
HAL Id: hal-02937872
https://hal.science/hal-02937872v1

Submitted on 14 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online Performance Evaluation of Deep Learning
Networks for Profiled Side-Channel Analysis

Damien Robissout, Gabriel Zaid, Brice Colombier, Lilian Bossuet, Amaury
Habrard

To cite this version:
Damien Robissout, Gabriel Zaid, Brice Colombier, Lilian Bossuet, Amaury Habrard. Online Per-
formance Evaluation of Deep Learning Networks for Profiled Side-Channel Analysis. International
Workshop on Constructive Side-Channel Analysis and Secure Design (COSADE), Apr 2020, Lugano
(virtual), Switzerland. pp.200-218, �10.1007/978-3-030-68773-1_10�. �hal-02937872�

https://hal.science/hal-02937872v1
https://hal.archives-ouvertes.fr

Online Performance Evaluation of Deep Learning
Networks for Profiled Side-Channel Analysis

Damien Robissout1, Gabriel Zaid1,2, Brice Colombier1, Lilian Bossuet1, and
Amaury Habrard1

1 Univ Lyon, UJM-Saint-Etienne, CNRS Laboratoire Hubert Curien UMR 5516
F-42023, Saint-Etienne, France, firstname.lastname@univ-st-etienne.fr
2 Thales ITSEF, Toulouse, France, firstname.lastname@thalesgroup.com

Abstract. Deep learning based side-channel analysis has seen a rise in
popularity over the last few years. A lot of work is done to understand the
inner workings of the neural networks used to perform the attacks and a
lot is still left to do. However, finding a metric suitable for evaluating the
capacity of the neural networks is an open problem that is discussed in
many articles. We propose an answer to this problem by introducing an
online evaluation metric dedicated to the context of side-channel analysis
and use it to perform early stopping on existing convolutional neural
networks found in the literature. This metric compares the performance
of a network on the training set and on the validation set to detect
underfitting and overfitting. Consequently, we improve the performance
of the networks by finding their best training epoch and thus reduce the
number of traces used by 30%. The training time is also reduced for most
of the networks considered.

Keywords: Side-Channel Attacks · Metrics · Deep Learning · Underfitting ·
Overfitting

1 Introduction

Side-channel attacks are a class of cryptographic attacks in which an adversary
exploit vulnerabilities of a system by analyzing its physical properties, such as
the power consumption [8] or electromagnetic emanations [1], to reveal secret
information. The implementation of a cryptographic algorithm involves the ma-
nipulation of sensitive variables which depend on the secret. This is the base
concept behind side-channel attacks, among which we find profiling attacks. In
this scenario, an adversary has access to a test device on which he can choose the
plaintext and the secret key. With that information, he is able to estimate the
conditional distribution associated with the sensitive variable of interest. On a
target device containing a secret to retrieve, the adversary can then predict the
actual sensitive value and reveal the secret. In 2002, the first profiling attacks,
named template attacks, were introduced by Chari et al. [4] but their proposal
was limited by its computational complexity.

2 D.Robissout, G.Zaid, B.Colombier, L.Bossuet and A.Habrard

Very similar to profiling attacks, deep learning algorithms were inevitably
applied in the side-channel context. Indeed, some articles have shown the ro-
bustness of convolutional neural networks (CNNs) to the most common coun-
termeasures, namely masking [10,11] and desynchronization [3,16]. One of their
main advantages is that they do not require pre-processing of the traces. The
training process, through which the network learns to solve one specific problem,
consists in two phases [5]: the forward propagation and the backward propaga-
tion. Given an input, the aim of the forward propagation is to feed training
examples to the network in the forward direction by processing successive lin-
ear and non-linear transformations in order to predict a value related to the
input. Once this is done, the backward propagation measures the error between
the predictions and the correct output and tries to reduce it by updating the
parameters that compose the network.

To evaluate the training process and its performance, classical deep learning
metrics can be used. One of the most popular is the accuracy. Unfortunately, as
Picek et al. have shown [12], this metric is poorly suited in the context of side-
channel analysis. Using the accuracy tends to favor the class with the highest
output probability. This solution cannot be considered, in side-channel analysis,
because the classifiers are often only loosely correlated with the true classification
because of the very small leakage information present in the traces used for
learning. Then, to perform a successful attack, the adversary must combine the
classification results obtained for multiple traces to extract the estimate of the
true class.

Contributions In this article, we evaluate the ability of a network to generalize
the knowledge found in the learning samples. By comparing the performance on
the training set, containing the examples used by the network to learn, and the
validation set, containing examples the network has never seen before, we get
an insight into how well the network performs on new examples. Our proposed
metric, called ∆d

train,val, is derived from the sucess rate [14], commonly used
in side-channel analysis. Defined as the number of succesful attacks over 100
realizations, the success rate is a suitable metric to evaluate the performance of
attacks compared to the accuracy, which corresponds to taking into account only
one trace to perform only one attack. By measuring the number of traces that
are needed to get a successful dth order success rate on the training and the vali-
dation sets, we can accurately evaluate the ability of the network to generalize its
knowledge. We confirm the relevance of our metric by applying it on the ASCAD
public dataset [13]. Using ∆d

train,val has two benefits: during training, this metric
can be used to detect the internal state of the network (underfitting/overfitting)
and to find the best number of epochs to perform early stopping [5]. Further-
more, ∆d

train,val helps to compare the performance between the networks once
they are trained. Therefore, it allows us to optimize the performance of a network
used for side-channel analysis.

