
HAL Id: hal-02937862
https://hal.science/hal-02937862

Submitted on 14 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Backtracking Search for Optimal Parameters of a
PLL-based True Random Number Generator

Brice Colombier, Nathalie Bochard, Florent Bernard, Lilian Bossuet

To cite this version:
Brice Colombier, Nathalie Bochard, Florent Bernard, Lilian Bossuet. Backtracking Search for
Optimal Parameters of a PLL-based True Random Number Generator. 2020 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), Mar 2020, Grenoble, France. pp.1-6,
�10.23919/DATE48585.2020.9116307�. �hal-02937862�

https://hal.science/hal-02937862
https://hal.archives-ouvertes.fr


Backtracking Search for Optimal Parameters of a
PLL-based True Random Number Generator

Brice Colombier, Nathalie Bochard, Florent Bernard, Lilian Bossuet
Univ Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, F-42023, SAINT-ÉTIENNE, France

{b.colombier, nathalie.bochard, florent.bernard, lilian.bossuet}@univ-st-etienne.fr

Abstract—The phase-locked loop-based true random number
generator (PLL-TRNG) extracts randomness from clock jitter.
It is an interesting construct because it comes with a stochastic
model, making it certifiable by certification bodies. However,
bringing it to good performance is difficult since it comes
with multiple parameters to tune. This article proposes to
use backtracking to determine these parameters. Compared to
existing methods, based on genetic algorithms or exhaustive
search of a feasible set of parameters, backtracking has several
advantages. Indeed, since this method is expressible by constraint
programming, it provides very good readability. Constraints can
be specified in a very straightforward and maintainable way. It
also exhibits good performance and generates PLL-TRNG config-
urations rapidly. Finally, it allows to integrate new exploratory
design constraints for the PLL-TRNG very easily. We provide
experimental results with a PLL-TRNG implemented on three
FPGA families that come with different physical constraints,
showing that the method allows to find good parameters for every
one of them. Moreover, we were able to obtain configurations
that lead to an increase 59 % in throughput and 82 % in jitter
sensitivity on average, thereby generating random numbers of
higher quality at a faster rate. This approach also paves the way
for new design exploration strategies for PLL-TRNG. The source
code of our implementation is open source and available online
for reproducibility and reuse.

I. INTRODUCTION

Random number generators are a cornerstone of many
security applications and are used to generate encryption keys,
initialisation vectors or masks for implementations of block
ciphers secure against side-channel attacks. From certification
requirements arose the need for true random number gener-
ators (TRNGs) with a stochastic model that specifies where
randomness is extracted from [1], [2]. Among them, the PLL-
TRNG, based on phase-locked loop(s) [3], [4], is a promising
candidate since it has been modeled precisely [5]. However,
since this TRNG has multiple parameters to tune, finding
a suitable set of parameters that satisfy the throughput and
entropy requirements for a given application is complicated.

To achieve this goal, we propose in this article to use
backtracking, expressed in the framework of constraint pro-
gramming. As a subset of declarative programming [6], con-
straint programming aims at finding possible values for the
variables of a problem that satisfy a set of constraints. The
problem of finding good parameters for a PLL-TRNG can be
directly expressed in this framework. Indeed, when searching
for optimal PLL-TRNG parameters, three groups of constraints
can be identified. The first group are the physical constraints
of the PLL itself, i.e. the minimum and maximum frequencies

for the inputs and outputs of its functional blocks. The second
group is related to the TRNG setting for the PLL. In a
PLL-TRNG, the PLLs must be set up appropriately to obtain
random numbers, as described in [3]. Finally, the third group
is related to the system requirements, namely the minimum
throughput and the entropy. This again is directly expressible
by constraints.

From the point of view of a designer who needs to im-
plement a PLL-TRNG, this approach has several benefits.
First of all, since the framework of constraint programming
is used, expressing constraints is very easy and readable.
Moreover, it makes it simple to maintain and modify. Second,
the performance of parameters search is very good and in the
order of magnitude of the results found in the state-of-the-
art [7]. Finally, we benefit from the ecosystem of constraint
programming. Even though we use the simple backtracking
method in our case to actually perform the search, more
efficient methods developed for constraint programming in
general could be applied to this use case in particular.

