that thread should have terminated before the parent
thread leaves the borrow’s region. Rust addresses this lifetime issue with the move qualification
for a thread which transfers ownership of the free variables to the thread. However, moving (in
Rust) only applies to the resource itself, but not to borrows. A more discerning kind system would
be needed for Affe to enable safe sharing of synchronizable resources or borrows analogously to
Rust’s Sync trait.

7 RELATED WORK

The comparisonmatrix in Fig. 14 gives an overview over the systems discussed in this section. Each
column indicates whether a feature is present (✔), absent (✘), or partially supported (~), i.e., if the
feature is limited or can only be obtained through a non-trivial encoding. Features are selected
according to their relevance for type-based resource management and programmer convenience.
The column UAL specifies the substructural features supported (Unrestricted, Affine, Linear).

The columns “State” and “Borrows” indicate support for the respective feature. In an ideal world,
the presence of linearity and state indicates that the system is able to support safe manual memory
management as linearity enforces manual deallocation. True affinity and state only works with
garbage collection, which eventually automatically finalizes an object no longer referenced. In
practice, this distinction is often watered down. For example, Rust automatically destructs objects
at the end of their lifetime, creating the illusion of affinity while the low-level code is strictly linear.
However, there are ways to consume an object at the source level without invoking its destructor
(using mem::forget)3 where the high-level code exhibits linearity, but the low-level code is affine.

“Multiplicity Subsumption” indicates that unrestricted elements can be promoted to affine and
then linear. This promotion applies to objects, resources, borrows, and closures. “Multiplicity Poly-
morphism” refers to polymorphism over substructural features: a function can be parameterized
over the multiplicity restriction of an object. For instance, the type of function composition should

3See https://doc.rust-lang.org/nomicon/leaking.html which contains further examples and discussion. Thanks to Derek
Dreyer and Ralf Jung for pointing this out.
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express that applies to functionswith linear, affine, and unrestricted multiplicity and returns a func-
tion with the same multiplicity. “Identity” indicates that the language supports a notion of identity,
usually through existential types, as described in Section 6.2. “Concurrency” indicates whether the
language supports concurrency. For example, the implementation of Linear Haskell supports state
and concurrency, but its theory covers neither. “Escape hatch” indicates whether a programmer
can (locally) opt out of resource management through language-integrated means such as Rust’s
unsafe. Partial support “~”, in the case of Affe for instance, indicates that this feature is available,
but not formalized. Type “inference” can be local, principal, or non-principal (if the inferred type is
not necessarily the most general one). “Formalization” refers to the existence of a formal semantics
and type soundness proof. “Basis” indicates the heritage or inspiration of the language.

7.1 Substructural type-systems in functional languages

Many systems propose combinations of functional programming and linear types in a practical
setting. The goal of Affe is to combine key ingredients from these proposals while still preserving
complete type inference. Many of the following languages support linear or affine types, but rarely
both. Inmany cases, it is easy to adapt a system to support both, as Affe does. None of the following
languages support borrows.
System F° [23] extends System Fwith kinds to distinguish between linear and unrestricted types.

The authors provide a linearity-aware semantics with a soundness proof. Unlike Affe, System F°
does not allow quantification over kinds which limits its expressivity. For instance, it does not
admit a most general type for function composition. Being based on System F, it does not admit
principal type inference.
Quill [24] is a Haskell-like languagewith linear types. Quill does not expose a kind language, but

uses the framework of qualified types to govern linearity annotations on arrows. Its type inference
algorithm is proven sound and complete. Affe infers type signatures for all Quill examples, but
often with simpler types because Quill does not support subkinding. Quill comes with a linearity-
aware semantics and soundness proof. Quill does not support borrows.
Alms [40] is an ML-like language with rich, kind-based affine types and ML modules, similar to

Affe. Alms examples often rely on existential types to track the identity of objects. For instance,
consider the signature Array.create : int −→α−→∃β. (α, β)array where β uniquely identifies the array.
Due to the reliance on existentials, Alms does not support complete type inference. Furthermore,
Alms does not support borrows and often relies on explicit capability passing. In our experience,
Affe’s limited support for existential types through regions is sufficient to express many of Alms’
examples and leads to a more convenient programming style for imperative code. Alms kind struc-
ture features unions, intersections and dependent kinds while Affe uses constrained types. We
believe most of Alms’ kind signatures can be expressed equivalently in our system: for instance
the pair type constructor has kind ΠαΠβ .〈α〉 ⊔ 〈β〉 (where α and β are types and Π is the de-
pendent function) in Alms compared to κ → κ → κ in Affe thanks to subkinding. Finally, Alms
provides excellent support for abstraction through modules by allowing to keep some type unre-
stricted inside a module, but exposing it as affine. Affe supports such programming style thanks
to subsumption.
The goal of Linear Haskell [7] (LH) is to retrofit linear types to Haskell. Unlike the previously

discussed approaches, LH relies on “linear arrows”, written ⊸ as in linear logic, which are func-
tions that use their argument exactly once. This design is easy to retrofit on top of an existing
compiler such as GHC, but has proven quite controversial4 . Most relevant to Affe:

4 See the in-depth discussion attached to the GHC proposal for LH on GitHub:
https://github.com/ghc-proposals/ghc-proposals/pull/111#issuecomment-403349707.
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• LH does not admit subtyping for arrows and requires η-expansion to pass unrestricted functions
in linear contexts. This approach is acceptable in a non-strict language such as Haskell but
changes the semantics in a strict setting.
• While the LH paper specifies a full type system along with a linearity-aware soundness proof,
there is neither formal description of the type inference algorithm nor a proof of the properties
of inference. Subsequent work [22] formalizes the inference for rank 1 qualified-types. However,
there is an implementation of the inference as part of GHC.
• LH promotes a continuation-passing stylewith functions such as withFile : path −→(file ⊸Unrestricted

r)⊸r to ensure linear use of resources. This style leads to problems with placing the annotation
on, e.g., the IO monad. Affe follows System F°, Quill, and Alms, all of which support resource
handling in direct style, where types themselves are described as affine or linear. (Of course,
continuation-passing style is also supported.) We expect that the direct approach eases mod-
ular reasoning about linearity. In particular, using abstraction through modules, programmers
only need to consider the module implementation to ensure that linear resources are properly
handled.

Mezzo [5, 31] is an ML-like language with a rich capability system which is able to encode
numerous properties akin to separation logic [33]. Mezzo explores the boundaries of the design
space of type systems for resources. Hence, it is more expressive than Affe, but much harder to use.
The Mezzo typechecker relies on explicit annotations and it is not known whether type inference
for Mezzo is possible.
Munch-Maccagnoni [25] presents an extension of OCaml for resource management in the style

of C++’s RAII and Rust’s lifetimes. This system assumes the existence of a linear type system
and develops the associated compilation and runtime infrastructure. We believe our approach is
complementary and aim to combine them in the future.

7.2 Other substructural type-systems

Affe uses borrows and regions which were initially developed in the context of linear and affine
typing for imperative and object-oriented programming [8, 15].
Rust [21] is the first mainstream language that builds on the concepts of borrowing and own-

ership to enable safe low-level programming. Affe is inspired by Rust’s borrowing system and
transfers some of its ideas to a functional setting with type inference, garbage collection, and an
ML-like module system. Everything is affine in Rust and marker traits like Copy, Send, and Sync are
used to modulate the characteristics of types. Affe relies on kinds to express substructural proper-
ties of types and marker traits may be considered as implementing a fine-grained kind structure
on Rust types. Rust’s lifetime system is more explicit and more expressive than Affe’s regions.
While Rust provides partial lifetime inference, it does not support full type inference. Moreover,
Rust programmers have full control over memory allocation and memory layout of objects; they
can pass arguments by value or by reference. These features are crucial for the efficiency goals of
Rust. In contrast, Affe is garbage collected, assumes a uniform object representation, and all argu-
ments are passed by reference. This choice forgoes numerous issues regarding interior mutability
and algebraic data types. In particular, it allows us to easily nest mutable references inside objects,
regardless whether they are linear or unrestricted.
In Rust, programmers can implement their low-level abstractions by using unsafe code frag-

ments. Unsafe code is not typechecked with the full force of the Rust type system, but with a
watered down version that ignores ownership and lifetimes. This loophole is needed to imple-
ment datastructures like doubly-linked lists or advanced concurrency abstractions. When unsafe
code occurs as part of a function body, the Rust typechecker leaves the adherence of the unsafe
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code to the function’s type signature as a proof obligation to the programmer. The RustBelt project
[19] provides a formal foundation for creating such proofs by exhibiting a framework for semantic
soundness of the Rust type system in terms of a low-level core language that incorporates aspects
of concurrency (i.e., data-race freedom). Similar proof obligations would be needed in Affe to check
that an implementation of the module types or the type of fold shown in Section 2 matches the
semantics of the typings. We aim to develop a suitable framework for this task for Affe. At present,
the metatheory of Affe does not cover concurrency.
Weiss et al. [42] formalize Rust’s ownership discipline from a source-level perspective. Their

approach is purely syntactic and is therefore not able to reason about unsafe fragments of Rust code.
However, their flow-sensitive type discipline enables soundness proofs for non-lexical lifetimes,
which have been adopted in Rust, but cannot be expressed in Affe at present.

Vault [10] and Plaid [2, 12] leverage typestate and capabilities to express rich properties in
objects and protocols. These systems are designed for either low-level or object-oriented program-
ming and do not immediately lend themselves to a more functional style. While these systems
are much more powerful than Affe’s, they require programmer annotations and do not support
inference. It would be interesting to extend Affe with limited forms of typestate as a local, opt-in
feature to provide more expressivity at the cost of inference.

7.3 Type-system features

Affe relies on constrained types to introduce the kind inequalities required for linear types. HM(X ) [26]
allows us to use constrained types in an ML-like language with complete type inference. HM(X )
has been shown to be compatible with subtyping, bounded quantification and existentials [35],
GADTs [37], and there exists a syntactic soundness proof [38]. These results make us confident
that the system developed in Affe could be applied to larger and more complex languages such as
OCaml and the full range of features based on ad-hoc polymorphism.
Affe’s subtyping discipline is similar to structural subtyping, where the only subtyping (or here,

subkinding) is at the leaves. Such a discipline is known to be friendly to inference and has been
used in many contexts, including OCaml, and has been combined with constraints [26, 41]. It
also admits classical simplification rules [30, 36] which we partially use in our constraint solving
algorithm. Affe’s novelty is a kind language sufficiently simple to make all simplification rules
complete, which allows us to keep type signatures simple.

8 CONCLUSIONS

Affe is an ML-like language extended with sound handling of linear and affine resources. Its main
novel feature is the combination of full type inference and a practically useful notion of shared and
exclusive borrowing of linear and affine resources. Although the inferred types are much richer in-
ternally than plain ML types, most of that complexity can be hidden from user-level programmers.
On the other hand, programmers of libraries dealing with resources have sufficient expressiveness
at their fingertips to express many resource management schemes.
Themain restriction of the current system is that the lifetime of borrows is determined by lexical

scoping. Overcoming this restriction is subject of future work and will probably require extending
the type system by some notion of effect, which is currently discussed in the OCaml community.
Moreover, other systems rely on existential types for extra expressiveness. We chose not to include
existentials to preserve complete type inference, but our design can be extended in this direction.
Finally, our matching construct is very simplistic. Our implementation supports full algebraic data
types andwe believe it can be further extended to support manipulating borrows of data-structures
and internal mutability.
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A FURTHER EXAMPLES

A.1 A session on linearity

Session typing [17, 18] is a type discipline for checking protocols statically. A session type is as-
cribed to a communication channel and describes a sequence of interactions. For instance, the type
int!int!int?end specifies a protocol where the program must send two integers, receive an integer,
and then close the channel. In this context, channels must be used linearly, because every use of
a channel “consumes” one interaction and changes the type of the channel. That is, after sending
two integers on the channel, the remaining channel has type int?end. Here are some standard type
operators for session types S:

τ !S Send a value of type τ then continue with S.
τ ?S Receive a value of type τ then continue with S.

S ⊕ S′ Internal choice between protocols S and S′.
S &S′ Offer a choice between protocols S and S′.

Padovani [29] has shown how to encode this style of session typing inML-like languages, but his
implementation downgrades linearity to a run-time check for affinity. Building on that encoding
we can provide a safe API in Affe that statically enforces linear handling of channels:

1 type S st : lin

2 val receive: (α ? S) st −→ α × S st

3 val send : (α ! S) st −→ α
lin
−−−→ S st

4 val create : unit −→ S st × (dual S) st

5 val close : end st −→ unit

Line 1 introduces a parameterized abstract type st which is linear as indicated by its kind lin. Its
low-level implementation would wrap a handle for a socket, for example. The receive operation in
Line 2 takes a channel that is ready to receive a value of type α and returns a pair of the value a the
channel at its residual type S. It does not matter whether α is restricted to be linear, in fact receive is
polymorphic in the kind of α . This kind polymorphism is the default if no constraints are specified.
The send operation takes a linear channel and returns a single-use function that takes a value of
type α suitable for sending and returns the channel with updated type. The create operation returns
a pair of channel endpoints. They follow dual communication protocols, where the dual operator
swaps sending and receiving operations. Finally, close closes the channel.
In Fig. 15 we show how to use these primitives to implement client and server for an addition

service. No linearity annotations are needed in the code, as all linearity properties can be inferred
from the linearity of the st type.
The inferred type of the server, add_service, is (int ! int ! int ? end)st −→unit. The client operates

by sending two messages and receiving the result. This code is polymorphic in both argument and
return types, so it could be used with any binary operator. Moreover, the op_client function can

1 let add_service ep =

2 let x, ep = receive ep in

3 let y, ep = receive ep in

4 let ep = send ep (x + y) in

5 close ep

6 # add_service : (int ! int ! int ? end) st −→ unit

(a) Addition server

1 let op_client ep x y =

2 let ep = send ep x in

3 let ep = send ep y in

4 let result, ep = receive ep in

5 close ep;

6 result

7 # op_client :

8 (α1 ? α2 ? β ! end) st −→ α1
lin
−−−→ α2

lin
−−−→ β

(b) Binary operators client

Fig. 15. Corresponding session type programs in Affe
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be partially applied to a channel. Since the closure returned by such a partial application captures
the channel, it can only be used once. This restriction is reflected by the arrow of kind lin, lin

−−−→,
which is the type of a single-use function. The general form of arrow types in Affe is k

−→, where
k is a kind that restricts the number of uses of the function. For convenience, we shorten un

−−→ to
−→. Affe infers the single-use property of the arrows without any user annotation. In fact, the only
difference between the code presented here and Padovani’s examples [29] is the kind annotation
on the type definition of st.
To run client and server, we can create a channel and apply add_service to one end and op_client

to the other. Failure to consume either channel endpoints (a or b) would result in a type error.

1 let main () =

2 let (a, b) = create () in

3 fork add_service a;

4 op_client b 1 2

5 # main : unit −→ int

A.2 Pool of linear resources

We present an interface and implementation of a pool of linear resources where the extended scope
of the region enforces proper use of the resources.
Fig. 16a contains the interface of the Pool module. A pool is parameterized by its content. The

kind of the pool depends on the content: linear content implies a linear pool while unrestricted con-
tent yields an unrestricted pool. The functions Pool.create and Pool.consume build/destroy a pool
given creators/destructors for the elements of the pool. The function Pool.use is the workhorse of
the API, which borrows a resource from the pool to a callback. It takes a shared borrow of a pool
(to enable concurrent access) and a callback function. The callback receives a exclusive borrow of
an arbitrary resource from the pool. The typing of the callback ensures that this borrow is neither
captured nor returned by the function.
This encapsulation is implemented with a universally quantified kind index variable r . The sig-

nature prescribes the type &!(affr+1,α1) for the exclusive borrow of the resource with an affine
kind at region nesting r + 1. The return type of the callback is constrained to kind κ2 ≤ affr so
that the callback certainly cannot return the borrowed argument. In a specific use of Pool.use, the
index r gets unified with the current nesting level of regions so that the region for the callback
effectively gets “inserted” into the lexical nesting at the callsite. Fig. 16b shows a simple example
using the Pool module.
The implementation in Fig. 16c represents a bag of resources using a concurrent queue with

atomic add and remove operations. The implementation of the Pool.create and Pool.consume

functions is straightforward. The function Pool.use first draws an element from the pool (or cre-
ates a fresh element), passes it down to the callback function f, and returns it to the pool afterwards.
For clarity, we explicitly delimit the region in Line 11 to ensure that the return value of f &!o does
not capture &!o. In practice, the type checker inserts this region automatically.

B AUTOMATIC REGION ANNOTATION

We now define our automatic region annotation which is presented in Section 3.2. First, we ex-
tend the region annotation to {|E |}n

S
where S is a map from variables to borrow indicator b. This

annotation, defined below, is equivalent to nested region annotations for each individual variable.