Article Organization The article is organized as follows. Section 2 is dedicated
to the neural networks and evaluation metrics used in the article. After defin-

Online Performance Evaluation of Deep Learning Networks for Profiled SCA 3

ing the machine learning approach for evaluating the generalization capacity of a
network, Section 3 defines a new evaluation metric, called ∆d

train,val, which mea-
sures this generalization in the context of side-channel analysis. This new metric
is applied on the public dataset ASCAD [13] and its main CNN architecture
in Section 4 and then compared against the only comparable existing metric,
the guessing entropy bias variance decomposition [15]. Finally in Section 5, we
discuss some future works that could be investigated and conclude on the results
presented in the article.

2 Preliminaries

2.1 Notations

Let calligraphic letters X denote sets, the corresponding capital letters X (resp.
bold capital letters) denote random variables (resp. random vectors T) and the
lowercase x (resp. t) denote their realizations. The i-th entry of a vector t is
written as t[i].

A side-channel trace is a random vector T ∈ RD where D defines the dimen-
sion of the trace. The targeted sensitive variable is Z = f(P,K) where f denotes
a cryptographic primitive, P (∈ P) denotes a public variable (e.g. plaintext or
ciphertext) and K (∈ K) denotes a part of the key (e.g. byte) that an adversary
tries to retrieve. Z takes values in Z = {s1, ..., s|Z|}. Let us denotes k∗ the secret
key used by the cryptographic algorithm.

2.2 Profiling attacks

A profiling attack is performed in two stages: a profiling phase and a matching
phase. During the profiling phase, an adversary has access to a test device on
which he can control the input and the secret key of the cryptographic algorithm.
He uses this knowledge to find the relevant leakages depending on the sensitive
variable Z. The adversary builds a model F : RD → R|Z| that estimates the
probability Pr[T|Z = z] from a profiling set T = {(t0, z0), . . . , (tNp−1, zNp−1)}
of size Np.

Once the model F is built, in the matching phase, the adversary estimates
which intermediate value is processed. By predicting this sensitive variable and
knowing the public variable used during the encryption, the adversary can com-
pute a score vector, based on F (ti), i ∈ J0, Na − 1K, for each trace included in a
dataset of Na attack traces. The key candidate with the highest values will be
defined as the recovered key.

To evaluate the performance related to the estimations, we can classify all the
key candidates into a vector of size |K|, denoted g = (g1, g2, ..., g|K|), following
their resulting probability. We consider g1 as the most likely candidate and g|K|
as the least likely one. Let us denote g(k∗[b]) the actual position of the bth byte
of the secret key in g. This position is called rank. In side-channel analysis, a
common metric, called guessing entropy (GE) [14], defines the average rank of

4 D.Robissout, G.Zaid, B.Colombier, L.Bossuet and A.Habrard

a byte b of k∗, denoted k∗[b], among all key hypotheses. We consider an attack
as successful, using Na traces, when the guessing entropy is equal to 1.

The rank of the correct key gives us an insight into how well our model
performs. A related metric is the success rate, the probability that an attack
succeeds in recovering k∗[b] among all the hypotheses. A success rate of p means
that p attacks, over 100 realizations, succeed to retrieve k∗[b]. In [14], Standaert
et al. propose to extend the notion of success rate to an arbitrary order d. Let
AEk,L be an adversary trying to attack a cryptographic computation Ek using
to a leakage model L. The adversary has to conduct some experiments ExpdAEk,L

in order to exploit the relevant information that leaks. The output of the attack
is a guessing vector g of length d that is composed of the key candidates sorted
according to the attack result. If k∗[b] ∈ g, then we consider the attack as a
success and ExpdAEk,L

= 1. Thus, the dth order success rate can be defined as:

SRd
AEk,L

= Pr[ExpdAEk,L
= 1].

In other words, the dth order success rate is defined as the probability that the
target secret k∗[b] is ranked among the d first key guesses in the score vector. In
the rest of the article, the dth order success rate is denoted SRd.

2.3 Neural networks

Neural networks have risen in popularity over the past ten years due to the
increase in computing power and the democratization of GPUs. They proved
to be very efficient at solving a large variety of problems like classification or
feature extraction. It is for these reasons that the application of machine learning
techniques was eventually explored in side-channel analysis [6,2,9] and soon after
followed the application of deep learning and the use of neural networks [10,3].
For a classification task, a neural network aims at constructing a function F :
RD → R|Z| that computes an output called a prediction represented as a vector
of size |Z|, the number of possible classes. To solve a classification problem, the
function F has to find the right prediction y associated with the input t with
high confidence. To approximate the optimal solution, a neural network must
be trained given a profiling set of Np pairs (ti, yi) where t is the i-th profiling
input and yi is the label associated with the i-th input. To construct F , neural
networks are built from several layers composed of unit blocks called neurons.
These neurons perform operations to select the relevant features that allow for
an efficient classification of t.

