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Abstract—Channel extrapolation is a promising technique to es-
timate the Channel State Information (CSI) in multi-input-multi-
output (MIMO) systems operating in frequency division duplex
(FDD) without relying on costly terminal feedback. In this paper
we analyze the limits that can achieve the extrapolation of the fre-
quency response of a propagation channel from its cluster-based
representation. This method consists in measuring all the clusters
characteristics (angle of departure, gain, delay) on the uplink and
then extrapolating the downlink channel from those measure-
ments. We propose a framework in which the limits of a cluster-
based extrapolation process are studied taking into account delay
and angular spread derived from the Saleh-Valenzuela model. We
evaluate the performance of the optimal linear estimator hereby
quantifying the extrapolation residual error bound in terms of
Mean-Square Error and Reduction of the Beamforming Gain.

Index Terms—MIMO, FDD, CSIT, Ray-based Model, Channel
Reciprocity

I. INTRODUCTION

Downlink Channel State Information (CSI) estimation is a
key requirement of massive MIMO systems. To address this
challenge most theoretical papers propose to use Time Division
Duplex (TDD) where uplink and downlink transmissions happen
on the same frequency band [1]. The downlink channel can then
be directly extracted from uplink measurements. This property
is called channel reciprocity.

However most currently deployed transmission systems
operate in Frequency Division Duplex (FDD) where channel
reciprocity doesn’t hold. The user typically brings the CSI
back to the base station with a feedback loop through the
uplink. While this solution might be sufficient for small-scale
MIMO, the overhead gets overwhelming when scaling up the
dimensions of the antenna arrays.

Another strategy can be envisioned exploiting some key
frequency independent features of the propagation channel. First
estimated on the uplink channel, those reciprocal characteristics
can be used as a prior information to reduce the overhead. For
instance the main directions of departure exhibit this reciprocity
property. Those have been exploited in [2]–[5] to obtain an
approximate CSI used either to refine the feedback scheme or
to perform simple angular precoding.

Recently, papers [6], [7] proposed to fully extrapolate the
downlink channel from the uplink measurements. The principle
consists in retrieving all the reciprocal parameters of a ray-based
model (complex path gains, delays, directions of departure) using
high resolution estimation techniques. The results were promising
in the line of sight scenario that features a strong specular
ray well-defined in the space-frequency domain. However it
performed badly in non line of sight as the algorithm struggles to
separate intra-cluster rays out of the richer multipath environment.

Indeed the multipath components that make up the propagation
channel feature closely spaced rays in the space-frequency
domain. Due to the finite resolution of practical antenna arrays,
those intra-cluster rays remain unresolvable. This issue could be
mitigated by first separating the clusters constituting the channel
(for instance using high resolution techniques [6], [7]) then using
frequency domain extrapolation of the frequency-dependent
cluster gains.

Contributions. In this paper we investigate the theoretical
limits of the extrapolation of the multipath components of a
given channel in order to estimate the downlink channel from
its uplink counterpart, assuming an FDD operating mode. The
extrapolation error is evaluated in term of Mean Square Error
and Reduction of Beamforming Gain with analytical formulas
verified by numerical simulations.

We assume that the clusters constituting the multipath channel
have been perfectly separated beforehand and that the long-term
statistics of those clusters are perfectly known (namely the
cluster delay, power, shape parameters, angular spread, directions
of departure and arrival). As the clusters are characterized by a
much wider coherence bandwidth than the raw channel a linear
extrapolation is expected to hold on a wider frequency domain.

We perform our analysis within the framework of the well-
known Saleh-Valenzuela statistical channel model described
in Section II. This model has been calibrated and verified in
multiple scenarios for centimeter as well as millimeter waves.
The clusters constituting the channel are then decomposed on a
spatial basis in Section III, on which the extrapolation process
presented in Section IV relies on. Analytical extrapolation errors
are derived and verified in Section V. The tensor notations
introduced in this paper provide a straightforward generalization
from the canonical ULA-MISO channel used in this paper up to
UPAs on both sides, as presented in Section VI. Capacity loss
due to the extrapolation technique is quantified in Section VII
by a Reduction of Beamforming Gain approximate closed form
formula.