The contributions of this article are the following. First,
we describe the constraint programming framework and the
use of backtracking to search for PLL-TRNG parameters.
Second, we detail the possibilities opened by this new search
method. Indeed, expressing constraints allows to take into
account new exploratory design constraints for the PLL-TRNG
architecture. Third, we relax one design constraint about the
output frequency of one of the PLL used in the PLL-TRNG.
Indeed, we show that only one of the two PLLs is limited by
the surrounding design, not both as said in [7].

The remainder of this article is organised as follows. In
Section II, we start by reviewing existing methods to search
for good PLL-TRNG parameters. In Section III, we recall the
architecture of the PLL-TRNG and its associated parameters.
We then show in Section IV how to implement the parameters
search with backtracking by constraint programming. In Sec-
tion V, we provide experimental results of parameters search
on three different FPGA families that come with different
physical constraints. We discuss the possibilities offered by
the constraint programming approach in Section VI before
concluding this article in Section VII. The source code related
to this work is made open source and available online1.

1https://gitlab.univ-st-etienne.fr/sesam/pll-trng-constraint-programming/
tree/master

https://gitlab.univ-st-etienne.fr/sesam/pll-trng-constraint-programming/tree/master
https://gitlab.univ-st-etienne.fr/sesam/pll-trng-constraint-programming/tree/master


II. RELATED WORK

The problem of finding PLL-TRNG parameters has been
studied before. In the original article proposing this TRNG
architecture [3], the choice of parameters for the PLLs is done
by the expert who designs the system. Given the size of the
parameters space, this approach might give good results but
will probably miss better configurations available. This trial-
and-error process also takes a lot of time.

In [8], Petura et al. question this “expert input” approach
and derive the parameters of the PLL-TRNG using a genetic
algorithm. They indeed find better configurations than previ-
ously known, having better throughput and entropy. However,
this proposition is limited by the capabilities of genetic al-
gorithms, namely that they are not guaranteed to converge
towards a globally optimal solution.

From this observation, Noumon Allini et al. proposed an
analytical method [7] to search for the PLL-TRNG parame-
ters. For each parameter, they derive exact bounds based on
physical constraints found in the technical documentation of
the FPGAs they considered, as well as bounds computed for
other parameters. Then they adopt a depth-first search strategy,
as illustrated by their search algorithm which uses eight nested
for statements. The order in which these for loops are nested
is carefully chosen so that the depth-first search is performed
optimally by computing the bounds in the correct order since
they form a chain of dependency. The outcome of this search
is a set of parameters that are physically possible to implement
on the target FPGA. These sets of parameters must then
be filtered to implement a PLL-TRNG suited to the system
requirements. This search method, although computationally
efficient, is very rigid since it is required that the chain of
dependency between the parameters bounds is verified. If other
constraints must be met during the parameters generation, then
there is no guarantee that it would still be the case.

Before detailing the search method that we propose based
on constraint programming, we recall the architecture of a
PLL-TRNG and the associated parameters.

III. PLL-TRNG ARCHITECTURE AND PARAMETERS

A. PLL parameters

Figure 1 shows a block diagram of a PLL. Grey blocks are
the analog part and cannot be parameterised, while the M,
N and C integer division coefficients, in white blocks, must
be set. These three coefficients are used to obtain the output
frequency of the PLL (fout) from the reference frequency (fref)
as given in Equation (1).

PFD÷N CP LF VCO ÷C

fref fPFD fVCO

÷M

fout

Fig. 1: Block diagram of a PLL (PFD: phase frequency
detector, CP: charge pump, LF: loop filter, VCO: voltage-
controlled oscillator)

fout = fref ×
M

N × C
(1)

B. PLL-TRNG architecture

The architecture of a PLL-TRNG with two PLLs is given
in Figure 2. The output clock of PLL0 is used to sample
the output clock of PLL1 by using the coherent sampling
technique [5]. Since both those clocks are jittery, then the
number of ones sampled after several periods of the output
clock of PLL0 is random if the frequencies ratio is correctly
chosen. This number is stored in a counter and then used to
generate a random number, typically by extracting its least-
significant bit.

counter

PLL1

PLL0

fref fout1

fout0

ena Q

clk

random output

Fig. 2: PLL-based TRNG using two PLLs

From individual PLL parameters, the global parameters of
the PLL-TRNG can be derived. The overall multiplication
coefficient KM is given in Equation (2). The overall division
coefficient KD is given in Equation (3).