One special kind of network is the convolutional neural network. The partic-
ularity of CNNs is the use of filters for improving the pattern recognition. The
main advantage of the filters and convolutional layers is their time-invariance
property that allows the network to be robust against desynchronization (e.g.
shifting, jitter) [3,16]. Therefore, the resynchronization pre-processing is not nec-
essary anymore. However, Zhou and Standaert [17] have shown that resynchro-
nization still helps the network during the learning phase and improves the
network performance.

Online Performance Evaluation of Deep Learning Networks for Profiled SCA 5

Once the architecture of the network is fixed, the training can begin but we
need to be able to evaluate how well a network is learning. In order to do so,
some evaluation metrics have been developed.

2.4 Evaluation metrics

In machine learning, to accurately evaluate the networks, it is common to look at
the progression of different metrics that can be decomposed into two categories:

– The learning metrics, such as the empirical risk, which is the average
of a loss function, over all the examples of the training set, estimating the
classification error. They help the network to update its trainable parameters
(i.e. weights) in order to optimize F .

The classification error is defined by a comparison between a label yi and
the related predicted value ŷi. The function measuring this error is the loss
function. The goal of the training is to minimize the loss in order to reduce the
errors made by the network on the training examples. The most commonly used
loss is the categorical cross-entropy [5]. Minimizing the categorical cross-entropy
reduces the dissimilarity between the correct distributions and the predicted
distributions for a set of inputs. Thus, the evaluation of this learning metric
helps to interpret the training error of a model. It can be visualized after the
training to better understand how well the network learned.

– The performance metrics, such as the accuracy, that define the perfor-
mance of a network for a given input. This metric computes the number of
good predictions for a set of traces. In side-channel analysis, it corresponds
to a first order success rate using only one trace [12].

The performance metrics are exploited in order to evaluate the internal state
of a network [5] and used to detect both underfitting and overfitting.

Underfitting typically describes the moment of the learning phase where the
network has not seen enough training examples to extract relevant information
from them. It is therefore not able to make correct predictions. It can also be a
sign that the architecture of the network is not complex enough to properly esti-
mate the underlying function. To prevent underfitting, it is possible to increase
the number of training examples, the number of epochs and the complexity of
the network [5].

Overfitting happens when the network is starting to learn features from the
training examples that are not relevant for generalization. Thus it is loosing its
generalization power which means it is better at predicting training examples
but performs poorly on the validation set. The consequence is that the network
learns the training examples by heart, learning features that are not useful for
classification purposes. For example, in side-channel analysis, we can assume
that the network learns noise patterns from the training set, where the noise

6 D.Robissout, G.Zaid, B.Colombier, L.Bossuet and A.Habrard

is considered to be independent from the intermediate value Z. Since those
patterns are random, they will most likely negatively influence the prediction
of new examples. Another factor can be an overly complex architecture. As a
consequence, the network is able to estimate functions F much more complex
than the optimal one. To reduce the impact of overfitting, some techniques can
be used such as data augmentation [3], noise addition [7], regularization or a
more fitting architecture [16].

As mentioned before, the accuracy is not a suitable metric for evaluating the
network performance for side-channel attacks. It differs from the paradigm of the
side-channel attacks where one considers and uses a set of traces to accumulate
information about the secret key. According to Picek et al. [12], it is more relevant
to use the success rate when a side-channel developer wants to evaluate the
performance related to his network. Indeed, contrary to the accuracy, the success
rate is based on the accumulation of information over several traces.

2.5 Related work on metrics for side-channel analysis

The guessing entropy is a suitable metric to evaluate the performance of a net-
work. However, this tool does not give an insight about the internal state of
the network. Indeed, the guessing entropy evaluates the performance associated
with a set of traces but does not compare the performance between the training
dataset and the validation one. Then, it is difficult for an evaluator to identify
the appropriate moment where the model starts overfitting. Detection of overfit-
ting is an important problem to consider since it lowers the performance of the
network. Moreover, an early detection of the overfitting can bring a substantial
gain in terms of training time by reducing the number of epochs the network
has to train for. Therefore, to solve this problem, van der Valk and Picek [15] in-
troduced the guessing entropy bias variance decomposition (GEBVD). By doing
so, they are able to separately study the evolution of the bias and the variance
of the guessing entropy and draw conclusions on the influence of some hyperpa-
rameters on the performance of the network. A high bias may indicate that the
network is underfitting and a high variance that it is overfitting.

Our approach is different in the sense that we evaluate the generalization
capability of a given architecture by studying its performance at training and
validation. If the network can be improved, e.g. when having much better per-
formance on training than on validation, then regularization can be applied to
improve the training of the network and reach better performance. We also
study the link between good performance at training and good performance at
validation.

In order to do that, we propose a new metric called ∆d
train,val. The aim of this

new metric is to characterize the generalization power of a network dedicated to
side-channel analysis.

Online Performance Evaluation of Deep Learning Networks for Profiled SCA 7

3 ∆d
train,val: a deep learning evaluation metric for

side-channel analysis

∆d
train,val uses a common side-channel metric, namely the success rate, to evalu-

ate the performances of a network both on the training set and on the validation
set. Therefore, ∆d

train,val allows the attacker to draw conclusions on the internal
state of the network, namely underfitting or overfitting.