Notations. Upper case and lower case bold symbols are
used for complex matrices and vectors of arbitrary size. Curved
bold symbols are used for tensors. 〈.,.〉 denote the hermitian
inner product between two vectors of CN . V ⊗W denote
the tensor product between two tensor spaces. ~u stands for a
three-dimensional (3D) vector. ~a ·~u denote the inner product
between two 3D vectors. z∗ denotes the conjugate of z. [H]p,q
is the element of matrix H at row p and column q. c[k] denote
the kth element of vector c. ‖H‖ stands for the Frobenius norm.
HH and HT denotes the conjugate transpose and the transpose
matrices. E{.} and Var{.} denote the expectation and variance.
Throughout this paper, the indexes p, q, k, m, l denote iterators



on rays, clusters, OFDM sub-carriers, transmit antennas and
angular domain basis projection coefficients, respectively.

II. MIMO CHANNEL MODEL

We introduce the physically-motivated ray-based model
widely used in the literature [8], [9]. In agreement with
measurements, the MIMO channel is decomposed into multipath
components referred to as clusters.

A. Ray-based channel model

We consider a generic MISO-OFDM channel with Nt
transmit antennas, Nf subcarriers f1,···,fNf . Considering the
plane wave assumption, we introduce the so-called steering
vector of the antenna array et(~u) defined by

et(~u)=
1√
Nt

[
e−2jπ

~atx,1·~u
λ ,···,e−2jπ

~atx,Nt
·~u

λ

]T
(1)

where ~u denotes a unit norm 3D vector indicating the direction
of the ray and ~atx,m are 3D vectors denoting the positions
of antennas in the array. We also define the frequency domain
characteristic vector for delay τ as

ef (τ)=
1√
Nf

[
e−2jπf1τ ,···,e−2jπfNf τ

]T
. (2)

On this basis, the wideband ray-based MISO channel can be
rewritten using a compact tensor formalism H∈CNf ⊗CNt
[10] as

H=
√
NtNf

P∑
p=1

βpef (τp)⊗et
∗(~utx,p). (3)

In this model, P denote the number of rays, τp the arrival
time of ray p. ~utx,p are 3D unit norm vectors denoting the
direction of departure of ray p, also abbreviated DoD. The tensor
notation provides a straightforward extension from this simple
MISO case to any MIMO channels, as further presented in
Section VI. It also provides a simple expression for the classical
additive white Gaussian noise model in Einstein notation

yk=Hm
k Xm,k+wk (4)

where the received symbols y are given by the transmitted sym-
bols tensor X multiplied with the tensor channel H plus noise w.

B. Clustered channel model

In practice measurement campaigns [9], [11] showed that rays
are grouped into several multipath components Cq, q ∈ [1,Q]
with similar delay, directions of departure and arrival. The
clustered channel can be rewritten as

H=
√
NtNf

Q∑
q=1

Hq,

Hq=
∑
p∈Cq

βp,qef (τq+τp,q)⊗et
∗(~utx,p,q)

where τp,q and βp,q are the arrival time and gain of ray p in
cluster q, respectively. Q denote the number of clusters, τq the
arrival time of cluster q relatively to the first cluster. ~utx,p,q
are 3D unit norm vectors denoting the direction of departure
of ray p in cluster q, also abbreviated DoD.

C. Uniform Linear Array

Antennas are equally spaced along a straight line in a uniform
linear array (ULA). We can write ~atx,m =m~atx +~a0 where
‖~atx‖ is the inter-antenna spacing and ~a0 defines an arbitrary
chosen origin point. The corresponding steering vector is written

et(~u)=et(θtx)

=
1√
Nt

[
e−2jπ(m−Nt−1

2 ) ‖~atx‖λ cos(θtx), m∈ [0,Nt−1]
]T

where θtx denotes the angle between vectors ~atx and ~u. In the
literature an equivalent steering vector expression can be found
that assumes ~atx,1 =0 i.e. the first antenna is set as the origin
of all the ~atx,m defining the array. In this paper we chose to
set the centroid of the array as the origin. This notation have
the advantageous property to always yield a real inner product
between two steering vectors.

