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Abstract—This paper deals with supervised discriminative and
generative modeling. Classical methods are based on variational
autoencoders or supervised variational autoencoders encourage
the latent space to fit a prior distribution, like a Gaussian.
However, they tend to make stronger assumptions on the data,
often leading to higher asymptotic bias when the model is wrong.
In this paper, we relax the parametric distribution assumption
in the latent space and we propose to learn a non-parametric
data distribution of the clusters in the latent space. The network
encourages the latent space to fit a distribution learned with
the labels instead of the parametric prior assumptions. We have
built a network architecture that incorporates the labels into an
autoencoder latent space to create discriminative and generative
models. Thus we define a global criterion combining classification
and reconstruction loss. In addition, we have proposed a `1,1
regularization which advantages are a faster convergence of
the algorithm and an improvement of the clustering. Finally
we propose a tailored algorithm to minimize the criterion with
constraint. We demonstrate the effectiveness of our method on
two popular image datasets (MNIST and Fashion MNIST) and
two biological datasets.

I. RELATED WORKS

In many applications (Image analysis and biomedical re-
search), the objective is to design algorithms to classify,
generate data and select features to decrypt high-dimensional
data. Classification of high-dimensional data is known to
suffer from the curse of dimensionality [42]. In order to
overcome this issue, the main idea of early works on Linear
Discriminant Analysis (LDA) [12], [14], [2] was to project data
into a lower dimensional space. Many techniques have been
proposed in the machine learning literature for dimensionality
reduction to discover various aspects of structure from data [47],
[44] [7]. Deep neural networks were used for dimensionality
reduction[25].
Autoencoders were introduced in the field of neural networks
decades ago and their most efficient application were dimen-
sionality reduction [26], [20]. Autoencoders were successfully
used for denoising [51] to extract useful features and lossy
image coding [48].
A discriminative model maps feature points of a high dimen-
sional space in Rd to labels in a low dimensional latent space in
Rl. Generative models map feature points of a low dimensional
space ∈ Rl to a high dimensional latent space in Rd. Note
that they tend to make stronger assumptions on the data often

leading to higher asymptotic bias when the model is wrong
[3].
Recently, deep generative models have been used to learn
generator functions that map points from a low-dimensional
latent space, to a high-dimensional data space. These generative
models, which include variational autoencoders (VAEs) [30],
[43] and generative adversarial networks (GANs) [21], [45],
can generate high-fidelity output samples that look like real-
world data.
Generative modeling is attractive for many reasons:

1) Modelization of the latent space: Generative models
express causal relations,

2) Generative models were used in semi-supervised learning
settings, to improve classification [30], [46], [31],

3) Generative models are a potential solution for privacy
issues concerning biomedical data [9], [40], [39].

