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1. Introduction. Under favourable biological conditions, a well or newly established population in a one dimensional continuous habitat (e.g. coastline [START_REF] Lubina | The spread of a reinvading species: range expansion in the california sea otter[END_REF], river [START_REF] Lutscher | Population persistence in the face of advection[END_REF], a preferred direction in a multidimensional space), can spread at left (in the region x ≤ 0), at right (in the region x ≥ 0) or in both directions causing direct and indirect effects on the ecosystem [START_REF] Strayer | Understanding the long-term effects of species invasions[END_REF][START_REF] Doherty | Invasive predators and global biodiversity loss[END_REF][START_REF] Gallardo | Global ecological impacts of invasive species in aquatic ecosystems[END_REF][START_REF] Kolar | Progress in invasion biology: predicting invaders[END_REF]. One important measure quantifying this spread is the asymptotic speed of propagation of the expanding population in the environment, generally called the invasion speed when dealing with the spread of invasive species [START_REF] Hastings | The spatial spread of invasions: new developments in theory and evidence[END_REF]. This asymptotic quantity has been studied for a large class of biological models like reaction-diffusion [START_REF] Fisher | The wave of advance of advantageous genes[END_REF][START_REF] Aronson | Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation[END_REF][START_REF] Bramson | Convergence of solutions of the Kolmogorov equation to travelling waves[END_REF][START_REF] Lau | On the nonlinear diffusion equation of kolmogorov, petrovsky, and piscounov[END_REF][START_REF] Petrovskii | Exactly solvable models of biological invasion[END_REF], integrodifferential [START_REF] Mollison | Spatial contact models for ecological and epidemic spread[END_REF][START_REF] Medlock | Spreading disease: integro-differential equations old and new[END_REF], integrodifference [START_REF] Kot | Discrete-time growth-dispersal models[END_REF][START_REF] Shigesada | Invasion and the range expansion of species: effects of long-distance dispersal[END_REF] and discrete-time recursion [START_REF] Weinberger | Long-time behavior of a class of biological models[END_REF][START_REF] Lui | Biological growth and spread modeled by systems of recursions. i. mathematical theory[END_REF] equations. A mathematical formulation of the asymptotic speed of spread (in short, spreading speed) appeared in the work of Aronson and Weinberger [START_REF] Aronson | Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation[END_REF] on the Fisher-KPP reactiondiffusion equation under specific conditions. They showed that the solutions N (t, x) (population density at time t and position x) travel in a one dimensional habitat of carrying capacity unity with a spreading speed c * > 0 characterized by the behaviour of N (t, ξ + ct) for large t, where ξ and c are real numbers. More precisely, for some α ∈ (0, 1] and every ξ, it holds

     lim inf t→∞ N (t, ξ + ct) ≥ α, for c < c * , lim t→∞ N (t, ξ + ct) = 0, for c > c * .
Further investigations [START_REF] Aronson | Multidimensional nonlinear diffusion arising in population genetics[END_REF][START_REF] Weinberger | Long-time behavior of a class of biological models[END_REF][START_REF] Weinberger | Analysis of linear determinacy for spread in cooperative models[END_REF] have led to an alternative formulation of a spreading speed c * , called the spreading property, given by As pointed out in [START_REF] Aronson | Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation[END_REF], the quantity c * has the characteristics of an asymptotic speed of propagation, namely:

     lim inf
lim t→∞ X µ (t) t = lim t→∞ X µ (t) t = c *
where X µ (t) = sup E µ (t) is the furthest position from the origin and X µ (t) = inf E µ (t) is the closest position to the origin of the level sets E µ (t) defined by

E µ (t) = {x > 0 : N (t, x) = µ}, for µ ∈ I ⊂ (0, K).
The parameter K (which can be infinite) is the carrying capacity of the habitat and I is an interval of (0, K).