{|e |}n
{x 7→b};S = {|{|e |}

n
S |}

n
{x 7→b}

{|e |}n∅ = e

Figure 17 define a rewriting relation e  e ′ which indicates that an optionally annotated term
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1 type (α:κ) pool : κ

2 create : (unit −→ α) −→ α pool

3 consume : (α −→ unit) −→ α pool −→ unit

4 use : (α1:κ1),(α2:κ2),(κ2 ≤ affr )⇒

5 &(α1 pool) −→ (&!(affr+1,α1)
lin
−−−→ α2)

κ1
−−→α2

(a) Signature

1 (*Using the pool in queries.*)

2 let create_user pool name =

3 Pool.use &pool (fun connection −→

4 Db.insert "users" [("name", name)] connection)

5

6 let uri = "postgresql://localhost:5432"

7 let main users =

8 (*Create a database connection pool.*)

9 let pool = Pool.create (fun _ −→ Db.connect uri) in

10 List.parallel_iter (create_user &pool) users;

11 Pool.consume (fun c −→ Db.close c)

(b) Example of use

1 type (α:κ) pool : κ =

2 { spawn: unit −→ α; queue: α CQueue.t }

3 let create spawn =

4 { spawn ; queue = CQueue.create () }

5 let consume f c = CQueue.iter f c.queue

6 let use { spawn ; queue } f =

7 let o = match CQueue.pop &queue with

8 | Some x −→ x

9 | None () −→ spawn ()

10 in

11 let r = {| f &!o |} in

12 CQueue.push o &queue;

13 r

(c) Implementation

Fig. 16. The Pool module

{x 7→ b} ⊕ · = · , {x 7→ b} , · AnnotRegion-Left
· ⊕ {x 7→ b} = · , {x 7→ b} , · AnnotRegion-Right

{x 7→ U} ⊕ {x 7→ U} = · , {x 7→ U} , · AnnotRegion-Immut
{x 7→ U} ⊕ {x 7→ A} = {x 7→ U} , {x 7→ A} , · AnnotRegion-MutLeft
{x 7→ A} ⊕ {x 7→ b} = {x 7→ A} , · , {x 7→ b} AnnotRegion-MutRight

e = &bx | &&bx

e  n e, {x 7→ b}

e = c | x

e  n e, ·

∀i, ei  n+1 e
′
i ,Bi B1 ⊕ B2 = S1, S, S2

(e1 e2) n ({|e
′
1 |}

n+1
S1
{|e ′2 |}

n+1
S2
), S

∀i, ei  n+1 e
′
i ,Bi B1 ⊕ (B2\{x}) = S1, S, S2 S ′2 = S2 ∪B2

�

�

x

let x = e1 in e2  n let x = {|e ′1 |}
n+1
S1

in {|e ′2 |}
n+1
S ′2
, S

Rewrite-Lam

e  n+1 e
′
,B Bx = B

�

�

x

λx .e  n λx .{|e
′ |}n+1Bx

,B\{x}

∀i, ei  n+1 e
′
i ,Bi B1 ⊕ (B2\{x ,y}) = S1, S, S2 S ′2 = S2 ∪B2

�

�

x,y

matchϕ x ,y = e1 in e2 n matchϕ x ,y = {|e
′
1 |}

n+1
S1

in {|e ′2 |}
n+1
S ′2
, S

Rewrite-Region

e  n+1 e
′
,B

{|e |} n {|e
′ |}n+1B , ·

Rewrite-Pair

∀i, ei  n+1 e
′
i ,Bi B1 ⊕ B2 = S1, S, S2

(e1, e2)  n ({|e
′
1 |}

n+1
S1
, {|e ′2 |}

n+1
S2
), S

AnnotRegion

∀i, bi ⊕ b
′
i = S

l
i , S

m
i , S

r
i

bi ⊕ b
′
i = ∪iS

l
i ,∪iS

m
i ,∪iS

r
i

Rewrite-Top

e  1 e
′
, S

e  {|e ′ |}1S

Fig. 17. Automatic region annotation — e  e ′

e can be rewritten as a fully annotated term e ′. Through the rule Rewrite-Top, this is defined in
term of an inductively defined relation e  n e

′, S where n is the current nesting and S is a set of
variable that are not yet enclosed in a region. The base cases are constants, variables and borrows.
The general idea is to start from the leaves of the syntax tree, create a region for each borrow, and
enlarge the region as much as possible. This is implemented by a depth-first walk of the syntax tree
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C ::= (τ1 ≤ τ2) | (k1 ≤ k2) | C1 ∧C2 | ∃α .C | ∃κ.C

Fig. 18. The constraint language

l ≤L l
′

⊢e(l ≤ l
′)

∀i, C ⊢e(li ≤ k)

C ⊢e(∧ili ≤ k)

∀i, C ⊢e(k ≤ li )

C ⊢e(k ≤ ∨ili )

C ⊢e(k ≤ k
′) ∧ (τ ≤ τ ′)

C ⊢e(&
b(k, τ ) ≤ &b(k ′, τ ′))

C ⊢e(τ
′
1 ≤ τ1) C ⊢e(τ2 ≤ τ

′
2) C ⊢e(k ≤ k

′)

C ⊢e(τ1
k
−→τ2 ≤ τ

′
1

k’
−→τ ′2)

∀i, C ⊢e(τi = τi )

C ⊢e(T τi ≤ T τ ′i )
≤ transitive, reflexive

Fig. 19. Base entailment rules – C ⊢e D

which collects each variable that has a corresponding borrow. At each step, it rewrites the inner
subterms, consider which borrow must be enclosed by a region now, and return the others for
later enclosing. Binders force immediate enclosing of the bound variables, as demonstrated in rule
Rewrite-Lam. For nodeswithmultiple children, we use a scopemerge operator to decide if regions
should be placed and where. This is shown in rule Rewrite-Pair. The merge operator, written
Bl ⊕ Br = (Sl , S, Sr ), takes the sets Bl and Br returned by rewriting the subterms and returns three
sets: Sl and Sr indicates the variables that should be immediately enclosed by a region on the left
and right subterms and S indicates the set of the yet-to-be-enclosed variables. As an example, the
rule AnnotRegion-MutLeft is applied when there is an shared borrow and a exclusive borrow.
In that case, a region is created to enclose the shared borrow, while the exclusive borrow is left to
be closed later. This is coherent with the rules for environment splitting and suspended bindings
from Section 3.3. Explicitly annotated regions are handled specially through rule Rewrite-Region.
In that case, we assume that all inner borrows should be enclosed immediately.

C CONSTRAINTS

We place our constraint system in a more general setting. We define the constraint solver in terms
of an arbitrary commutative bounded lattice (L, ≤L), i.e., a lattice which has a minimal and a
maximal element (l⊤ and l⊥) and where meet and joins are commutative. Wewrite lattice elements
as l and

∧

i li (resp.
∨

i li ) for the greatest lower bound (resp. least upper bound) in L. The lattice
for Affe (see Section 3.3) is a bounded lattice with l⊤ = L∞ and l⊥ = U0.
Let CL be the set of constraints in such a lattice L. The full grammar of constraints is shown

in Fig. 18. Constraints are made of kind inequalities, conjunctions and projections along with type
unification constraints. Since types might contain kinds (for instance, on the arrows), type unifi-
cation is oriented and written as ≤. For simplicity, we consider all type constructors invariant in
their parameters and define (τ = τ ′) as (τ ≤ τ ′) ∧ (τ ′ ≤ τ ).
Entailment is denoted by C ⊢e D, where D is a consequence of the constraints C . We say that C

and D are equivalent, C =e D, whenC ⊢e D and D ⊢eC .
We directly reuse the following definitions from HM(X ).

Property 3 (Cylindric constraint system). A cylindric constraint system is a constraint sys-

tem such that, for any constraint C :

C ⊢e ∃x .C C ⊢e D =⇒ ∃x .C ⊢e ∃x .D

∃x .(C ∧ ∃x .D)=e ∃x .C ∧ ∃x .D ∃x .∃y.D =e ∃y.∃x .D
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Property 4 (Term rewriting system). A term rewriting system is a system where, for every

types τ ,τ ′, there exists an equality predicates (τ = τ ′) which is symmetric, reflexive, transitive, stable

under substitution and such that, for any predicate P :

(x = y) ∧ ∃x .C ∧ (x = y) ⊢eC

P[x → τ ]=e ∃x .P ∧ (x = τ ) where x < fv(τ )

Definition C.1 (Constraint system with lattice). CL is defined as the smallest cylindric term con-
straint system that satisfies the axiom shown in Fig. 19.

We define the set of solved formed S as the quotient set of CL by =e. We will show later that
such constraints are in fact only composed of kind inequalities, and thus correspond to the syn-
tactic constraints used in type and kind schemes. We now define our normalization procedure
normalize(C0,ψ0), where C0 ∈ CL is a set of constraints and ψ0 is a substitution. It returns a con-
straint C ∈ S in solved form and a unifier ψ . The main idea of the algorithm is to first remove
all the type equalities by using regular Herbrand unification. After that, we only have a set of
inequalities among kinds, which we can consider as a relation. We can then saturate the relation,
unify all kinds that are in the same equivalence classes to obtain a most general unifier on kind
variables, remove all existentially quantified variables and then minimize back the relation and
apply various simplification rules to make the resulting type easier to understand to users.
More precisely, we apply the following steps:

(1) Solve all type equality constraints throughHerbrand unification and gather all existential quan-
tifications at the front of the constraint. We obtain a constraint Ck = ∃κ , (kj ≤ k ′j )j and a
substitution ψτ .
We write R for the relation (kj ≤ k ′j )j , G the underlying directed graph and V its vertices.

(2) Saturate the lattice equalities in R.
More precisely, for each kind variable κ ∈ V , for each constant li (resp. lj ) such that there is a
path from li to κ (resp. from κ to lj ) in G, add an edge from

∨

li to κ (resp. from κ to
∧

lj ). This
step is well defined since L is a bounded lattice and

∨

∅ and
∧

∅ are well defined.
We also complement R with (≤) by adding an edge between related constants.

(3) At this point, we can easily check for satisfiability: A constraint is satisfiable (in the given
environment) if and only if, for any constants l1 and l2 such that there is a path from l1 to l2 in
G, then l1 ≤L l2. If this is not the case, we return fail.

(4) For each strongly connected component in G, unify all its vertices and replace it by a represen-
tative. We writeψk for the substitution that replaces a kind variable by its representative. The
representative of a strongly connected component д can be determined as follows:
• If д does not contain any constant, then the representative is a fresh kind variable.
• If д contains exactly one constant, it is the representative.
• Otherwise, the initial constraint C0 is not satisfiable.
Note that this step will also detect all unsatisfiable constraints.

(5) Take the transitive closure of R.
(6) Remove all the vertices corresponding to the kind variables κ that are existentially quantified

in Ck .
(7) Take the transitive reduction of R.
(8) Remove the extremums of L and the edges of (≤) from R.
(9) Return C = {k ≤ k ′ | k R k ′} andψ = ψτ ⊔ψk .

An example of this algorithm in action is shown in Section 4.3.1. Our algorithm is complete,
computes principal normal forms, and already simplifies constraints significantly (thanks to steps
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6, 7 and 8). It can be extended with further simplification phases. In particular, our implementa-
tion and all the signatures presented in Section 2 use a variance-based simplification where all
covariant (resp. contravariant) variables are replaced by their lower (resp. upper) bounds. All the
simplification mechanisms presented here, including the variance-based one, are complete. It is
also possible to add “best-effort” simplification rules which help reduce the size of inferred signa-
tures even further [36].

C.1 Principal constraint system

We now prove that CL supports all the properties necessary for principal type inference, as defined
byHM(X ).We first prove that constraint solving does compute normal forms, and that such normal
forms are unique.

Lemma C.2 (Principal normal form). Given a constraint D ∈ CL , a substitution ϕ and (C,ψ ) =

normalize(D,ϕ), then ϕ ≤ ψ , C =eψD andψC = C .

Proof. Let us partition ϕ into a part which affects type variables, ϕτ , and a part which affects
kind variables, ϕk .
We write (Ck ,ψτ ) for the result of the modified Herbrand unification on (D,ϕ) in step (1). Her-

brand unification computes the most general unifier. Our modified Herbrand unification only out-
put additional kind constraints for kind on the arrows and does not change the result of the unifi-
cation. Thus, we have ϕτ ≤ ψτ , Ck =eψτD andψτCk = Ck .
Let Ck+ be the result after step (2), we trivially have that fv(Ck+) = fv(Ck ) and that Ck+ =eCk .
Let CA andψk be the results after step (4). By definition, we haveψkCk+ =eCA andψkCA = CA.

Since ϕk has already be applied toC before unifying the strongly connected components, we have
that ϕk ≤ ψk .
Let ψ = ψτ ⊔ ψk . Since ψτ and ψk have disjoint supports, we have CA = ψτCA =eψCk+ =eψD

andψCA = CA. Furthermore, ϕτ ⊔ ϕk ≤ ψτ ⊔ψk .
Steps (5) to (9) all preserve the free variables and the equivalence of constraints, which concludes.

�

Lemma C.3 (Uniqeness). Given (C1,ψ1) and (C2,ψ2) such thatψ1C1 =eψ2C2,

then normalize(C1,ψ1) and normalize(C2,ψ2) are identical up to α-renaming.

Proof. In Lemma C.2, we have showed that all the steps of the normalization procedure pre-
serve equivalence. Since ψ1C1 =eψ2C2, equivalence between the two results of the normalization
procedures is preserved for all steps.
We write P(Ca) if for allC = (k,k)′ such that Ca ⊢eC and 0e C , we have C ∈ Ra .
Let us write C ′1 and C

′
2 for the constraints after step (4). P(C ′1) and P(C

′
2) hold. Indeed, since C

′
1

and C ′2 are only composed of existential quantifications and kind inequalities, the only rules that
applies are transitivity and lattice inequalities. After step (2) and (5), the associated relations are
fully saturated for these two rules, hence all inequalities that can be deduced from C ′a are already
present in the relation.
The property P is preserved by step (6) since we only remove inequalities that involve existen-

tially quantified variables. Such inequalities could not be picked in P .
Let us write C ′′a for a ∈ {1, 2} the constraints after step (5). Since there are no more existential

variables, we have C ′′a = (ki ,k
′
i )i = R

′′
a . For any C = (k,k

′) such that ⊢eC and C ′′a ⊢eC , then
C ∈ (≤) ⊂ R ′′a . Indeed, the only trivial inequalities in our system are equalities of the form (κ,κ),
which were removed in step (4) and the lattice inequalities.
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KVar

(α : k) ∈ Γ

C | Γ ⊢s α : k

KApp

(T : ∀κi . D⇒(k ′j )→k ′) ∈ Γ

ψ = [κi → ki ] C ⊢eψD ∀j C | Γ ⊢s τj : kj C | Γ ⊢s kj ≤ ψk
′
j

C | Γ ⊢s T τj : ψk
′

KPair

∀i C | Γ ⊢s τi : ki C | Γ ⊢s ki ≤ k

C | Γ ⊢s τ1 × τ2 : k

KBorrow

C | Γ ⊢s&
b(k, τ ) : k

KArr

C | Γ ⊢s τ1
k
−→τ2 : k

Fig. 20. Syntax-directed kinding rule – C | Γ ⊢s τ : k

Let us consider C = (k,k ′) ∈ R ′′1 . Since C
′′
1 =eC

′′
2 , we have C

′′
2 ⊢eC . If 0e C , by P(C

′′
2 ) we have

that C ∈ R′′2 . If ⊢eC , then C ∈ (≤) ⊂ R
′′
2 . We conclude that R′′1 ⊂ R

′′
2 . By symmetry, R′′1 = R

′′
2 and

C ′′1 = C
′′
2 .

This equality is preserved by step (7) and (8) since the transitive reduction of a directed acyclic
graph is unique, which concludes. �

We can now prove all the necessary high level properties.

Lemma C.4. For all C ∈ S, C ⊢e x = x implies ⊢e x = x .

Proof. By definition of normalize, We haveC = (k ≤ k ′) such that the underlying relation has
no cycles. Thus, we can not deduce neither kind nor type equalities from C . �

Property 5 (Regular constraint system). CL is regular, ie, for x , x ′ two types or kinds, ⊢e(x =

x ′) implies fv(x) = fv(x ′)

Proof. The only equalities possibles are between variables (via symmetry) or between con-
stants. �

Finally, we can conclude with all the properties we need for HM(X ):

Theorem C.5 (Principal constraints). CL has the principal constraint property,

normalize computes principal normal forms for CL and CL is regular.

This is sufficient to show that HM(CL) is principal. However, we do not use HM(X ) directly
but an extended version with kind inference, linear and affine types, and borrow. We extend the
proofs of HM(X ) to such a system in Appendix E.

D SYNTAX-DIRECTED TYPING

D.1 Kinding

WewriteC | Γ ⊢s τ : k if τ has kind k in environment Γ under constraintsC . The rules are shown in
Fig. 20. Kinds and types follow a small calculus with variables (α ,. . . ), functions (type constructors

t), application (T τ) and primitives such as types for arrows (τ
k
−→τ ′) and borrows (&b(k, τ )). Kind

checking can thus be done in a fairly straightforward, syntax-directed fashion by simply following
the syntax of the types. Kind arrows can only appear when looking up the kind scheme of a type
constructor t. Kind arrows are forbidden in any other contexts.
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ESplit-Check

D ⇚ Γ = Γ1 ⋉ Γ2 C ⊢eD

C ⊢e Γ = Γ1 ⋉ Γ2

ESplit-Empty

· ⇚ · = · ⋉ ·

ESplit-Nonempty

C1 ⇚ Γ = Γ1 ⋉ Γ2 C2 ⇚ b = b1 ⋉ b2

C1 ∧C2 ⇚ Γ;b = Γ1;b1 ⋉ Γ2;b2

(σ ≤ U∞) ⊢e (x : σ ) = (x : σ ) ⋉ (x : σ ) (Both)
· ⊢e (x ÷ σ )

k
U
= (x ÷ σ )k

U
⋉ (x ÷ σ )k

U
(Borrow)

· ⊢e Bx = Bx ⋉ ∅ (Left)
· ⊢e Bx = ∅ ⋉ Bx (Right)

· ⊢e (x : σ ) = [x : σ ]n
b
⋉ (x : σ ) (Susp)

(b′ ≤ b) ⊢e (x ÷ σ )
k
b
= [x : σ ]n

b′
⋉ (x ÷ σ )k

b
(SuspB)

· ⊢e [x : σ ]n
′

b
= [x : σ ]n

U
⋉ [x : σ ]n

′

b
(SuspS)

Fig. 21. Spli�ing — environments C ⊢e Γ = Γl ⋉ Γr ; inference C ⇚ Γ = Γl ⋉ Γr ; binders C ⇚ b = br ⋉ bl

EBorrow

Cr ⇚ [x : τ ]nb  
x
n b

Cr ⇚ Γ; [x : τ ]nb  
x
n Γ;b

EBorrow-Check

C ⊢e D D ⇚ Γ; [x : τ ]nb  
x
n Γ;b

C ⊢e Γ; [x : τ ]nb  
x
n Γ;b

EBorrow-Binder

b ∈ {U,A} C = (bn ≤ k) ∧ (k ≤ b∞)

C ⇚ [x : σ ]nb  
x
n (x ÷ σ )

k
b

Fig. 22. Borrowing — environments C ⊢e Γ  
x
n Γ
′; inference C ⇚ Γ 

x
n Γ

′; binders C ⇚ b  x
n b

′

D.2 Environments

In Section 3.3, we only gave a partial description of the splitting and borrowing relations on en-
vironments, C ⊢e Γ = Γ ⋉ Γ and C ⊢e Γ  

x
n Γ. The complete definitions are shown on Figs. 21

and 22. All the definitions are made in term of the inference version, which returns fresh con-
straints. The solving version then simply uses entailment, as shown in rule ESplit-Check and
EBorrow-Check. The remaining new rules are dedicated to iterating over the environment.
Fig. 23 defines the rewriting relation on environment constraints, (Γ ≤ k) { C , which rewrites a

constraint of the form (Γ ≤ k) intoC . It proceeds by iterating over the environment and expanding
the constraints for each binding. Suspended bindings are rejected (ConstrSusp). Borrow bindings
directly use the annotated kind (ConstrBorrow). Other bindings use the underlying type scheme
(ConstrBinding). Type schemes are constrained by first inferring the kind, and then emitting the
constraint (ConstrSD and ConstrI).

