
HAL Id: hal-02937797
https://hal.science/hal-02937797

Submitted on 14 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HARQ-aware allocation of computing resources in
C-RAN

Francesca Bassi, Hatem Ibn-Khedher

To cite this version:
Francesca Bassi, Hatem Ibn-Khedher. HARQ-aware allocation of computing resources in C-RAN.
IEEE ISCC 2020 (IEEE Symposium on Computers and Communications 2020), Jul 2020, Rennes,
France. �hal-02937797�

https://hal.science/hal-02937797
https://hal.archives-ouvertes.fr


HARQ-aware allocation
of computing resources in C-RAN

Francesca Bassi∗ and Hatem Ibn Khedher†
∗Institut de Recherche Technologique SystemX, 8 avenue de la Vauve, 91120 Palaiseau, France

†LIPIADE, University of Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, 75006 Paris, France
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Abstract—The principal tenet of C-RAN is the softwarization
of the base-band signal processing, which enables the sharing
of computing resources among multiple radio heads. When the
aggregate demand exceeds the processing capacity, a fraction of
the radio packets is lost at PHY layer. Traditional computing
resource allocation policies aim to minimize the packet loss rate.

Dropping a PHY packet triggers a retransmission, unless the
lost packet corresponds to the last available HARQ round, in
which case the entirety of the radio resources spent on the
multiple transmissions go to waste. This suggests that allocating
computing resource accounting also for the HARQ transmission
history may make a more efficient use of the bandwidth.

We consider a simplified LTE uplink setting, and we measure
the performance at the lower MAC layer (accuracy, goodput
and average delay). We first compare the PHY-layer loss rate
minimization and the cross-layer approaches using an ILP formu-
lation. The cross-layer approach brings a tangible improvement,
especially in accuracy. This suggests, for future work, that joint
radio and computing resource allocation may further enhance
spectral efficiency. We finally propose a probabilistic algorithm
amenable to real-time operation which allows to mix strategies
via parameter tuning, and we use it to explore the region of
achievable goodput/accuracy trade-offs.

I. INTRODUCTION

Cloud-RAN or C-RAN [1], [2] is a radio access paradigm
for mobile networks capable of responding to the economic
challenges of network densification [3]. In the traditional
mobile architecture users access the network by connecting
to a radio base station. The base station can be functionnally
separated into radio functions, for the transmission of the
analog radio-frequency waveform, and base-band functions,
for the digital processing before radio-frequency conversion.
The enabler of C-RAN is the softwarization of the base-
band functions, which allows to split the base station into
a Radio Head (RH) and a Base-Band Unit (BBU). As the
base station in the traditional architecture, the RH needs
to be geographically deployed to provide radio coverage,
while the BBU can now run remotely, in a data center that
simoultaneously serves a multitude of RHs.

A big challenge for C-RAN is the respect of the latency
constraints imposed by the communication protocol stack
[4]. In LTE, for instance, the HARQ protocol triggers the
retransmission of a radio packet if the correct reception of
the message has not been acknowledged within 8 milliseconds.
This imposes a hard deadline of 3 milliseconds to complete the
base-band processing of a received subframe, accounting for
both the propagation time in the fronthaul and the processing

time in the BBU. Latency, bandwith and cost issues of the
fronthaul are the object of many studies (see [5] and references
therein). In order to solve some of these issues, alternative
functional splits have been proposed [6], where also a portion
of the base-band processing takes place in the distributed unit,
along with the radio functions. In this work we stick to the
standard functional split considered in [1], [2], with remote
RHs and central BBUs.

The policy of allocation of the shared computing resources
has an impact in many respects. Some works investigate strate-
gies to optimize the power consumption [7]; some consider
demand anticipation and resource provision [8]; some try to
to reduce the overall processing time exploiting parallelization
[9], [10]; some focus on the orchestration of the virtualized
functions [11]. The problem is especially interesting in the up-
link, where the central BBU is in charge of channel decoding.
Since each user transmits with a different Modulation Coding
Scheme (MCS), and since the processing times for different
MCSs vary widely [12], it may be difficult to anticipate
the instantaneous demand and allocate enough computing
resources, so that packets may not get processed within the
required deadline. We model these events as packet losses
at PHY layer. The computing resource allocation algorithms
found in the literature generally aim to minimize the packet
loss rate [9], [14], which is a very natural choice.