In the sequel we first consider a ULA transmitter. The range
of our study is then extended to multiple receive antennas and
UPAs in Section VI.

D. Saleh-Valenzuela model

The well-known Saleh-Valenzuela [11] model is built upon
the ray-based model introduced in II-A but specifying stochastic
laws for its parameters. More precisely, the times of arrivals of
clusters τq and intra-clusters τp,q are generated by two Poisson
processes of parameters Λ and λ, respectively. The ray gains βp,q
follow a centered complex Gaussian distribution with variances

E
{
|βp,q|2

}
=E
{
|β1,1|2

}
e−τq/Γe−τp,q/γ

where Γ and γ are the cluster decay and intra-cluster ray decay
parameters respectively. E

{
|β1,1|2

}
is the average power of

the first ray of the channel.
The directions of departure and arrival of the rays have been

added latter on to model multi-antenna channels. Each cluster
has an average azimuth of departure θq . The intra-cluster rays
feature a slight azimuth offset ∆θp,q that follows a Laplace
distribution of standard deviation (also called angular spread)
σ∆θ. Common values of σ∆θ range from 5◦ outdoors to 26◦

in rich scattering indoor environments [12], [13].

E. Hypotheses

In the sequel we consider that the multipath components
constituting the propagation channel have been perfectly
separated. We also consider that we have a perfect knowledge
of the long term statistics of the clusters, namely the cluster
delay spread τq , the azimuth of departure θq , the angular spread
σ∆θ, the decay rate γ as well as the delay rate λ. Intra-cluster
delays are however too close by to be resolved, motivating a
frequency-domain cluster extrapolation procedure.

III. CLUSTER PROJECTION

As intra-cluster rays are not resolvable, we use a Basis
Expansion Model (BEM) carefully chosen to provide a sparse
representation of the channel over the angular dimension. We
then characterize the first and second order moments of the
BEM coefficients on which the uplink to downlink extrapolation
process relies on. We assume that the cluster delay is known.
Without loss of generality we can set τq=0.



A. Angular domain projection

The main direction of cluster θq is already known so we can
use a shifted Fourier basis designed to minimize the number
of significant coefficients. More details on this approach can
be found in paper [4]. The shifted Fourier basis vectors are

el(θq)[m]=
1√
Nt

e
−2πj(m−Nt−1

2 )
(
l
Nt

+
‖~atx‖
λ cos(θq)

)
.

In this basis the cluster tensor can be rewritten as

Hq=

Nt−1∑
l=0

P∑
p=1

αp,l,qef (τp,q)⊗el
∗(θq)

where the coefficients αp,l,q are given by
αp,l,q=βp,q〈et(θq+∆θp,q),el(θq)〉.

The cluster q is then decomposed into Nt sub-clusters with
fixed orthogonal steering vectors. The gain of each subcluster
at subcarrier k, denoted cq,l[k], can be recovered through the
linear mapping

cq,l =Hqel(θq)=

P∑
p=1

αp,l,qef (τp,q).

Note that E{cq,l}=0 since the ray gains βp,q are centered.

B. Second order statistics

The inter-covariance matrix between two sub-clusters l and
l′ is given by

Σq,l,l′=E
{
cq,lc

H
q,l′
}

=[Σq,tx]l,l′Σf (5)
where Σq,f is the covariance matrix of the equivalent SISO
channel and Σq,tx is defined as

[Σq,tx]l,l′=E∆θ{〈et(θq+∆θ),el〉〈et(θq+∆θ),el′〉∗}.
For a Saleh-Valenzuela cluster with parameters λ and γ the

frequency covariance matrix is given by

[Σf ]k,k′=Pq

(
1+

λγ

1−2πj∆Bγ(k′−k)

)
.