Remark that a description of the positions X µ (t) and X µ (t) provides information about the spatial spread of the population. Particularly, we get the (average) rates of spread

C µ (t) = X µ (t) t , C µ (t) = X µ (t) t
and the (average) asymptotic rates of spread

C µ = lim sup t→∞ X µ (t) t , C µ = lim inf t→∞ X µ (t) t .
Note that if X µ (t) is not a local maximum and X µ (t) is not a local minimum, then X µ (t) = x µ (t) the furthest forward position where N is above a threshold µ ∈ I

x µ (t) := sup{x > 0 :

N (t, x) > µ} (1.1)
and X µ (t) = x µ (t) the position where N first falls below µ

x µ (t) := inf{x > 0 : N (t, x) < µ}. (1.2)
Obviously, this happens when N (t, x) is monotone w.r.t x for t ≥ 0, or for t large enough if one is only interested on asymptotic rates of spread. But in general we have always

X µ (t) ≤ x µ (t) ≤ x µ (t) ≤ X µ (t).
For instance, if N (t, x) is a travelling wave, i.e. N (t, x) = N (x -ct) where c > 0 and N (x) is a decreasing function with lim x→-∞ N (x) = K and lim x→∞ N (x) = 0, then solving N (x -ct) = µ gives a unique position x = ct + N -1 (µ), (N -1 is the inverse function of N ) with a speed C µ = Cµ = c called the wave speed. In particular, the minimal wave speed (c * ) is the one for which biological models admit travelling wave solutions if c ≥ c * and do not admit such solutions if c < c * . For example, Fisher [START_REF] Fisher | The wave of advance of advantageous genes[END_REF] showed that the minimal wave speed of the equation

∂N ∂t = D ∂ 2 N ∂x 2 + rN (1 -N ) is c * = 2 √
rD and conjectured that the spreading speed for a population initially present at left and absent at right, i.e. N (0, x) = 1 if x < 0 and N (0, x) = 0 if x ≥ 0, coincides with the minimal wave speed. This conjecture was proved by Kolmogorov et al. [START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] and extended to a general class of reaction-diffusion equations [START_REF] Aronson | Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation[END_REF][START_REF] Aronson | Multidimensional nonlinear diffusion arising in population genetics[END_REF]. Similar results was also obtained for discrete recursions [START_REF] Weinberger | Long-time behavior of a class of biological models[END_REF][START_REF] Li | Spreading speeds as slowest wave speeds for cooperative systems[END_REF] which can be applied to reaction-diffusion equations. So, the calculation of the minimal wave speed provides an alternative way to get the spreading speed when they coincide. The reaction-diffusion equation:

(1.3) ∂N ∂t = D ∂ 2 N ∂x 2 + f (N ) where f : [0, 1] → R is differentiable such that f (0) = f (1) = 0, f (0) > 0, f > 0 in (0, 1)
admits a minimal wave speed c * ≥ 2 f (0)D and travelling waves with speeds c ≥ c * . Furthermore, c * = 2 f (0)D if f satisfies the additional Fisher-KPP assumption f (N ) ≤ f (0)N for N ∈ (0, 1), [START_REF] Aronson | Multidimensional nonlinear diffusion arising in population genetics[END_REF][START_REF] Hadeler | Travelling fronts in nonlinear diffusion equations[END_REF]. Bramson [START_REF] Bramson | Convergence of solutions of the Kolmogorov equation to travelling waves[END_REF] used probabilistic methods and Lau [START_REF] Lau | On the nonlinear diffusion equation of kolmogorov, petrovsky, and piscounov[END_REF] analytic methods to classify the initial data under which solutions of (1.3) with the Fisher-KPP assumption converge to the appropriate travelling waves. For D = 1 and an exponential bounded initial data, i.e. 0 ≤ N (0, x) ≤ e -αx for some α > 0 and large x, the solution converge to a travelling wave with speed c(α

