The effect of nsPEF on glioblastoma cancer-like stem cell transcription and protein expression Lynn C Carr, Sofiane Saada, Barbara Bessette, Cristiano Palego, Arnaud Pothier, Delia Arnaud-Cormos, Philippe Lévêque, Fabrice Lalloué # ▶ To cite this version: Lynn C Carr, Sofiane Saada, Barbara Bessette, Cristiano Palego, Arnaud Pothier, et al.. The effect of nsPEF on glioblastoma cancer-like stem cell transcription and protein expression. BioEM2020, Joint Meeting of the BioElectroMagnetics Society and the European BioElectromagnetics Association, Jun 2020, Oxford, United Kingdom. hal-02937774 HAL Id: hal-02937774 https://hal.science/hal-02937774 Submitted on 18 Dec 2020 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. # The effect of nsPEF on glioblastoma cancer-like stem cell transcription and protein expression Lynn Carr^{1,3}*, Sofiane Saada²*, Barbara Bessette², Cristiano Palego³, Arnaud Pothier¹, Delia Arnaud-Cormos¹, Philippe Leveque¹, Fabrice Lalloué² * Authors contributed equally to this work. XLIM-UMR 7252, University of Limoges/CNRS, 87060 Limoges, France, CAPTuR-EA 3842, University of Limoges, 87025 Limoges, France, Bangor University, Bangor, LL57 1UT, United Kingdom #### **Abstract** The SUMCASTEC project aims to isolate and neutralise glioblastoma cancer stem-like cells (CSC) using electromagnetic stimulation. With these objectives in mind, normal populations and CSC enriched populations of U-87 MG cells were exposed to nanosecond pulsed electric fields and mRNA and protein expression differences were analysed. ### **Presented Work** Glioblastoma multiforme (GBM) is a common and aggressive tumour of the glia affecting the central nervous system. It is highly invasive and resistant to all current treatments, with the median survival time for patients being 14.6 months. Current standard treatment includes surgical resection, chemotherapy and radiotherapy^{1,2}. Cancer stem-like cells (CSC) have been identified in GBM tumour masses³ and their multipotentiality, ability to self-renew and resistance to chemotherapy make them a key target for novel GBM treatments. SUMCASTEC⁴ is part of the European Union's Horizon 2020 research and innovation program. The project aims to isolate and neutralise glioblastoma (CSC) using electromagnetic stimulation. As part of SUMCASTEC this study focuses on the effects of nanosecond pulsed electric fields (nsPEF) on the glioblastoma cell lines U-87 MG. A cuvette exposure system was used to apply nsPEF to cells that had been cultured under normal conditions and to those that have been cultured under conditions that result in an enrichment in CSC. Transcriptional analysis and protein expression studies were carried out on these cells. # Acknowledgement This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 737164 SUMCASTEC. # References - 1. Stupp, R. *et al.* Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. *New Engl. J. Med.* **352**, 987–996 (2005). - 2. Wilson, T. A. *et al.* Glioblastoma multiforme: State of the art and future therapeutics. *Surg. Neurol. Int.* **5**, 64 (2014). - 3. Singh, S. *et al.* Identification of human brain tumour initiating cells. *Nature* **432**, 396–401 (2004). - 4. http://www.sumcastec.eu/