KM = M1 ×N0 × C0 (2)

KD = M0 ×N1 × C1 (3)

The figures of merit that are classically used to evaluate a
TRNG are its ability to extract randomness and its throughput
[9]. For the PLL-TRNG, the ability to extract randomness
is expressed by the sensitivity to jitter S, in µs−1, given in
Equation (4), where the frequencies fout1 and fref are in MHz.

S = fout1 ×KD = fref ×M0 ×M1 (4)

The throughput R, in Mbit s−1, is given in Equation (5), where
the frequencies fout0 and fref are in MHz.

R =
fout0

KD
=

fref

N0 ×N1 × C0 × C1
(5)

For a given application, the system requirements are typically
given in these terms. The TRNG must supply random bits
at a given throughput (Rmin) with sufficient jitter sensitivity
(Smin). The minimum sensitivity to jitter to obtain sufficient
entropy depends on the target device in which the PLL-
TRNG is implemented. For example in [7], for an FPGA
implementation, it is said that the minimum sensitivity to jitter
must be 0.09 ps−1.

In addition to these requirements, the target design along
which the PLL-TRNG is instantiated also has an influence on
the set of feasible parameters. Indeed, the output clock of one
of the PLLs is used as a general-purpose clock for the rest
of the design. Therefore, one of the PLL sees its maximal
frequency not only limited by physical constraints but also



by the maximum operating frequency of the design. Freeing
both PLLs from this constraint would require a third PLL
dedicated to the design only, which might not be possible.
However, contrary to what is said in [7], one of the PLLs
is not subject to this constraint and can run at its maximum
operating frequency. The other PLL is then used to clock the
rest of the design.

Now that we examined the requirements which are com-
monly admitted when it comes to PLL-TRNG configuration,
we show in the next section how to express them very simply
using constraint programming.

IV. PARAMETERS SEARCH BY CONSTRAINT
PROGRAMMING WITH BACKTRACKING

Constraint programming is a subset of declarative program-
ming [6]. One possible way of solving a problem stated by
constraint programming is by backtracking. Given variables
and a set of constraints over these variables, this approach
iteratively explores the possible solutions. However, contrary
to a brute-force approach, possible values for the variables
are immediately dropped as soon as one of the constraints
is not satisfied. It then backtracks to other possible values
until all valid values are found. Here, Declaration 1 describes
the problem we aim at solving, namely finding PLL-TRNG
parameters that satisfy both the physical constraints as well as
the application requirements.

Declaration 1 Search for optimal PLL-TRNG parameters with
constraint programming

1: Instantiate the problem to solve P
/* Problem variables */

2: Add variable: M0 ∈ {Mmin, . . . ,Mmax} | M0 odd
3: Add variable: M1 ∈ {Mmin, . . . ,Mmax}
4: Add variable: N0 ∈ {Nmin, . . . , Nmax}
5: Add variable: N1 ∈ {Nmin, . . . , Nmax} | N1 odd
6: Add variable: C0 ∈ {Cmin, . . . , Cmax}
7: Add variable: C1 ∈ {Cmin, . . . , Cmax} | C1 odd

/* Physical constraints */
8: for i ∈ {0, 1} do
9: Add constraint: fPFDmin < fref

Ni
< fPFDmax

10: Add constraint: fVCOmin < fref×Mi

Ni
< fVCOmax

11: Add constraint: foutmin
< fref×Mi

Ci×Ni
< foutmax

12: end for
/* Constraints related to the TRNG setting */

13: Add constraint: GCD(KM ,KD) = 1
14: Add constraint: KD < KDmax

15: Add constraint: KM < KMmax

/* Application requirements */
16: Add constraint: fref×M0

C0×N0
< fmax

17: Add constraint: R > Rmin

18: Add constraint: S > Smin

/* Problem solving */
19: Solve P to obtain the set(s) of feasible parameters

The first step is to instantiate the problem to solve (line 1)
before adding the variables to determine (lines 2 to 7). For each
variable, we specify a range in which the search is carried out.
The range for the M0, N1 and C1 variables must start at an odd
number and continue with a step of 2, so that KD, defined in
Equation (3), is odd. The minimum and maximum values are
given in the FPGA technical documentation. However, tighter
bounds can be derived, as shown in [7]. We reuse those bounds
here. However, we compute them statically when initialising
the variable domains, not dynamically for each parameters set.

Then, we declare the physical constraints for both PLLs,
namely the range of possible frequencies for the input of the
phase frequency detector (line 9), the output of the voltage
controlled oscillator (line 10) and the output of the PLL
(line 11).