D.3 Typing

The rules for syntax-directed typing are shown in Fig. 24 and follow the presentation given in
Section 3.3. As usual in HM type systems, introduction of type-schemes is included in the Let rule
via generalization. We define gen(C, Γ, τ ) = (∃κ,α .C,∀κ,α .C⇒τ ) where κ,α = (fv(τ ) ∪ fv(C)) \
fv(Γ). The typing rules specific to the internal language are shown in Fig. 25.
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(· ≤ k) { ·
(Γ ≤ k) { C Γ ⊢ (B ≤ k) { D

(Γ;B ≤ k) { C ∧ D

ConstrBinding

Γ ⊢ (σ ≤ k) { C

Γ ⊢ ((x : σ ) ≤ k) { C

ConstrBorrow

Γ ⊢ ((&bx : &b(k ′, τ )) ≤ k) { (k ′ ≤ k)

ConstrSusp

Γ ⊢ ([x : σ ]nb ≤ k) { False

ConstrSD

C ∧Cx | Γ ⊢w τ : k ′ D = C ∧Cx ∧ (k
′ ≤ k)

Γ ⊢w((∀κi∀(α j : kj ). Cx⇒τ ) ≤ k){ D

ConstrI

C ∧Cx | Γ ⊢s τ : k ′ D = C ∧Cx ∧ (k
′ ≤ k)

Γ ⊢s(∀κi∀(α j : kj ). Cx⇒τ ≤ k) { D

Fig. 23. Rewriting constraints on environments — (Γ ≤ k) { C

Instance

σ = ∀κi∀(α j : kj ). C⇒τ

ψ = [κi 7→ ki ,α j 7→ τj ]

ψ (C),ψ (τ ) = Inst(Γ,σ )

Var

(x : σ ) ∈ Γ Cx , τx = Inst(Γ,σ )
C ⊢eCx ∧ (Γ\{x} ≤ A∞)

C | Γ ⊢s x : τx

Pair

C ⊢e Γ = Γ1 ⋉ Γ2

C | Γ1 ⊢s e1 : τ1
C | Γ2 ⊢s e2 : τ2

C | Γ ⊢s(e1, e2) : τ1 × τ2

Region

[x : τx ]
n
b ∈ Γ C ⊢e Γ 

x
n Γ
′

C | Γ′ ⊢s e : τ C ⊢e(τ ≤ Ln−1)

C | Γ ⊢s{|e |}
n
{x 7→b} : τ

Const

C ⊢e(Γ ≤ A∞)

C | Γ ⊢s c : CType(c)

Abs

C | Γ; (x : τ2) ⊢s e : τ1
C ⊢e(Γ ≤ k)

C | Γ ⊢s λx .e : τ2
k
−→τ1

Borrow

(x ÷ σ )kb ∈ Γ Cx , τx = Inst(Γ,σ )
C ⊢eCx ∧ (Γ\{x} ≤ A∞)

C | Γ ⊢s &
bx : &b(k, τx )

Reborrow

C | Γ ⊢s x : &b(k, τ )

C | Γ ⊢s&&
bx : &b(k, τ )

App

C | Γ1 ⊢s e1 : τ2
k
−→τ1 C | Γ2 ⊢s e2 : τ

′
2

C ⊢e Γ = Γ1 ⋉ Γ2 C ⊢e(τ
′
2 ≤ τ2)

C | Γ ⊢s(e1 e2) : τ1

Let

C ∧ D | Γ1 ⊢s e1 : τ1 (Cσ ,σ ) = gen(D, Γ, τ1) C ⊢eCσ
C | Γ; (x : σ ) ⊢s e2 : τ2 C ⊢e Γ = Γ1 ⋉ Γ2

C | Γ ⊢s let x = e1 in e2 : τ2

MatchPair

C | Γ1 ⊢s e1 : ϕ(τ1 × τ
′
1)

C | Γ2; (x : ϕ(τ1)); (x
′ : ϕ(τ ′1)) ⊢s e2 : τ2

C ⊢e Γ = Γ1 ⋉ Γ2

C | Γ ⊢s matchϕ x , x
′
= e1 in e2 : τ2

Update

C | Γ ⊢s τ : k C ⊢e(k ≤ U0) ∧ (Γ ≤ A∞)

C | Γ ⊢s update : &
A(k ′,R τ ) −→τ

A

−→ Unit

Create

C | Γ ⊢s τ : k
C ⊢e(k ≤ U0) ∧ (Γ ≤ A∞)

C | Γ ⊢s create : τ −→R τ

Observe

C | Γ ⊢s τ : k
C ⊢e(k ≤ U0) ∧ (Γ ≤ A∞)

C | Γ ⊢s observe : &
U(k ′,R τ ) −→τ

Destroy

C | Γ ⊢s τ : k
C ⊢e(k ≤ U0) ∧ (Γ ≤ A∞)

C | Γ ⊢s destroy : R τ −→ Unit

Fig. 24. Syntax-directed typing rules – C | Γ ⊢s e : τ

, Vol. 1, No. 1, Article . Publication date: June 2020.



40 Gabriel Radanne, Hannes Saffrich, and Peter Thiemann

Var

(x : τ ) ∈ Γ
C ⊢e(Γ\{x} ≤ A∞)

C | Γ ⊢s x : τ

VarInst

(x : ∀κi∀(α j : kj ). Cx⇒τ ) ∈ Γ

ψ = [κi 7→ ki ,α j 7→ τj ]

C ⊢eψ (Cx ) ∧ (Γ\{x} ≤ A∞)

C | Γ ⊢s x[ki ; τj ] : ψτ

App

sp : C ⊢e Γ = Γ1 ⋉ Γ2

C | Γ1 ⊢s e1 : τ2
k
−→τ1

C | Γ2 ⊢s e2 : τ
′
2

C ⊢e(τ
′
2 ≤ τ2)

C | Γ ⊢s(e1 e2)sp : τ1

Pair

sp : C ⊢e Γ = Γ1 ⋉ Γ2

C | Γ1 ⊢s e1 : τ1
C | Γ2 ⊢s e2 : τ2

C | Γ ⊢s(e1, e2)
k
sp : τ1 × τ2

Abs

C | Γ; (x : τ2) ⊢s e : τ1 C ⊢e(Γ ≤ k)

C | Γ ⊢s λ
kx .e : τ2

k
−→τ1

Let

sp : C ⊢e Γ = Γ1 ⋉ Γ2 C | Γ1 ⊢s e1 : τ1 C | Γ; (x : τ1) ⊢s e2 : τ2

C | Γ ⊢s let x =sp e1 in e2 : τ2

PLet

sp : C ⊢e Γ = Γ1 ⋉ Γ2 σ1 = ∀κi (α j : kj ). D⇒τ2
k
−→τ1 C ∧ D | Γ1; (α j : kj ); (x : τ2) ⊢s e1 : τ1

C ∧ D ⊢e(Γ1 ≤ k) C ⊢e ∃(κi ,α j ).D C | Γ; (f : σ1) ⊢s e2 : τ2

C | Γ ⊢s letfun (f : σ1) =sp λ
kx .e1 in e2 : τ2

MatchPair

sp : C ⊢e Γ = Γ1 ⋉ Γ2 C | Γ1 ⊢s e1 : ϕ(τ1 × τ
′
1) C | Γ2; (x : ϕ(τ1)); (y : ϕ(τ ′1)) ⊢s e2 : τ2

C | Γ ⊢s matchϕ x , x
′
=sp e1 in e2 : τ2

Fig. 25. Syntax-directed typing rules for internal language – C | Γ ⊢s e : τ
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KArr

(True, ∅) | Γ ⊢w τ1
k
−→τ2 : k

KBorrow

(True, ∅) | Γ ⊢w &b(k, τ ) : k

KVar

(α : k) ∈ Γ

(True, ∅) | Γ ⊢w α : k

KPair

∀i, (Ci ,ψi ) | Γ ⊢w τi : ki κ fresh

(C,ψ ) = normalize(Ci ∧ (ki ≤ κ)i ,ψi )

(C,ψ ) | Γ ⊢w τ1 × τ2 : ψκ

KApp

(T : ∀κi . C0⇒(k
′
j )→k ′) ∈ Γ κ ′i fresh ψ0 = [κi → κ ′i ] ∀j, (Cj ,ψj ) | Γ ⊢w τj : k

′
j

(C,ψ ) = normalize(C0 ∧Cj ∧ (k
′
j = kj )j ,ψ0 ⊔ψj )

(C,ψ |fv(Γ)) | Γ ⊢w T τj : ψk

Fig. 26. Kind inference rules – (C,ψ ) | Γ ⊢w τ : k

E TYPE INFERENCE

In this appendix, we provide the complete type inference rules and show that our type inference
algorithm is sound and complete. The constraints rules are already shown in Section 4. Kind in-
ference is presented in Appendix E.1 and the detailed treatment of let-bindings in Appendix E.2.
The type inference rules are shown in Fig. 27. The various theorems and their proofs are direct
adaptations of the equivalent statements for HM(X ) [39].

E.1 Kind Inference

Wewrite (C,ψ ) | Γ ⊢w τ : k when typeτ has kindk in environment Γ under constraintsC and unifier
ψ . Γ and τ are the input parameters of our inference procedure. We present the kind inference
algorithm as a set of rules in Fig. 26. Higher-kinds are not generally supported and can only appear
by looking-up the kind scheme of a type constructor, for use in the type application rule KApp.
Type variables must be of a simple kind in rule KVar. Kind schemes are instantiated in the KVar
rules by creating fresh kind variables and the associated substitution. KArr and KBorrow simply
returns the kind of the primitive arrow and borrow types. The normalize function is used every
time several constraints must be composed in order to simplify the constraint and return a most
general unifier.

E.2 Generalization and constraints

The Let rule combines several ingredients previously seen: since let expressions are binders, we
use Weak on the bound identifier x . Since let-expressions contain two subexpressions, we use
the environment splitting relation, Cs ⇚ Σ = Σ1 ⋉ (Σ2\{x}). We remove the x from the right
environment, since it is not available outside of the expression e2, and should not be part of the
returned usage environment.
As per tradition inML languages, generalization is performed on let-bindings. FollowingHM(X ),

we write (Cσ ,σ ) = gen(C, Γ, τ ) for the pair of a constraint and a scheme resulting from general-
ization. The definition is provided in Fig. 12. The type scheme σ is created by quantifying over all
the appropriate free variables and the current constraints. The generated constraintCσ uses a new
projection operator, ∃x .D where x can be either a type or a kind variable, which allow the creation
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VarI

(x : ∀κi∀(α j : kj ). C⇒τ ) ∈ Γ κ ′i ,α
′
j fresh

(C,ψ ) = normalize(Cx , [κi 7→ κ ′i ,α j 7→ α ′j ])

(x : σ ) |(C,ψ |fv(Γ)) | Γ ⊢w x : ψτ

ReBorrowI

Σ |(C ′,ψ ′) | Γ ⊢w x : τ ′ κ fresh
(C,ψ ) = normalize(C ′ ∧ (τ ′ ≤ &b(κ, τ )),ψ ′)

(x ÷ τ )κb |(C,ψ ) | Γ ⊢w &bx : &b(κ, τ )

AbsI

α ,κ fresh Σx |(C
′
,ψ ′) | Γ; (x : α) ⊢w e : τ

D = C ′ ∧ (Σx\{x} ≤ κ) ∧Weak(x :α )(Σx )
(C,ψ ) = normalize(D,ψ ′)

Σx\{x} |(C,ψ\{α ,κ}) | Γ ⊢w λx .e : ψ (α)
ψ (κ)
−−−→τ

BorrowI

_ |(C,ψ ) | Γ ⊢w x : τ κ fresh

(x ÷ τ )κb |(C,ψ ) | Γ ⊢w &bx : &b(κ, τ )

RegionI

Σ
′ |(C ′,ψ ′) | Γ ⊢w e : τ Cr ⇚ Σ 

x
n Σ
′

(Cτ ,ψτ ) | Γ ⊢w τ : kτ
D = C ′ ∧Cτ ∧ (kτ ≤ Ln−1) ∧Cr
(C,ψ ) = normalize(D,ψ ′ ⊔ψτ )

Σ |(C,ψ ) | Γ ⊢w{|e |}
n
{x 7→b} : τ

AppI

α ,κ fresh Σ1 |(C1,ψ1) | Γ ⊢w e1 : τ1
Cs ⇚ Σ = Σ1 ⋉ Σ2 Σ2 |(C2,ψ2) | Γ ⊢w e2 : τ2

D = C1 ∧C2 ∧ (τ1 ≤ τ2
κ
−→α) ∧Cs

ψ ′ = ψ1 ⊔ψ2 (C,ψ ) = normalize(D,ψ ′)

Σ |(C,ψ ) | Γ ⊢w(e1 e2) : ψ (α)

MatchPairI

α ,κ,α ′,κ ′ fresh Σ1 |(C1,ψ1) | Γ ⊢w e1 : τ1 Γ
′
= Γ; (x : ϕ(α)); (α : κ); (x ′ : ϕ(α ′)); (α ′ : κ ′)

Σ2 |(C2,ψ2) | Γ
′ ⊢w e2 : τ2 ψ ′ = ψ1 ⊔ψ2 Cs ⇚ Σ = Σ1 ⋉ (Σ2\{x , x

′})

D = C ′1 ∧C2 ∧ (τ1 ≤ ϕ(α × α
′)) ∧Cs ∧Weak(x :ϕ (α )), (x ′:ϕ (α )′)(Σ2) (C,ψ ) = normalize(D,ψ ′)

Σ |(C,ψ |fv(Γ)) | Γ ⊢w matchϕ x , x
′
= e1 in e2 : ψτ2

PairI

Σ1 |(C1,ψ1) | Γ ⊢w e1 : τ1 Σ2 |(C2,ψ2) | Γ ⊢w e2 : τ2 ψ ′ = ψ1 ⊔ψ2

Cs ⇚ Σ = Σ1 ⋉ Σ2 D = C1 ∧C2 ∧Cs (C,ψ ) = normalize(D,ψ ′)

Σ |(C,ψ ) | Γ ⊢w(e1, e2) : τ1 × τ2

LetI

Σ1 |(C1,ψ1) | Γ ⊢w e1 : τ1 (Cσ ,σ ) = gen(C1,ψ1Γ, τ1)

Σ2 |(C2,ψ2) | Γ; (x : σ ) ⊢w e2 : τ2 Cs ⇚ Σ = Σ1 ⋉ Σ2\{x} ψ ′ = ψ1 ⊔ψ2

D = Cσ ∧C2 ∧Cs ∧Weak(x :σ )(Σ2) (C,ψ ) = normalize(D,ψ ′)

Σ |(C,ψ |fv(Γ)) | Γ ⊢w let x = e1 in e2 : ψτ2

Weak(x :σ )(Σ) = if (x ∈ Σ) then True else (σ ≤ A∞)

Fig. 27. Type inference rules – Σ |(C,ψ ) | Γ ⊢w e : τ

of local variables inside the constraints. This allows us to encapsulate all the quantified variables
in the global constraints. It also reflects the fact that there should exist at least one solution for C
for the scheme to be valid. Odersky et al. [26] give a detailed account on the projection operators
in HM inference.
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E.3 Soundness

Lemma E.1. Given constraints C and D and substitution ψ , if D ⊢eC then ψD ⊢eψC .

Proof. By induction over the entailment judgment. �

Lemma E.2. Given a typing derivation C | Γ ⊢s e : τ and a constraint D ∈ S in solved form such

that D ⊢eC , then D | Γ ⊢s e : τ

Proof. By induction over the typing derivation �

Lemma E.3. Given a type environment Γ, Γ′ ⊂ Γ, a term e and a variable x ∈ Γ,

if C | Γ′ ⊢s e : τ then C ∧Weakx (Γ′) | Γ′; (x : Γ(x)) ⊢s e : τ

Proof. Trivial if x ∈ Σ. Otherwise, by induction over the typing derivation. �

We define the flattening ⇓Γ of an environment Γ, as the environment where all the binders are
replaced by normal ones. More formally:

⇓Γ =
{

(x : σ ) | (x : σ ) ∈ Γ ∨ (x ÷ σ )kb ∈ Γ ∨ [x : σ ]nb ∈ Γ
}

∪ {(α : k) | (α : k) ∈ Γ}

Lemma E.4. Given a type environment Γ and a term e such that Σ |(C,ψ ) | Γ ⊢w e : τ then ⇓Σ ⊂ Γ.