The proof can be found in [14]. Similarly, the coefficients of
Σq,tx are given by

[Σq,tx]l,l′=

∫ 2π

0

f∆θ(∆θ)

DNt(xl(∆θ))DNt(xl′(∆θ))d∆θ

(6)

where xl(∆θ) = l
Nt
− ‖~atx‖(cos(θq)−cos(θq+∆θ))

λ and DN (x)
denotes the Dirichlet kernel and f∆θ(∆θ) is the angular
distribution of the intra-cluster rays (typically a Laplace
distribution). The proof for (6) is postponed in Annex A.

C. Autocorrelation approximation

The off-diagonal elements of matrix Σq,tx are Dirichlet kernel
side lobe products that are quickly negligible as Nt increase. We
use the approximation that sub-clusters are uncorrelated and can
be studied separately. Each sub-cluster is then fully characterized
by its frequency covariance matrix Σf weighted by a fraction of
the cluster power Pq and by [Σq,tx]l,l. Examples of cluster power
partitioning (diagonal elements of Σq,tx) over the sub-clusters
are given in Fig 1. Because of the angular shift introduced in
Section III-A, the first bin always represents the main direction of
the cluster. As expected, more subclusters are required to model
wider angular-spreads (σ∆θ) and broadside clusters (θ=90◦).

Fig. 1. Diagonal coefficients of the matrix Σq,tx for an ULA with Nt =30,
analytical expression (6) and numerical evaluation. On the left (a) the cluster
angular spread is 10◦ and the cluster angle varies from 90◦ (broadside) to
180◦ (endfire). On the right (b) the angular spread of a broadside cluster varies
from 0◦ (specular ray) to 20◦.

IV. COMPLEX GAINS EXTRAPOLATION

As previously mentioned, subclusters can be studied
separately. For ease of notation we denote any sub-cluster and
its covariance matrix as{

c=cq,l

Σ=Σq,l,l.

The subcarriers can be separated into two sets: uplink U and
downlink D subcarriers. We separate the sub-cluster frequency
gain vector into uplink and downlink vectors as{

cu =c[k], k∈U
cd =c[k], k∈D.

Our goal is to find the distribution of the downlink gains cd

given uplink gains measurements cu.

A. Sub-cluster gain modeling

We model a sub-cluster gain as a centered Wide Sense
Stationary Gaussian random process with autocorrelation Σ.
Thermal noise and interference deteriorate the received uplink
signal. Hence the measured sub-clusters are mixed with noise

c̃u =cu+n

with n ∼ CN (0,σ2
nI). The covariance matrix of those noisy

subclusters is denoted by
Σ̃u =E

{
c̃uc̃Hu

}
=Σu+σ2

nI

where Σu is the noiseless uplink covariance matrix (a submatrix
of Σ) and σ2

n denotes the noise power. We also introduce the
partial covariance vectors between the uplink channel and the
downlink subcarrier k denoted by

σu∪k=σHk∪u =E{cucd[k]∗}.
We define the downlink subcarrier variance σ2

k=E{cd[k]c∗d[k]}.
The sub-cluster gain is WSS so this variance does actually not
depend on k.

The autocorrelation of the uplink channel concatenated with
gain k of the downlink is given by

Σ̃u∪k=

[
Σ̃u σu∪k
σk∪u σ2

k

]
.

B. Cluster gain extrapolation

The posterior distribution of cd[k] from the noisy sub-clusters
measured on the uplink c̃u is given after classical manipulations
by



fcd[k]|c̃u
(cd[k]|c̃u)=

fcd[k],c̃u
(cd[k],c̃u)

fc̃u(c̃u)

=
|Σ̃u|

π|Σ̃u∪k|
e
− 1

ε2
k

(cd[k]−σHu∪kΣ̃−1
u c̃u)

2

.

(7)

cd[k] follows a complex Gaussian law, the mean of which
is the Maximum a Posteriori (MAP) estimator

ĉd[k]=σHu∪k
(
Σu+σ2

nI
)−1

cu

which is a linear estimator with variance (MSE) given by
ε2[k]=σ2

k−σHu∪k
(
Σu+σ2

nI
)−1

σu∪k. (8)
The MSE is divided into two parts, σ2

k is the error without
prior information and σHu∪k

(
Σu+σ2

nI
)−1

σu∪k is the accuracy
gain from uplink measurements.