A packet loss triggers a negative acknowledgement in the
HARQ protocol at MAC layer. Hence, if the lost packet corre-
sponds to the last allowed transmission, the message will never
be correctly received, and the system squandered all the radio
resources spent on it with the last and previous transmissions.
Starting from this simple observation, we explore whether a
cross-layer policy for allocating the computing resources may
use the bandwidth more efficiently. We still assume that radio
scheduling and computing resource allocation are separate
processes, but we account in the latter for the retransmission
age of the message, i.e., for the HARQ round.

We consider a simplified version of the LTE uplink, where
each subframe is occupied by a single user, and we measure
the performance through the Bit Error Rate (BER), the average
delay and the Goodput at MAC layer. The Goodput is defined
as the (long-term) average number of correctly received bits
per unit of time [13]. The system and simulations setups are
described in detail in Sections II and III, respectively. The
allocation policy that minimizes the PHY packet losses is



formulated as an Integer Linear Program [14] in Section IV,
where we turn it in a cross-layer policy by incorporating the
HARQ retransmission age of the message in the objective
function. This achieves a consistent improvement in the BER,
for the same Goodput, at the expense of the average delay.
Resource allocation via ILP is not practically viable because
of its complexity. In Section V we propose a probabilistic
algorithm, which is amenable to real-time operation and al-
lows to implement the same strategies of the ILP formula-
tion by appropriately tuning its three parameters, incurring
a modest performance degradation. The low complexity of
the probabilistic algorithm allows to exhaustively explore the
space of the parameters, in Section V-A. This corresponds
to probing all mixed strategies, which is unfeasible with the
ILP formulation. It is confirmed that the strategy providing
the the most effective Goodput/accuracy trade-off consists in
allocating computing resources in priority to subframes with
high information content and old retransmission age.

II. SYSTEM SETUP AND PROBLEM DEFINITION

We consider a C-RAN architecture [1], [2] and we focus
on the uplink from multiple RHs towards a centralized BBU.
We assume that the radio scheduling, the PHY layer and the
lower MAC layer work as in LTE. Let N be the set of the
RHs, which we assume operate in the 20 MHz bandwidth,
so that the number of physical resource blocks per subframe
is 100 [12], [14], for all RH. We assume that each subframe
carries data of a single user and uses only one MCS.

In LTE the PHY subframes originate from the transmission
of MAC messages via a stop-and-wait HARQ process [15].
We consider synchronous HARQ, and each RH treats P = 8
parallel messages in a pre-defined order. The maximum num-
ber of transmissions per message is Tmax = 4. Each subframe
i is tagged by ri ∈ {1, 2, ..., Tmax}, which indicates which
HARQ round the subframe represents. Since the HARQ is
synchronous the tag is known at the BBU and does not need
to be signalled explicitly. We assume non-adaptive HARQ,
so that the MCS stays constant across HARQ retransmissions.
To allow HARQ control messages to be received on time each
subframe must be processed by the BBU within d = 2 TTIs
from reception, otherwise it is lost.

The BBU pool consists of the set C of CPU cores. Each core
in C has the same execution speed and can process at most
one subframe at a time. Processing is not parallelized and a
subframe fully occupies a core for the entire duration of its
processing. The MCS of subframe i determines its processing
time ti, as well as its information content of bi information
bytes [12]. Each RH presents a subframe to the BBU each
TTI, which in LTE has a duration of 1 ms. For simplicity,
we assume that K = |C|

d is an integer value. At each TTI
the resource allocation problem consists in reserving, for each
of the |N | most recently received subframes, the appropriate
amount of time in one of the K available CPU cores, so that
the subframe is processed within the deadline d. At each TTI,
if the system is in moderate load the expected value of the
demand of processing time is smaller or equal to the available

processing time, i.e.
∑

i∈N E[ti] ≤ dK. The expected number
of PHY subframes losses in the TTI is zero. Otherwise, the
system is in overload, and losses of PHY subframes are
expected. Since in our setup all the RHs present a subframe
at each TTI, all the subsets K experience the same level of
load (moderate or overload), depending on the value |N |.
So the resource allocation can be performed in independent
subgroups of K cores each, without loss of optimality.