Proof. By induction over the typing derivation. �

Theorem E.5 (Soundness of inference). Given a type environment Γ containing only value

bindings, Γ |τ containing only a type binding and a term e ,

if Σ |(C,ψ ) | Γ; Γτ ⊢w e : τ then C |ψ (Σ; Γτ ) ⊢s e : τ ,ψC = C andψτ = τ

Proof. We proceed by induction over the derivation of ⊢w . Most of the cases follow the proofs
fromHM(X ) closely. For brevity, we showcase three rules: the treatment of binders and weakening,
where our inference algorithm differ significantly from the syntax-directed rule, and the Pair case
which showcase the treatment of environment splitting.

Case

VarI

(x : ∀κi∀(α j : kj ). C⇒τ ) ∈ Γ κ ′i ,α
′
j fresh

(C,ψ ) = normalize(Cx , [κi 7→ κ ′i ,α j 7→ α ′j ])

(x : σ ) |(C,ψ |fv(Γ)) | Γ ⊢w x : ψτ

We have Σ = {x 7→ σ }. Without loss of generality, we can considerψx = ψ ′ |fv(Γ) = ψ
′ |fv(σ ). Since

Σ\{x} is empty and by definition of normalize, we have thatC ⊢eψ ′(Cx ) ∧ (ψxΣ\{x} ≤ A∞),ψ ′ ≤ ψ
and ψ ′C = C . By definition, ψxψ ′ = ψ ′. By rule Var , we obtain C |ψx (Σ; Γτ ) ⊢s x : ψxψ ′τ , which
concludes.

Case

AbsI

α ,κ fresh Σx |(C
′
,ψ ′) | Γ; (x : α) ⊢w e : τ

D = C ′ ∧ (Σx\{x} ≤ κ) ∧Weak(x :α )(Σx )
(C,ψ ) = normalize(D,ψ ′)

Σx\{x} |(C,ψ\{α ,κ}) | Γ ⊢w λx .e : ψ (α)
ψ (κ)
−−−→τ

By induction, we have C ′ | Σx ; Γτ ⊢s e : τ ,ψC = C andψτ = τ .
By definition of normalize and Lemma E.1, we have C ⊢eC ′ ∧ (ψ ′Σ ≤ ψ ′κ) ∧ Weakx (ψ ′Σx ) and
ψ ≤ ψ ′. By Lemma E.1, we have C ⊢e(Σ ≤ ψκ).

We now consider two cases:
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(1) If x ∈ Σx , then Weakx (ψΣx ) = True and by Lemma E.4, Σx = Σ; (x : α). We can deduce
C ′ ∧Weak(x :α )(ψΣx ) |ψΣ; Γτ ; (x : ψ (α)) ⊢s e : τ .

(2) If x < Σx , then Σ = Σx and Weak(x :α )(ψΣx ) = (ψα ≤ A∞). By Lemma E.3, we have
C ′ ∧Weak(x :α )(ψΣx ) |ψΣ; Γτ ; (x : ψ (α)) ⊢s e : τ

By Lemma E.2, we have C |ψ (Σ; Γτ ); (x : ψ (α)) ⊢s e : τ .

By rule Abs , we obtain C |ψ (Σ; Γτ ) ⊢s λx .e : ψ (α)
ψ (κ)
−−−→τ which concludes.

Case

PairI

Σ1 |(C1,ψ1) | Γ ⊢w e1 : τ1 Σ2 |(C2,ψ2) | Γ ⊢w e2 : τ2 ψ ′ = ψ1 ⊔ψ2

Cs ⇚ Σ = Σ1 ⋉ Σ2 D = C1 ∧C2 ∧Cs (C,ψ ) = normalize(D,ψ ′)

Σ |(C,ψ ) | Γ ⊢w(e1, e2) : τ1 × τ2

By induction, we haveC1 |ψ1(Σ1; Γ1τ ) ⊢s e1 : τ1,ψ1C1 = C1, andψ1τ1 = τ1 andC2 |ψ2(Σ2; Γ2τ ) ⊢s e2 :
τ2, ψ2C2 = C2 and ψ2τ2 = τ2. Wlog, we can rename the type Γ

1
τ and Γ

2
τ to be disjoint and define

Γτ = Γ
1
τ ∪ Γ

2
τ . By normalization,C ⊢e D,ψ ≤ ψ ′ andψC = C . By Lemma E.2 and by substitution, we

haveC |ψΣ1 ⊢s e1 : ψτ1 andC |ψΣ2 ⊢s e2 : ψτ2. We directly have thatψCs ⇚ ψΣ = Σ1 ⋉ψΣ2 and by
Lemma E.2,ψC ⊢eψCs . By rule Pair , we obtainC |ψ (Σ; Γτ ) ⊢s(e1 e2) : ψ (α1× α2)), which concludes.

�

E.4 Completeness

We now state our algorithm is complete: for any given syntax-directed typing derivation, our
inference algorithm can find a derivation that gives a type at least as general. For this, we need
first to provide a few additional definitions.

Definition E.6 (More general unifier). Given a set of variable U andψ ,ψ ′ and ϕ substitutions.

Thenψ ≤
ϕ

U
ψ ′ iff (ϕ ◦ψ )|U = ψ ′ |U .

Definition E.7 (Instance relation). Given a constraints C and two schemes σ = ∀α .D⇒τ and
σ ′ = ∀α ′.D ′⇒τ ′. ThenC ⊢e σ � σ ′ iff C ⊢e D[α → τ ′′] andC ∧ D ′ ⊢e(τ [α → τ ′′] ≤ τ ′)

We also extend the instance relation to environments Γ.
We now describe the interactions between splitting and the various other operations.

Lemma E.8. Given C ⇚ Γ = Γ1 ⋉ Γ2, Then ⇓Γ =⇓Γ1∪ ⇓Γ2.

Proof. By induction over the splitting derivation. �

Lemma E.9. GivenC ⊢e Γ1 = Γ2 ⋉ Γ3,C
′
⇚ Γ

′
1 = Γ

′
2 ⋉ Γ

′
3 andψ such that Γ′i ⊂ Γ

′′
i and ⊢eψ Γ

′′
i � Γi

for i ∈ {1; 2; 3}.
Then C ⊢eψC

′.

Proof. By induction over the derivation of C ′ ⇚ Γ
′
1 = Γ

′
2 ⋉ Γ

′
3 . �

We can arbitrarily extend the initial typing environment in an inference derivation, since it is
not used to check linearity.

Lemma E.10. Given Σ |(C,ψ ) | ⇓Γ ⊢w e : τ and Γ
′ such that Γ ⊆ Γ

′, then Σ |(C,ψ ) | ⇓Γ′ ⊢w e : τ

Proof. By induction over the type inference derivation. �

Finally, we present the completeness theorem.
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Theorem E.11 (Completeness). Given C ′ | Γ′ ⊢s e : τ ′ and ⊢eψ ′Γ � Γ
′. Then

Σ |(C,ψ ) | ⇓Γ ⊢w e : τ

for some environment Σ, substitution ψ , constraint C and type τ such that

ψ ≤
ϕ

fv(Γ)
ψ ′ C ′ ⊢e ϕC ⊢e ϕσ � σ

′
Σ ⊂ Γ

where σ ′ = gen(C ′, Γ′, τ ′) and σ = gen(C, Γ, τ )

Proof. Most of the difficulty of this proof comes from proper handling of instanciation and
generalization for type-schemes. This part is already proven by Sulzmann [39] in the context of
HM(X ). As before, we will only present few cases which highlights the handling of bindings and
environments. For clarity, we will only present the part of the proof that only directly relate to the
new aspect introduced by Affe.

Case

Abs

C ′ | Γ′x ; (x : τ ′2) ⊢s e : τ
′
1 C ⊢e(Γ

′
x ≤ k)

C ′ | Γ′x ⊢s λ
kx .e : τ ′2

k
−→τ ′1

and ⊢eψ ′Γ � Γ
′.

Let us pick α and κ fresh. Wlog, we choose ψ ′(α) = τ2 and ψ ′(κ) = k so that ⊢eψ ′Γx � Γ
′
x . By

induction:

Σx |(C,ψ ) | ⇓Γx ; (x : α) ⊢w e : τ ψ ≤
ϕ

fv(Γx )∪{α ;κ }
ψ ′

C ′ ⊢e ϕC ⊢e ϕσ � σ
′

Σx ⊂ Γx ; (x : α)

σ ′ = gen(C ′, Γ′x ; (x : τ ′2), τ
′
1) σ = gen(C, Γx ; (x : α), τ1)

Let Ca = C ∧ (Σ ≤ κ) ∧Weak(x :α )(Σx ) and By definition, ψD\{α ;κ} ≤
ϕD
fv(Γx )

ψ which means we

haveψD\{α ;κ} ≤
ϕ◦ϕD
fv(Γx )

ψ ′. We also have that Σx\{x} ⊂ Γx .

Since C ⊢e(Γ′x ≤ k), we have C ⊢eψ ′(Σ ≤ κ). If x ∈ Σx , then Weak(x :α )(Σx ) = True. Other-
wise we can show by induction that C ′ ⊢eψ ′Weak(x :α )(Σx ). We also haveψC = C , which gives us
C ′ ⊢eψ

′(Ca). We can deduce C ′ ⊢eψ ′(Ca).
This means (C ′,ψ ′) is a normal form of Ca , so a principal normal form exists. Let (D,ψD ) =
normalize(Ca,ψ\{α ;κ}). By the property of principal normal forms, we haveC ′ ⊢e ρD andψD ≤

ρ

fv(Γx )
ψ ′.

By application of AbsI , we have Σx\{x} |(C,ψD\{α ,κ}) | ⇓Γx ⊢w λx .e : ψD (α)
ψD(κ)
−−−−→τ1.

The rest of the proof proceeds as in the original HM(X ) proof.

Case

Pair

C ′ | Γ′1 ⊢s e1 : τ
′
1 C ′ | Γ′2 ⊢s e2 : τ

′
1 C ⊢e Γ

′
= Γ
′
1 ⋉ Γ

′
2

C ′ | Γ′ ⊢s(e1 e2) : τ
′
1 × τ

′
2

and ⊢eψ ′Γ � Γ
′

The only new elements compared to HM(X ) is the environment splitting. By induction:

Σ1 |(C1,ψ1) | ⇓Γ1 ⊢w e : τ1 ψ1 ≤
ϕ2

fv(Γ)
ψ ′1 C ′ ⊢e ϕC1 ⊢e ϕ2σ1 � σ

′
1

Σ1 ⊂ Γ1 σ ′1 = gen(C ′, Γ′1 , τ
′
1) σ1 = gen(C, Γ1, τ1)
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and

Σ2 |(C2,ψ2) | ⇓Γ2 ⊢w e : τ2 ψ2 ≤
ϕ2

fv(Γ)
ψ ′2 C ′ ⊢e ϕC2

⊢e ϕ2σ2 � σ
′
2 Σ2 ⊂ Γ2

σ ′2 = gen(C ′, Γ′2 , τ
′
2) σ2 = gen(C, Γ2, τ2)

By Lemmas E.8 and E.10, we have

Σ1 |(C1,ψ1) | ⇓Γ ⊢w e : τ1 Σ2 |(C2,ψ2) | ⇓Γ ⊢w e : τ2

Let Cs ⇚ Σ = Σ1 ⋉ Σ2. We know that ⊢eψ ′Γ � Γ
′, ⊢eψ ′i Γi � Γ

′
i and Σi ⊂ Γi . By Lemma E.9, we

have C ⊢eψ ′Cs . The rest of the proof follows HM(X ).
�

Corollary E.12 (Principality). Let True | Γ ⊢s e : σ a closed typing judgment.

Then Σ |(C,ψ ) | ⇓Γ ⊢w e : τ such that:

(True,σo) = gen(C,ψ Γ, τ ) ⊢e σo � σ
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F SEMANTICS DEFINITIONS

Fig. 28 presents the full big-step interpretation. Fig. 29 contains the cases for resources.

G PROOFS FOR METATHEORY

• For simplicity, we only consider terms in A-normal forms following the grammar:

e ::= . . . | (x x ′) | (x , x ′)k | matchϕ x ,y = z in e

Typing and semantics rules are unchanged.
• Borrow qualifiers β ::= Un | An where n ≥ 0 is a region level. A vector of borrow qualifiers β is
wellformed if all Us come before all As in the vector.
• Borrow compatibility β տ β ,

βnβ տ βn

• Store typing ⊢ δ : ∆,

(∀ℓ ∈ dom(δ )) ∆ ⊢ δ (ℓ) : ∆(ℓ)

⊢ δ : ∆

• Relating storables to type schemes ∆ ⊢ w : σ
We write dis(Γ) for γ L and γA and γU and γ# are all disjoint.

(∃Γ) ∆ ⊢ γ : Γ dis(Γ) C | Γ; (x : τ2) ⊢s e : τ1 α = fv(τ1, τ2) \ fv(Γ)

∆ ⊢ (γ , λ[κ | C ⇒ k]x .e) : ∀κ∀(α : k).(C⇒τ2
k
−→τ1)

• Relating storables to types ∆ ⊢ w : τ

(∃Γ,C) ∆ ⊢ γ : Γ dis(Γ) C | Γ; (x : τ2) ⊢s e : τ1 C ⊢e(Γ ≤ k)

∆ ⊢ (γ , λkx .e) : τ2
k
−→τ1

∆ ⊢ r1 : τ1 ∆ ⊢ r2 : τ2 · ⊢e(τ1 ≤ k) ∧ (τ1 ≤ k)

∆ ⊢ (r1, r2)
k : τ1 ×

k τ2

∆ ⊢ r : IType(T, τ)

∆ ⊢ [r ] : T τ
∆ ⊢ • : τ

• Relating results to type schemes ∆ ⊢ r : σ

∆ ⊢ c : CType(c) ∆ ⊢ ℓ : ∆(ℓ)
β տ bn ∆ ⊢ ℓ : τ

∆ ⊢ βℓ : &b(bn , τ )

• We write aff∆(ℓ) to express that ℓ points to a resource that requires at least affine treatment.
Borrow types do not appear in store types as the store only knows about the actual resources.
Define aff∆(ℓ) if one of the following cases holds:

– ∆(ℓ) = ∀κ∀(α : k).(C⇒τ2
k
−→τ1) andC ∧ (k ≤ U∞) is contradictory;

– ∆(ℓ) = τ2
k
−→τ1 and (A ≤ k);

– ∆(ℓ) = τ1 ×
k τ2 and (A ≤ k);

– ∆(ℓ) = T τ .
• We write lin∆(ℓ) to express that ℓ points to a linear resource.
Define lin∆(ℓ) if one of the following cases holds:

– ∆(ℓ) = ∀κ∀(α : k).(C⇒τ2
k
−→τ1) andC ∧ (k ≤ A∞) is contradictory;

– ∆(ℓ) = τ2
k
−→τ1 and (L ≤ k);

– ∆(ℓ) = τ1 ×
k τ2 and (L ≤ k);
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let rec eval
(δ :store) (π :perm) (γ :venv) i e
: (store× perm× result) sem =
if i=0 then TimeOut else
let i' = i − 1 in
match e with

| Const (c) −→
Ok (δ , π , c)

| Var (x) −→
let∗ r = γ (x) in
Ok (δ , π , r)

| Varinst (x, k ) −→
let∗ rx = γ (x) in
let∗ ℓ = getloc rx in
let∗? () = ℓ ∈ π in

let∗ w = δ (ℓ) in
let∗ (γ ', κ', C', k', x', e') = getstpoly w in

let π ' =

if C'{k\>κ'} =e [(k' ≤ U)]{k\>κ'}
then π else π − ℓ

in

let w = STCLOS (γ ', k'{k\>κ'}, x', e'{k\>κ '}) in
let (ℓ', δ ') = salloc δ w in

Ok (δ ', π ' + ℓ', ℓ')

| Lam (k, x, e) −→
let w = STCLOS (γ , k, x, e) in
let (ℓ', δ ') = salloc δ w in

let π ' = π + ℓ' in
Ok (δ ', π ', ℓ')

| App (e1, e2, sp) −→
let (γ 1, γ 2) = vsplit γ sp in

let∗ (δ1, π 1, r1) = eval δ π γ 1 i' e1 in
let∗ ℓ1 = getloc r1 in
let∗? () = ℓ1 ∈ π 1 in
let∗ w = δ1(ℓ1) in
let∗ (γ ', k', x', e') = getstclos w in

let π 1' = if k' ≤ U then π 1 else π 1 − ℓ1 in

let∗ δ1 ' = δ1(ℓ1)← (if k' ≤ U then w else •) in
let∗ (δ2, π 2, r2) = eval δ1' π 1' γ 2 i' e2 in
let∗ (δ3, π 3, r3) = eval δ2 π 2 γ '(x' 7→ r2) i' e' in
Ok (δ3, π 3, r3)

| Let (x, e1, e2, sp) −→
let (γ 1, γ 2) = vsplit γ sp in

let∗ (δ1, π 1, r1) = eval δ π γ 1 i' e1 in
let∗ (δ2, π 2, r2) = eval δ1 π 1 γ 2(x 7→ r1) i' e2 in
Ok (δ2, π 2, r2)

| LetFun (f, σ , k, x, e, e', sp) −→
let (γ 1, γ 2) = vsplit γ sp in

let ∀(κ , _, C , τ ) = σ in

let w = STPOLY (γ 1, κ, C , k, x, e') in
let (ℓ', δ ') = salloc δ w in

let π ' = π + ℓ' in
let∗ (δ1, π 1, r1) = eval δ ' π ' γ 2(f 7→ ℓ') i' e' in
Ok (δ1, π 1, r1)

| Pair (k, e1, e2, sp) −→
let (γ 1, γ 2) = vsplit γ sp in

let∗ (δ1, π 1, r1) = eval δ π γ 1 i' e1 in
let∗ (δ2, π 2, r2) = eval δ1 π 1 γ 2 i' e2 in
let w = STPAIR (k, r1, r2) in
let (ℓ', δ ') = salloc δ2 w in