Next, we specify the conditions on the global multiplication
and division coefficients KM and KD to perform coherent
sampling. KM and KD must be co-prime (line 13). As stated
in [5], the jitter accumulation time, related to KD, must be
within a certain limit. From this limit, an upper bound for
KD, denoted as KDmax , is derived in [5]. The associated
constraint is shown on line 14. Similarly, an upper limit is
also set for KM , as shown on line 15. We set KDmax

= 500
and KMmax

= 1000.
Finally, we declare the constraints related to the system

requirements, namely the minimum throughput Rmin (line 17)
and the minimum sensitivity Smin (line 18). We also add a
constraint on the maximum output frequency of PLL0 so that
it does not exceed the maximum frequency of the surrounding
design (line 16). We then solve the problem (line 19) by
backtracking to get the set(s) of feasible parameters.

After running the program, we obtain one or several sets
of suited parameters or no suited parameters at all. In the
former case, the designer can pick the one that is best suited
to the system or run the program again with more stringent
requirements to reduce the number of sets of parameters. In the
latter case, the designer must relax the system requirements
until at least one set of suited parameters is found. Due to
the computational efficiency of the method, such a trial-and-
error approach is actually very practical and quickly converges
towards a good solution.

V. EXPERIMENTAL RESULTS

A. Implementation

To implement Declaration 1, we used the Python program-
ming language and the python-constraint package2. We ran it
on a desktop computer embedding a 6-core CPU operating at
2.80 GHz and 32 GB of RAM.

When actually implementing Declaration 1, one must be
careful about the order in which constraints are added to the
problem. Indeed, for backtracking to be efficient, it should
be able to evaluate partial solutions rapidly without having
to satisfy every constraint for each of them. Otherwise, it
amounts to brute-force search. Therefore, constraints should

2https://labix.org/python-constraint

https://labix.org/python-constraint


be sorted according to their computational complexity before
being added to the problem. Computationally-easy constraints
should be added first, while computationally-hard constraints
should be added last. This way, when exploring the feasible
sets of parameters, computationally-hard constraints are only
evaluated if computationally-easy constraints were satisfied. In
our case, for example, it is important that computationally-
hard constraints like GCD(KM ,KD) = 1 are added after
computationally-easy constraints like KD < KDmax .

B. Generated configurations

We apply the method to PLL-TRNGs implemented in three
FPGA families. For each FPGA family, the possible values
for the parameters of the PLL are different. These are detailed
in Table I, taken from [7]. We can see that the three families
have quite different possible values for the PLL parameters,
leading to different optimal configurations for a PLL-TRNG
implemented in them. For a fair comparison with [7], we set
the input frequency (fref) of the PLL-TRNG to 125 MHz and
the maximum frequency of the design (fmax) to 250 MHz.

TABLE I: Ranges of possible values for the PLL parameters
and frequencies for the selected FPGA families (from [7])

Intel Xilinx Microsemi
Parameter Cyclone V Spartan 6 SmartFusion 2

Min. Max. Min. Max. Min. Max.

fref [MHz] 5 500 19 540 1 200
M 1 512 1 64 1 4194304
N 1 512 1 52 1 16384
C 1 512 1 128 1 255

fPFD [MHz] 5 325 19 500 1 200
fVCO [MHz] 600 1300 400 1080 500 1000
fout [MHz] 0 460 3.125 400 20 400

Experimental results are given in Table II and compared
to [7]. For each FPGA family, two configurations are saved.
The first one, referred to as “Max. R”, is the one with the best
throughput for a sensitivity to jitter S of at least 0.09 ps−1. The
second one, referred to as “Max. S”, is the one with the best
sensitivity to jitter for a throughput R of at least 0.5 Mbit s−1.

For every possible configuration, we see a systematic im-
provement over the configurations given in [7]. For the “Max.
R” configuration, the throughput is increased by at least 25 %,
for Microsemi SmartFusion 2, up to 88 % for Xilinx Spartan
6. On average, the best throughput increased by 59 %. For the
“Max. S” configuration, the sensitivity to jitter is increased
by at least 62 %, for Microsemi SmartFusion 2, up to 101 %
for Intel Cyclone V. On average, the best sensitivity to jitter
increased by 82 %. This improvement was obtained thanks
to the relaxation of the maximum operating frequency of the
second PLL. Taking into account this modification, the method
described in [7] would find these configurations too. However,
as mentioned before, our method could easily integrate new
constraints, which is not the case for the method in [7] that
would require to completely redesign the algorithm.