3.1 ∆d
train,val: internal state detection

Let a model be the result function F of the training of an architecture for a given
amount of epochs. We define Nd

train(model) and Nd
val(model) as the minimal

number of traces that a model needs in order to reach an dth-order success rate:

Nd
train(model) = min{ntrain | ∀n ≥ ntrain, SRd

train(model(n)) = 90%}

and,

Nd
val(model) = min{nval | ∀n ≥ nval, SRd

val(model(n)) = 90%}.

An dth order success rate means that the attacker has at most d key guesses to
test after the attack in order to recover the correct one.

By comparing the performances of the attacks on training and on validation,
we obtain information on how well the network is able to generalize its knowl-
edge. The choice of the euclidean norm seemed the most natural to compare two
number of traces. Therefore, ∆d

train,val is computed as follow:

∆d
train,val = |Nd

val −Nd
train|.

The computation of Nd
train and Nd

val is based on the existing side-channel
metrics that are known to exploit the full information available. By comparing
them, we combine the machine learning and the side-channel approaches to
evaluate any network.

Our proposal has the advantage that it is possible to evaluate the internal
state of the network during the training and afterwards by visualizing this new
metric. Indeed, we are able to efficiently visualize when our network is in an
underfitting, good or overfitting state. The choice of a success rate of 90% was
made instead of 100% to bring more stability to the values of Nd

train and Nd
val.

3.2 Detection of overfitting/underfitting

The evolution of ∆d
train,val and the internal state of a model are illustrated with

three areas in Figure 1, showing an example of the evolution of ∆1
train,val during

the training of a network:

8 D.Robissout, G.Zaid, B.Colombier, L.Bossuet and A.Habrard

– Underfitting: as mentioned in Section 2.4, underfitting occurs when the
network has not learned enough information from the training set. Thus,
the attack cannot be performed. The values related to Nd

train and Nd
val are

often not defined or are both very high. In other words, when the number
of training epochs is low, ∆d

train,val is also not defined or its value is very
high (area on the left of Figure 1). Such cases call for an augmentation of
the number of epochs or the amount of training data to reach a success rate
of 90%.

– Good trade-off : when the network is able to learn enough relevant in-
formation from the training set, the value of ∆d

train,val converges towards

Nbias(Ttrain), which represent the minimal difference between Nd
train and

Nd
val given a training set Ttrain. Let us denote e the number of epochs needed

to reach a good trade-off, we have:

∆d
train,val −−−−−−→

epoch→e
Nbias(Ttrain). (1)

A good trade-off occurs at the number of epochs for which ∆d
train,val is close

to Nbias(Ttrain). The network generalizes the relevant information for per-
forming as well on the training set as on the validation set (area in the middle
of Figure 1). This metric gives information on the ability of the network to
generalize well. In the following, we use best trade-off to describe the best
network we were able to train without guaranteeing that it is optimal.

– Overfitting: as mentioned in Section 2.4, overfitting occurs when the net-
work is starting to learn the training features by heart. As a consequence,
the network looses its generalization power on the validation set to obtain
better performance on the training set. The value of Nd

train approaches 1
and more generally converges to a very small value. At the same time, Nd

val

increases towards a value Nmax(Ttrain), i.e.:

∆d
train,val −−−−−−→

epoch→∞
Nmax(Ttrain). (2)

This value represents the maximal number of traces needed by the network
to reach a success rate of 90% once the training has stabilized, i.e. the net-
work cannot improve its performance on the training set anymore. Thus, the
update of its weights does not change the prediction made on the validation
set and the performance of the overfitted model stays low (area on the right
of Figure 1) .

With that knowledge, we can optimize the training of the network by per-
forming early stopping.

3.3 ∆d
train,val : a suitable metric for early stopping

Early stopping consists in monitoring the learning of the network and stopping
the training when the learning metrics, usually the accuracy and the loss, are

Online Performance Evaluation of Deep Learning Networks for Profiled SCA 9

Fig. 1: Evolution of ∆1
train,val for different number of epochs. The plot of

∆1
train,val is done using a moving average of size 10.

optimal, i.e. just before the network starts to overfit. As mentioned in [5], early
stopping has other effects on the network. It is a mean of applying regularization
without having to penalize weights and therefore can be used in parallel without
other methods of regularization. It can also be considered as an additional hy-
perparameter, the number of training steps or number of epochs, that is tuned
during the training of the network using the computation of its associated met-
rics. All in all, it is recommended to perform early stopping as long as there
is a appropriated metric to use in combination. The learning metrics are com-
puted both on the training set and on a validation set to be able to properly tell
whether or not the network performs well. The comparison between performance
at training and on validation yields important information about the network.
In our case, ∆d

train,val gives us the information needed to identify when to stop
the training (see Figure 1). If our metric does not grow for a given number of
epochs then we can assume the optimal state is reached and stop the training.

The computation of ∆d
train,val can be done in parallel to the training of the

next epoch. As illustrated on Figure 2, as long as the training time of an epoch
is superior to the time it takes to compute ∆d

train,val, there is no time overhead.
In the cases where it takes longer than an epoch, for example when the training
set is small, the computation of ∆d

train,val can be done once every few epochs to
prevent time overhead as shown in Figure 3.