) = c * = 2 f (0) if α ≥ f (0), whereas for α < f (0) the speed c(α) satisfies 2 f (0) ≤ c(α) ≤ α + f (0)/α. When, N (0, x)
is equivalent to a multiple of e -αx , with α < f (0), then the solution travels faster with speed c(α) = α + f (0)/α > c * . For a non exponentially bounded initial data, the solutions of (1.3) may accelerate with an infinite speed. This situation was investigated in [START_REF] Roques | Recolonisation by diffusion can generate increasing rates of spread[END_REF], where in most cases, it was shown that for any µ ∈ (0, K) and any ε > 0, the positions x µ (t) defined by (1.2) can be estimated for t large enough as follows

(1.4) N -1 0 µe -f (0)-ε t ≤ x µ (t) ≤ N -1 0 µe -f (0)+ε t ,
where N -1 0 is the inverse function of the initial data N 0 (x) := N (0, x). For instance, if N 0 (x) = Cx -α with C > 0 and α > 0, then from (1.4) the rate of spread increases exponentially fast for large time as

x µ (t) t ∼ 1 t e f (0)t .
Another interesting situation, is when the spreading speed of (1.3) coincides with the spreading speed of its linearisation at low densities (N = 0), i.e. the linear reaction-diffusion equation,

(1.5) ∂N ∂t = D ∂ 2 N ∂x 2 + f (0)N.
In this case, when the population is initially located at the origin with size N 0 , i.e. N (0, x) = N 0 δ(x), the solutions of equation (1.5) have the form

(1.6) N (t, x) = N 0 √ 4πDt e f (0)t-x 2 4Dt
where for every t ≥ 1, N (t, x) decreases for x ≥ 0 and the equation N (t, x) = µ, for µ ≤ N (1, 0), admits a unique solution, i.e. X µ (t) = X µ (t). So, we get the rates of spread

(1.7) X µ (t) t = 4f (0)D - 4D t ln µ N 0 √ 4πDt 1/2
and the asymptotic rate of spread C µ = 2 f (0)D. As we can observe, modulo some additional assumptions, the spreading speeds of the nonlinear reaction-diffusion equation (1.3) and its linearisation around N = 0 (equation (1.5)) coincide. This phenomenon holds for other nonlinear biological models [START_REF] Weinberger | Analysis of linear determinacy for spread in cooperative models[END_REF][START_REF] Lewis | Spreading speed and linear determinacy for two-species competition models[END_REF], and more generally, the fact that the spreading speed for a nonlinear model is governed by its linearisation at low population densities, under some assumptions, is known as the linear conjecture [START_REF] Van Den Bosch | The velocity of spatial population expansion[END_REF][START_REF] Mollison | Dependence of epidemic and population velocities on basic parameters[END_REF]. Relying on this conjecture, the asymptotic rate of spread has been studied for various nonlinear models by comparison or asymptotic approximation methods, e.g. [START_REF] Radcliffe | Saddle point approximations in n-type epidemics and contact birth processes[END_REF][START_REF] Radcliffe | Discrete time spatial models arising in genetics, evolutionary game theory, and branching processes[END_REF][START_REF] Neubert | Demography and dispersal: calculation and sensitivity analysis of invasion speed for structured populations[END_REF][START_REF] Caswell | Demography and dispersal: invasion speeds and sensitivity analysis in periodic and stochastic environments[END_REF][START_REF] Schreiber | Invasion speeds for structured populations in fluctuating environments[END_REF][START_REF] Powell | Epidemic spread of a lesion-forming plant pathogen-analysis of a mechanistic model with infinite age structure[END_REF][START_REF] Mesk | Invasion speeds of triatoma dimidiata, vector of chagas disease: An application of orthogonal polynomials method[END_REF]. [START_REF] Weinberger | Long-time behavior of a class of biological models[END_REF] studied the existence of the spreading speed and travelling waves for the general recursion model

(1.8) N (t + 1, x) = Q (N (t, .)) (x).
Particular important subclasses of (1.8) are integrodifference equations which have been widely used to describe growth and dispersal of organisms in discrete time and continuous habitat, [START_REF] Lutscher | Integrodifference equations in spatial ecology[END_REF]. The integrodifference equation in one dimensional habitat has the form (1.9)

N (t + 1, x) = +∞ -∞ k(x -y)F (N (t, y)) dy
where F is the growth function and k(x) is the dispersal kernel, a probability density function for the displacement of individuals. Under suitable conditions, see [26, Theorem 5.2], the spreading speed of (1.9) coincides with the minimal wave speed given by the formula

C W = min s>0 1 s ln λ k(s)
where λ = F (0) and k(s) is the exponential transform of k(x) defined for a function g by

(1.10) ĝ(s) = +∞ -∞
g(y)e sy dy.