We want to investigate the impact of the computing resource
allocation policy on the metrics observed at MAC layer. We
consider the Bit Error Rate (BER), defined as the number of
incorrectly received information bits over the total number of
transmitted information bits (an information bit is considered
incorrectly received if the subframe it belongs to has not
been ACKed after Tmax transmissions); the Goodput, defined
as the average number of information bits correctly received
per TTI; the average delay, defined as the average number of
transmissions for successfully received MAC logical unit. At
PHY layer, we consider the Subframe Rejection Rate (SRR),
defined as the number of lost (because of the resource allo-
cation policy) subframes over the total number of subframes
demanding processing; and the Bit Rejection Rate (BRR),
defined as the number of lost information information bits over
the total number of information bits demanding processing.

III. SIMULATION SETUP AND PARAMETER CHOICE

The performance of the considered computing resource allo-
cation strategies are obtained using Monte Carlo simulations,
whose setup is as follows. Each of the |N | RHs manages
a synchronous HARQ process with P = 8 parallel data
streams. All transmissions of the same message use the same
MCS (see Section III-A on MCS sampling). At each TTI
each RH presents a subframe to the BBU, and the computing
resource allocation algorithm specifies the set of subframes
which get processed. The algorithm may use information
about retransmission tags (known because of synchronous
HARQ), information content (dependent on MCS) and pro-
cessing time (dependent on MCS) of the subframes (see
Section III-B). Subframes rejected by the BBU trigger NACKs
in the HARQ process. Subframes accepted by the BBU might
be successfully (triggering ACK) or unsuccessfully (triggering
NACK) decoded. The decoding outcome is sampled using pre-
computed probabilities dependent on the retransmission tag
and MCS of the subframe (see Section III-C). The maximum
number of HARQ transmissions is Tmax = 4. The simulation
lasts 500 TTI, and the performance is evaluated in terms of
BER, Goodput, average delay and SRR, BRR. The simulations
use the GLPK optimization library to solve the ILP.

A. MCS sampling

When a MAC message is generated it is associated with
an MCS, which is constant for all HARQ transmissions. For
MCS sampling we use, as in [14], an empirical distribution
evaluated from the data set in [16]. The data set [16] records
real traffic in 4 mobile cells and reports the MCS occurrence.
The resulting empirical distribution has a median MCS equal



to 8, and a mean MCS equal to 8.62. The sampled MCS is
between 4 and 14 with probability 0.9.

B. Processing time and information content

Both the information content bi in information bits and the
processing time ti of subframe i can be determined by its
MCS. As the MCS increases, both ti and bi increase. In this
work we use the numerical values found in [12].

C. Decoding failure probabilities

In order to sample the decoding outcome (ACK or NACK)
of processed subframes, the Monte Carlo simulation needs
πk, defined as be the probability that a message is NACKed
after the k-th transmission. To estimate these probabilities we
make use of a data set obtained by running the LTE PHY
layer on Open Air Interface (OAI). The experiment concerns
the transmission in uplink (from User Equipment to RH) of
a MAC message. The PHY subframe is composed by 100
resource blocks. The MCS of the subframe and the SINR are
constant across HARQ retransmissions. The receiver performs
Chase Combining and the maximum number of transmissions
is Tmax = 4. The experiment is repeated 500 times for any con-
figuration of (SINR,MCS), with MCS ∈ {0, 2, 4, ..., 26} and
SINR ∈ [−5, 18] dB. The data set records the average Block
Error Rate (BLERk) after transmission k, k ∈ {1, 2, ..., Tmax}.
BLERk is the proportion of experiments where the MAC
message is in NACK after k transmissions have elapsed. An
estimate πk is obtained dividing the number of times NACK
happened after the k-th transmission by the total number of
times a unit has been transmitted at the k-th round. This is
calculated from the dataset as π1 = BLER1 for k = 1, and for
k > 1 as πk = BLERk

BLERk−1
. From the dataset we hence get the

estimates πk(MCS,SINR) for k ∈ {1, ..., Tmax}. In LTE the
radio scheduler allocates the radio resources (radio resource
blocks, power and MCS) such that BLER1 ≤ 0.1. Using
this information, we select for each MCS the SINR which
provides BLER1 ≤ 0.1. We then obtain estimates πk(MCS)
parametrized only by the MCS.