V. RESULTS

In this section we provide analytical extrapolation MSE
formulas for a single subcluster, verified by numerical evaluations.
Those error formulas are subsequently extended to a full Saleh-
Valenzuela channel.

A. Results on a single cluster

The Saleh-Valenzuela sub-cluster is parametrized by the ray
arrival rate λ, the ray decay constant γ, the uplink bandwidth
Bul, the sub-cluster power Pq and the noise power σ2

n. In this
section we consider the normalized MSE derived from (8)

E
{
|ĉd[k]−cd[k]|2

}
E{|cd[k]|2}

=1−σHu∪k(Σu+1/ρI)
−1

σu∪k

σ2
k

(9)

where ρ=
Pq
σ2
n

. This expression only depends on λ, γ, Bul and ρ.
We introduce the dimensionless parameters λ̄=λ/Bul,γ̄=γBul.
Those notations are sufficient to fully describe the cluster.

We drew the mean square error obtained for two Saleh-
Valenzuela environments with Bul = 9MHz and 200 pilots
(matches a 10MHz LTE frame structure). The extrapolation
process works well in moderately scattered environments, such as
the original Saleh-Valenzuela model [11] (Fig. 2). However the
extrapolation range is much shorter in rich scattering channels
such as the one described in [13] (Fig. 3) by Crabtree Building
measured parameters. As expected this process works better
for reduced intra-cluster scattering. The extrapolation potential
of the channel also highly depends on the SNR. The process
yields overall promising results at asymptotically high SNR
but performances decrease rapidly in presence of thermal noise.

Using the dimensionless parameters λ̄, γ̄ we can draw
the 2D map of the achievable extrapolation range for any
Saleh-Valenzuela cluster on Fig. 4 at ρ = 30dB for a 10%
sub-cluster MSE. The extrapolation potential is given in
logarithmic scale in percentages of the uplink bandwidth. We
also computed the positions of characterized Saleh-Valenzuela
channels of the literature [11], [13], [15] within this plane for
Bul = 1MHz (red points) and Bul = 10MHz (blue points).
Channels with the same characteristics but different uplink
bandwidths follow straight lines with −1 slope (in log scale). A
×10 bandwidth increase means λ̄ is a decade decreased and γ̄
a decade increased. This abacus is then very useful to compare
channels and interpret the effect of a bandwidth increase.

Fig. 2. Normalized MSE of the channel gain with BUL =9MHz and NUL =
200 uplink subcarriers, analytical (9) and numerical evaluation with original
Saleh-Valenzuela parameters. The extrapolation scheme is very sensitive to noise.

Fig. 3. Normalized MSE of the channel gain with BUL = 9MHz and
NUL = 200 uplink subcarriers, analytical (9) and numerical evaluation. The
extrapolation scheme is very sensitive to noise. Parameters are those of [13].

Fig. 4. Maximum achievable bandwidth extension for a single cluster (in %
of the uplink bandwidth) as a function of the dimensionless cluster parameters
λ̄ and γ̄, ρ=30dB. Characterized channels have been placed onto the curve in
dashed green lines (blue points: BUL =10MHz, red points: BUL =1MHz).

B. Multi-Cluster Channel

The extrapolation error is most of the time quantified by
the Mean Square Error (MSE) criterion [6], [7]. The linear
extrapolation approach provides a simple expression for the
MSE at subcarrier k

E
{
‖Hk−Ĥk‖2

}
E{‖Hk‖2}

=

∑Q
q=1

∑Nt−1
l=0 ε2

q,l[k]

(1+ΛΓ)(1+λγ)

where ε2
q,l[k] is the variance of the estimated gain of subcluster

l in cluster q at subcarrier k obtained from (8).