The speed C W of (1.9) coincides also with the spreading speed of the linearisation of (1.9) at low densities

(1.11) N (t + 1, x) = λ +∞ -∞ k(x -y)N (t, y)dy.
Similarly, as for the linear reaction-diffusion equation (1.5) above, Kot and Neubert [START_REF] Kot | Saddle-point approximations, integrodifference equations, and invasions[END_REF] used the exponential transform and the steepest descent method for integrals to obtain the asymptotic rate of spread of (1.11) with N (0, x) = N 0 δ(x). The asymptotic behaviour for large t, say Ñ (t, x), of N (t, x) in hand, they solved the equation Ñ (t, x) = µ instead of N (t, x) = µ to get this approximation of the rates of spread (1.12)

X µ (t) t = 1 s 0 ln λ k(s 0 ) - 1 t ln µ N 0 2π|κ(s 0 )|t , where s 0 is a function of X µ (t)/t satisfying (1.13) k (s 0 ) k(s 0 ) = X µ (t) t .
If the asymptotic rate of spread C KN = lim t→∞ X µ (t)/t is a constant, then s 0 and κ(s 0 ) are also constants. So, by taking the limits in (1.12) and (1.13) one get

C KN = 1 s 0 ln λ k(s 0 ) = k (s 0 ) k(s 0 )
which is equivalent to Weinberger's formula [START_REF] Aronson | Multidimensional nonlinear diffusion arising in population genetics[END_REF][START_REF] Weinberger | Long-time behavior of a class of biological models[END_REF]]

C KN = C W = min s>0 1 s ln λ k(s) .
For kernels not having exponential transforms, known as heavy-tailed kernels, approximation methods have been used to show that integrodifference equations generate accelerating solutions [START_REF] Kot | Dispersal data and the spread of invading organisms[END_REF][START_REF] Liu | Accelerating invasions and the asymptotics of fat-tailed dispersal[END_REF]. See also [START_REF] Finkelshtein | Accelerated nonlocal nonsymmetric dispersion for monostable equations on the real line[END_REF] for accelerated propagation of solutions to equations with a nonlocal linear dispersion on the real line and monostable nonlinearities, in the case when either of the dispersion kernel or the initial condition is heavy-tailed.

Other characterizations of the wave speed have been given for various models. Variational characterizations can be found in [START_REF] Stevens | Variational principles for propagation speeds in inhomogeneous media[END_REF][START_REF] Benguria | Variational characterization of the speed of propagation of fronts for the nonlinear diffusion equation[END_REF]. Hadeler and Rothe [START_REF] Hadeler | Travelling fronts in nonlinear diffusion equations[END_REF] obtained a minimax representation of the minimal wave speed for the reaction-diffusion equation (1.3). This approach has also been used for other models, see for example [START_REF] Volpert | Reaction-Diffusion Equations[END_REF][START_REF] Moussaoui | Speed of wave propagation for a nonlocal reaction-diffusion equation[END_REF] and the references therein. For instance, in [START_REF] Moussaoui | Speed of wave propagation for a nonlocal reaction-diffusion equation[END_REF] the authors studied the nonlocal reaction-diffusion equation

