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COMPUTATION OF LYAPUNOV FUNCTIONS UNDER STATE

CONSTRAINTS USING SEMIDEFINITE PROGRAMMING

HIERARCHIES

MARIANNE SOUAIBY, ANEEL TANWANI, AND DIDIER HENRION

Abstract. We provide algorithms for computing a Lyapunov function for a
class of systems where the state trajectories are constrained to evolve within
a closed convex set. The dynamical systems that we consider comprise a
differential equation which ensures continuous evolution within the domain,
and a normal cone inclusion which ensures that the state trajectory remains
within a prespecified set at all times. Finding a Lyapunov function for such
a system boils down to finding a function which satisfies certain inequalities
on the admissible set of state constraints. It is well-known that this problem,
despite being convex, is computationally difficult. For conic constraints, we
provide a discretization algorithm based on simplicial partitioning of a simplex,
so that the search of desired function is addressed by constructing a hierarchy
(associated with the diameter of the cells in the partition) of linear programs.
Our second algorithm is tailored to semi-algebraic sets, where a hierarchy of
semidefinite programs is constructed to compute Lyapunov functions as a sum-
of-squares polynomial.

1. Introduction

Constrained dynamical systems, where the evolution of state trajectories is con-
fined to a predefined set, arise in different applications. Mathematically, given a
closed convex set S ⊂ R

n, and a continuously differentiable function f : Rn → R
n,

one possible way to describe the evolution of constrained systems is via the differ-
ential inclusion

(1) ẋ ∈ f(x)−NS(x)

where NS(x) ∈ R
n denotes the outward normal cone to the set S at the point

x ∈ R
n. An absolutely continuous function x : [0, T ] → R

n is a solution of (1) if
there exists a (possibly discontinuous and state-dependent) function η : [0, T ] → R

n

such that (1) holds for almost every t, and η(t) ∈ −NS(x(t)), for all t ≥ 0. In other
words, if at a time t ∈ [0, T ], x(t) is in the interior of S, then η(t) is essentially equal
to 0. However, if x(t) is on the boundary of set S, then the vector η(t) ∈ −NS(x(t))
is chosen such that ẋ(t) = f(x(t)) + η(t) points inside the set S, which allows the
motion to continue within the set S. In other words, one can also interpret the
evolution of the trajectories of system (1) to be constrained in such a manner that
x(t) ∈ S, for each t ≥ 0.

System of form (1) are naturally related to projected dynamical systems, and
connections can be drawn between constrained system (1) and other classes of
nonsmooth systems (Brogliato and Tanwani, 2020). By and large, such models
have found useful applications in the modeling of electrical circuits, mechanical
systems with impacts (Acary et al., 2011; Adly, 2017; Leine and van de Wouw,
2008). Some variants of these systems are also studied in (Tanwani et al., 2018) in
the context of estimation and output regulation problems.

This work is supported by ANR project ConVan, grant number ANR-17-CE40-0019-01.
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In this article, we are interested in developing tools for stability analysis of con-
strained system using Lyapunov functions. In the literature, we basically find two
approaches for finding Lyapunov functions for systems of form (1) which mostly
focus on f(x) = Ax, with A ∈ R

n×n being a matrix. In the first approach, the
nonsmooth multiplier η is seen as a nonlinearity in the feedback and the interac-
tion of the differential equation with the nonlinearity η is interpreted as a Lur’e
system. With this perspective, and under some passivity assumptions, the result-
ing Lur’e system is shown to be asymptotically stable with a quadratic positive
definite Lyapunov function. However, this approach imposes certain structural re-
quirements on the system dynamics, which is not always desirable. If one works
without such assumptions, then it is important to take into account the constraints
imposed on the state trajectories of system (1). With the constraint set being the
positive orthant, this second viewpoint is directed at computing the copositive Lya-
punov functions (which are positive definite only in the positive orthant, and not
necessarily in the entire state space). Sufficient conditions for finding copositive
Lyapunov functions of complementarity systems appear in (Goeleven et al., 2003;
Goeleven and Brogliato, 2004; Camlibel et al., 2006), where once again these con-
ditions are aimed at finding copositive matrices with f(·) being linear, so that the
quadratic form associated with the resulting copositive matrices describes a Lya-
punov function. There is no obvious indication in these works about how they could
be generalized to nonlinear f(·) in (1). Even if such conditions could be formulated,
the computational complexity of checking such conditions remains unknown.