Ok (δ ', π 2 + ℓ', ℓ')

| Match (x, x', e1, e2, sp) −→
let (γ 1, γ 2) = vsplit γ sp in

let∗ (δ1, π 1, r1) = eval δ π γ 1 i' e1 in
let∗ ℓ = getloc r1 in
let∗ w = δ1(ℓ) in
let∗ (k', r1 ', r2') = getstpair w in

let π 1 ' = (if k' ≤ U then π 1 else π 1 − ℓ) in
let γ 2' = γ 2(x 7→ r1)(x' 7→ r1 ') in
let∗ (δ2, π 2, r2) = eval δ1 π 1 ' γ 2' i' e2 in
Ok (δ2, π 2, r2)

| Matchborrow (x, x', e1, e2, sp) −→
let (γ 1, γ 2) = vsplit γ sp in

let∗ (δ1, π 1, r1) = eval δ π γ 1 i' e1 in
let∗ ρ = getaddress r1 in
let∗ (b, _, ℓ) = getborrowed_loc r1 in
let∗ w = δ1(ℓ) in
let∗ (k', r1 ', r2') = getstpair w in

let∗ ρ1 = getaddress r1' in
let∗ ρ2 = getaddress r2' in
let∗ ρ1' = b.ρ1 in
let∗ ρ2' = b.ρ2 in
let π 1 '' = (if k' ≤ U then π 1 else π 1 − ρ) in
let γ 2'' = γ 2(x 7→ ρ1 ')(x' 7→ ρ2') in
let∗ (δ2, π 2, r2) = eval δ1 π 1 '' γ 2 '' i' e2 in
Ok (δ2, π 2, r2)

Fig. 28. Big-step interpretation
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| Region (e, n, x, τ x , b) −→
let+ ρ = γ (x) in
let∗ ρ' = b.ρ in

let∗ π ' = reach ρ τx δ in

let∗ π '' = b.π ' in
let γ ' = γ (x 7→ρ') in
let π = (π ∪ π '') \ π ' in
let∗ (δ1, π 1, r1) = eval δ π γ ' i' e in
let π 1 = (π 1 \ π '') ∪ π ' in
Ok (δ1, π 1, r1)

| Borrow (b, x) −→
let+ ρ = γ (x) in
let∗? () = ρ ? b && ρ ∈ π in

Ok (δ , π , ρ)

| Destroy (e1) −→
let∗ (δ1, π 1, r1) = eval δ π γ i' e1 in
let∗ ρ = getaddress r1 in
let∗ ℓ = getloc r1 in
let∗ w = δ1(ℓ) in
let∗ r = getstrsrc w in

let∗? () = ρ ∈ π 1 in
let∗ δ1' = δ1(ℓ)← • in
let π 1' = π 1 − ℓ in
Ok (δ1', π 1 ', ())

| Create −→
let w = STRSRC (0) in
let (ℓ1, δ1) = salloc δ w in

let π 1 = π + ℓ1 in
Ok (δ1, π 1, ℓ1)

| Observe (e1) −→
let∗ (δ1, π 1, r1) = eval δ π γ i' e1 in
let∗ ρ = getaddress r1 in
let∗? () = ρ ∈ π 1 in
let∗ (b, _, ℓ) = getborrowed_loc r1 in
let∗? () = (b = U) in
let∗ w = δ1(ℓ) in
let∗ r = getstrsrc w in

Ok (δ1, π 1, r)

| Update (e1, e2, sp) −→
let (γ 1, γ 2) = vsplit γ sp in

let∗ (δ1, π 1, r1) = eval δ π γ 1 i' e1 in
let∗ ρ = getaddress r1 in
let∗ (b, _, ℓ) = getborrowed_loc r1 in
let∗? () = (b = A) in
let∗ (δ2, π 2, r2) = eval δ1 π 1 γ 2 i' e2 in
let∗ w = δ2(ℓ) in
let∗ r = getstrsrc w in

let∗? () = ρ ∈ π 2 in
let∗ δ2' = δ2(ℓ)← STRSRC (r2) in
let π 2' = π 2 − ρ in

Ok (δ2', π 2 ', ())

Fig. 29. Big-step interpretation (resources)

– ∆(ℓ) = T τ .
• It remains to characterize unrestricted resources. Define unr∆(ℓ) if neither aff∆(ℓ) nor lin∆(ℓ)
holds.
• Relating environments to contexts
∆ ⊢ γ L,γA,γU,γA# ,γ

U

# : Γ.
Here we consider an environment γ = (γ L,γA,γU,γ#) as a tuple consisting of the active entries
in γ L and the entries for exclusive borrows in γA and for shared borrows in γU, and suspended
entries in γ# = γ

A

# ,γ
U

# for affine and unrestricted entries. The suspended entries cannot be used
directly, but they can be activated by appropriate borrowing on entry to a region.
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∆ ⊢ ·, ·, ·, · : ·

∆ ⊢ γ L,γA,γU,γ# : Γ ∆ ⊢ r : σ lin∆(r )

∆ ⊢ γ L[x 7→ r ],γA,γU,γ# : Γ; (x : σ )

∆ ⊢ γ L,γA,γU,γ# : Γ ∆ ⊢ r : σ aff∆(r )

∆ ⊢ γ L,γA[x 7→ r ],γU,γ# : Γ; (x : σ )

∆ ⊢ γ L,γA,γU,γ# : Γ ∆ ⊢ r : σ unr∆(r )

∆ ⊢ γ L,γA,γU[x 7→ r ],γ# : Γ; (x : σ )

∆ ⊢ γ L,γA,γU,γA# ,γ
U

# : Γ ∆ ⊢ r : σ

∆ ⊢ γ L,γA,γU,γA# ,γ
U

# [x 7→ r ] : Γ; [x : σ ]n
U

∆ ⊢ γ L,γA,γU,γA# ,γ
U

# : Γ ∆ ⊢ r : σ

∆ ⊢ γ L,γA,γU,γA# [x 7→ r ],γU# : Γ; [x : σ ]n
A

∆ ⊢ γ L,γA,γU,γ# : Γ ∆ ⊢ Uρ : σ

∆ ⊢ γ L,γA,γU[x 7→ Uρ],γ# : Γ; (x ÷ σ )
k
U

∆ ⊢ γ L,γA,γU,γ# : Γ ∆ ⊢ Aρ : σ

∆ ⊢ γ L,γA[x 7→ Aρ],γU,γ# : Γ; (x ÷ σ )
k
A

Extending environments and stores.

∆ ≤ ∆
∆ ≤ ∆

′
ℓ < dom(δ )

∆ ≤ ∆
′(ℓ : σ )

δ ≤ δ
δ ≤ δ ′ ℓ < dom(δ )

δ ≤ δ ′[ℓ 7→ w]

Lemma G.1 (Store Weakening). ∆ ⊢ γ : Γ and ∆ ≤ ∆
′ implies ∆′ ⊢ γ : Γ.

Lemma G.2 (Store Extension). • If ∆1 ≤ ∆2 and ∆2 ≤ ∆3, then ∆1 ≤ ∆3.

• If δ1 ≤ δ2 and δ2 ≤ δ3, then δ1 ≤ δ3.

Wewrite getloc(·) for the function that extracts a multiset of raw locations from a result or from
the range of the variable environment.

getloc(βℓ) = {ℓ}

getloc(c) = {}

getloc(·) = {}

getloc(γ (x 7→ r )) = getloc(γ ) ∪ getloc(r )

We write reachδ (γ ) for the multiset of all addresses reachable from getloc(γ ) assuming that
getloc(γ ) ⊆ dom(δ )5. The function reachδ (·) is defined in two steps. First a helper function for
results, storables, and environments.

5In mixed comparisons between a multiset and a set, we tacitly convert a multisetM to its supporting set {x | M (x ) , 0}.
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reach0(·) = ·

reach0(γ (x 7→ r )) = reach0(γ ) ∪ reach0(r )

reach0(ρ) = {ρ}

reach0(c) = {}

reach0(STPOLY(γ ,κ,C,k, x , e)) = reach0(γ )

reach0(STCLOS(γ ,k, x , e)) = reach0(γ )

reach0(STPAIR(k, r1, r2)) = reach0(r1) ∪ reach0(r2)

reach0(STRSRC(r )) = reach0(r )

reach0(•) = {}

This multiset is closed transitively by store lookup. We define reachδ (γ ) as the smallest multiset
Θ that fulfills the following inequations. We assume a nonstandard model of multisets such that
an element ℓ may occur infinitely often as in Θ(ℓ) = ∞.

Θ ⊇ reach0(γ )

Θ ⊇ reach0(w) if βℓ ∈ Θ ∧w = δ (ℓ)

Definition G.3 (Wellformed permission). A permission π is wellformed if it contains at most one
address for each raw location.

Definition G.4 (Permission closure). The closure of a permission ↓π is the set of addresses reach-
able from π by stripping an arbitrary number of borrows from it. It is the homomorphic extension
of the closure ↓ρ for a single address.

↓ℓ = {ℓ} ↓(βρ) = {βρ} ∪ ↓ρ

Lemma G.5 (Containment). Suppose that ⊢ δ : ∆, ∆ ⊢ r : τ , C ⊢e(τ ≤ k) ∧ (k ≤ Lm−1). Then

reachδ (r ) cannot contain addresses ρ such that ρ = bnρ
′ with n ≥ m.

Proof. By inversion of result typing there are three cases.
Case ∆ ⊢ c : CType(c). Immediate: reachable set is empty.

Case
β տ bn ∆ ⊢ ℓ : τ

∆ ⊢ βℓ : &b(bn, τ )
. The typing constraint enforces that n <m.

Case ∆ ⊢ ℓ : ∆(ℓ). We need to continue by dereferencing ℓ and inverting store typing.
Case ∆ ⊢ • : τ . Trivial.

Case
∆ ⊢ r : IType(T, τ)

∆ ⊢ [r ] : T τ
. We assume the implementation type of a result to be unrestricted.

Case
∆ ⊢ r1 : τ1 ∆ ⊢ r2 : τ2 · ⊢e(τ1 ≤ k) ∧ (τ1 ≤ k)

∆ ⊢ (r1, r2)
k : τ1 ×

k τ2
.

The typing constraint yields that k ≤ Lm−1. By induction and transitivity of ≤, we find that
reachδ (r1) and reachδ (r2) cannot contain offending addresses.

Case
(∃Γ,C) ∆ ⊢ γ : Γ dis(Γ) C | Γ; (x : τ2) ⊢s e : τ1 C ⊢e(Γ ≤ k)

∆ ⊢ (γ , λkx .e) : τ2
k
−→τ1

.

The typing constraint yields that k ≤ Lm−1. By transitivity of ≤ and ∆ ⊢ γ : Γ, we find that
the types of all addresses in γ have types bounded by Lm−1 and, by induction, they cannot contain
offending addresses. �
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Theorem G.6 (Type Soundness). Suppose that

(A1) C | Γ ⊢s e : τ
(A2) ∆ ⊢ γ : Γ
(A3) ⊢ δ : ∆
(A4) π is wellformed and getloc(π ) ⊆ dom(δ ) \ δ−1(•)
(A5) reach0(γ ) ⊆ π , reachδ (γ ) ⊆ ↓π .
(A6) getloc(γ L), getloc(γA), getloc(γU), and getloc(γ#) are all disjoint
(A7) Incoming Resources:

(a) ∀ℓ ∈ getloc(reachδ (γ )), δ (ℓ) , •.
(b) ∀ℓ ∈ Θ = getloc(reachδ (γ L,γA,γA# )), Θ(ℓ) = 1.

For all i ∈ N, if R' = eval δ π γ i e and R′ , TimeOut, then ∃ δ ′, π ′, r ′, ∆′ such that

(R1) R′ = Ok(δ ′, π ′, r ′)
(R2) ∆ ≤ ∆

′, δ ≤ δ ′, ⊢ δ ′ : ∆′

(R3) ∆′ ⊢ r ′ : τ
(R4) π ′ is wellformed and getloc(π ′) ⊆ dom(δ ′) \ δ ′−1(•).
(R5) reach0(r ′) ⊆ π ′, reachδ ′(r ′) ⊆ ↓π ′ ∩(reachδ ′(γ ) \ reachδ ′(γ#) ∪ dom(δ

′) \ dom(δ )).
(R6) Frame:

For all ℓ ∈ dom(δ ) \ getloc(reachδ ′(γ )) it must be that

• δ ′(ℓ) = δ (ℓ) and

• for any ρ with getloc(ρ) = {ℓ}, ρ ∈ π ⇔ ρ ∈ π ′.

(R7) Unrestricted values, resources, and borrows:

For all ρ ∈ reachδ ′(γU,γU# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ), δ ′(ℓ) = δ (ℓ) , •
and ρ ∈ π ′.

(R8) Affine borrows and resources:

For all ρ ∈ reachδ ′(γA,γA# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ). If ρ , ℓ, then
δ ′(ℓ) , •. If ρ ∈ reachδ ′(γA# ), then ρ ∈ π

′.

(R9) Resources: Let Θ = reachδ (γ L). Let Θ′ = reachδ ′(γ L).
For all ℓ ∈ Θ it must be that Θ(ℓ) = Θ

′(ℓ) = 1, ℓ < π ′, and if δ (ℓ) is a resource, then δ ′(ℓ) = •.
(R10) No thin air permission:

π ′ ⊆ π ∪ (dom(δ ′) \ dom(δ )).

Some explanations are in order for the resource-related assumptions and statements.
Incoming resources are always active (i.e., not freed). Linear and affine resources as well as

suspended affine borrows have exactly one pointer in the environment.
The Frame condition states that only store locations reachable from the current environment

can change and that all permissions outside the reachable locations remain the same.
Unrestricted values, resources, and borrows do not change their underlying resource and do not

spend their permission.
Affine borrows and resources may or may not spend their permission. Borrows are not freed,

but resources may be freed. The permissions for suspended entries remain intact.
A linear resource is always freed.
Outgoing permissions are either inherited from the caller or they refer to newly created values.
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Proof. By induction on the evaluation of eval δ π γ i e.
The base case is trivial as eval δ π γ 0 e = TimeOut.
For i > 0 consider the different cases for expressions. For lack of spacetime, we only give details

on some important cases.
Case e of
| Let (x, e1, e2, sp) −→
let (γ 1, γ 2) = vsplit γ sp in

let∗ (δ1, π 1, r1) = eval δ π γ 1 i' e1 in
let∗ (δ2, π 2, r2) = eval δ1 π 1 γ 2(x 7→ r1) i' e2 in
Ok (δ2, π 2, r2)

We need to invert rule Let for monomorphic let:

Let

sp : C ⊢e Γ = Γ1 ⋉ Γ2 C | Γ1 ⊢s e1 : τ1 C | Γ; (x : τ1) ⊢s e2 : τ2

C | Γ ⊢s let x =sp e1 in e2 : τ2

As sp is the evidence for the splitting judgment and vsplit distributes values according to sp, we
obtain

∆ ⊢ γ1 : Γ1 (1)

∆ ⊢ γ2 : Γ2 (2)

Moreover (using ⊎ for disjoint union),

• γ L = γ1
L ⊎ γ2

L,
• γA = γ1

A ⊎ γ2
A,

• γU = γ1
U
= γ2

U,
• γ# = γ1# ⊎ γ2# (this splitting does not distinguish potentially unrestricted or affine bindings)

We establish the assumptions for the call eval δ π γ 1 i' e1.

(A1-1) From inversion: C ∧ D | Γ1 ⊢s e1 : τ1
(A1-2) From (1): ∆ ⊢ γ1 : Γ1
(A1-3) From assumption
(A1-4) From assumption
(A1-5) From assumption because γ1 is projected from γ .
(A1-6) From assumption because γ1 is projected from γ .
(A1-7) From assumption because γ1 is projected from γ .

Hence, we can apply the induction hypothesis and obtain

(R1-1) R1 = Ok(δ1, π1, r1)
(R1-2) ∆ ≤ ∆1, δ ≤ δ1, ⊢ δ1 : ∆1

(R1-3) ∆1 ⊢ r1 : τ1
(R1-4) π1 is wellformed and getloc(π1) ⊆ dom(δ1) \ δ1

−1(•).
(R1-5) reach0(r1) ⊆ π1, reachδ1 (r1) ⊆ ↓π1 ∩(reachδ1 (γ ) \ reachδ1 (γ#) ∪ dom(δ1) \ dom(δ )).
(R1-6) Frame:

For all ℓ ∈ dom(δ ) \ getloc(reachδ1 (γ1)) it must be that
• δ1(ℓ) = δ (ℓ) and
• for any ρ with getloc(ρ) = {ℓ}, ρ ∈ π ⇔ ρ ∈ π1.

(R1-7) Unrestricted values, resources, and borrows:
For all ρ ∈ reachδ1 (γ

U,γU# )with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ), δ1(ℓ) = δ (ℓ) , •
and ρ ∈ π1.
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(R1-8) Affine borrows and resources:
For all ρ ∈ reachδ1 (γ

A,γA# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ). If ρ , ℓ, then
δ1(ℓ) , •. If ρ ∈ reachδ1 (γ

A

# ), then ρ ∈ π1.
(R1-9) Resources: Let Θ = reachδ (γ

L). Let Θ1 = reachδ1 (γ
L).

For all ℓ ∈ Θ it must be that Θ(ℓ) = Θ1(ℓ) = 1, ℓ < π1, and if δ (ℓ) is a resource, then
δ1(ℓ) = •.

(R1-10) No thin air permission:
π1 ⊆ π ∪ (dom(δ1) \ dom(δ )).