(1.14) ∂N ∂t = D ∂ 2 N ∂x 2 + S +∞ -∞ φ(x -y)N (y + a, t -τ )dy -δN
where the kernel φ(x) is a given integrable exponentially bounded function defined in R, and S(N ) is a smooth non-negative and non-decreasing function satisfying some additional conditions. The parameter D ≥ 0 is for diffusion, δ ≥ 0 is the death rate, τ ≥ 0 the delay and a is a real number. The main result of this work is the analytical estimation of the wave speed by means of a minimax representation based on the global stability of travelling waves. For a = 0, the authors obtained the following estimates of the wave speed:

(1.15) c = inf ψ sup x Φ(ψ, c) = sup ψ inf x Φ(ψ, c), where Φ(ψ, c) = - Dψ +S +∞ -∞ φ(x-y)ψ(y+cτ )dy -δψ ψ .
In this paper, we give an upper bound for the asymptotic rate of spread of a population propagating in a one dimensional habitat by means of the exponential transform of the size of this population. For discrete and continuous models, this upper bound can be obtained directly from the exponential transforms of these models. This is illustrated through several examples which reveal that for linear models and nonlinear models subject to the linear conjecture, this upper bound and their speed coincide. Our main results are presented in section 2 and section 3 is devoted to illustrative examples.

2. Main results. Let N (t, x) be the size or density of a population at time t ≥ 0 and position x ∈ R. Assume that N (t, x) are continuous functions on the variable x ∈ R for t ≥ t 0 ≥ 0 and satisfy :

(2.1) N (t, s) := +∞ -∞ N (t, x)e sx dx exist for s ∈ I ⊂ ]0, +∞[.
Remark that from (2.1) we have lim x→-∞ N (t, x)e sx = 0, lim x→∞ N (t, x)e sx = 0 and lim x→∞ N (t, x) = 0. This also means that the N (t, x) are exponentially bounded. The integral in (2.1) is the exponential transform of N (t, x). It has been used together with the saddle-point method to derive asymptotic approximations for the solutions of linear integrodifference [START_REF] Kot | Saddle-point approximations, integrodifference equations, and invasions[END_REF] and integrodifferential [START_REF] Radcliffe | Saddle point approximations in n-type epidemics and contact birth processes[END_REF][START_REF] Radcliffe | Discrete time spatial models arising in genetics, evolutionary game theory, and branching processes[END_REF] equations in order to compute the invasion speed of a population. Let us denote by X t (a) the furthest forward position where N is above a threshold a (see Fig. 1)

X t (a) := sup{x > 0 : N (t, x) > a}.
We can see easily that

X t (a) = sup N -1 (t, a)
where N -1 (t, a) = {z > 0 : N (t, z) = a and (z, a) is not a local maximum}. where

I + = {-s : s ∈ I -}.
Remark 2.4. Assume that for an s 0 ∈ I we have lim t→∞ N (t, s 0 ) = 0. Then, as

(2.5) N (t, s 0 ) = +∞ -∞ N (t, x)e s0x dx ≥ β α N (t, x)e s0x dx ≥ e s0a β α N (t, x)dx,
we get lim t→∞ β α N (t, x)dx = 0 which means that the total population in any interval [α, β] goes to extent. So, it has no sense to calculate the speed in this case. Consequently, we must have lim t→∞ N (t, s) = 0 for all s ∈ I which implies that the series N (t, s) is divergent with radius ρ(s) = lim sup t→∞ N (t, s) 

N .

Here also, the existence of the limit lim t→∞ (∂ N /∂t)/ N implies that lim t→∞ ln N (t, s)

1/t = lim t→∞ ln N (t, s) t = lim t→∞ ∂ N ∂t N .
In the next section, we give some illustrative examples

Examples. Example 1. Consider equation (1.3) mentioned above in the introduction

∂N ∂t = D ∂ 2 N ∂x 2 + f (N ).
By applying the exponential transform to (1.3) and dividing by N (t, s) we obtain

∂ N ∂t N = Ds 2 + +∞ -∞ f (N (t, x))e sx dx N (t, s) ,
and according to remark 2.6 we have

ρ(s) ≤ lim sup t→∞ ∂ N ∂t N = Ds 2 + lim sup t→∞ +∞ -∞ f (N (t, x))e sx dx N (t, s) .
So, an upper bound for the speed of propagation is

min s∈I Ds + 1 s lim sup t→∞ +∞ -∞ f (N (t, x
))e sx dx N (t, s) .