Stability analysis using copositive Lyapunov functions, for system (1) with f(·)
nonlinear and S being the positive orthant of R

n, have been addressed in our
recent work (Souaiby et al., 2019) where we have shown that, for a certain class of
complementarity systems, if the origin is globally exponentially stable then there
exists a continuously differentiable copositive Lyapunov function. For computing
such a function numerically. In this paper, we extend those ideas to study more
general constraint sets S and how our earlier algorithms can be adapted for these
broader class of sets.

The first of these algorithms corresponds to checking the inequalities, associated
with the search of Lyapunov function, over a finite set only. Here, we present a
modification of this algorithm when the constraint set is a polyhedral cone, instead
of just the positive orthant. In the literature, similar ideas have been used for
checking copositivity of a quadratic form (Bundfuss and Dür, 2008, 2009; Nie et al.,
2018). Among these, the algorithms proposed in (Bundfuss and Dür, 2008, 2009)
are based on using the homogenous structure of the function, and via suitable
partitioning, transform the problem of checking copositivity to solving a linear set
of equations. We adopt this philosophy in our work here as well. In particular,
if the vector field f in (1) is homogenous, our search boils down to computing a
function which satisfies a given set of inequalities on the standard simplex only.
We partition this simplex in an appropriate way, and check the inequalities at
the discrete nodes of the partition, and solve for the coefficients of the desired
polynomial copositive Lyapunov function. As we increase the nodes in our partition,
a converging hierarchy of linear programs is established. The results are backed up
by academic examples.

The other method that we use is based on sum-of-squares (SOS) decomposi-
tion of the Lyapunov function. While checking if a function is positive everywhere
is numerically hard, checking if it admits an SOS decomposition is a semidefi-
nite program (Powers and Wörmann, 1998). Hence, numerical tools based on
SOS optimization have been developed extensively over the past two decades to
compute Lyapunov functions, see e.g. (Parrilo, May 2000; Prajna et al., 2002;
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Henrion and Garulli, 2005; Chesi et al., 2009). In the context of systems with
switching vector fields, the construction of Lyapunov functions using SOS is stud-
ied in Papachristodoulou and Prajna (2009); Ahmadi and Parrilo (2017); Ahmadi
and Jungers (2018). An overview of sum-of-squares techniques can be found in
(Lasserre, 2015), and applications of semidefinite programming for solving polyno-
mial inequalities in control systems related problems appear in (Henrion, 2013).
In contrast to our work in (Souaiby et al., 2019) with constraints being positive
orthants only, we consider compact semi-algebraic sets in this work. We provide
sufficient conditions which alleviate the need to compute the analytic solution to a
quadratic optimization problem (on the boundary of S) to check the correspond-
ing Lyapunov inequalities. This allows us to overcome the computational burden
associated with the SOS technique proposed in (Souaiby et al., 2019).

2. Problem Setup

In this article, we focus on a particular class of constrained systems described
by

ẋ = f(x) + η(2a)

η ∈ −NS(x),(2b)

where f : Rn → R
n is locally Lipschitz continuous with f(0) = 0. The set S is

assumed to be closed, and convex, so that NS(x) is defined as

NS(x) := {η ∈ R
n | 〈η, y − x〉 ≤ 0, ∀y ∈ S}.

Since our aim is to provide computational methods for stability analysis, we work
with constraint sets S which are finitely generated. In particular, the following
assumption is imposed throughout the article:

(A1) The set S is convex, contains the origin {0}, and is described as

(3) S := {x ∈ R
n | gi(x) ≥ 0, i = 1, . . . ,M}

for some continuously differentiable functions gi : R
n → R. Furthermore, the

gradients ∇gi(x) 6= 0 in some neighborhood of the set {x ∈ R
n | gi(x) = 0}.

Based on the discussion following (1), it follows that if f does not admit finite
escape time, then there exists a solution to system (2) which stays in the set S for
all times. Such a solution corresponds to the particular selection of η in (2b). In
other words, if x is on the boundary of the set S, then the vector −η is given by the
projection of f(x) onto the normal cone to the set S, that is, NS(x), see (Brogliato
and Tanwani, 2020). For simulation of such systems, an optimization problem is
thus solved, at the boundary of the constraint set, to compute η.

2.1. Stability Notions. We first review the stability notions which are to be
adapted with respect to the constrained domain, and then provide the definition of
Lyapunov functions which we seek for checking stability of system (2).