IV. RESOURCE ALLOCATION AS AN OPTIMIZATION
PROBLEM

Given the K available cores and the set of instantaneous
processing demands, the resource allocation problem consists
in identifying the subset of subframes which will be processed
and their execution cores. The problem can be formulated as an
Integer Linear Program whose solution (evaluated each TTI)
is the computing resource allocation policy.

This formulation has already been explored in [14], where
the optimization problem is expressed as follows:

maximize
∑
i∈N

∑
c∈K

xci (1)

subject to xci ∈ {0, 1}, ∀i ∈ N , ∀c ∈ K, (2)∑
c∈K

xci ≤ 1, ∀i ∈ N , (3)∑
i∈N

ti x
c
i ≤ d, ∀c ∈ K. (4)

Constraint (2) says that xci is a binary quantity. The value
xci = 1 means that subframe i gets assigned to core c
for processing. Constraint (3) imposes that each subframe
is processed at most once, and constraint (4) imposes that
the processing of all the subframes allocated to the same
core is completed within the deadline d. The objective (1)
is to schedule a maximum number of subframes. In case of
moderate load all requests get satisfied. In case of overload
subframes associated with a smaller ti get processed with
higher priority, which maximizes the number of subframes
which get processed. Since ti increases with the MCS [12],
subframes with high MCS have a bigger risk of being lost.

In [14] it is also considered an objective function accounting
for the information content of the subframe. The constraints
(2), (3), (4) remain the same, while the objective function is

maximize
∑
i∈N

∑
c∈K

xci bi, (5)

where bi is the information content in bytes of subframe i. The
allocation strategy corresponding to the ILP with objective
function (5) gives higher priority to subframes with high
information content (high MCS). Since these are also the most
demanding in processing time, this strategy must find the best
trade-off between information content and execution time.

We propose a cross-layer resource allocation policy via ILP
formulation, with constraints (2), (3), (4) and the following
objective function:

maximize
∑
i∈N

∑
c∈K

xci

(
ε+ α

ri
Tmax

+ β
bi
B

)
, (6)

where ε, α and β are parameters taking values in {0, 1}. The
parameter B in (6) is the maximum information content of a
subframe, which corresponds to the information content of
a subframe with maximum MCS [12]. The quantity bi/B
is hence the normalized information content of subframe
i. Similarly, ri/Tmax indicates the normalized transmission
age of subframe i. Notice that for (ε, α, β) = (1, 0, 0) the
objective function (6) becomes (1); for (ε, α, β) = (0, 0, 1)
the objective function (6) becomes equivalent to (5). When
(ε, α, β) = (0, 1, 0) we obtain a scheduling policy where older
subframes in the HARQ protocol have higher priority. We
also consider (ε, α, β) = (0, 1, 1), strategy where the highest
priority is given to subframes with big information content
and also old in the HARQ process.

The solid lines in Figures 1 and 2 present the metrics,
at PHY layer and MAC layer respectively, of the resource
allocation algorithm via ILP formulation (6), (2), (3), (4). In
this setting K = 1. The legend indicates the vector (ε, α, β)
used to define the objective function (6). All metrics are shown
as a function of the number of connected RHs. As it can be
seen in Figure 1 from the average CPU load (expressed as the
fraction of the scheduled computation resources), when more
than 25 RHs are connected the system is in overload. The
SRR in Figure 1 shows that all considered strategies provide
similar results on the number of processed PHY subframes.
As expected (ε, α, β) = (1, 0, 0) (yellow curve) gives the best
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Fig. 1. PHY-layer performance of the scheduling algorithm via ILP.

SRR, which is however only less than 1 dB away of the worst
case. This suggests that PHY losses are not a very good metric
to guide the choice of the allocation policy, since there is not
a strong reason to prefer a policy over the others based on
SRR only. On the other hand, the BRR in Figure 1 shows that
the ILP for (ε, α, β) = (0, 0, 1) (red curve), provides the best
BRR [14], and that the improvement over to the worst case
(yellow curve) is substantial (over 5 dB). The intuition that
optimizing the number of processed information bits a PHY
layer is a good proxy for optimizing the Goodput at MAC
layer is confirmed by the plot of the Goodput in Figure 2,
where we can see that the red curve is the best performance.
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Fig. 2. MAC-layer performance of the scheduling algorithm via ILP.