We can see that for travelling waves N (t, x) = N (x -tc) this upper bound becomes Note that, by the comparison principal, the speed of the linear equation

∂N ∂t = D ∂ 2 N ∂x 2 + f (0)N
is an upper bound of the speed of (1.3) with Fisher-KPP assumption. So, by using the transformed equation Example 2. Consider the integrodifference equation (1.9)

∂ N ∂t = Ds 2 + f (0) 
N (t + 1, x) = +∞ -∞ k(x -y)F (N (t, y))dy
where k(x) is a dispersal kernel such that k(s) exists for s in a neighbourhood of zero and F is a demographic function satisfying

F (0) = 0, F (1) = 1, F (0) > 1, F (N ) > 0 and F (N ) ≤ F (0)N for N ∈ (0, 1
). The equation (1.9) admits the minimal wave speed [START_REF] Weinberger | Long-time behavior of a class of biological models[END_REF][START_REF] Lutscher | Integrodifference equations in spatial ecology[END_REF] 

c * W = min s>0 1 s ln F (0) k(s) .
By applying the exponential transform to (1.9) we obtain Similarly, as in Example 1, the speed of (1.9) is bounded above by it's linearisation around N = 0

N (t + 1, s) = k(s) +∞ -∞ F (N (t, x))e
(3.2) N (t + 1, x) = F (0) +∞ -∞ k(x -y)N (t, y)dy.
Now applying the exponential transform to (3.2) we get

(3.3) N (t + 1, s) = F (0) k(s) N (t, s)
from which the expression of c * W follows by remark 2.5. Alternatively, one can solve (3.3) to get The transformed equation has the form

N (t, s) = N (0, s) f (0) k(s)
N (t + 1, x) = λ t +∞ -∞ k t (x -y)N (t,
∂ N ∂t = Ds 2 -δ N (t, s) + λ k(s) N (t -τ, s).
Let us assume that τ is a natural number and that the limits lim t→∞ N (t+1,s) N (t,s) and lim t→∞ (∂ N /∂t)/ N exist, then by remark 2.5 and remark 2.6 we have If τ is a positive real number, then by the change of variable t → τ t we get the same result.

Let us remark that this upper bound coincides with the value given by the minimax representation (1.15) by choosing ψ(x) = e -sx .

Example 5. Consider the stage structured model (see [START_REF] Neubert | Demography and dispersal: calculation and sensitivity analysis of invasion speed for structured populations[END_REF])

(3.8) N(t + 1, x) = +∞ -∞ [K(x -y) • B N ] N(t, y)dy
where the elements of the matrix K(x -y) are the dispersal kernels k ij (x -y) and of the demographic matrix B N are the demographic functions b ij (N). The vector N = (n 1 , n 2 , ..., n m ) consists of m stages where the population density in the ith stage is denoted by n i . The symbol "•" stands for the Hadamard product where the elements of the matrix K

(x -y) • B N are k ij (x -y)b ij (N)
. The assumptions about the demographic and dispersal components of the model are as follows :

1) The matrix B N is positive, or nonnegative and primitive [START_REF] Caswell | Matrix population models[END_REF]. In practice most population projection matrices have this property.

2) Let A = B 0 (i.e., B N evaluated at N = 0). This matrix represents the set of vital rates at low population densities. The assumption that the largest eigenvalue of A is larger than 1 is required to guarantee the growth of the population when small.