To establish the assumptions for the call
eval δ1 π 1 γ 2(x7→r1) i' e2, we write γ ′2 = γ (x 7→ r1).

(A2-1) From inversion: C | Γ; (x : τ1) ⊢s e2 : τ2
(A2-2) From (2) we have ∆ ⊢ γ2 : Γ2. By store weakening (Lemma G.1) and using (R1-2), we have

∆1 ⊢ γ2 : Γ2. With (R1-3), we obtain ∆1 ⊢ γ2(x 7→ r1) : Γ2; (x : τ1).
(A2-3) Immediate from (R1-2).
(A2-4) Immediate from (R1-4).
(A2-5) Show reach0(γ ′2) ⊆ π1, reachδ1 (γ

′
2) ⊆ ↓π1.

From (A1-5), we have reach0(γ2) ⊆ π1, reachδ1 (γ2) ⊆ ↓π1. The extra binding (x 7→ r1) goes
into one of the compartments according to its type. We conclude by (R1-5).

(A2-6) Disjointness holds by assumption for γ2 and it remains to discuss r1. But r1 is either a fresh
resource, a linear/affine resource from γ1 (which is disjoint), or unrestricted. In each case,
there is no overlap with another compartment of the environment.

(A2-7) We need to show Incoming Resources:
(a) ∀ℓ ∈ getloc(reachδ1 (γ

′
2)), δ1(ℓ) , •.

(b) ∀ℓ ∈ Θ1 = getloc(reachδ1 (γ
′
2
L
,γ ′2

A
,γ ′2

A

# )), Θ1(ℓ) = 1.
The first item holds by assumption, splitting, and (for r1) by (R1-4) and (R1-5).
The second and third items hold by assumption (A1-7), splitting, and framing (R1-6).

Hence, we can apply the induction hypothesis and obtain

(R2-1) R2 = Ok(δ2, π2, r2)
(R2-2) ∆1 ≤ ∆2, δ1 ≤ δ2, ⊢ δ2 : ∆2

(R2-3) ∆2 ⊢ r2 : τ2
(R2-4) π2 is wellformed and getloc(π2) ⊆ dom(δ2) \ δ2

−1(•).
(R2-5) reach0(r2) ⊆ π2, reachδ2 (r2) ⊆ ↓π2 ∩(reachδ2 (γ1) \ reachδ2 (γ1#) ∪ dom(δ2) \ dom(δ1)).
(R2-6) Frame:

For all ℓ ∈ dom(δ1) \ getloc(reachδ2 (γ
′
2)) it must be that

• δ2(ℓ) = δ1(ℓ) and
• for any ρ with getloc(ρ) = {ℓ}, ρ ∈ π1 ⇔ ρ ∈ π2.

(R2-7) Unrestricted values, resources, and borrows:
For all ρ ∈ reachδ2 (γ

′
2
U
,γ ′2

U

# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ1), δ2(ℓ) =
δ1(ℓ) , • and ρ ∈ π2.

(R2-8) Affine borrows and resources:
For all ρ ∈ reachδ2 (γ

′
2
A
,γ ′2

A

# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ1). If ρ , ℓ,

then δ2(ℓ) , •. If ρ ∈ reachδ2 (γ
′
2
A

# ), then ρ ∈ π2.

(R2-9) Resources: Let Θ1 = reachδ1 (γ
′
2
L). Let Θ2 = reachδ2 (γ

′
2
L).

For all ℓ ∈ Θ1 it must be that Θ1(ℓ) = Θ2(ℓ) = 1, ℓ < π2, and if δ1(ℓ) is a resource, then
δ2(ℓ) = •.
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(R2-10) No thin air permission:
π2 ⊆ π1 ∪ (dom(δ2) \ dom(δ1)).

It remains to establish the assertions for the let expression.

(R-1) R2 = Ok(δ2, π2, r2)
Immediate from (R2-1).

(R-2) ∆ ≤ ∆2, δ ≤ δ2 , ⊢ δ2 : ∆2

Transitivity of store extension (Lemma G.2), (R2-2), and (R1-2).
(R-3) ∆2 ⊢ r2 : τ2

Immediate from (R2-3).
(R-4) π2 is wellformed and getloc(π2) ⊆ dom(δ2) \ δ2

−1(•).
Immediate from (R2-4).

(R-5) reach0(r2) ⊆ π2, reachδ2 (r2) ⊆ ↓π2 ∩(reachδ2 (γ ) \ reachδ2 (γ#) ∪ dom(δ2) \ dom(δ )).
Immediate from (R2-5) because reachδ2 (γ1) ⊆ reachδ2 (γ ) and reachδ2 (γ1#) ⊆ reachδ2 (γ#).
Moreover, dom(δ ) ⊆ dom(δ1).

(R-6) Frame:
For all ℓ ∈ dom(δ ) \ getloc(reachδ2 (γ )) it must be that
• δ2(ℓ) = δ (ℓ) and
• for any ρ with getloc(ρ) = {ℓ}, ρ ∈ π ⇔ ρ ∈ π2.

Suppose that ℓ ∈ dom(δ ) \ getloc(reachδ2 (γ )).
Then ℓ ∈ dom(δ ) \ getloc(reachδ1 (γ1)).
By (R1-6), δ1(ℓ) = δ (ℓ) and for any ρ with getloc(ρ) = {ℓ}: ρ ∈ π ⇔ ρ ∈ π1.
But also ℓ ∈ dom(δ1) \ getloc(reachδ2 (γ

′
2)).

By (R2-6), δ2(ℓ) = δ1(ℓ) for applicable ρ, ρ ∈ π1 ⇔ ρ ∈ π2.
Taken together, we obtain the claim.

(R-7) Unrestricted values, resources, and borrows:
For all ρ ∈ reachδ2 (γ

U,γU# )with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ), δ2(ℓ) = δ (ℓ) , •
and ρ ∈ π2.
Follows from (R2-7) or (R1-7) because γU = γ1U = γ2U.

(R-8) Affine borrows and resources:
For all ρ ∈ reachδ2 (γ

A,γA# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ). If ρ , ℓ, then
δ2(ℓ) , •. If ρ ∈ reachδ2 (γ

A

# ), then ρ ∈ π2.
Follows from (R2-8), (R1-8), and framing.

(R-9) Resources: Let Θ = reachδ (γ L). Let Θ2 = reachδ2 (γ
L).

For all ℓ ∈ Θ it must be thatΘ(ℓ) = Θ2(ℓ) = 1, ℓ < π2, and if δ (ℓ) is a resource, then δ2(ℓ) = •.
Follows from disjoint splitting of γ L, (R2-9), (R1-9), and framing.

(R-10) No thin air permission:
π2 ⊆ π ∪ (dom(δ2) \ dom(δ )).
Immediate from (R2-10).
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Case e of
| VApp (x1, x2) −→
let∗ r1 = γ (x1) in
let∗ ℓ1 = getloc r1 in
let∗? () = ℓ1 ∈ π in

let∗ w = δ (ℓ1) in
let∗ (γ ', k', x', e') = getstclos w in

let π ' = (if k' ≤ U then π else π − ℓ1) in
let∗ δ ' = δ (ℓ1)← (if k' ≤ U then w else •) in
let∗ r2 = γ (x2) in
let∗ (δ3, π 3, r3) = eval δ ' π ' γ '(x'7→ r2) i' e' in
Ok (δ3, π 3, r3)

We need to invert rule App:
App

(x1 : τ2
k
−→τ1) ∈ Γ

(x2 : τ
′
2) ∈ Γ

C ⊢e(τ
′
2 ≤ τ2)

C ⊢e(Γ\{x1, x2} ≤ A∞)

C | Γ ⊢s(x1 x2) : τ1

We need to establish the assumptions for the recursive call eval δ ' π ' γ '(x'7→r2) i' e'. We write γ ′2 =
γ ′(x ′ 7→ r2).

(A1-1) C ′ | Γ′; (x ′ : τ2) ⊢s e ′ : τ1, for some C ′ and Γ
′

Applying the first premise of App to r1 = γ (x1), ∆ ⊢ γ : Γ, and inversion of result typing

yields that r1 = ℓ1 with ∆(ℓ1) = τ2
k
−→τ1. By inversion of store typing and storable typing,

we find that there exist Γ′ and C ′ such that
(a) δ (ℓ1) = (γ ′, λkx ′.e ′)
(b) dis(Γ′)
(c) ∆ ⊢ γ ′, Γ′

(d) C ′ | Γ′; (x ′ : τ2) ⊢s e ′ : τ1
(e) C ′ ⊢e(Γ′ ≤ k)

(A1-2) ∆ ⊢ γ ′(x ′ 7→ r2) : Γ′; (x ′ : τ2)
By (A1-1)c, assumption on γ , and the subtyping premise.

(A1-3) ⊢ δ ′ : ∆′

by assumption and the released rule of store typing (where we write ∆′ = ∆ henceforth)
(A1-4) π ′ is wellformed and getloc(π ′) ⊆ dom(δ ′) \ δ ′−1(•)

the possible removal of a permission does not violate wellformedness; the permission is
taken away exactly when the closure is destroyed

(A1-5) reach0(γ ′2) ⊆ π , reachδ (γ
′
2) ⊆ ↓π .

as the reach set is a subset of the incoming environment’s reach
(A1-6) getloc(γ ′2

L), getloc(γ ′2
A), getloc(γ ′2

U), and getloc(γ ′2#) are all disjoint follows from dis(Γ′) and
since r2 = Γ(x2) which is an entry disjoint from the closure Γ(x1).

(A1-7) Incoming Resources:
(a) ∀ℓ ∈ getloc(reachδ ′(γ ′2)), δ

′(ℓ) , •.
(b) ∀ℓ ∈ Θ′ = getloc(reachδ ′(γ ′2

L
,γ ′2

A
,γ ′2

A

# )), Θ
′(ℓ) = 1.

The first item holds because of assumption (A1-7).
The second item holds because Θ′ ⊆ Θ from assumption (A1-7).

The inductive hypothesis yields that ∃ δ3, π3, r3, ∆3 such that
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(R1-1) R3 = Ok(δ3, π3, r3)
(R1-2) ∆′ ≤ ∆3, δ ′ ≤ δ3, ⊢ δ3 : ∆3

(R1-3) ∆3 ⊢ r3 : τ1
(R1-4) π3 is wellformed and getloc(π3) ⊆ dom(δ3) \ δ3

−1(•).
(R1-5) reach0(r3) ⊆ π3, reachδ3 (r3) ⊆ ↓π3 ∩(reachδ3 (γ ) \ reachδ3 (γ#) ∪ dom(δ3) \ dom(δ )).
(R1-6) Frame:

For all ℓ ∈ dom(δ ′) \ getloc(reachδ3 (γ
′
2)) it must be that

• δ3(ℓ) = δ
′(ℓ) and

• for any ρ with getloc(ρ) = {ℓ}, ρ ∈ π ′ ⇔ ρ ∈ π3.
(R1-7) Unrestricted values, resources, and borrows:

For all ρ ∈ reachδ3 (γ
′
2
U
,γ ′2

U

# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ′), δ3(ℓ) =
δ ′(ℓ) , • and ρ ∈ π3.

(R1-8) Affine borrows and resources:
For all ρ ∈ reachδ3 (γ

′
2
A
,γ ′2

A

# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ′). If ρ , ℓ,

then δ3(ℓ) , •. If ρ ∈ reachδ3 (γ
′
2
A

# ), then ρ ∈ π3.

(R1-9) Resources: Let Θ′ = reachδ ′(γ ′2
L). Let Θ3 = reachδ3 (γ

′
2
L).

For all ℓ ∈ Θ
′ it must be that Θ′(ℓ) = Θ3(ℓ) = 1, ℓ < π3, and if δ ′(ℓ) is a resource, then

δ3(ℓ) = •.
(R1-10) No thin air permission:

π3 ⊆ π
′ ∪ (dom(δ3) \ dom(δ ′)).

The desired results are immediate because dom(δ ) = dom(δ ′).
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Case e of
| Region (e, n, x, τ x , b) −→

let+ ρ = γ (x) in
let∗ ρ' = b.ρ in

let∗ π ' = reach ρ τx δ in

let∗ π '' = b.π ' in
let γ ' = γ (x 7→ρ') in
let π = (π ∪ π '') \ π ' in
let∗ (δ1, π 1, r1) = eval δ π γ ' i' e in
let π 1 = (π 1 \ π '') ∪ π ' in
Ok (δ1, π 1, r1)

We need to invert rule Region

Region

[x : τx ]
n
b ∈ Γ C ⊢e Γ 

x
n Γ
′

C | Γ′ ⊢s e : τ C ⊢e(τ ≤ Ln−1)

C | Γ ⊢s{|e |}
n
{x 7→b}

: τ

We need to establish the assumptions for the recursive call eval δ π ' γ ' i' e'where γ ′ = γ (x 7→ ρ ′).

(A1-1) C | Γ′ ⊢s e : τ
immediate from the inverted premise

(A1-2) ∆ ⊢ γ ′ : Γ′

the only change of the environments is at x ; adding the borrow modifier b succeeds due to
the second premise; the address ρ ′ stored into x is compatible with its type by store typing

(A1-3) ⊢ δ : ∆
Immediate by outer assumption

(A1-4) π is wellformed and getloc(π ) ⊆ dom(δ ) \ δ−1(•)
Immediate by outer assumption; adding the modifier does not change the underlying raw
location

(A1-5) reach0(γ ′) ⊆ π , reachδ (γ ′) ⊆ ↓π .
locations were swapped simultaneously

(A1-6) getloc(γ ′L), getloc(γ ′A), getloc(γ ′U), and getloc(γ ′#) are all disjoint
Immediate by assumption

(A1-7) Incoming Resources:
(a) ∀ℓ ∈ getloc(reachδ (γ

′)), δ (ℓ) , •.
(b) ∀ℓ ∈ Θ = getloc(reachδ (γ ′

L
,γ ′A,γ ′A# )), Θ(ℓ) = 1.

Immediate by assumption.

The induction hypothesis yields the following statements. ∃ δ1, π1, r1, ∆1 such that

(R1-1) R1 = Ok(δ1, π1, r1)
(R1-2) ∆ ≤ ∆1, δ ≤ δ1, ⊢ δ1 : ∆1

(R1-3) ∆1 ⊢ r1 : τ
(R1-4) π1 is wellformed and getloc(π1) ⊆ dom(δ1) \ δ1

−1(•).
(R1-5) reach0(r1) ⊆ π1, reachδ1 (r1) ⊆ ↓π1 ∩(reachδ1 (γ ) \ reachδ1 (γ#) ∪ dom(δ1) \ dom(δ )).
(R1-6) Frame:

For all ℓ ∈ dom(δ ) \ getloc(reachδ1 (γ
′)) it must be that

• δ1(ℓ) = δ (ℓ) and
• for any ρ with getloc(ρ) = {ℓ}, ρ ∈ π ⇔ ρ ∈ π1.
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(R1-7) Unrestricted values, resources, and borrows:
For all ρ ∈ reachδ1 (γ

′U,γ ′U# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ), δ1(ℓ) =
δ (ℓ) , • and ρ ∈ π1.

(R1-8) Affine borrows and resources:
For all ρ ∈ reachδ1 (γ

′A,γ ′A# )with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ). If ρ , ℓ, then
δ1(ℓ) , •. If ρ ∈ reachδ1 (γ

′A
# ), then ρ ∈ π1.

(R1-9) Resources: Let Θ = reachδ (γ
′L). Let Θ1 = reachδ1 (γ

′L).
For all ℓ ∈ Θ it must be that Θ(ℓ) = Θ1(ℓ) = 1, ℓ < π1, and if δ (ℓ) is a resource, then
δ1(ℓ) = •.

(R1-10) No thin air permission:
π1 ⊆ π ∪ (dom(δ1) \ dom(δ )).

It remains to derive the induction hypothesis in the last line. The only additional action is the
exchange of permissions which withdraws the borrow.

(R1) R1 = Ok(δ1, π1, r1)
Immediate

(R2) ∆ ≤ ∆1, δ ≤ δ1, ⊢ δ1 : ∆1

Immediate
(R3) ∆1 ⊢ r1 : τ

Immediate
(R4) π1 is wellformed and getloc(π1) ⊆ dom(δ1) \ δ1

−1(•).
The addresses ρ and ρ ′ (as well as the elements of π ′ and π ′′) have the same raw location, so
exchanging them does not affect wellformedness. The underlying set of locations does not
change.

(R5) reach0(r1) ⊆ π1, reachδ1 (r1) ⊆ ↓π1 ∩(reachδ1 (γ ) \ reachδ1 (γ#) ∪ dom(δ1) \ dom(δ )).
This case is critical for region encapsulation. Here we need to argue that ρ ′ (and hence π ′′) is
not reachable from r1 because its type τ is bounded by Ln−1 according to the fourth premise.
We conclude with Lemma G.5.

(R6) Frame:
For all ℓ ∈ dom(δ ) \ getloc(reachδ1 (γ

′)) it must be that
• δ1(ℓ) = δ (ℓ) and
• for any ρ with getloc(ρ) = {ℓ}, ρ ∈ π ⇔ ρ ∈ π1.
Immediate

(R7) Unrestricted values, resources, and borrows:
For all ρ ∈ reachδ1 (γ

′U,γ ′U# )with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ), δ1(ℓ) = δ (ℓ) , •
and ρ ∈ π1.
Immediate

(R8) Affine borrows and resources:
For all ρ ∈ reachδ1 (γ

′A,γ ′A# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ). If ρ , ℓ, then
δ1(ℓ) , •. If ρ ∈ reachδ1 (γ

′A
# ), then ρ ∈ π1.

Immediate
(R9) Resources: Let Θ = reachδ (γ ′

L). Let Θ1 = reachδ1 (γ
′L).