Figure 2 shows the MAC layer metrics, on which we
evaluate, in this work, the performance of the allocation policy.
Inspecting the BER, we can see that maximizing the number of
processed subframes (yellow curve) and even maximizing the
number of processed information bits (red curve) are subopti-
mal with respect to ILP for (ε, α, β) = (0, 1, 0) (blue curve),
which gives priority to older subframes. This confirms that
considering also the retransmission age brings the performance
improvement in accuracy we hoped for. This comes at the
cost of a degradation of the average delay, which however
does not impact too dramatically the Goodput, as visible
in Figure 2. Finally, notice that optimizing the number of



processed subframes (yellow curve) gives, albeit achieving the
best average delay, the worst Goodput among the considered
strategies, due to the very poor accuracy, as seen in the plots
in Figure 2.

The two good strategies that emerged so far can be com-
bined. Maximizing the processed information bits while giving
priority to older subframes, as done in ILP with (ε, α, β) =
(0, 1, 1) (purple curve), further increases the gain in terms of
BER of the (0, 0, 1) strategy (blue curve), without degrading
in a very significant way the average delay and keeping
the Goodput close to the blue curve. This strategy globally
achieves a good trade-off between accuracy and Goodput.

V. THE PROBABILISTIC ALGORITHM

Computing resource allocation via ILP formulation is not a
viable solution for real systems because it is a computationally
complex problem which needs to be solved very frequently (at
each TTI). In this section we propose an alternative algorithm,
which draws inspiration from the results of Section IV. The
algorithm consists in repeatedly sampling elements from the
set of received subframes and scheduling them for processing
as long as computing resources are still available. More
precisely, let S be the set of subframes demanding processing
resources at a given TTI, and let TK be the processing time
available in the BBU. The algorithm works in rounds. At
the beginning of each round, the subframe i is sampled with
uniform distribution from S. If ti ≤ TK, i.e. enough processing
resources are still available, subframe i gets scheduled with
probability

ϕi =
1

(ε+ α+ β)

(
ε+ α

ri
Tmax

+ β
bi
B

)
. (7)

If subframe i is scheduled, TK is diminished by ti and
subframe i is removed from S. If i is not scheduled the
available computing resources stay unchanged and the sub-
frame is not removed from S. The algorithm repeats rounds
until the remaining resources in TK are not sufficient to
process the fastest element still in S, or until no subframe
has been scheduled in the last L consecutive samplings. The
expected number ν of rounds to complete the algorithm is
upper bounded by

ν ≤ TK
mini{ti}

1

mini{ϕi}
+ L. (8)

The computational cost of the probabilistic algorithm can
be hence approximated by the cost of performing ν random
samplings.

The parameters ε ∈ {0, 1}, α ∈ {0, 1} and β ∈ {0, 1} in
(7) play the same role as in the ILP objective function (6).
For (ε, α, β) = (1, 0, 0) the probabilistic algorithm samples
subframes from S and allocates them with probability 1 until
the computing resources are occupied. For (ε, α, β) = (0, 0, 1)
the higher is the information content of the sampled subframe,
the higher is the probability that it gets scheduled. Similarly,
for (ε, α, β) = (0, 1, 0) the older is the HARQ transmission
history of the sampled subframe, the higher is the probability

that it gets scheduled. For (ε, α, β) = (0, 1, 1) the probability
of getting scheduled increases both with the information
content and with the retransmission age.

The performance of the probabilistic algorithm is indicated
by the dotted curves in Figures 1 and 2. The curves keep
the same color code of their ILP counterparts. As expected,
for the SRR the performance of the probabilistic algorithm
for (1, 0, 0) (yellow curves) is suboptimal with respect to
the performance of the ILP algorithm; similarly, the ILP
algorithm outperforms the probabilistic algorithm for (0, 0, 1)
(red curves) for the BRR. However we observe that in both
cases the probabilistic algorithm performs better with respect
to the BER observed at MAC layer, as visible in Figure 2.
For the (0, 1, 0) strategy, the ILP and probabilistic algorithms
achieve comparable performance in terms of average delay
and Goodput, even if the BER is mildly degraded for the
probabilistic algorithm. Combining strategies, as in (ε, α, β) =
(0, 1, 1) does not provide, with the probabilistic algorithm, the
same gain over the (0, 1, 0) strategy as in the ILP formulation,
but still remains the best option to minimize the BER.