VI. GENERALIZATION

Previous results involved a transmit ULA and only one receive
antenna and can be extended up to transmit and receive UPAs.
In the general case the wideband channel tensor is given by

H=
√
NtNf

P∑
p=1

βpef (τp)⊗et
∗(~utx,p)⊗er(~urx,p). (10)

UPA steering-vectors can be rewritten as the Kronecker
product et

∗(~utx,p) = etx
∗(~utx,p)⊗ ety

∗(~utx,p) of two ULA
steering-vectors that matches the two dimensions of the UPA.
The channel tensor can be rewritten

H=
√
NrNt

P∑
p=1

βpef (τp)⊗etx
∗(~utx,p)⊗ety

∗(~utx,p)

⊗erx(~urx,p)⊗ery(~urx,p).

(11)

Assuming that transmit and receive arrays have dimensions
Ntx, Nty and Nrx, Nry , each cluster is decomposed into
NtxNtyNrxNry sub-clusters (most of them have a negligible
power and can be neglected). As a generalization of (5), sub-
clusters cq,ltx,lty,lrx,lry have the cross-cluster covariance matrix

Σq,ltx,l′tx,lty,l
′
ty,lrx,l

′
rx,lry,l

′
ry

=[Σq,tx]ltx,l′tx
[Σq,ty]lty,l′ty

[Σq,rx]lrx,l′rx
[Σq,ry]lry,l′ry

Σq,f .

(12)
The same procedure can then be applied to extrapolate the
subclusters. The previous formulas are still valid.

VII. REDUCTION OF BEAMFORMING GAIN

We have shown in the previous sections that the downlink
channel extrapolated from uplink measurements follows a
Complex Gaussian distribution whose mean and covariance have
been characterized. In this section we will use this statistical
structure to derive an approximate closed form formula of the
expected Reduction of Beamforming gain at subcarrier k. To
that end we introduce simplified notations. h denotes the Nt×1
MISO channel at subcarrier k (h=Hk). Similarly ĥ denotes
the estimated MISO channel at subcarrier k (ĥ=Ĥk).

A. Analytical derivation of RBG

The mean square error is not the best figure of merit of an
extrapolation technique. Indeed the estimated downlink channel
is then used to design a precoder p that shapes the transmitted
signal in order to optimize the capacity. In this section we use
a Maximum Ratio Transmission (MRT) precoder as it yields
the optimal capacity in the single user case. In multi-user cases,
it has been shown that the favorable propagation property
of massive MIMO offers a natural interference reduction
mechanism. The optimal precoder is denoted

p̃=
h

‖h‖
.

The transmitter doesn’t have access to the true channel h. It
uses the estimated channel ĥ to compute the precoder

p̃=
ĥ

‖ĥ‖
.

Capacity is the best figure of merit but is also hard to compute.
Therefore most papers use intermediate metrics such as the
Reduction of Beamforming Gain (RBG) [6] given by

RBG=
|pHh|2

|p̃Hh|2
.

This metric is directly linked to the single-user capacity. It can
be rewritten in logarithmic scale

RBGdB≈10log
(
|pHh|2

)
−10log

(
|p̃Hh|2

)
.

The optimal and sub-optimal beamforming gains |pHh|2
and |p̃Hh|2 have similar quadratic forms structures. We
introduce the Gram matrix of all sub-clusters basis functions
G so as [G]l+Ntq,l′+Ntq′=〈el(θq),el′(θq′)〉, the vector of all
sub-clusters gains at subcarrier k c so as cl+Ntq=cq,l[k] and
the vector of all estimated sub-clusters gains at subcarrier k ĉ so
as ĉl+Ntq= ĉq,l[k]. E is the diagonal covariance matrix of the
channel gains c. Taking the point of view of the transmitter, the
true gains c are unknown. Only the distribution of c∼CN (ĉ,E)
is known.

The inner products for optimal and sub-optimal precoding are

p̃Hh=
√
Nt

ĉHGc√
ĉHGĉ

pHh=
√
Nt

cHGc√
cHGc

=
√
Nt
√

cHGc.

Their modulus squared yield the quadratic forms

|p̃Hh|2 =Nt
cHGĉĉHGc

ĉHGĉ
=Ntc

HAc,

|pHh|2 =Ntc
HGc.