For all ℓ ∈ Θ it must be that Θ(ℓ) = Θ1(ℓ) = 1, ℓ < π1, and if δ (ℓ) is a resource, then δ1(ℓ) = •.
Immediate

(R10) No thin air permission:
π1 ⊆ π ∪ (dom(δ1) \ dom(δ )).
Immediate
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Case e of
| Create (x) −→
let∗ r = γ (x) in
let w = STRSRC (r) in
let (ℓ1, δ1) = salloc δ w in

let π 1 = π + ℓ1 in
Ok (δ1, π 1, ℓ1)

We need to invert the corresponding rule

Create

C | Γ ⊢s τ : k
C ⊢e(k ≤ U0) ∧ (Γ ≤ A∞)

C | Γ ⊢s create : τ −→R τ

It is sufficient to show that there is some ∆1 = ∆(ℓ1 : R τ ) such that δ1 , π1, and r1 = ℓ1 fulfill the
following requirements.

(R1) R1 = Ok(δ1, π1, r1)
(R2) ∆ ≤ ∆1, δ ≤ δ1, ⊢ δ1 : ∆1

For the last item, we need to show that ∆(ℓ1) : R τ , but this follows from the setting ofw to a
resource storable in the semantics.

(R3) ∆1 ⊢ r1 : R τ
Immediate from the discussion of the preceding case

(R4) π1 is wellformed and getloc(π1) ⊆ dom(δ1) \ δ1
−1(•).

Follows from the assumption on π and for ℓ1 from the allocation of the resource.
(R5) reach0(r1) ⊆ π1, reachδ1 (r1) ⊆ ↓π1 ∩(reachδ1 (γ ) \ reachδ1 (γ#) ∪ dom(δ1) \ dom(δ )).

Immediate from the assignment to π1.
(R6) Frame:

For all ℓ ∈ dom(δ ) \ getloc(reachδ1 (γ )) it must be that
• δ1(ℓ) = δ (ℓ) and
• for any ρ with getloc(ρ) = {ℓ}, ρ ∈ π ⇔ ρ ∈ π1.
Obvious as no existing location is changed.

(R7) Unrestricted values, resources, and borrows:
For all ρ ∈ reachδ1 (γ

U,γU# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ), δ1(ℓ) = δ (ℓ) , •
and ρ ∈ π1.
Obvious as no existing location has changed and no permission is withdrawn.

(R8) Affine borrows and resources:
For all ρ ∈ reachδ1 (γ

A,γA# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ). If ρ , ℓ, then
δ1(ℓ) , •. If ρ ∈ reachδ1 (γ

A

# ), then ρ ∈ π1.
Obvious as no existing location has changed and no permission is withdrawn.

(R9) Resources: Let Θ = reachδ (γ L). Let Θ1 = reachδ1 (γ
L).

For all ℓ ∈ Θ it must be that Θ(ℓ) = Θ1(ℓ) = 1, ℓ < π1, and if δ (ℓ) is a resource, then δ1(ℓ) = •.
By the constraint on Γ in the Create rule, γ L = ∅.

(R10) No thin air permission:
π1 ⊆ π ∪ (dom(δ1) \ dom(δ )).
Immediate
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Case e of
| VDestroy (x) −→
let∗ r = γ (x) in
let∗ ρ = getaddress r in
let∗ ℓ = getloc r in
let∗ w = δ (ℓ) in
let∗ r = getstrsrc w in

let∗? () = ρ ∈ π in

let∗ δ1 = δ (ℓ)← • in
let π 1 = π − ℓ in
Ok (δ1, π 1, ())

We need to invert rule Destroy.
Destroy

C | Γ ⊢s τ : k
C ⊢e(k ≤ U0) ∧ (Γ ≤ A∞)

C | Γ ⊢s destroy : R τ −→ Unit

It is sufficient to show that ∆1 = ∆, δ1, π1, and r1 = () fulfill the following requirements.

(R1) R1 = Ok(δ1, π1, r1)
(R2) ∆ ≤ ∆1, δ ≤ δ1, ⊢ δ1 : ∆1

Immediate: ℓ was updated to void, which has any type.
(R3) ∆1 ⊢ () : Unit
(R4) π1 is wellformed and getloc(π1) ⊆ dom(δ1) \ δ1

−1(•).
By assumption on π and because ℓ was removed.

(R5) reach0(r1) ⊆ π1, reachδ1 (r1) ⊆ ↓π1 ∩(reachδ1 (γ ) \ reachδ1 (γ#) ∪ dom(δ1) \ dom(δ )).
Immediate because the reach set is empty

(R6) Frame:
For all ℓ ∈ dom(δ ) \ getloc(reachδ1 (γ )) it must be that
• δ1(ℓ) = δ (ℓ) and
• for any ρ with getloc(ρ) = {ℓ}, ρ ∈ π ⇔ ρ ∈ π1.
Only δ (ℓ) was changed, which is not reachable from the frame.

(R7) Unrestricted values, resources, and borrows:
For all ρ ∈ reachδ1 (γ

U,γU# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ), δ1(ℓ) = δ (ℓ) , •
and ρ ∈ π1.
Immediate because we updated (destroyed) a resource (in γ L).

(R8) Affine borrows and resources:
For all ρ ∈ reachδ1 (γ

A,γA# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ). If ρ , ℓ, then
δ1(ℓ) , •. If ρ ∈ reachδ1 (γ

A

# ), then ρ ∈ π1.
Immediate because we updated (destroyed) a resource (in γ L).

(R9) Resources: Let Θ = reachδ (γ L). Let Θ1 = reachδ1 (γ
L).

For all ℓ ∈ Θ it must be that Θ(ℓ) = Θ1(ℓ) = 1, ℓ < π1, and if δ (ℓ) is a resource, then δ1(ℓ) = •.
By the constraint on Γ, ℓ was the only resource passed to this invocation of eval. The claimed
condition holds as ℓ was removed from π1 and the location’s contents cleared.

(R10) No thin air permission:
π1 ⊆ π ∪ (dom(δ1) \ dom(δ )).
Immediate
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Case e of
| Var (x) −→
let∗ r = γ (x) in
Ok (δ , π , r)

We need to invert rule Var.
Var

(x : τ ) ∈ Γ
C ⊢e(Γ\{x} ≤ A∞)

C | Γ ⊢s x : τ

We establish that the claims hold for δ ′ = δ , π ′ = π , r = γ (x), and ∆
′
= ∆.

(R1) R = Ok(δ , π , r )
(R2) ∆ ≤ ∆, δ ≤ δ , ⊢ δ : ∆

Immediate by reflexivity and assumption.
(R3) ∆ ⊢ r : τ

Immediate by assumption (A1-1)c.
(R4) π is wellformed and getloc(π ) ⊆ dom(δ ) \ δ−1(•).

Immediate by assumption (A1-4)
(R5) reach0(r ) ⊆ π , reachδ (r ) ⊆ ↓π ∩(reachδ (γ ) \ reachδ (γ#) ∪ dom(δ ) \ dom(δ )).

Immediate
(R6) Frame:

For all ℓ ∈ dom(δ ) \ getloc(reachδ (γ )) it must be that
• δ (ℓ) = δ (ℓ) and
• for any ρ with getloc(ρ) = {ℓ}, ρ ∈ π ⇔ ρ ∈ π .
Immediate as permissions and store stay the same.

(R7) Unrestricted values, resources, and borrows:
For all ρ ∈ reachδ (γU,γU# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ), δ (ℓ) = δ (ℓ) , •
and ρ ∈ π .
Immediate

(R8) Affine borrows and resources:
For all ρ ∈ reachδ (γA,γA# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ). If ρ , ℓ, then
δ (ℓ) , •. If ρ ∈ reachδ (γA# ), then ρ ∈ π .
Immediate

(R9) Resources: Let Θ = reachδ (γ L). Let Θ = reachδ (γ L).
For all ℓ ∈ Θ it must be that Θ(ℓ) = Θ(ℓ) = 1, ℓ < π , and if δ (ℓ) is a resource, then δ (ℓ) = •.
As π remains the same, a linear resource in x is returned untouched.

(R10) No thin air permission:
π ⊆ π ∪ (dom(δ ) \ dom(δ )).
Immediate
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Case e of
| Const (c) −→
Ok (δ , π , c)

We need to invert rule Const.
Const

C ⊢e(Γ ≤ A∞)

C | Γ ⊢s c : CType(c)

We need to establish the claims for δ ′ = δ , π ′ = π , r ′ = c , and ∆
′
= ∆:

(R1) R = Ok(δ , π , r )
(R2) ∆ ≤ ∆, δ ≤ δ , ⊢ δ : ∆

By assumption (A3).
(R3) ∆ ⊢ c : CType(c)

by result typing.
(R4) π is wellformed and getloc(π ) ⊆ dom(δ ) \ δ−1(•).

By assumption (A1-4).
(R5) reach0(r ) ⊆ π , reachδ (r ) ⊆ ↓π ∩(reachδ (γ ) \ reachδ (γ#) ∪ dom(δ ) \ dom(δ )).

As reachδ (c) = ∅.
(R6) Frame:

For all ℓ ∈ dom(δ ) \ getloc(reachδ (γ )) it must be that
• δ (ℓ) = δ (ℓ) and
• for any ρ with getloc(ρ) = {ℓ}, ρ ∈ π ⇔ ρ ∈ π .
Immediate

(R7) Unrestricted values, resources, and borrows:
For all ρ ∈ reachδ (γU,γU# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ), δ (ℓ) = δ (ℓ) , •
and ρ ∈ π .
Immediate

(R8) Affine borrows and resources:
For all ρ ∈ reachδ (γA,γA# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ). If ρ , ℓ, then
δ (ℓ) , •. If ρ ∈ reachδ (γA# ), then ρ ∈ π .

(R9) Resources: Let Θ = reachδ (γ L). Let Θ = reachδ (γ L).
For all ℓ ∈ Θ it must be that Θ(ℓ) = Θ(ℓ) = 1, ℓ < π , and if δ (ℓ) is a resource, then δ (ℓ) = •.
Immediate as γ L = ∅.

(R10) No thin air permission:
π ⊆ π ∪ (dom(δ ) \ dom(δ )).
Immediate
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Case e of
| VPair (k, x1, x2) −→
let∗ r1 = γ (x1) in
let∗ r2 = γ (x2) in
let w = STPAIR (k, r1, r2) in
let (ℓ', δ ') = salloc δ w in

let π ' = π + ℓ' in
Ok (δ ', π ', ℓ')

We need to invert rule Pair.
Pair

(x1 : τ1) ∈ Γ
(x2 : τ2) ∈ Γ

C ⊢e(Γ\{x1, x2} ≤ A∞)

C | Γ ⊢s(x1, x2)
k : τ1 × τ2

Show that δ ′, π ′, r ′ = ℓ′, ∆′ = ∆(ℓ′ : τ1 ×k τ2) such that

(R1) R′ = Ok(δ ′, π ′, r ′)
(R2) ∆ ≤ ∆

′, δ ≤ δ ′, ⊢ δ ′ : ∆′

(R3) ∆′ ⊢ ℓ′ : τ1 × τ2
(R4) π ′ is wellformed and getloc(π ′) ⊆ dom(δ ′) \ δ ′−1(•).

By assumption (A1-4) and because ℓ′ is properly initialized.
(R5) reach0(r ′) ⊆ π ′, reachδ ′(r ′) ⊆ ↓π ′ ∩(reachδ ′(γ ) \ reachδ ′(γ#) ∪ dom(δ

′) \ dom(δ )).
By assumption (A1-5), reachδ ′(ℓ′) = reachδ (r1, r2) ∪ {ℓ′} ⊆ reachδ (γ ) ∪ {ℓ′} and {ℓ′} =
dom(δ ′) \ dom(δ ).

(R6) Frame:
For all ℓ ∈ dom(δ ) \ getloc(reachδ ′(γ )) it must be that
• δ ′(ℓ) = δ (ℓ) and
• for any ρ with getloc(ρ) = {ℓ}, ρ ∈ π ⇔ ρ ∈ π ′.
Immediate

(R7) Unrestricted values, resources, and borrows:
For all ρ ∈ reachδ ′(γU,γU# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ), δ ′(ℓ) = δ (ℓ) , •
and ρ ∈ π ′.
Immediate

(R8) Affine borrows and resources:
For all ρ ∈ reachδ ′(γ

A,γA# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ). If ρ , ℓ, then
δ ′(ℓ) , •. If ρ ∈ reachδ ′(γA# ), then ρ ∈ π

′.
Immediate

(R9) Resources: Let Θ = reachδ (γ L). Let Θ′ = reachδ ′(γ L).
For all ℓ ∈ Θ it must be that Θ(ℓ) = Θ

′(ℓ) = 1, ℓ < π ′, and if δ (ℓ) is a resource, then δ ′(ℓ) = •.
Every such ℓ must be reachable either from r1 or r2. So they become reachable from ℓ′, as
required.

(R10) No thin air permission:
π ′ ⊆ π ∪ (dom(δ ′) \ dom(δ )).
Immediate
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Case e of
| Lam (k, x, e) −→
let w = STCLOS (γ , k, x, e) in
let (ℓ', δ ') = salloc δ w in

let π ' = π + ℓ' in
Ok (δ ', π ', ℓ')

We need to invert rule Abs

Abs

C | Γ; (x : τ2) ⊢s e : τ1
C ⊢e(Γ ≤ k)

C | Γ ⊢s λx .e : τ2
k
−→τ1

Show that δ ′, π ′, r ′ = ℓ′, and ∆
′
= ∆(ℓ′ : τ2

k
−→τ1) fulfill

(R1) R′ = Ok(δ ′, π ′, r ′)
(R2) ∆ ≤ ∆

′, δ ≤ δ ′, ⊢ δ ′ : ∆′

Immediate by definition and store typing

(R3) ∆′ ⊢ r ′ : τ2
k
−→τ1

Immediate by store typing
(R4) π ′ is wellformed and getloc(π ′) ⊆ dom(δ ′) \ δ ′−1(•).

Wellformedness holds by assumption on π and because ℓ′ is a new location. The domain
constraint is assumed for π and ℓ′ is initialized to a closure.

(R5) reach0(r ′) ⊆ π ′, reachδ ′(r ′) ⊆ ↓π ′ ∩(reachδ ′(γ ) \ reachδ ′(γ#) ∪ dom(δ
′) \ dom(δ )).

reachδ ′(r
′) = {ℓ′} ∪ reachδ ′(γ )

= dom(δ ′) \ dom(δ ) ∪ reachδ ′(γ )

Moreover, the constraint (Γ ≤ k) implies that γ# = ∅.
(R6) Frame:

For all ℓ ∈ dom(δ ) \ getloc(reachδ ′(γ )) it must be that
• δ ′(ℓ) = δ (ℓ) and
• for any ρ with getloc(ρ) = {ℓ}, ρ ∈ π ⇔ ρ ∈ π ′.
Immediate

(R7) Unrestricted values, resources, and borrows:
For all ρ ∈ reachδ ′(γU,γU# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ), δ ′(ℓ) = δ (ℓ) , •
and ρ ∈ π ′.
Immediate

(R8) Affine borrows and resources:
For all ρ ∈ reachδ ′(γA,γA# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ). If ρ , ℓ, then
δ ′(ℓ) , •. If ρ ∈ reachδ ′(γ

A

# ), then ρ ∈ π
′.

Immediate
(R9) Resources: Let Θ = reachδ (γ L). Let Θ′ = reachδ ′(γ L).

For all ℓ ∈ Θ it must be that Θ(ℓ) = Θ
′(ℓ) = 1, ℓ < π ′, and if δ (ℓ) is a resource, then δ ′(ℓ) = •.

The second case is immediately applicable.
(R10) No thin air permission:

π ′ ⊆ π ∪ (dom(δ ′) \ dom(δ )).
Immediate
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Case e of
| Borrow (b, x) −→

let+ ρ = γ (x) in
let∗? () = ρ ? b && ρ ∈ π in

Ok (δ , π , ρ)

We have to invert rule Borrow

Borrow

(x ÷ σ )kb ∈ Γ Cx , τx = Inst(Γ,σ )
C ⊢eCx ∧ (Γ\{x} ≤ A∞)

C | Γ ⊢s&
bx : &b(k, τx )

Show that δ ′ = δ , π ′ = π , r ′ = ρ, ∆′ = ∆ such that

(R1) R′ = Ok(δ ′, π ′, r ′)
(R2) ∆ ≤ ∆

′, δ ≤ δ ′, ⊢ δ ′ : ∆′

Immediate, no changes.
(R3) ∆′ ⊢ r ′ : &b(k, τ )

Immediate by result typing and because the interpreter checks that the permissions of the
borrow are very restricted.

(R4) π ′ is wellformed and getloc(π ′) ⊆ dom(δ ′) \ δ ′−1(•).
Immediate (no change).

(R5) reach0(r ′) ⊆ π ′, reachδ ′(r ′) ⊆ ↓π ′ ∩(reachδ ′(γ ) \ reachδ ′(γ#) ∪ dom(δ
′) \ dom(δ )).

By typing, ρ is not in γ#. Hence, the condition is immediate.
(R6) Frame:

For all ℓ ∈ dom(δ ) \ getloc(reachδ ′(γ )) it must be that
• δ ′(ℓ) = δ (ℓ) and
• for any ρ with getloc(ρ) = {ℓ}, ρ ∈ π ⇔ ρ ∈ π ′.
Immediate as no change.