Another interesting point of view on these performance
metrics is to plot the sensitivity to jitter against the throughput

for the best (R, S) pairs. We call best (R, S) pairs the
ones for which the sensitivity to jitter is maximum for a
given throughput. This is depicted in Figure 3. As we can
observe, the best (R, S) pairs lie on a curve which equation
is of the form (f : x 7→ a

x , a ∈ R). The a coefficient is
dependent on the FPGA family and is equal to 0.1012 for Intel
Cyclone V, 0.092 for Xilinx Spartan 6 and 0.809 for Microsemi
SmartFusion 2. The possibility to use this coefficient when
searching for optimal PLL-TRNG parameters is discussed in
Section VI-C.

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Throughput [Mb. s 1]

0.050

0.075

0.100

0.125

0.150

0.175

Jit
ter

 se
ns

iti
vi

ty
 [p

s
1 ]

Intel Cyclone V
Xilinx Spartan 6
Microsemi SmartFusion 2

Fig. 3: Scatter plot and curve fit with a reciprocal function of
the jitter sensitivity against the throughput for several PLL-
TRNG configurations for each FPGA family

Due to the different ranges of values for each FPGA family,
the time to generate the configurations varies. It takes less
than one second for Xilinx Spartan 6, a few seconds for Intel
Cyclone V and around ten seconds for Microsemi SmartFusion
2. It also depends on the application requirements, namely the
throughput and sensitivity to jitter. These timings are of the
same magnitude as those of the sate-of-the-art method in [7].

After obtaining these configurations, we performed the
implementation and acquired random data. This is evaluated
in the next section.

C. Random data evaluation with statistical tests

In order to assess the quality of the random numbers
generated by each configuration, we conducted the following
experiment. We implemented each of the aforementioned
configurations in the associated FPGA family. For each of
them, we generated 2 MB of random data and then used the
AIS-31 [1] and NIST 800-90B [2] statistical tests.

The results returned by these tests are split in two here,
and presented in Table III. For each test, the ”PASS” column
indicates if the tests passed successfully. The second column,
”entropy”, provides the result of the entropy estimation per-
formed by the tests. AIS-31 statistical tests employ a method
described in [10] to evaluate the entropy per bit. The entropy
evaluated here is the Shannon entropy (see Equation (6), where



TABLE II: Best set of PLL-TRNG parameters found by backtracking and comparison with the results from [7]

Configuration PLL0 PLL1 (KM , KD) fout0 fout1 Results from [7] This work

(M0, N0, C0) (M1, N1, C1) [MHz] [MHz] R [Mbit s−1] S [ps−1] R [Mbit s−1] S [ps−1]

Intel Cyclone V

Max. R (79, 8, 5) (10, 1, 3) (400, 237) 246.875 416.667 0.631 0.0913 1.042 (+65%) 0.099

Max. S (159, 16, 5) (10, 1, 3) (800, 477) 248.438 416.667 0.548 0.0988 0.521 0.199 (+101%)

Xilinx Spartan-6

Max. R (47, 6, 4) (16, 5, 1) (384, 235) 244.792 400.000 0.555 0.0913 1.042 (+88%) 0.094

Max. S (31, 4, 4) (43, 5, 3) (688, 465) 242.188 358.333 0.555 0.0913 0.521 0.167 (+83%)

Microsemi SmartFusion 2

Max. R (103, 13, 4) (8, 1, 3) (416, 309) 247.596 333.333 0.641 0.090 0.801 (+25%) 0.103

Max. S (159, 20, 4) (8, 1, 3) (640, 477) 248.438 333.333 0.548 0.098 0.521 0.159 (+62%)

X is the random variable and pi refers to the probability of
the outcome i).

H1(X) = −
n∑

i=1

pi log pi (6)

NIST 800-90B statistical tests use ten different entropy esti-
mation methods and keep the minimum of all the estimates.
However, in this case, it is the min-entropy which is estimated
(see Equation (7)). The min-entropy is always lower than the
Shannon entropy.

H∞(X) = min
i
(− log pi) (7)

We repeated this experiment 50 times for each configuration
for better statistical significance. The results are presented
in Table III. For each configuration, we considered that the
statistical tests passed successfully if it was the case for all 50
random data acquisitions. The entropy value given in Table III
is the average of the estimated entropy over all 50 data sets.