Definition 1 (Stability). The origin is stable in the sense of Lyapunov if for every
ε > 0 there exists δ > 0 such that

x0 ∈ S, ‖x0‖ ≤ δ ⇒ ‖x(t, x0)‖ ≤ ε, ∀t ≥ t0.

The origin is locally asymptotically stable if it is stable in the sense of Lyapunov
and there exists ρ > 0 such that

x0 ∈ S, ‖x0‖ ≤ ρ ⇒ lim
t→+∞

‖x(t, x0)‖ = 0.

The origin is globally asymptotically stable if the latter implication holds for arbi-
trary ρ > 0. The origin is globally exponentially stable if there exists c0 > 0 and
α > 0 such that ‖x(t, x0)‖ ≤ c0e

−αtx0, for every x0 ∈ S.
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Compared to the conventional definitions of stability for unconstrained dynami-
cal systems, our domain of interest is reduced to the set S in system (2). Also, the
vector field jumps instantaneously at the boundaries of the set S, which may have
an impact on the stability of the system. The following example motivates why it
is not enough to analyze stability just by looking at the vector field f in (2), and
that the set S must also be taken into consideration.

Example 1. Let f(x) = Ax with A =
[
−1 −2
−1 −1

]
, and S = {x ∈ R

2 | 4x1 − x2 ≥
0, 4x2 − x1 ≥ 0}. Matrix A is not Hurwitz stable since one of its eigenvalues
is in the right-half complex plane. However, constrained system (2) is globally
asymptotically stable, see our later Example 2 in Section 3 for a proof based on
a Lyapunov function. Hence, this example shows that the constraints make the
system stable, even if the unconstrained system is unstable.

Similarly, one can construct examples where the vector field f , without any con-
straints would result in state trajectories converging to the origin, but the presence
of constraints makes the dynamical system (2) unstable, for the same vector field.
Such examples show that, when developing Lyapunov methods for analyzing sta-
bility, it is not enough to just look at the vector field f , without looking at set
S.

2.2. Lyapunov Functions with Constraints. Based on the above notions, one
has to adapt the notion of Lyapunov functions when analyzing the stability of
constrained systems of the form (2). It is thus of interest to introduce Lyapunov
functions which describe the qualitative behavior of the state trajectories on the
set S only. With this observation, the following definition of Lyapunov functions
for (2) provides more flexibility:

Definition 2 (Constrained Lyapunov Function). System (2) has a continuously
differentiable (global) Lyapunov function V : Rn → R with respect to S if

(1) There exist class K∞ functions1 α, α such that

α(‖x‖) ≤ V (x) ≤ α(‖x‖), ∀ x ∈ S;

(2) There exists a class K function α such that

〈∇V (x), f(x)〉 ≤ −α(‖x‖), ∀x ∈ int(S),(4a)

〈∇V (x), f(x) + ηx〉 ≤ −α(‖x‖), ∀x ∈ bd(S),(4b)

where −ηx is the projection of f(x) on NS(x), such that f(x)+ηx ∈ TS(x).

In this article, we are interested in computing Lyapunov functions in the sense
of Definition 2 and for that, two classes of algorithms are proposed in Section 3
and Section 4, depending upon the structure imposed on the vector field f and the
constraint set S in (2).

3. Conic Sets and Copositive Programming

We first consider the question of computing the Lyapunov function for system (2)
under the following assumption

(A2) The function f : Rn → R
n is locally Lipschitz continuous, satisfies f(0) = 0,

and is homogenous, that is, there exists d ∈ R such that for every λ > 0,

f(λx) = λdf(x).

1A function α : R+ → R+ is said to be of class K if it is continuous, it satisfies α(0) = 0,
and it is increasing everywhere on its domain. It is said to be of class K∞ if it is, in addition,
unbounded.
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(A3) The set S is a closed convex cone, which we denote by K and is described as

K = {x ∈ R
n |Cx ≥ 0}

for some matrix C ∈ R
m×n.

3.1. Necessary Conditions. When addressing the question of computing a Lya-
punov function, the first fundamental question is to determine the class of func-
tions where the search should be performed. For the systems of form (2), under
assumptions (A2) and (A3), an answer to this question appears in our recent work
(Souaiby et al., 2019). The following statement thus specifies this function class:

Theorem 1. Consider the system (2) under assumptions (A2) and (A3). If the
origin is globally exponentially stable, then there exists a homogenous polynomial
h : Rn → R, such that, for some non-negative integer r, the function

(5) V (x) =
h(x)

‖x‖2r

is a Lyapunov function for (2).