10 D.Robissout, G.Zaid, B.Colombier, L.Bossuet and A.Habrard

Training epoch n

∆1,n−1
train,val computation

Training epoch n+ 1

∆1,n
train,val computation

Training epoch n+ 2

∆1,n+1
train,val computation

time

... ...

Fig. 2: Computation of ∆1
train,val for different consecutive epochs when the com-

putation is shorter than the training of one epoch

Training epoch n Training epoch n+ 1

∆1,n−1
train,val computation

Training epoch n+ 2

∆1,n+1
train,val computation

time

... ...

Fig. 3: Computation of ∆1
train,val for different consecutive epochs when the com-

putation is longer than the training of one epoch

4 Experimental results

For all the experiments presented in this section we computed ∆1
train,val on

neural networks during their training phase to evaluate their best capacity. The
networks are trained using the ASCAD3 database, introduced in [13] to be a
common database for researchers. The device used to acquire the electromagnetic
measurements is an 8-bit AVR ATMega8515 running an AES implementation
secured against first order side-channel attacks. The dataset is composed of a
training set of 50000 traces and a test set of 10000 traces both coming from the
same device. From the raw traces, 700 points are selected which contain leakage
of the mask and the masked value of the third key byte in the first round. The
leakage model associated with the traces is:

Y (k∗) = Sbox(p[3]⊕ k∗[3]),

where p is the plaintext and k∗ the correct key.
The main advantage of using this database is to compare our results to the

ones presented in the ASCAD reference article.

4.1 Early stopping on the ASCAD database

To perform early stopping during the training, we computed ∆1
train,val at the end

of each epoch. We started by applying this method to the architecture CNNbest

presented in Appendix A, Table 2. This is the best performing CNN architecture
presented in [13]. It uses the categorical cross-entropy (CCE) loss, the RMSprop
optimizer with a learning rate of 10−5 and a base number of epochs for training
of 75.
3 https://github.com/ANSSI-FR/ASCAD

https://github.com/ANSSI-FR/ASCAD

Online Performance Evaluation of Deep Learning Networks for Profiled SCA 11

For readability, we show, in Figure 4, a moving average of ∆1
train,val using a

window of size 3. This is done to smooth out the curve and better see its global
shape and explains why the minimal value of the metric is not always at the
minimum of the curve. The moving average is thus not taken into account while
computing the minimal value of ∆1

train,val. The evolution of Ntrain for a whole
training is also shown and the attacks are performed on a set of synchronized
traces, called Desync0. The addition of the performance at training helps to
understand the state of the network. At around 30 epochs, the training of the
network allows it to reach a success rate of 90% using 4900 traces from the
validation set. From that point on, the value of ∆1

train,val quickly decreases to
reach a minimal value at 47 epochs. At this point, it is able to reach a success rate
of 90% with around 800 traces. It then slowly increases again to stabilize in an
unstable regime at Nmax(Ttrain) ≈ 3000 traces as mentioned in Equation 2. The
original article introducing this network [13] recommended 75 epochs of training
to reach the best performances but here we find that, after 75 epochs of training,
the success rate of 90% is reached with around 1150 traces. Performing early
stopping using ∆1

train,val allowed for an improvement of 30% of the performances
of the network. The time it takes to train the network also went down from 1
hour to 40 minutes which is a 33% decrease in computation time compared to
[13]. We can clearly identify the learning phase where the network is underfitting
that lasts until epoch 47. At this point the network is at its best capacity given
its hyperparameters and training set. Due to its great complexity, the network
starts to overfit after the next epoch. Therefore, ∆1

train,val shows us that there
is no benefit in continuing the training after epoch 47. It can also be seen that
the value of Ntrain decreases much faster than ∆1

train,val and its value is very
low even at the best capacity of the network. This is a sign of overfitting even
though it does not yet impact negatively the performances on validation. Possible
solutions to fix this problem would be to change the complexity of the network
or to add regularization [5].

4.2 Comparison between GEBVD and ∆1
train,val

In this section, we take a look at the guessing entropy bias variance decomposi-
tion as introduced in [15]. The goal of this decomposition is to separate the bias
from the variance in the performance of a network. This allows to evaluate the
state of the network because a high bias is typically linked to underfitting while
a high variance implies some overfitting. GEBVD therefore aims at separating
the bias and the variance of the guessing entropy. Van der Valk et al. manage
to do so by estimating the bias by the mean of the guessing entropy and the
variance to be its variance. We try to compare both ∆d

train,val and the GEBVD
regarding the information they offer on the state of a CNN.

For that, we use CNNBV presented in [15] for the tests. A description of the
architecture of the network can be find in Appendix A, Table 3. This network
uses the mean squared error (MSE) as a loss function, the Adam optimizer with
a learning rate of 10−4 and the base number of epochs for training is 50. As
described in the original article, it has a varying complexity depending on the

12 D.Robissout, G.Zaid, B.Colombier, L.Bossuet and A.Habrard

0 20 40 60 80 100 120 140 160 180 200
Number of epochs

1

1000

2000

3000

4000

5000
Nu

m
be

r o
f t

ra
ce

s
Ntrain

1
train, val moving average

Minimal value of 1
train, val

Chosen epoch in ASCAD reference paper

Fig. 4: Evolution of ∆1
train,val for different number of epochs for CNNbest on

Desync0, the training set with no desynchronization of the ASCAD database
[13], and comparison with their choice of number of epochs

number of convolutional layers used. The networks used to obtain the following
results have zero (0CONV) or one (1CONV) convolutional layers. Finally, the
leakage model used is the following:

Y (k∗) = HW (Sbox(p[3]⊕ k∗[3])),

where p and k∗ are the same as before. This reduces the number of output
classes to 9 instead of the previous 256.