3) Increased population density has a negative effect on the organism's vital rates: where ρ 1 (s) is the largest of the eigenvalues of H(s)

:= A • M(s) with (3.12) M(s) = +∞ -∞ K(x)e sx dx.
Now we apply our results to the linear multi-stage model (3.8) with B N = A. To this end, we define the location X t (a) as being the furthest forward position where the weighted population < N(t, x), W >= m j=1 n j (t, x)w j is above a threshold a, where the weight vector W has non-negative entries with at least one positive [START_REF] Neubert | Demography and dispersal: calculation and sensitivity analysis of invasion speed for structured populations[END_REF][START_REF] Caswell | Demography and dispersal: invasion speeds and sensitivity analysis in periodic and stochastic environments[END_REF][START_REF] Schreiber | Invasion speeds for structured populations in fluctuating environments[END_REF]. So, the asymptotic rate of spread is bounded above by .

As N(t, s) = H(s) t N(0, s), we can write

(3.14) < N(t, s), W >= ρ 1 (s) t < H(s) t ρ 1 (s) t N(0, s), W >
and according to Perron-Frobenius Theorem (see for instance [START_REF] Gantmacher | Applications of the Theory of Matrices[END_REF]) the limit lim t→∞ H(s) t /ρ 1 (s) t is a positive matrix. Accordingly, lim sup t→∞ < N(t, s), W > 1 t = ρ 1 (s) and we obtain the same upper bound (3.11).

Remark 3.1. Rather than the speed via level sets, Radcliffe and Rass [START_REF] Radcliffe | Saddle point approximations in n-type epidemics and contact birth processes[END_REF][START_REF] Radcliffe | Reducible epidemics: Choosing your saddle[END_REF] considered the speed of spread of the forward tail of a population, defined as lim t→∞ x t (ξ)/t, where

ξ = ∞ xt(ξ) N (t, x)dx
is a constant amount of the population ahead of position x t (ξ) at time t.

In this case, one can also obtain an upper bound for lim sup t→∞ x t (ξ)/t. Namely, for s > 0 we have N (t, s) ≥ 4. Summary. The asymptotic rate of spread is an important characteristic of the corresponding process. Various mathematical models of biological invasions are used in the literature to describe growth and dispersal processes and to predict the speed of invasion fronts. In this paper, we have used a new approach based on the exponential transform to derive an upper bound for the asymptotic rate of spread of a population propagating in a one-dimensional habitat. The relevance of our method is illustrated by studying a rather large class which contains both continuous and discrete time biological models. Our results coincide with the results obtained in other studies dealing with asymptotic spreading speeds. The steepest descent method has been used to approximate the solutions of linear unstructured and structured models in order to calculate the asymptotic speed of propagation from these approximations [START_REF] Radcliffe | Saddle point approximations in n-type epidemics and contact birth processes[END_REF][START_REF] Radcliffe | Reducible epidemics: Choosing your saddle[END_REF][START_REF] Radcliffe | Discrete time spatial models arising in genetics, evolutionary game theory, and branching processes[END_REF][START_REF] Kot | Saddle-point approximations, integrodifference equations, and invasions[END_REF][START_REF] Leung | Models for the spread of white pine blister rust[END_REF]. With the upper bound obtained here, these approximations are not necessary to compute the speed for these models as seen in the examples. Previous works have analysed the population spreading speed for population models under some specific restrictions on dynamics. We have shown that these restrictions can be relaxed to allow for more general dynamics and dispersal. Our results presented here can be extended to multidimensional habitat and can be applied to various models for the spread of organisms. This will provide interesting directions in our future research.

t→∞

  min |x|≤ct N (t, x) > 0, for c < c * and lim sup t→∞ max |x|≥ct N (t, x) = 0, for c > c * .
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 1212 (t, a)\{X t (a)} is not empty, we put Xt (a) := sup N -1 (t, a)\{X t (a)} which is the first location becoming before X t (a).Let b > 0 and defineη t (a) = min |X t (a) -Xt (a)|, b if N -1 (t, a)\{X t (a)} = ∅ b if N -1 (t,a)\{X t (a)} = ∅ with η(a) := lim inf t→∞ η t (a) For travelling waves we have η t (a) = b and η(a) = 1. Also, for population densities that converge to travelling waves we have η(a) = 1. Theorem 2.2. If η(a) = 0, then we have (s) := lim sup t→∞ N (t, s) 1t . Remark 2.3. When N (t, s) exists for s ∈ I -⊂ R, then lim x→-∞ N (t, x) = 0 and we can calculate the speed of N (t, x) towards the negative axis by calculating the speed towards the positive axis of A(t, x) = N (t, -x). So, we have Â(t, s) = N (t, -s) and the estimate (2