The only information from Theorem 1, that we will use in the remainder of this
section, is the function class for the Lyapunov function specified in (5).

3.2. Polynomial Inequalities. To compute the Lyapunov function of the form
(5) numerically, we fix the denominator and reformulate our problem as finding the
homogenous polynomial in the numerator which satisfies certain inequalities. We
carry out the steps by specifying the inequalities that need to be satisfied, and in
the next section, provide the algorithm using convex optimization methods that
can be implemented for computing such functions.

Based on the result of Theorem 1, we consider V of the form

V (x) =
h(x)

(
∑n

i=1 x
2
i )

r
=

h(x)

‖x‖2r2

where h(x) is a homogeneous polynomial, and x = (x1, x2, . . . , xn)
⊤ ∈ K, and r is

a non-negative integer. The gradient of this function, denoted by ∇V (x) ∈ R
n, is

∇V (x) =
‖x‖22∇h(x) − 2rh(x)x

‖x‖
2(r+1)
2

.

We now introduce

s0(x) = −‖x‖22 〈∇h(x), f(x)〉 + 2rh(x) 〈x, f(x)〉 .

Let Fi := {x ∈ K | (Cx)i = 0}, denote a face of the cone K, for i ∈ {1, . . . ,m}, and
let si(x) be defined as

si(x) = −
〈
‖x‖22∇h(x)− 2rh(x)x, f(x) + ηx

〉
, x ∈ Fi.

To check the conditions in (4) of Definition 2, and find V of the form (5), we thus
need to find a homogenous function h, and a nonnegative integer r, such that

h(x) ≥ 0, ∀x ∈ K(6a)

s0(x) ≥ 0, ∀x ∈ K(6b)

si(x) ≥ 0, ∀x ∈ Fi, i ∈ {1, . . . ,m} .(6c)
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3.3. Algorithm Description. The basic idea behind our algorithm for systems
with conic sets, and homogenous vector fields, is to use the structure of the system
so that the inequalities in (6) need to be checked only for finitely many points over
a compact set. In our case, this compact set turns out to be a simplex, or a finite
union of simplices.2 We then select a certain number of points in the simplex and
evaluate the inequalities (6) with a certain polynomial function parameterized by
finitely many unknowns. This allows us to construct an inner approximation of
copositive polynomials with respect to cone K.

Because of the conic structure of K, we get two nice properties that are desirable
for implementing an algorithm:

• Let Oj , j = 1, . . . , 2n, denote the orthants of Rn, and let Kj := Oj ∩K, Fij :=
Oj ∩ Fi, for i = 1, · · · ,m. Then, each Kj and Fij is a closed convex polyhedral
cone.

• For a homogenous polynomial h ∈ R
d[x] of degree d, it holds that

(7) h(x) ≥ 0, ∀x ∈ K ⇐⇒ h(x) ≥ 0, ∀x ∈ K, ‖x‖ = 1.

As a result of these properties, it is convenient to introduce the simplices obtained
by intersecting the cones Kj or Fij with the set {x ∈ R

n | ‖x‖1 = 1}, that is,

Σj := {x ∈ Kj | ‖x‖1 = 1} , Σij := {x ∈ Fij | ‖x‖1 = 1} .

We next reduce the task to checking the inequalities on a finite number of points
in each of the simplex Σj and Σij .

Because of equivalence in (7), positivity of a homogenous polynomial h is then
expressed as

h(x) ≥ 0 for all x ∈
2n⋃

j=1

Σj ∪
(
∪m
i=1 Σij

)

3.3.1. Simplex Discretization: Our goal is to discretize the simplex Σ and obtain a
hierarchy of linear inequalities with respect to the discretization points which allow
us to find the desired function.

Definition 3. Let Σ be a simplex in R
n. A family P =

{
∆1, . . . ,∆m

}
of simplices

satisfying

Σ =

m⋃

i=1

∆i and int∆i ∩ int∆j = ∅ for i 6= j

is called a simplicial partition of Σ.

For a simplicial partition P = {∆1, . . . ,∆m} of Σ, we let WP denote the set of
all vertices of simplices in P , and EP the set of all edges of simplices in P . The
cardinality of WP is p = |WP |.