Generative models offer unique opportunities in domains where
either data collection is technically difficult or expensive or
where personal data privacy is critical. From these perspectives,
their ability to provide synthetic data is highly relevant to
the biomedical and healthcare domains. GANs have been
used since their creation to provide various types of synthetic
data in these domains. In [53] GANs are used to generate
synthetic laboratory test time series for the prediction of drug
effects. MedGAN [9] uses GANs to generate realistic discrete
medical patient records. In [16], VAE are used to automatically
optimize molecules in order to improve their physico-chemical
properties. Conditioned GANs [38] are used to automatically
design molecules having a high probability of inducing a given
transcriptomic profile. DermGan [19] proposed a GAN based
tool to create synthetic dermoscopic images.
Supervised autoencoders are autoencoders whose loss function
are augmented with the loss of a task (typically a classification)
performed using the representation layer. Relatively few studies
have been devoted to these autoencoders. Let us mention
however the work of [57] who uses an autoencoder whose
goal is to maximize the distances of classification centroids on
the representation layer. Let us mention also the generalization
result for supervised linear auto-encoders, with unsupervised
regularizers [33].
Let’s recall that VAE networks encourage the latent space to fit
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a prior distribution, like a Gaussian. These classical priors in
the latent space are chosen for their computational simplicity
rather than their compatibility with the latent structure and thus
can lead to inaccurate latent low-dimensional representations of
data. The classical VAE mixes the points of the clusters because
the Gaussian prior encourages all the points to be centered at
the origin. In order to cope with this issue some recent papers
have proposed latent spaces with more complex distributions
(e.g., hyperspheres [11], and mixtures of Gaussians [13]) on
the latent vectors, but they are non-adaptive and unfortunately
may not match the specific data distribution.
All these methods result in a problem of criteria optimization.
Contractive autoencoders add an explicit regularizer in their
objective loss function that forces the model to learn a function
that is robust to noisy variations of input values. Moreover
this regularizer takes into account the over-parametrization
of the neural network (in practice, relatively few network
weights are necessary to accurately learn data features). A
popular regularization method which sparsifies the weights of
the neural network is the Absolute Shrinkage and Selection
Operator (LASSO) formulation [49], [18], [24]. This classical
`1 penalization ensures regularization and sparsity. Various
structured constraints such as “group LASSO” and “exclusive
LASSO” have been proposed in the framework of LASSO
for inducing structured sparsity. A proximal gradient has
been used with an `1 constraint [27] while the “Group
LASSO” constraint has been used in [55] and in [1]. Neuron
sparsification [54], is realized combining the “group LASSO”
(`2,1) constraint and an additional “Exclusive LASSO” (`1,2)
constraint enforces neurons to fit disjoint sets of features.
However, the computational time needed for the processing of
the corresponding hyper-parameter is expensive (see [23]).
In this work, we relax the parametric distribution assumption
in the latent space to learn a non-parametric data distribution
of clusters. Our network encourages the latent space to fit a
distribution learned with the clustering labels rather than a
parametric prior distribution.
Moreover, we propose a constrained regularization approach
that takes advantage of an available efficient projection algo-
rithms for the `1 constraint [10], [41], convex constraints [4]
and structured constraints `2,1 [35], [5] and `1,2 [5].
We point out the following specific contributions:

• We create a network architecture that incorporates the
labels into an autoencoder latent space. This enables us
to compute a latent space structured distribution instead
of a prior gaussian distribution.

• We propose a generative model using the real distribution
of the data in the latent space.

• We develop an autoencoder model based on discrimi-
native and generative models. Thus we define a global
criterion combining classification and reconstruction loss.
In addition, we propose a `1,1 regularization whose
advantages are a faster convergence of the algorithm and
an improvement of the clustering.

• We propose a tailored algorithm to minimize the criterion

with constraint.

II. PROPOSED APPROACH: NON-PARAMETRIC SUPERVISED
AUTOENCODER FRAMEWORK

Modelisation

Let X be the dataset in Rd, as a m× d data matrix made
of m line samples x1, . . . , xm. Let yi = j, j ∈ .[1...k] be the
label, indicating that the sample xi belongs to the j-th cluster.
Projecting the data in the lower dimension latent space in Rl is
crucial to be able to separate them accurately. In this paper we
propose to use a deep neural network autoencoder framework.
Let’s recall that the encoder (or discriminative part) of the
autoencoder map features points of a high dimensional space
in Rd to a low dimensional latent space in Rl and that the
decoder maps feature points of a low dimensional space ∈ Rl

to a high dimensional latent space in Rd.
Figure 1 depicts the main constituent blocks of our proposed
approach. We have added to our autoencoder block a "soft
max" block to calculate the classification loss. Note that the
soft max is a projection on the simplex (a positive part of the
`1 ball).
Let XL ∈ Rl, the latent space, XR ∈ Rd the reconstructed
data (Fig 1) and W the weights of the neural network.
The goal is to compute the weights W minimizing the total
loss which depends on both the classification loss and the
reconstruction loss. Hence our strategy for training the various
encoders and decoders is based on various requirements.

1) First, we want to classify data in the latent space

Loss(W ) = φ(XL, Y ) (1)

2) Second, we also want to minimize the difference between
the reconstructed and the original data

Loss(W ) = ψ(XR−X) (2)

Note that these individual losses by themselves do not entirely
promote reasonable stable results and therefore, we also
introduce a constrained regularization loss. Thus we propose
to minimize the following criterion to design the auto-encoder:

Loss(W ) = φ(XL, Y ) + λψ(XR−X) s.t. ‖W‖1 ≤ η. (3)

Where the classification loss φ is a function of the latent
variable and labels. We use the Cross Entropy Loss for the
classification loss function. We use the robust Smooth `1
(Huber) Loss [28] as reconstruction loss function ψ. The size
of the latent space is the number of clusters.