Figure 5 shows a comparison of the two metrics on CNNBV with no con-
volution. On the left, Figure 5a shows the evolution of the guessing entropy at
each epoch of the training for different numbers of attack traces while Figure 5b
shows the evolution of ∆1

train,val and Ntrain. From Figure 5a, we see that around
epoch 25, the networks is able to consistently reach a success rate of 90% with
around 3800 traces which seems to indicate that is it well suited for the problem
at hand. On the second picture though, it appears that the learning period lasts
until epoch 40. Between epoch 25 and epoch 100, the network is in an unstable
regime, meaning there are a lot of unpredictable variations from one epoch to the
next, both for Ntrain and Nval. This directly impacts the evolution of ∆1

train,val

making it harder to locate the best capacity of the network. Indeed, the best-
performing network requires 109 epochs of training and only takes around 2100
traces to reach a success rate of 90%. This is roughly 50% better than the net-
work after 25 epochs and 25% better than the network after 50 epochs, which
is the number of epochs recommended in [15], that needs around 3000 traces to
obtain the same success rate. This behavior can be attributed to underfitting

Online Performance Evaluation of Deep Learning Networks for Profiled SCA 13

(a) Guessing entropy evolution

GEBVD

(b) Evolution of ∆1
train,val

Fig. 5: Evolution of metrics during training for CNNBV with 0 convolutional
block using the MSE loss

due to a lack of complexity of the network and can be an indicator that the
model chosen will not converge. It can also be linked to the choice of the loss
function and learning rate.

To test this last hypothesis, we trained the same network using the categorical
cross-entropy instead of the mean squared error. Figure 6 shows the result of this
training. We can see an overall increase in the performance of the network on
the validation set as well as a smaller variance in the value of Ntrain for a large
number of epochs. With ∆1

train,val, we reach the best capacity for the network
at the epoch 37 where the network needs around 1300 traces to reach a success
rate of 90%. Then, the value of ∆1

train,val keeps on increasing until the end of
the training. This early stopping brings significant improvements compared to
the network trained for 50 epochs, used in [15], that needed around 1800 traces
to reach a success rate of 90%. It is also better in terms of training time since
we go from 800 seconds for 50 epoch to 618 seconds for 37 epochs. The increase
of ∆1

train,val after the epoch 37 is linked to a stabilization of the performance on
validation while the performance of the attacks on training continues to improve.
It seems that the low complexity of the CNN reduces the impact of overfitting on
the performance on validation. This is further confirmed in Figure 7 representing
the evolution of the guessing entropy in Figure 7a and of ∆1

train,val in Figure 7b
for the same architecture but with one layer of convolution. We can see that
it tends to overfit much faster by the shape of Ntrain and this tendency has a
great impact on the performance on validation which are much worse. The best
capacity, given by the minimum value of ∆1

train,val, is reached at the epoch 42
with around 1650 traces needed to reach a success rate of 90%. It is still an
improvement compared to the epoch 25 and the epoch 50, used in [15], which
require respectively 2700 and 2150 traces. The same metrics were computed
for this network using the MSE loss but the architecture in combination with
this loss could not consistently reach a success rate of 90% within 5000 traces
throughout the training.

14 D.Robissout, G.Zaid, B.Colombier, L.Bossuet and A.Habrard

(a) Guessing entropy evolution (b) Evolution of ∆1
train,val

Fig. 6: Evolution of metrics during training for CNNBV with 0 convolutional
block using the CCE loss

On the one hand, low complexity slows down the overfitting but it does not
necessarily means the network will perform better in the end. On the other hand,
higher complexity allows the network to find more links between the input and
output which leads to overfitting if not regulated. This is why regularization
techniques are applied to neural networks to prevent this phenomenon from
happening.

(a) Guessing entropy evolution (b) Evolution of ∆1
train,val

Fig. 7: Evolution of metrics during training for CNNBV with 1 convolutional
block using the CCE loss

All those conclusions can be deduced using ∆1
train,val and are harder to see

with the GEBVD because once the guessing entropy reaches 1, the variance
reaches 0, therefore no information can be extracted from it. When comparing
the Figures 6a and 7a, there is hardly any difference between the evolution of
the guessing entropies. This contrasts with the evolution of ∆1

train,val between
the Figures 6b and 7b in which we can see a difference in the quality of the

Online Performance Evaluation of Deep Learning Networks for Profiled SCA 15

Table 1: Summary of the results with choices made using ∆1
train,val in bold

Networks
Nb of

CONV
layers

LOSS
Architecture

reference
Nb

epochs
Nval ∆

1
train,val

Time
to train

(seconds)