  (N (x))e sx dx N (s) . Let L = sup 0<u<1 f (u)/u. Then we get this upper bound for the speed min g (s) = D -L/s 2 = 0 ⇒ s = L/D and g( L/D) = 2 √ LD. If f satisfies the Fisher-KPP assumption f (N ) ≤ f (0)N , this upper bound coincides with the minimal wave speed c * of (1.3).

Ds 2

 2 N one can proceed as above or get the solutions N (t, s) = N (0, s)e

  (N (t, x))e sx dx N (t, s) .If N (t, x) = N (x -ct) is a travelling wave then (3(N (x))e sx dx N (s) .Taking into account the inequality F (N ) ≤ F (0)N , we can see easily that (3.1) is bounded above by c * W . But, in general, we have always the upper bound min s∈I ln M k(s) /s where M = sup 0<u<1 F (u)/u.

Example 3 .

 3 For the model[START_REF] Neubert | Invasion speeds in fluctuating environments[END_REF] 

Example 4 .

 4 We consider the delayed nonlocal reaction-diffusion equation(1.14) with S(u) = λu and a = 0-y)N (t -τ, y)dy.

  -j + 1, s) N (t -j, s) = ρ(s) τand we conclude that the speed is bounded above by min s>0 ln (ρ(s)) /s where ρ(s) is solution of the equation (3.7) ln (ρ(s)) = Ds 2 -δ + λ k(s)ρ(s) -τ .

(3. 9 )k

 9 B N N ≤ AN for all N ≥ 0 where the inequalities are evaluated elementwise.4) All of the kernels k ij , 1 ≤ i, j ≤ m, have exponentially bounded tails, i.e, ij (x)e sx dx exist for s in a neighbourhood of zero.With these assumptions, it was shown in[START_REF] Neubert | Demography and dispersal: calculation and sensitivity analysis of invasion speed for structured populations[END_REF] that the invasion wave speed, c * N C , for the model (3.8) with initial conditions with compact support has the upper bound (

∞

  xt(ξ) N (t, x)e sx dx ≥ e sxt(ξ) ∞ xt(ξ) N (t, x)dx ≥ e sxt(ξ) ξ.So, by applying the logarithm function, we obtain x t (ξ) s) 1/t .

  The following remarks allow us to get estimates for the speed without solving the differential or difference equations satisfied by N (t, s).

	Remark 2.5. For equations with discrete time, we know the relation between the
	root an ratio tests for a series		a t :		
	(2.6)			lim inf t→∞	a t+1 a t	≤ lim sup t→∞	(a t ) 1/t ≤ lim sup t→∞	a t+1 a t	.
	So, for the series		N (t, s) we get the estimate of ρ(s)
	(2.7)	lim inf t→∞	N (t + 1, s) N (t, s)	≤ lim sup t→∞	N (t, s)	1/t	≤ lim sup t→∞	N (t + 1, s) N (t, s)	,
	and in particular, the existence of lim t→∞	N (t+1,s) N (t,s) implies that
	(2.8)			lim t→∞	N (t, s)	1/t	= lim t→∞	N (t + 1, s) N (t, s)	.
	Remark 2.6. For equations with continuous time, we can use a generalized result
	of l'Hopital's rule [45] to get the estimates
	lim inf t→∞	∂ ∂t N N ≤ lim inf t→∞	ln N (t, s) t	≤ lim sup		1/t	= lim sup t→∞	ln N (t, s) t	t→∞ ≤ lim sup	∂ ∂t N

1 t ≥ 1 for all s ∈ I. t→∞ ln N (t, s)
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