3.3.2. Tensor representation: As a final tool, we introduce tensors, which generalize
the notion of a matrix, and will be used for compact representation of polynomials
and its values on the vertices of simplical partition.

2An m-simplex Σ is an m-dimensional polytope which is the convex hull of its m+ 1 vertices
{x0, x1, . . . , xm}, namely

Σ :=

{

θ0x
0 + . . . θmxm

∣

∣

∣

∣

m
∑

i=0

θi = 1 and θi ≥ 0, ∀ i ∈ {1, . . . , m}

}

.



SEMIDEFINITE PROGRAMS FOR LYAPUNOV FUNCTIONS 7

Definition 4. A tensor H of order d over Rn is a multilinear form

R
n × R

n × · · · × R
n

︸ ︷︷ ︸

d times

→ R

(x1, x2, . . . , xd) 7→ H [x1, x2, . . . , xd]

where

H [x1, x2, . . . , xd] =

n∑

i1=1

n∑

i2=1

n∑

id=1

hi1,i2,...,idx
1
i1
· · ·xd

id

and hi1,i2,...,id corresponds to a real number from a table with nd entries, indexed
by i1, i2, . . . , id ∈ {1, . . . , n}. We say that H is symmetric if

hi1,i2,...,id = hj1,j2,...,jd

whenever i1+i2+· · ·+id = j1+j2+· · ·+jd, for all possible permutations i1, i2, . . . , id
and j1, j2, . . . , jd of {1, . . . , n}.

A matrix H ∈ R
n×n describes a tensor of order 2 over Rn, also called a quadratic

form, where the coefficients of the quadratic form belong to a table with n2 entries
ai,j with i, j = {1, . . . , n}. A general homogeneous polynomial h ∈ R

d[x], with
d ≥ 2, can be written as

h(x) = h(x1, . . . , xn) =
∑

i=(i1,...,in)
i1+···+in=d

hix
i1
1 · · ·xin

n .

Using the tensor representation, h can also be compactly written in the form

(8) h(x) = H [x, x, . . . , x
︸ ︷︷ ︸

d times

]

where H is a symmetric tensor.

3.3.3. Constructing the Hierarchy: For a fixed partition P = {∆1, · · · ,∆ℓ} of the
simplex Σ, we look at the vertices of ∆k, and evaluate the tensor at all possible com-
binations of the vertices within ∆k. The following proposition provides a feasibility
check for this method:

Lemma 1. For a simplicial partition P, with set of vertices WP = {v1, · · · , vp},
and ∆ = conv{v1, . . . , vp}. If

(9) H [vi1 , vi2 , . . . , vid ] ≥ 0 for all i1, i2, . . . , id = 1, . . . , p,

then h(x) = H [x, x, . . . , x] ≥ 0 for all x ∈ ∆.

Proof. For each point x ∈ ∆, we can represent it in the affine hull of ∆ by its
uniquely determined barycentric coordinates λ = (λ1, . . . , λp) with respect to ∆
i.e.

x =

p
∑

j=1

λjvj with

p
∑

j=1

λj = 1.

This gives

h(x) = H [x, x, . . . , x]

= H
[

p
∑

i1=1

λi1vi1 ,

p
∑

i2=1

λi2vi2 , . . . ,

p
∑

id=1

λidvid
]

=

p
∑

i1,i2,...,id=1

H [vi1 , vi2 , . . . , vid ]λi1λi2 . . . λid .

For x ∈ ∆, we have λi ≥ 0, and by the assumption (9), we get h(x) ≥ 0 for all
x ∈ ∆. �
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The observation of Lemma 1 leads to the following algorithm for computing the
copositive Lyapunov function of the form (5) satisfying the inequalities (6).

Algorithm 1:

(1) Take h ∈ R[x], homogenous of degree d, and fix r ∈ N.
(2) For each orthant Oj , j = 1, . . . , 2n, compute the sets Kj = K ∩Oj and for

each i = 1, . . . ,m, let Fij = Fi ∩ Oj .
(3) Identify the simplices Σj ⊂ Kj, and Σij ⊂ Fij which are non-empty.
(4) For each nonempty simplex Σ ∈ {Σj} ∪ {Σij}, j = 1, . . . , 2n, i = 1, . . . ,m,

(a) Compute a simplical partitioning of the set Σ, denoted by {∆1, . . . ,∆ℓ},
and let Qℓ be the corresponding set of vertices of ∆ℓ.