Difference in time
and performance

in comparison
to the reference

CNN best 5 CCE
[13] 75 1151 1145 3600 Time: -33.3%

This article 47 802 779 2400 Nval: -30.3%

CNN BV
0

MSE
[15] 50 2960 1449 970 Time: +98.5%

This article 109 2093 954 1926 Nval: -29.3%

CCE
[15] 50 1849 915 800 Time: -22.7%

This article 37 1331 413 618 Nval: -28.6%

1 CCE
[15] 50 2177 2136 956 Time: -20.4%

This article 42 1659 1575 761 Nval: -23.7%

training as well as the performance of the networks. For the network without
convolutional layers, the value of Ntrain and Nval are much closer which leads
to a lower value of ∆1

train,val and indicates a better learning phase with less

overfitting. In addition, since ∆1
train,val is based on the number of traces needed

to reach a SR1 of 90%, we are still able to evaluate and compare networks when
all the attacks are successful, i.e. when the SR1 reaches 100%. Indeed, GEBVD
cannot be used when the variance is null because it gives no information on
the state of the network. With ∆1

train,val, we consistently find the best training
epoch and therefore perform early stopping which improves the capacity and the
training time of the network. The results detailed in this section are summarized
in Table 1, giving a comparison between the networks as mentioned in their
respective article and the choices made using ∆1

train,val. Those results seem to
confirm, as argued in [11] by Masure et al., that the categorical cross-entropy is
an appropriate loss to use in deep learning for side-channel analysis.

5 Conclusion

In this article, we introduced a new metric dedicated to deep learning for side-
channel analysis. By comparing the efficiency of the attacks on the training set
and on the validation set, this metric evaluates at the same time the performance
of a given architecture and its potential for improvement. It also allows for a
characterization of the state of the network and therefore for the detection of
overfitting. This property makes it possible to use this metric during the training
of a network to perform early stopping.

Consequently, we used ∆d
train,val to evaluate the best CNN of the ASCAD

public database. We found out by applying ∆1
train,val for early stopping that it

reaches its best performance around 47 epochs which is less than the 75 epochs
mentioned in [13]. This early stopping of the training allowed for a reduction of
31% of the number of traces needed to reach a success rate of 90% and reduced

16 D.Robissout, G.Zaid, B.Colombier, L.Bossuet and A.Habrard

the training time by 30%. The measurement of ∆1
train,val showed that it was

heavily overfitting the training data. To limit this overfitting, we suggest the
use of normalization and regularization. We then compared ∆1

train,val to the
GEBVD as introduced in [15] by evaluating an architecture presented in the
article. It showed that ∆1

train,val gives a better insight on how well the network
is performing as well as how much it is overfitting the training data, especially
when the attacks are successful. We managed to improve the performance of the
network by 20 to 30% while the training time was reduce by more or less the
same percentage. This shows the importance of choosing the right number of
epochs.

For future work, we plan to use ∆d
train,val to evaluate the improvements

that can bring normalization and regularization techniques. Finally, it can be
interesting to adapt this metric (or a derivative) as a loss function in order to
optimize the network in the side-channel context.

References

1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—channel(s).
In: Kaliski, B.S., Koç, ç.K., Paar, C. (eds.) Cryptographic Hardware and Embedded
Systems - CHES 2002. pp. 29–45. Springer Berlin Heidelberg, Berlin, Heidelberg
(2003)

2. Bartkewitz, T., Lemke-Rust, K.: Efficient template attacks based on probabilis-
tic multi-class support vector machines. In: Mangard, S. (ed.) Smart Card Re-
search and Advanced Applications - 11th International Conference, CARDIS
2012, Graz, Austria, November 28-30, 2012, Revised Selected Papers. Lec-
ture Notes in Computer Science, vol. 7771, pp. 263–276. Springer (2012).
https://doi.org/10.1007/978-3-642-37288-9 18

3. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures - profiling attacks without pre-
processing. In: Fischer, W., Homma, N. (eds.) Cryptographic Hardware and Em-
bedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings. Lecture Notes in Computer Science, vol.
10529, pp. 45–68. Springer (2017). https://doi.org/10.1007/978-3-319-66787-4 3

4. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Revised Papers from the
4th International Workshop on Cryptographic Hardware and Embedded Systems.
pp. 13–28. CHES ’02, Springer-Verlag, London, UK, UK (2003), http://dl.acm.
org/citation.cfm?id=648255.752740

5. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. Adaptive compu-
tation and machine learning, MIT Press (2016), http://www.deeplearningbook.
org/

6. Hospodar, G., Gierlichs, B., Mulder, E.D., Verbauwhede, I., Vandewalle, J.: Ma-
chine learning in side-channel analysis: a first study. J. Cryptographic Engineering
1(4), 293–302 (2011). https://doi.org/10.1007/s13389-011-0023-x

7. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing
the power of convolutional neural networks for profiled side-channel analysis. IACR
Transactions on Cryptographic Hardware and Embedded Systems 2019(3), 148–
179 (May 2019). https://doi.org/10.13154/tches.v2019.i3.148-179

https://doi.org/10.1007/978-3-642-37288-9_18
https://doi.org/10.1007/978-3-319-66787-4_3
http://dl.acm.org/citation.cfm?id=648255.752740
http://dl.acm.org/citation.cfm?id=648255.752740
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.13154/tches.v2019.i3.148-179