(R7) Unrestricted values, resources, and borrows:
For all ρ ∈ reachδ ′(γU,γU# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ), δ ′(ℓ) = δ (ℓ) , •
and ρ ∈ π ′.
Immediate as no change

(R8) Affine borrows and resources:
For all ρ ∈ reachδ ′(γA,γA# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ). If ρ , ℓ, then
δ ′(ℓ) , •. If ρ ∈ reachδ ′(γA# ), then ρ ∈ π

′.
Immediate

(R9) Resources: Let Θ = reachδ (γ L). Let Θ′ = reachδ ′(γ L).
For all ℓ ∈ Θ it must be that Θ(ℓ) = Θ

′(ℓ) = 1, ℓ < π ′, and if δ (ℓ) is a resource, then δ ′(ℓ) = •.
Immediate because Θ, Θ′ must be empty

(R10) No thin air permission:
π ′ ⊆ π ∪ (dom(δ ′) \ dom(δ )).
Immediate.
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Case e of
| VObserve (x) −→
let∗ r = γ (x) in
let∗ ρ = getaddress r in
let∗? () = ρ ∈ π in

let∗ (b, _, ℓ) = getborrowed_loc r in
let∗? () = (b = U) in
let∗ w = δ (ℓ) in
let∗ r' = getstrsrc w in

Ok (δ , π , r')

We have to invert the rule Observe

Observe

C | Γ ⊢s τ : k
C ⊢e(k ≤ U0) ∧ (Γ ≤ A∞)

C | Γ ⊢s observe : &
U(k ′,R τ ) −→τ

Show that δ ′ = δ , π ′ = π , r ′, and ∆
′
= ∆ fulfill

(R1) R′ = Ok(δ ′, π ′, r ′)
(R2) ∆ ≤ ∆

′, δ ≤ δ ′, ⊢ δ ′ : ∆′

By reflexivity and assumption.
(R3) ∆′ ⊢ r ′ : τ

Immediate by store typing
(R4) π ′ is wellformed and getloc(π ′) ⊆ dom(δ ′) \ δ ′−1(•).

Immediate: no changes.
(R5) reach0(r ′) ⊆ π ′, reachδ ′(r

′) ⊆ ↓π ′ ∩(reachδ ′(γ ) \ reachδ ′(γ#) ∪ dom(δ
′) \ dom(δ )).

Immediate
(R6) Frame:

For all ℓ ∈ dom(δ ) \ getloc(reachδ ′(γ )) it must be that
• δ ′(ℓ) = δ (ℓ) and
• for any ρ with getloc(ρ) = {ℓ}, ρ ∈ π ⇔ ρ ∈ π ′.
Immediate: no changes.

(R7) Unrestricted values, resources, and borrows:
For all ρ ∈ reachδ ′(γU,γU# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ), δ ′(ℓ) = δ (ℓ) , •
and ρ ∈ π ′.
Immediate: no changes to immutables.

(R8) Affine borrows and resources:
For all ρ ∈ reachδ ′(γA,γA# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ). If ρ , ℓ, then
δ ′(ℓ) , •. If ρ ∈ reachδ ′(γA# ), then ρ ∈ π

′.
Immediate: one particular ρ is overwritten, but not freed.

(R9) Resources: Let Θ = reachδ (γ L). Let Θ′ = reachδ ′(γ L).
For all ℓ ∈ Θ it must be that Θ(ℓ) = Θ

′(ℓ) = 1, ℓ < π ′, and if δ (ℓ) is a resource, then δ ′(ℓ) = •.
Immediate because Θ = ∅

(R10) No thin air permission:
π ′ ⊆ π ∪ (dom(δ ′) \ dom(δ )).
Immediate
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Case e of
| VUpdate (x1, x2) −→
let∗ r1 = γ (x1) in
let∗ ρ = getaddress r1 in
let∗ (b, _, ℓ) = getborrowed_loc r1 in
let∗? () = (b = A) in
let∗ r2 = γ (x2) in
let∗ w = δ (ℓ) in
let∗ r = getstrsrc w in

let∗? () = ρ ∈ π in

let∗ δ ' = δ (ℓ)← STRSRC (r2) in
let π ' = π − ρ in

Ok (δ ', π ', ())

We need to invert rule Update

Update

C | Γ ⊢s τ : k C ⊢e(k ≤ U0) ∧ (Γ ≤ A∞)

C | Γ ⊢s update : &
A(k ′,R τ ) −→τ

A

−→ Unit

We need to show that δ ′, π ′, r ′ = (), ∆′ = ∆ fulfill

(R1) R′ = Ok(δ ′, π ′, r ′)
(R2) ∆ ≤ ∆

′, δ ≤ δ ′, ⊢ δ ′ : ∆′

Immediate by store typing for ℓ
(R3) ∆′ ⊢ r ′ : Unit

Immediate
(R4) π ′ is wellformed and getloc(π ′) ⊆ dom(δ ′) \ δ ′−1(•).

Immediate, as we remove a permission from π

(R5) reach0(r ′) ⊆ π ′, reachδ ′(r ′) ⊆ ↓π ′ ∩(reachδ ′(γ ) \ reachδ ′(γ#) ∪ dom(δ
′) \ dom(δ )).

Immediate, as we only update a reachable ℓ
(R6) Frame:

For all ℓ ∈ dom(δ ) \ getloc(reachδ ′(γ )) it must be that
• δ ′(ℓ) = δ (ℓ) and
• for any ρ with getloc(ρ) = {ℓ}, ρ ∈ π ⇔ ρ ∈ π ′.
Immediate

(R7) Unrestricted values, resources, and borrows:
For all ρ ∈ reachδ ′(γU,γU# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ), δ ′(ℓ) = δ (ℓ) , •
and ρ ∈ π ′.
Immediate

(R8) Affine borrows and resources:
For all ρ ∈ reachδ ′(γA,γA# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ). If ρ , ℓ, then
δ ′(ℓ) , •. If ρ ∈ reachδ ′(γ

A

# ), then ρ ∈ π
′.

Immediate; for ℓ, we observe that it is overwritten, but not freed.
(R9) Resources: Let Θ = reachδ (γ L). Let Θ′ = reachδ ′(γ L).

For all ℓ ∈ Θ it must be that Θ(ℓ) = Θ
′(ℓ) = 1, ℓ < π ′, and if δ (ℓ) is a resource, then δ ′(ℓ) = •.

Immediate because γ L = ∅ and hence Θ = ∅.
(R10) No thin air permission:

π ′ ⊆ π ∪ (dom(δ ′) \ dom(δ )).
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Case e of
| VMatch (x, x', z, e2, sp) −→
let (γ 1, γ 2) = vsplit γ sp in

let∗ r = γ 1(z) in
let∗ ℓ = getloc r in
let∗ w = δ (ℓ) in
let∗ (k, r1, r1') = getstpair w in

let π ' = if k ≤ U then π else π − ℓ in

let∗ δ ' = δ (ℓ)← (if k ≤ U then w else •) in
let γ 2' = γ 2(x 7→ r1)(x' 7→ r1') in
let∗ (δ2, π 2, r2) = eval δ ' π ' γ 2' i' e2 in
Ok (δ2, π 2, r2)

We need to invert rule MatchPair

MatchPair

sp : C ⊢e Γ = Γ1 ⋉ Γ2 Γ1 = (z : ϕ(τ1 × τ
′
1)) C | Γ2; (x : ϕ(τ1)); (x

′ : ϕ(τ ′1)) ⊢s e2 : τ2

C | Γ ⊢s matchϕ x , x
′
= z in e2 : τ2

The case VMatch corresponds to the match specification ϕ = id.
Establish the assumptions for the recursive call with γ ′2 = γ2(x 7→ r1)(x

′ 7→ r ′1) and ∆
′
= ∆:

(A1-1) C | Γ2(x : τ1)(x ′ : τ ′1) ⊢s e2 : τ2 by inversion
(A1-2) ∆ ⊢ γ2 : Γ2 by assumption; moreover, ∆ ⊢ r1 : τ1 and ∆ ⊢ r ′1 : τ ′1 by inversion of the store

typing for ℓ. As ∆′ = ∆, we have ∆′ ⊢ γ ′2 : Γ2(x : τ1)(x ′ : τ ′1).
(A1-3) ⊢ δ ′ : ∆′ : the only change from assumption is in ℓ which potentially maps to •.
(A1-4) π ′ is wellformed and getloc(π ′) ⊆ dom(δ ′) \ δ ′−1(•) : permission to ℓ is removed iff ℓ is

mapped to •.
(A1-5) reach0(γ ′2) ⊆ π

′, reachδ ′(γ ′2) ⊆ ↓π
′.

by assumption
(A1-6) getloc(γ ′2

L), getloc(γ ′2
A), getloc(γ ′2

U), and getloc(γ ′2#) are all disjoint: by assumption and split-
ting

(A1-7) Incoming Resources:
(a) ∀ℓ ∈ getloc(reachδ ′(γ

′
2)), δ

′(ℓ) , •.
(b) ∀ℓ ∈ Θ′ = getloc(reachδ ′(γ ′2

L
,γ ′2

A
,γ ′2

A

# )), Θ
′(ℓ) = 1.

Hence the call to eval yields ∃ δ2, π2, r2, ∆2 such that

(R1-1) R2 = Ok(δ2, π2, r2)
(R1-2) ∆′ ≤ ∆2, δ ′ ≤ δ2, ⊢ δ2 : ∆2

(R1-3) ∆2 ⊢ r2 : τ2
(R1-4) π2 is wellformed and getloc(π2) ⊆ dom(δ2) \ δ2

−1(•).
(R1-5) reach0(r2) ⊆ π2, reachδ2 (r2) ⊆ ↓π2 ∩(reachδ2 (γ ) \ reachδ2 (γ#) ∪ dom(δ2) \ dom(δ )).
(R1-6) Frame:

For all ℓ ∈ dom(δ ) \ getloc(reachδ2 (γ )) it must be that
• δ2(ℓ) = δ (ℓ) and
• for any ρ with getloc(ρ) = {ℓ}, ρ ∈ π ⇔ ρ ∈ π2.

(R1-7) Unrestricted values, resources, and borrows:
For all ρ ∈ reachδ ′(γU,γU# )with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ), δ ′(ℓ) = δ (ℓ) , •
and ρ ∈ π ′.

(R1-8) Affine borrows and resources:
For all ρ ∈ reachδ ′(γA,γA# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ). If ρ , ℓ, then
δ ′(ℓ) , •. If ρ ∈ reachδ ′(γA# ), then ρ ∈ π

′.
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(R1-9) Resources: Let Θ = reachδ (γ L). Let Θ′ = reachδ ′(γ L).
For all ℓ ∈ Θ it must be that Θ(ℓ) = Θ

′(ℓ) = 1, ℓ < π ′, and if δ (ℓ) is a resource, then
δ ′(ℓ) = •.

(R1-10) No thin air permission:
π ′ ⊆ π ∪ (dom(δ ′) \ dom(δ )).

As R2 is also returned from the match, these results carry over.
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Case e of
| VMatchborrow (x, x', z, e2, sp) −→
let (γ 1, γ 2) = vsplit γ sp in

let∗ r1 = γ 1(z) in
let∗ (b, _, ℓ) = getborrowed_loc r1 in
let∗ w = δ (ℓ) in
let∗ (k', r1', r2 ') = getstpair w in

let∗ ρ = getaddress r1 in
let π '' = (if k' ≤ U then π else π − ρ) in
let δ '' = δ in

let∗ ρ1 = getaddress r1 ' in
let∗ ρ2 = getaddress r2 ' in
let∗ ρ1' = b.ρ1 in
let∗ ρ2' = b.ρ2 in
let r1 '' = ρ1' in
let r2 '' = ρ2' in
let γ 2'' = γ 2(x 7→ r1'')(x' 7→ r2 '') in
let∗ (δ2, π 2, r2) = eval δ '' π '' γ 2 '' i' e2 in
Ok (δ2, π 2, r2)

We need to invert rule MatchPair

MatchPair

sp : C ⊢e Γ = Γ1 ⋉ Γ2 Γ1 = (z : ϕ(τ1 × τ
′
1)) C | Γ2; (x : ϕ(τ1)); (x

′ : ϕ(τ ′1)) ⊢s e2 : τ2

C | Γ ⊢s matchϕ x , x
′
= z in e2 : τ2

The case VMatchborrow corresponds to the match specification ϕ = &b. In contrast to the non-
borrowing match, the borrowed pair is never deallocated.
Establish the assumptions for the recursive call with ∆

′′
= ∆:

(A1-1) C | Γ2(x : &bτ1)(x
′ : &bτ ′1) ⊢s e2 : τ2 by inversion

(A1-2) ∆ ⊢ γ2 : Γ2 by assumption; moreover, ∆ ⊢ r ′′1 : &bτ1 and ∆ ⊢ r ′′2 : &bτ ′1 by inversion of the
store typing for ρ. As ∆′′ = ∆, we have ∆′′ ⊢ γ ′′2 : Γ2(x : &bτ1)(x

′ : &bτ ′1).
(A1-3) ⊢ δ ′ : ∆′′ : the only change from assumption is in ℓ which potentially maps to •.
(A1-4) π ′′ is wellformed and getloc(π ′′) ⊆ dom(δ ′′) \ δ ′′−1(•) : permission to ℓ is removed iff ℓ is

mapped to •.
(A1-5) reach0(γ ′′2 ) ⊆ π

′′, reachδ ′′(γ ′′2 ) ⊆ ↓π
′′.

by assumption
(A1-6) getloc(γ ′′2

L), getloc(γ ′′2
A), getloc(γ ′′2

U), and getloc(γ ′′2 #) are all disjoint: by assumption and
splitting

(A1-7) Incoming Resources:
(a) ∀ℓ ∈ getloc(reachδ ′′(γ

′
2)), δ

′′(ℓ) , •.
(b) ∀ℓ ∈ Θ′′ = getloc(reachδ ′′(γ ′2

L
,γ ′2

A
,γ ′2

A

# )), Θ
′′(ℓ) = 1.

Hence the call to eval yields δ2, π2, r2, ∆2 such that

(R1-1) R2 = Ok(δ2, π2, r2)
(R1-2) ∆′′ ≤ ∆2, δ ′′ ≤ δ2, ⊢ δ2 : ∆2

(R1-3) ∆2 ⊢ r2 : τ2
(R1-4) π2 is wellformed and getloc(π2) ⊆ dom(δ2) \ δ2

−1(•).
(R1-5) reach0(r2) ⊆ π2, reachδ2 (r2) ⊆ ↓π2 ∩(reachδ2 (γ

′′
2 ) \ reachδ2 (γ

′′
2 #) ∪ dom(δ2) \ dom(δ

′′
2 )).

(R1-6) Frame:
For all ℓ ∈ dom(δ ′′) \ getloc(reachδ2 (γ

′′
2 )) it must be that

• δ2(ℓ) = δ
′′(ℓ) and
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• for any ρ with getloc(ρ) = {ℓ}, ρ ∈ π ′′ ⇔ ρ ∈ π2.
(R1-7) Unrestricted values, resources, and borrows:

For all ρ ∈ reachδ2 (γ
′′
2
U
,γ ′′2

U

# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ′′), δ2(ℓ) =
δ ′′(ℓ) , • and ρ ∈ π2.

(R1-8) Affine borrows and resources:
For all ρ ∈ reachδ2 (γ

′′
2
A
,γ ′′2

A

# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ′′). If ρ , ℓ,

then δ2(ℓ) , •. If ρ ∈ reachδ2 (γ
′′
2
A

# ), then ρ ∈ π2.

(R1-9) Resources: Let Θ′′ = reachδ ′′(γ ′′2
L). Let Θ2 = reachδ2 (γ

′′
2
L).

For all ℓ ∈ Θ
′′ it must be that Θ′′(ℓ) = Θ2(ℓ) = 1, ℓ < π2, and if δ ′′(ℓ) is a resource, then

δ2(ℓ) = •.
(R1-10) No thin air permission:

π2 ⊆ π
′′ ∪ (dom(δ2) \ dom(δ ′′)).

It remains to relate to result with the original call to eval.

(R1) R2 = Ok(δ2, π2, r2)
(R2) ∆ ≤ ∆2, δ ≤ δ2, ⊢ δ2 : ∆2 because ∆′′ = ∆ and (R1-2).
(R3) ∆2 ⊢ r2 : τ2 by (R1-3)
(R4) π2 is wellformed and getloc(π2) ⊆ dom(δ2) \ δ2

−1(•). Immediate from (R1-4).
(R5) reach0(r2) ⊆ π2, reachδ2 (r2) ⊆ ↓π2 ∩(reachδ2 (γ ) \ reachδ2 (γ#) ∪ dom(δ2) \ dom(δ )). By (R1-5)

and because δ = δ ′′.
(R6) Frame:

For all ℓ ∈ dom(δ ) \ getloc(reachδ2 (γ )) it must be that
• δ2(ℓ) = δ (ℓ) and
• for any ρ with getloc(ρ) = {ℓ}, ρ ∈ π ⇔ ρ ∈ π2.
Immediate from (R1-6) because δ = δ ′′

(R7) Unrestricted values, resources, and borrows:
For all ρ ∈ reachδ2 (γ

U,γU# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ), δ2(ℓ) = δ (ℓ) , •
and ρ ∈ π2.

(R8) Affine borrows and resources:
For all ρ ∈ reachδ2 (γ

A,γA# ) with getloc(ρ) = {ℓ}, it must be that ℓ ∈ dom(δ ). If ρ , ℓ, then
δ2(ℓ) , •. If ρ ∈ reachδ2 (γ

A

# ), then ρ ∈ π2.
(R9) Resources: Let Θ = reachδ (γ L). Let Θ2 = reachδ2 (γ

L).
For all ℓ ∈ Θ it must be that Θ(ℓ) = Θ2(ℓ) = 1, ℓ < π2, and if δ (ℓ) is a resource, then δ2(ℓ) = •.
Immediate by (R1-9) because the borrowing match does not deallocate.

(R10) No thin air permission:
π2 ⊆ π ∪ (dom(δ2) \ dom(δ )).

�
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Non-anonymous material for the article

“Kindly Bent to Free Us”

An online playground for the type-checker is available at:

https://drup.github.io/pl-experiments/affe/

The implementation is available at

https://github.com/Drup/pl-experiments

1

http://arxiv.org/abs/1908.09681v4
https://drup.github.io/pl-experiments/affe/
https://github.com/Drup/pl-experiments
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