According to [16], the first and second order moments are
E
{
|p̃Hh|2

}
/Nt=Tr(AE)+ĉHAĉ

Var
{
|p̃Hh|2

}
/N2

t =Tr
(
(AE)2

)
+2ĉHAEAĉ

E
{
|pHh|2

}
/Nt=Tr(GE)+ĉHGĉ

Var
{
|pHh|2

}
/N2

t =Tr
(
(GE)2

)
+2ĉHGEGĉ.

Note that |p̃Hh|2 follows the distribution

|p̃Hh|2/Nt∼ σ̃2χ2
2

(
µ̃2

σ̃2

)
where σ̃2 = 1

2 Tr (AE), µ̃2 = ĉHAĉ and χ2
k(λ) represents

the noncentral Chi-Squared distribution with non-centrality
parameter λ and k degrees of freedom [17].

Using the following second order approximation

E{f(X)}≈f(E{X})+
1

2
f ′′(E{X})Var{X}

and the previous formulas we can approximate very closely
the Reduction of Beamforming Gain
E{RBGdB}≈10log

(
E
{
|pHh|2

})
−10log

(
E
{
|p̃Hh|2

})
−

5Var
{
|pHh|2

}
ln(10)E{|pHh|2}2

+
5Var

{
|p̃Hh|2

}
ln(10)E{|p̃Hh|2}2

.

(13)

B. Numerical experiments
We illustrate those formulas with a simple 3-clusters model

with equal parameters (λ, γ, Pq), Nt = 30 and null angular
spread. The clusters main angles are uniformly distributed
θq∼ [0,2π]. As equation (13) gives the expected downlink RBG
for a specific uplink realisation, both numerically evaluated
and expected RGB were averaged over multiple realisations to
obtain comparable results (Fig. 5). The approximation remains
valid until the RGB reaches a 1.5 dB loss.



Fig. 5. Average Reduction of Beamforming Gain for 10dB, 30 dB and infinite
SNR. Original Saleh-Valenzuela parameters.

VIII. CONCLUSION

In this paper we have investigated the limits of an extrapolation
process on a wideband MIMO system to infer the downlink
channel from uplink measurements. As the clusters constituting
the propagation are made of a large amount of densely distributed
rays that are hardly separable, a specular representation of
clusters in the angular-delay domain is not available. Clusters
have been projected on a adequately chosen sparse BEM in
the angular domain then extrapolated in the frequency domain.
Using the posterior distribution of the downlink channel, we have
obtained a closed form expression for the MSE applied to Saleh-
Valenzuela models. The extrapolation accuracy highly depends
on both propagation channel characteristics and SNR. Cluster
estimation errors for any parameters have then been summarized
in a generic abacus, providing a convenient way to evaluate the
extrapolation potential. We have also derived an approximate
formula for the expected Reduction of Beamforming Gain.

We used the conventional MRT precoder, consistent with
previous work in [6]. From the extrapolated channel distribution
structure provided in this paper, new precoding strategies can how-
ever be designed to outperform MRT. On the other hand, in the
last section we proposed estimates for the downlink channel gain.
Those indicators could be extended to inter-user interference, pro-
viding inputs for massive MIMO resource allocation strategies.

APPENDIX A
ANGULAR SECOND-ORDER MOMENTS DERIVATION

For cluster q, we set the intermediary variable
xl(∆θ) = l

Nt
+ ‖~atx‖

λ (cos(θq)−cos(θq+∆θ)). The inner-
product between the steering vector and the basis function l yields

〈et(θq+∆θ),el〉=
1

Nt

Nt−1∑
m=0

e−2πj(m−Nt−1
2 )xl(∆θ).

We use the expression

1

N

N−1∑
m=0

ejmx=ej
N−1

2 xDN (x)

where DN (x) denotes the Dirichlet kernel

DN (x)=
sin(Nx)

Nsin(x)
.

Our choice of origin in the steering vectors definition (Section
II-C) cancels the phase ej

N−1
2 x and simplify the result

〈et(θq+∆θp,q),el〉=DNt(πxl(∆θ)).
Inserting this expression into the expectation integral yields (6).