(b) For each set of d vertices {q1, . . . , qd} ∈ Qℓ, solve the LP problem in
the coefficients of h corresponding to the constraints

(10) H [q1, . . . , qd] ≥ 0, and Sk[q1, . . . , qd] ≥ 0

whereH,Sk denote the tensors of h, sk, k = 0, . . . ,m and {q1, . . . , qd} ∈
Qℓ.

(c) If (10) is infeasible, refine partition, and check (10) again.
(5) Iterate by increasing d and r.

As an illustration of our algorithm, we revisit Example 1 and compute a quadratic
Lyapunov function using the discretization method.

Example 2. Consider system (2) with f(x) = Ax and A =
[
−1 −2
−1 −1

]
and K = {x ∈

R
2 |Cx ≥ 0}, with C =

[
−0.25 1

1 −0.25

]
. We apply the discretization method on the

three simplices that correspond to Kj = K ∩ Oj ,

Σ1 = conv([1, 0]⊤, [0, 1]⊤),Σ2 = conv([1, 0]⊤, [0.8,−0.2]⊤)

Σ3 = conv([0, 1]⊤, [−0.2, 0.8]⊤),

and the two simplices which correspond to the two faces of the cone reduce to a
singleton, that is,

Σ12 = [0.8,−0.2], Σ23 = [−0.2, 0.8].

Solving the resulting inequalities, we obtain

(11) V (x) = 2.9x2
1 + x1x2 + x2

2,

which indeed satisfies the inequalities in (6).

4. Semialgebraic Sets and Sum-of-Squares Computation

We now present a numerical approach to deal with sets of the form S in (3)
where gi are not necessarily linear. One of the difficulties in checking the Lyapunov
conditions is that the corresponding inequality has to be checked for η ∈ −NS(x)
for all x ∈ S, which is not feasible in general. In the previous section, we only need
to check the inequalities at finitely many points at which η could be obtained as a
solution to an optimization problem, but this works only under the conic structure
of S. For more general sets without conic structure, it is of interest to obtain
Lyapunov functions without having to solve for η. One way to avoid computation
of η is to impose certain assumption on the gradient of Lyapunov function and
provide sufficient conditions which can be checked independently of η. We then
use these conditions to compute Lyapunov functions using a semidefinite program
based on SOS decomposition.
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4.1. Sufficient Conditions. With the aforementioned motivation, we first provide
a set of inequalities as a sufficient condition for checking asymptotic stability of
(2), which are independent of η and use the information of the gradients of the
generating functions gi, i = 1, . . . ,M .

Proposition 1 (Sufficient Conditions). Consider the system (2) under assumption
(A1). Assume that there exists a continuously differentiable V (·) that satisfies the
following conditions:

• V (0) = 0, and α(‖x‖) ≤ V (x) ≤ α(‖x‖) for every x ∈ S, and some class K
functions α, α.

• 〈f(x),∇V (x)〉 ≤ −α‖x‖, for every x ∈ S, and some positive definite func-
tion α.

• If x is such that gi(x) = 0, for some i ∈ {1, · · · ,M}, then 〈∇gi(x),∇V (x)〉 ≤
0.

Then V is a Lyapunov function for system (2) and 0 is globally asymptotically
stable.

Proof. Consider a function V ∈ C1(Rn,R) that satisfies the listed conditions. We
show that these conditions guarantee that V is Lyapunov function for system (2)
when S is described by (3) under assumption (A1). To see this, we first introduce
the set J(x) which defines the set of active constraints, that is,

(12) J(x) = {i ∈ {1, . . . ,M} | gi(x) = 0}.

Then, the set-valued mapping NS is defined as

NS(x) =







0, if x ∈ int(S),
{
∑

j∈J(x)λj∇gj(x); λj ≤ 0
}

, if J(x) 6= ∅,

∅, if x 6∈ S.

Thus, if x ∈ int(S), then η = 0, and

〈∇V (x), f(x)〉 ≤ −α(‖x‖), x ∈ int(S).

When x is such that J(x) 6= ∅, we have that η = −
∑

j∈J(x) λj∇gj(x), for some

λj ≤ 0. Hence,

〈η,∇V (x)〉 = −

〈
∑

j∈J(x)

λj∇gj(x),∇V (x)

〉

≤ 0.