The performance obtained with the probabilistic algorithm
confirms as well that considering the retransmission age of
the subframes in the allocation of the computation resources
may improve significatively the performance of the system,
especially in terms of accuracy.

A. Parameter optimization

To allow the comparison between the ILP-based and the
probabilistic algorithms we have considered, so far, only
binary values for the parameters (ε, α, β). In this subsection
we relax this requirement and we allow (ε, α, β) to take real
values in the interval [0, 1]3, to investigate whether better
performance trade-offs are possible with the probabilistic al-
gorithm. Because of the normalizing factor in (7) the different
strategy operated by the probabilistic algorithm depends on
the relative magnitudes of the elements in (ε, α, β) and not on
their absolute values, so that restricting the dynamics to [0, 1]
is done without loss of optimality.

We focus on the case of K = 1 and |N | = 30, and
we simulate the behavior of the probabilistic algorithm for
various configurations of the triple (ε, α, β). Figure 3 rep-
resents the achievable BER at MAC layer, as a function of
the corresponding BRR at the PHY layer. Each dot in the
scatter plot corresponds to a configuration of (ε, α, β). The plot
shows that the previously considered cases roughly describe
the boundaries of the regions of the achievable trade-offs. The
dynamic of the BER axis in Figure 3 spans about 10 dB,
which indicates that the choice of the parameters may greatly
affect the accuracy of the algorithm. As already suggested
by Figure 1, the strategy (ε, α, β) = (0, 1, 1) minimizes the
BER. From Figure 3 is evident that optimizing the accuracy
at the PHY layer (red dot) leaves some potential untapped,
and choosing a cross-layer strategy where also the HARQ
retransmission age is considered allows to gain up to 5 dB.

By looking at Figure 3 the strategies (ε, α, β) = (0, 1, 0)
(blue dot) and (ε, α, β) = (0, 1, 1) (purple dot) appear
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Fig. 3. Achievable BER at MAC layer as a function of the BRR at the PHY
layer (bottom), varying the parameters of the probabilistic algorithm.

equivalent. Figure 4 shows the trade-off achievable between
BER and Goodput, and shows that the cross-layer strategy
(ε, α, β) = (0, 1, 1) is able to minimize the BER while
very nearly achieving the maximum Goodput. It is however
worth noticing that the maximum improvement in Goodput
achievable by varying the parameters is of about 2%. This
confirms that the choice of the strategy is most critical with
respect to accuracy. Finally, the position of the yellow dot in
Figure 4 shows that the policy of limiting the subframes losses
at the PHY layer, however a natural choice, achieves one of
the least satisfying performance trade-off.

VI. CONCLUSION

We have considered computing resources allocation for
the uplink in a C-RAN architecture. When the system is in
overload, it is necessary to draw a policy to decide which
subframes will not be processed. We have considered a system
where the computation resources are allocated separately from
the radio resources. Minimizing the data losses at PHY layer,
although a very natural strategy, has been proven suboptimal
when the performance of the system is gauged at the upper
layer. A cross-layer strategy accounting also for the HARQ
retransmission process at the upper layer has allowed to
sensibly improve the performance, especially with respect to
accuracy.

We have considered here a simplified setting where each
subframe hosts data of one user. In real systems the same
subframe may simultaneously host data of multiple users.
The probabilistic algorithm can be adapted to this case, by
extending the values that the tag ri may take to account for
the “efficient normalized age” of the subframe.

This study showed that the cross-layer strategy may improve
the overall spectral efficiency. This suggest that tackling the
scheduling of the radio and the computing resources jointly is
a good direction for future work.
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and M. Hadji, “Real Traffic-Aware Scheduling of Computing Resources
in Cloud-RAN,” International Conference on Computing, Networking
and Communications (ICNC), Big Island, Hawaii, 2020.

[15] A. Larmo A, M. Lindstrom, M. Meyer, G. Pelletier, J. Torsner, and
H. Wiemann, “The LTE link-layer design,” IEEE Communications
magazine 47, no.4, pp. 52–59, May 2009.

[16] H. D. Trinh, N. Bui, J. Widmer, L. Giupponi, and P. Dini, “Analysis and
modeling of mobile traffic using real traces,” in Proc. IEEE PIMRC,
2017.