For each configuration, the statistical tests passed success-
fully. Moreover, the Shannon entropy per bit was estimated
to be between 0.99999 and 1, well above the 0.997 threshold
fixed by the AIS-31 standard [1]. For NIST 800-90B tests,
the min-entropy was estimated to be between 0.98950 and
0.98990, which again shows very good randomness quality.
Therefore, we can conclude that all PLL-TRNG configurations
are valid and generate random numbers of high entropy.

VI. EXPLORATORY DESIGN STRATEGIES FOR THE
PLL-TRNG ARCHITECTURE

The framework of constraint programming allows to specify
new constraints very easily to search for optimal PLL-TRNG
parameters. We mention here some new exploratory design
strategies which could be used to generate parameters for the
PLL-TRNG architecture.

A. PLL disparity

The PLL-TRNG can be considered as a differential archi-
tecture. Indeed, by using two PLLs and exploiting the jitter
between the two generated clocks as the source of randomness,

TABLE III: Experimental validation of the parameters with
AIS-31 and NIST 800-90B statistical tests

Configuration AIS-31 NIST 800-90B

PASS entropy PASS entropy

Intel Cyclone V

Max. R Ë 1 Ë 0.98953

Max. S Ë 1 Ë 0.98989

Xilinx Spartan-6

Max. R Ë 1 Ë 0.98990

Max. S Ë 0.99999 Ë 0.98976

Microsemi SmartFusion 2

Max. R Ë 1 Ë 0.98950

Max. S Ë 0.99999 Ë 0.98959

we assume that any global perturbation will have a similar
effect on both PLLs. Since the PLL-TRNG architecture is
differential, these global effects will be cancelled out and have
a lower impact on the randomness quality.

However, for both PLLs to be affected similarly by global
perturbations, their M , N and C parameters should be as close
as possible. Therefore, the M0

M1
, N0

N1
and C0

C1
ratios should be

close to 1. In the framework of constraint programming, this
constraint can be quickly added to the parameters search.

B. Distance between points in the reconstructed waveform

The coherent sampling principle used in the PLL-TRNG
aims at reconstructing a periodic waveform by sampling
it at a specific sampling frequency. The ratio between the
sampling frequency and the periodic waveform frequency is
a rational number. This is illustrated in Figure 4 where two
different ratios are used. The counter of the PLL-TRNG (see
Figure 2) stores the number of ones found in the reconstructed
waveform. Since the clocks are jittery, some points are not
always at a high or low logic level but lie on the edge
of the reconstructed waveform. They correspond to samples
taken near the clock edge, that are affected by the jitter and



contain randomness. As mentioned in Section III-B, the least-
significant bit of the counter is used as a random bit. This bit
is by definition the exclusive-OR of all the samples.

If jittery samples found on the edge were sampled succes-
sively, as shown in Figure 4a, that could imply that they are
not independent, affecting the randomness quality. Conversely,
they could be sampled far from one another, at a minimum
distance dmin, as shown in Figure 4b. This could prevent
correlation between jittery samples. This intuition should
be studied in future works. Again, filtering configurations
according to the minimum distance between samples in the
reconstructed waveform is easy by constraint programming.

sampling
signal

sampled
signal

reconstructed
waveform

(a) Consecutive points in the reconstructed waveform were sampled
consecutively

sampling
signal

sampled
signal

reconstructed
waveform

(b) Consecutive points in the reconstructed waveform were sampled
with a minimum distance dmin = 10

Fig. 4: Waveform reconstruction by coherent sampling

C. R× S product
As graphically shown in Figure 3, optimal (R, S) pairs

lie on the curve of a reciprocal function. Therefore, for
optimal (R, S) pairs, the R × S product is constant for each
FPGA family. Knowing the target family in which the PLL-
TRNG must be implemented, a designer can then use this
product to generate configurations. For a given throughput,
only configurations with the highest sensitivity to jitter will be
generated. Since the throughput is usually a primary criterion
when implementing a TRNG, a designer can then generate
optimal configurations easily without having to deal with
sensitivity to jitter.