Online Performance Evaluation of Deep Learning Networks for Profiled SCA 17

8. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J.
(ed.) Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceed-
ings. Lecture Notes in Computer Science, vol. 1666, pp. 388–397. Springer (1999).
https://doi.org/10.1007/3-540-48405-1 25

9. Lerman, L., Poussier, R., Markowitch, O., Standaert, F.: Template attacks ver-
sus machine learning revisited and the curse of dimensionality in side-channel
analysis: extended version. J. Cryptographic Engineering 8(4), 301–313 (2018).
https://doi.org/10.1007/s13389-017-0162-9

10. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementa-
tions using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V.
(eds.) Security, Privacy, and Applied Cryptography Engineering - 6th Interna-
tional Conference, SPACE 2016, Hyderabad, India, December 14-18, 2016, Pro-
ceedings. Lecture Notes in Computer Science, vol. 10076, pp. 3–26. Springer (2016).
https://doi.org/10.1007/978-3-319-49445-6 1

11. Masure, L., Dumas, C., Prouff, E.: A comprehensive study of deep
learning for side-channel analysis. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems 2020(1), 348–375 (Nov 2019).
https://doi.org/10.13154/tches.v2020.i1.348-375

12. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class im-
balance and conflicting metrics with machine learning for side-channel evaluations.
IACR Transactions on Cryptographic Hardware and Embedded Systems 2019(1),
209–237 (Nov 2018). https://doi.org/10.13154/tches.v2019.i1.209-237

13. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning
techniques for side-channel analysis and introduction to ASCAD database. IACR
Cryptology ePrint Archive 2018, 53 (2018), http://eprint.iacr.org/2018/053

14. Standaert, F., Malkin, T., Yung, M.: A unified framework for the analysis of side-
channel key recovery attacks. In: Advances in Cryptology - EUROCRYPT 2009,
28th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Cologne, Germany, April 26-30, 2009. Proceedings. pp. 443–
461 (2009). https://doi.org/10.1007/978-3-642-01001-9 26

15. van der Valk, D., Picek, S.: Bias-variance decomposition in machine learning-based
side-channel analysis. Cryptology ePrint Archive, Report 2019/570 (2019), https:
//eprint.iacr.org/2019/570

16. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for effi-
cient cnn architectures in profiling attacks. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems 2020(1), 1–36 (Nov 2019).
https://doi.org/10.13154/tches.v2020.i1.1-36

17. Zhou, Y., Standaert, F.X.: Deep learning mitigates but does not annihilate the
need of aligned traces and a generalized resnet model for side-channel attacks.
Journal of Cryptographic Engineering (04 2019). https://doi.org/10.1007/s13389-
019-00209-3

https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/s13389-017-0162-9
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.13154/tches.v2020.i1.348-375
https://doi.org/10.13154/tches.v2019.i1.209-237
http://eprint.iacr.org/2018/053
https://doi.org/10.1007/978-3-642-01001-9_26
https://eprint.iacr.org/2019/570
https://eprint.iacr.org/2019/570
https://doi.org/10.13154/tches.v2020.i1.1-36
https://doi.org/10.1007/s13389-019-00209-3
https://doi.org/10.1007/s13389-019-00209-3

18 D.Robissout, G.Zaid, B.Colombier, L.Bossuet and A.Habrard

A Networks

Table 2: Network hyperparameters for CNNbest [13]

Layer type Hyperparameters

Trace input 700

Convolution 1D
Filter = 64,

Filter length = 11,
Activation = ReLU

Average Pooling Pool length = 2

Convolution 1D
Filter = 128,

Filter length = 11,
Activation = ReLU

Average Pooling Pool length = 2

Convolution 1D
Filter = 256,

Filter length = 11,
Activation = ReLU

Average Pooling Pool length = 2

Convolution 1D
Filter = 512,

Filter length = 11,
Activation = ReLU

Average Pooling Pool length = 2

Convolution 1D
Filter = 512,

Filter length = 11,
Activation = ReLU

Average Pooling Pool length = 2

Flatten -

Fully-connected Neurons = 4096

Fully-connected Neurons = 4096

Output Softmax: 256 classes

Online Performance Evaluation of Deep Learning Networks for Profiled SCA 19

Table 3: Network hyperparameters for CNNBV [15]

Layer type Hyperparameters

Trace input 700

Convolution 1D
Filter = 8,

Filter length = 3,
Activation = ReLU

Batch Normalization -
Max Pooling Pool length = 2
(Optional)

Convolution 1D
Filter = 16,

Filter length = 3,
Activation = ReLU

Batch Normalization -
Max Pooling Pool length = 2
(Optional)

Convolution 1D
Filter = 32,

Filter length = 3,
Activation = ReLU

Batch Normalization -
Max Pooling Pool length = 2
(Optional)

Convolution 1D
Filter = 64,

Filter length = 3,
Activation = ReLU

Batch Normalization -
Max Pooling Pool length = 2
(Optional)

Convolution 1D
Filter = 64,

Filter length = 3,
Activation = ReLU

Batch Normalization -
Max Pooling Pool length = 2
(Optional)

Flatten -

Dropout Coefficient = 0.5

Fully-connected Neurons = 512

Dropout Coefficient = 0.5

Output Softmax: 9 or 256 classes

	Online Performance Evaluation of Deep Learning Networks for Profiled Side-Channel Analysis