Thus, for each x ∈ S, and η ∈ −NS(x), we have shown that

〈∇V (x), f(x) + η〉 ≤ −α(‖x‖)

which completes the proof. �

4.2. Sum-of-Squares Decomposition. We now present a numerical approach to
compute the Lyapunov function which satisfies the conditions of Proposition 1. The
three conditions can be listed as positivity constraints on the function V and its
gradient ∇V . As mentioned in the introduction, one way to ensure the positivity
is to write the function as a sum-of-squares, which boils down to a semidefinite
program. The basic idea behind computing the Lyapunov function for system (2)
under (A1) is to find a Lyapunov function where the three positivity constraints
in Proposition 1 can be written as sum-of-squares.

We focus our attention on convex semi-algebraic sets, which are basically de-
scribed by the intersection of the sublevel sets of finitely many polynomial inequal-
ities. That is, in the definition of the set S in (3), we introduce the following
assumption:
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(A4) The set S in (3) is compact and the function gi ∈ R[x], for every i = 1, . . . ,M .

For such sets, we can implement the following algorithm to compute V in the form
of sum-of-squares.
Algorithm 2:

(1) Let V ∈ R[x] of degree d ∈ N;
(2) For each x ∈ S, let

V (x) = σ0(x) +

M∑

i=1

σi(x)gi(x).

for some SOS polynomials σ0, · · · , σM .
(3) For each x ∈ S, if J(x) = ∅, let

−〈∇V (x), f(x)〉 = χ0(x) +

M∑

i=1

χi(x)gi(x).

for some SOS polynomials χ0, · · · , χM .
(4) For each x ∈ S, J(x) 6= ∅, let, for each j ∈ J(x),

(13) −〈∇V (x),∇gj(x)〉 = χj,0(x) +
∑

i6∈J(x)

χj,i(x)gi(x) +
∑

i∈J(x)

ϕj,igi(x),

for some SOS polynomials χj,i, whereas ϕj,i ∈ R[x] are not necessarily
sum-of-squares.

(5) Iterate by increasing d, the degree of V .

An important question to consider, in the implementation of Algorithm 2, is
whether one can always find SOS decomposition of a positive polynomial on a
semialgebraic set. One possible answer to this question comes from the following
result:

Theorem 2. (Putinar’s Positivstellensatz (Putinar, 1993)) Let S be a compact
semialgebraic set satisfying (A1) and (A4). Let MS be the quadratic module
defined as,

MS :=
{

σ0 +

m∑

j=1

σjgj | j = 0, 1, . . . ,m
}

.

Let V ∈ R[x] be such that V (x) ≥ 0 for all x ∈ S, then V ∈ MS .

A direct application of this result to our problem suggests that, if system (2) ad-
mits a polynomial Lyapunov function, then the hierarchy of semidefinite programs
constructed in Algortihm 2 (by increasing the degree d of the search function) is
guaranteed to find us a Lyapunov function. To compute V with such a param-
eterization, one may use the YALMIP toolbox in Matlab to solve the underlying
semidefinite program.

Example 3. As an illustration of the foregoing algorithm, we consider an academic
example in R

2 with two constraints. Let g1(x) = x1 − x2
2, and g2(x) = 1 − x1.

These two functions describe the compact semi-algebraic set S in (2), and we take

vector field f to be f(x) =
(

−x2
1

0

)

. Based on Algorithm 2, a Lyapunov function

for this example is V (x) = x2
1 + x2

2 which indeed satisfies the conditions listed
in Proposition 1. Note that the system without constraints, that is, ẋ = f(x)
is only stable, but not asymptotically stable. However, the constrained system is
asymptotically stable since, within the set S, x1 = 0 implies x2 = 0.



SEMIDEFINITE PROGRAMS FOR LYAPUNOV FUNCTIONS 11

References

Acary, V., Bonnefon, O., and Brogliato, B. (2011). Nonsmooth Modeling and Simulation

for Switched Circuits, volume 69 of Lecture Notes in Electrical Engineering. Springer,
Heidelberg.

Adly, S. (2017). A Variational Approach to Nonsmooth Dynamics. Applications in Unilat-

eral Mechanics and Electronics. Springer Briefs in Mathematics. Springer International
Publishing, Cham.

Ahmadi, A. and Jungers, R. (2018). SOS-Convex Lyapunov functions and stability of
difference inclusions. Available online: https://arxiv.org/abs/1803.02070.