REFERENCES

[1] E. Björnson, J. Hoydis, and L. Sanguinetti, “Massive MIMO
Networks: Spectral, Energy, and Hardware Efficiency,”
Foundations and Trends R© in Signal Processing, vol. 11, 2017.

[2] Y. Han, J. Ni, and G. Du, “The potential approaches to achieve
channel reciprocity in FDD system with frequency correction
algorithms,” in Proceedings of the 5th International ICST
Conference on Communications and Networking in China,
Beijing, China, 2010.

[3] D. Vasisht, S. Kumar, H. Rahul, and D. Katabi, “Eliminating Chan-
nel Feedback in Next-Generation Cellular Networks,” in Proceed-
ings of the 2016 conference on ACM SIGCOMM 2016 Conference
- SIGCOMM ’16. Florianopolis, Brazil: ACM Press, 2016.

[4] H. Xie, F. Gao, S. Zhang, and S. Jin, “A Unified Transmission
Strategy for TDD/FDD Massive MIMO Systems With Spatial
Basis Expansion Model,” IEEE Trans. Veh. Technol., vol. 66,
no. 4, 2017.

[5] H. Almosa, S. Mosleh, E. Perrins, and L. Liu, “Downlink
Channel Estimation with Limited Feedback for FDD Multi-User
Massive MIMO with Spatial Channel Correlation,” in 2018 IEEE
International Conference on Communications (ICC). Kansas
City, MO: IEEE, 2018.

[6] T. Choi, F. Rottenberg, J. Gomez-Ponce, A. Ramesh, P. Luo,
J. Zhang, and A. F. Molisch, “Channel Extrapolation for
FDD Massive MIMO: Procedure and Experimental Results,”
arXiv:1907.11401 [cs, eess], 2019.

[7] F. Rottenberg, R. Wang, J. Zhang, and A. F. Molisch, “Channel
Extrapolation in FDD Massive MIMO: Theoretical Analysis and
Numerical Validation,” arXiv:1902.06844 [cs, math], 2019.

[8] L. L. Magoarou and S. Paquelet, “Parametric channel estimation
for massive MIMO,” arXiv preprint arXiv:1710.08214, 2017.

[9] T. Zwick, C. Fischer, and W. Wiesbeck, “A stochastic multipath
channel model including path directions for indoor environments,”
IEEE Journal on Selected Areas in Communications, vol. 20, 2002.

[10] L. L. Magoarou and S. Paquelet, “Performance of MIMO channel
estimation with a physical model,” arXiv:1902.07031 [cs, eess],
2019, arXiv: 1902.07031.

[11] A. A. Saleh and R. Valenzuela, “A statistical model for indoor
multipath propagation,” IEEE Journal on selected areas in
communications, vol. 5, no. 2, 1987.

[12] C. Liu, E. Skafidas, and R. Evans, “Angle of arrival extended
S-V model for the 60 GHz wireless indoor channel,” in 2007
Australasian Telecommunication Networks and Applications
Conference. Christchurch, New Zealand: IEEE, 2007.

[13] Q. Spencer, B. Jeffs, M. Jensen, and A. Swindlehurst, “Modeling
the statistical time and angle of arrival characteristics of an
indoor multipath channel,” IEEE Journal on Selected Areas in
Communications, vol. 18, 2000.

[14] M. Roy, S. Paquelet, and M. Crussière, “Degrees of Freedom
of Ray-Based Models for mm-Wave Wideband MIMO-OFDM
(accepted),” in 2019 IEEE Global Communications Conference
(GLOBECOM), Dec 2019.

[15] S.-K. Yong et al., “G3c channel modeling sub-commitee final
report,” Mar. 2007.

[16] A. M. Mathai, S. B. Provost, and T. Hayakawa, Bilinear Forms
and Zonal Polynomials, ser. Lecture Notes in Statistics. New
York, NY: Springer New York, 1995, vol. 102.

[17] M. K. Simon, Probability distributions involving Gaussian
random variables: a handbook for engineers and scientists.
Springer, 2006.