VII. CONCLUSION AND PERSPECTIVES

In this article, we propose to use constraint programming
to search for optimal parameters for a PLL-based TRNG. We

also relax one design constraint about this TRNG architecture,
namely that only one of the two PLLs sees its output frequency
constrained by the surrounding digital design. Using the back-
tracking method, we were able to generate sets of parameters
for maximum throughput or maximum sensitivity to jitter for
three different FPGA families that improve significantly over
state-of-the-art methods. In comparison, we obtain an increase
in throughput of 59 % and increase in sensitivity to jitter of
82 % on average. We assess the randomness quality of data
obtained with the generated configurations with AIS-31 and
NIST 800-90B statistical tests.

In future works, integrating more constraints will be much
easier in the framework of constraint programming than with
previous approaches. As sketched out in the last section of
the article, exploratory strategies taking into account more
constraints are now possible. In particular, a better integration
of the physical model for randomness extraction could help
generate faster PLL-TRNG that meet the randomness quality
requirements.

ACKNOWLEDGEMENTS

This work was carried out in the framework of the
FUIAAP22-Project PILAS supported by Bpifrance.

The authors would like to thank Elie Noumon Allini for the
discussions about this work.

REFERENCES

[1] W. Killmann and W. Schindler, “A proposal for: Func-
tionality classes for random number generators,” 2011.
[Online]. Available: https://www.bsi.bund.de/SharedDocs/Downloads/
DE/BSI/Zertifizierung/Interpretationen/AIS 31 pdf

[2] M. S. Turan, E. Barker, J. Kelsey, K. A. McKay, M. L. Baish,
and M. Boyle, “SP 800-90B: Recommendation for the entropy
sources used for random bit generation,” 2018. [Online]. Available:
https://csrc.nist.gov/publications/detail/sp/800-90b/final

[3] V. Fischer and M. Drutarovský, “True random number generator em-
bedded in reconfigurable hardware,” in International Workshop on
Cryptographic Hardware and Embedded Systems, ser. Lecture Notes in
Computer Science, B. S. Kaliski Jr., Ç. K. Koç, and C. Paar, Eds., vol.
2523. Redwood Shores, CA, USA: Springer, Aug. 2002, pp. 415–430.

[4] M. Drutarovský, M. Simka, V. Fischer, and F. Celle, “A simple PLL-
based true random number generator for embedded digital systems,”
Computers and Artificial Intelligence, vol. 23, no. 5, pp. 501–515, 2004.

[5] F. Bernard, V. Fischer, and B. Valtchanov, “Mathematical model of
physical RNGs based on coherent sampling,” Tatra Mountains - Math-
ematical Publications, vol. 45, pp. 1–14, 2010.

[6] D. E. Knuth, “Backtrack programming,” in The Art of Computer
Programming. Addison-Wesley, 2019, vol. 4, ch. 7.2.2.

[7] E. Noumon Allini, O. Petura, V. Fischer, and F. Bernard, “Optimization
of the PLL configuration in a PLL-based TRNG design,” in Design,
Automation & Test in Europe Conference. Dresden, Germany: IEEE,
Mar. 2018, pp. 1265–1270.

[8] O. Petura, U. Mureddu, N. Bochard, and V. Fischer, “Optimization of the
PLL based TRNG design using the genetic algorithm,” in International
Symposium on Circuits and Systems. Baltimore, MD, USA: IEEE, May
2017, pp. 1–4.

[9] O. Petura, U. Mureddu, N. Bochard, V. Fischer, and L. Bossuet,
“A survey of AIS-20/31 compliant TRNG cores suitable for FPGA
devices,” in International Conference on Field Programmable Logic
and Applications, P. Ienne, W. A. Najjar, J. Anderson, P. Brisk, and
W. Stechele, Eds. Lausanne, Switzerland: IEEE, Aug. 2016, pp. 1–10.

[10] J.-S. Coron and D. Naccache, “An accurate evaluation of Maurer’s
universal test,” in Selected Areas in Cryptography, S. E. Tavares and
H. Meijer, Eds., vol. 1556. Kingston, Ontario, Canada: Springer, Aug.
1998, pp. 57–71.

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_pdf
https://csrc.nist.gov/publications/detail/sp/800-90b/final

	Introduction
	Related work
	PLL-TRNG architecture and parameters
	PLL parameters
	PLL-TRNG architecture

	Parameters search by constraint programming with backtracking
	Experimental results
	Implementation
	Generated configurations
	Random data evaluation with statistical tests

	Exploratory design strategies for the PLL-TRNG architecture
	PLL disparity
	Distance between points in the reconstructed waveform
	RS product

	Conclusion and perspectives
	References