Ahmadi, A. and Parrilo, P. (2017). Sum of squares certificates for stability of planar,
homogeneous, and switched systems. IEEE Transactions on Automatic Control, 62(10),
5269–5274.

Brogliato, B. and Tanwani, A. (2020). Dynamical systems coupled with monotone set-
valued operators: Formalisms, applications, well-posedness, and stability. SIAM Re-

view, 62, 3–129.
Bundfuss, S. and Dür, M. (2008). Algorithmic copositivity detection by simplicial parti-

tion. Linear Algebra and its Applications, 428, 1511–1523.
Bundfuss, S. and Dür, M. (2009). An adaptive linear approximation algorithm for copos-

itive programs. SIAM J. Optim., 20(1), 30–53.
Camlibel, M., Pang, J.S., and Shen, J. (2006). Lyapunov stability of complementarity and

extended systems. SIAM J. Optimization, 17(4), 1056–1101.
Chesi, G., Garulli, A., Tesi, A., and Vicino, A. (2009). Homogeneous Polynomial Forms

for Robustness Analysis of Uncertain Systems. LNCIS. Springer.
Goeleven, D. and Brogliato, B. (2004). Stability and instability matrices for linear evolu-

tion variational inequalities. IEEE Transactions on Automatic Control, 49(4), 521–534.
Goeleven, D., Motreanu, D., and Motreanu, V. (2003). On the stability of stationary so-

lutions of first-order evolution variational inequalities. Advances in Nonlin. Variational

Ineqs., 6, 1–30.
Henrion, D. (2013). Optimization on linear matrix inequalities for polynomial systems

control. Les cours du C.I.R.M., 3(1), 1–44.
Henrion, D. and Garulli, A. (eds.) (2005). Positive Polynomials in Control. Springer, New

York, USA.
Lasserre, J. (2015). An Introduction to Polynomial and Semi-Algebraic Optimization.

Cambridge Texts in Applied Maths.
Leine, R.I. and van de Wouw, N. (2008). Stability and Convergence of Mechanical Systems

with Unilateral Constraints, volume 36 of Lecture Notes in Applied and Computational

Mechanics. Springer-Verlag, Berlin Heidelberg.
Nie, J., Yang, Z., and Zhang, X. (2018). A complete semidefinite algorithm for detecting

copositive matrices and tensors. SIAM J. Optim., 28(4), 2902–2921.
Papachristodoulou, A. and Prajna, S. (2009). Robust stability analysis of nonlinear hybrid

systems. IEEE Transactions on Automatic Control, 54(5), 1037–1043.
Parrilo, P. (May 2000). Structured semidefinite programs and semi-algebraic geometry

methods in robustness and optimization. Ph.D. thesis, California Institute of Technology,
Pasadena, CA.

Powers, V. and Wörmann, T. (1998). An algorithm for sums of squares of real polynomials.
J. of Pure and Applied Algebra, 127(1), 99–104.

Prajna, S., Papachristodoulou, A., and Parrilo, P.A. (2002). SOSTOOLS: Sum of squares
optimization toolbox for MATLAB. Available online: http://www.cds.caltech.edu/

sostools.
Putinar, M. (1993). Positive polynomials on compact semi-algebraic sets. Indiana

Univ. Math. Journal, 42(3), 969–984.
Souaiby, M., Tanwani, A., and Henrion, D. (2019). Cone-copositive Lyapunov functions for

complementarity systems: Converse result and Polynomial Approximation. Submitted
for publication. Available online: https://hal.archives-ouvertes.fr/hal-02565283

Tanwani, A., Brogliato, B., and Prieur, C. (2018). Well-posedness and output regulation
for implicit time-varying evolution variational inequalities. SIAM J. Control & Optim.,
56(2), 751–781.



12 M. SOUAIBY, A. TANWANI, AND D. HENRION

LAAS – CNRS, University of Toulouse, 31400 Toulouse, France

E-mail address: msouaiby@laas.fr

LAAS – CNRS, University of Toulouse, 31400 Toulouse, France

E-mail address: aneel.tanwani@laas.fr

URL: http://homepages.laas.fr/atanwani

LAAS – CNRS, University of Toulouse, 31400 Toulouse, France; and Fac. Elec.

Engr., Czech Tech. Univ. Prague, Czechia.

E-mail address: henrion@laas.fr

URL: http://homepages.laas.fr/henrion