We can compute the center of the clusters and generate
them in the high dimensional space using the decoder. We
can use Markov chain Monte Carlo (MCMC) methods for
obtaining a sequence of random samples from a probability
distribution in the latent space. Among the MCMC methods
we refer to the classical Metropolis and Metropolis–Hastings
algorithms or the Gibbs sampling method [8], [36]. Then
we use the decoder as a generative model. Thus we fit
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Fig. 1. Autoencoder framework

the real distribution in the latent space instead of making
a random draw with a classical Gaussian assumption as in VAE.

A tailored Algorithm
Let’s recall that the classical `2,2 induced operator norm

constraint of A−B in the `2 domain with the `2 co-domain
does not induce any sparsity.

‖ A−B ‖2,2=

(
sup
‖x‖2=1

‖ (A−B) · x ‖2

)
(4)

Thus, we propose a constrained regularization approach using a
new projection on the `1,1 constraint instead of a group LASSO
`2,1 or en exclusive Lasso `1,2 constraint. The induced operator
norm of A − B in the `1 domain with the `1 co-domain is
given by:

‖ A−B ‖1,1=

(
sup
‖x‖1=1

‖ (A−B) · x ‖1

)
(5)

We recall that `1,1 is computed as the maximum `1 norm of
a columns of A − B. Using this property, we propose the
following algorithm: we first compute the radius ti and then
project the rows using the `1 adaptive constraint ti: Following

Algorithm 1 Projection on the `1,1 norm—proj`1(V, η) is the
projection on the `1-ball of radius η

Input: V, η
t := proj`1((‖vi‖1)

d
i=1, η)

for i = 1, . . . , d do
wi := proj`1(vi, ti)

end for
Output: W

the work by Frankle and Carbin [17] further developed by
[56] which proposed a double descent algorithm as follows:
after training a network, set all weights smaller than some
threshold to zero, rewind the rest of the weights to their initial
configuration, and then retrain the network from this starting
configuration but keeping the zero weights frozen (untrained).
We replace the thresholding by our `1,1 projection and devise
the following algorithm:

Algorithm 2 Projection on the `1,1 norm—proj`1(V, η) is the
projection on the `1-ball of radius η, ∇φ(W,M0) is the masked
gradient with binary mask M0, and f is the ADAM optimizer,
γ is the learning rate

Input: W∗, γ, η
for n = 1, . . . , N(epochs) do
V ← f(W,γ,∇φ(W ))

end for
t := proj`1((‖vi‖1)

d
i=1, η)

for i = 1, . . . , d do
wi := proj`1(vi, ti)

end for
Output: W,M0

Input: W∗
for n = 1, . . . , N(epoch) do
W ← f(W,γ,∇φ(W,M0))

end for
Output: W

III. EXPERIMENTAL RESULTS

We have modified the pytorch framework to implement
our sparse learning method using a constraint approach. The
losses are averaged across observations for each mini-batch.
We chose the ADAM optimizer [29], as the standard
optimizer in PyTorch. We used the Cross Entropy Loss for
the classification loss and the Smooth `1 Loss (Huber Loss)
for the reconstruction loss. We compared our method to
Variational Autoencoder (VAE) and classical TSNE for the
biomedical datasets [50].
We used a linear fully connected network (LFC) with an input
layer of d neurons, 4 hidden layers followed by a RELU
activation function and a latent layer of dimension k.
In our approach, we provide a visual evaluation of the data
and of the cluster centers in the latent space. If the latent
dimension k > 2, we project the data and the cluster centers
on a 2D plot using PCA. We compute the matrix distance
between centers which we can visualize using PCA. We
provide two kinds of synthetic generated data i) of the
centroid of the cluster and ii) of random using the Metropolis
algorithm.
We evaluated our method on two classical image datasets and
two biological datasets.
We selected the popular MNIST dataset [34] containing
28 × 28 grey-scale images of handwritten digits of 10
classes (from 0 to 9). This dataset consists on a training
set of 60,000 instances and a test set of 10,000 instances.
Fashion-MNIST [52] is a dataset of Zalando’s article images
consisting of a training set of 60,000 examples and a test set
of 10,000 examples. Each example is a 28x28 grayscale image,
associated with a label from 10 classes. Fashion-MNIST is to
serve as a direct drop-in replacement for the original MNIST
dataset for benchmarking of machine learning algorithms.
Fashion-MNIST and MNIST share the same image size and
structure of training and testing splits.
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Image dataset

We first study the two image datasets.

Fig. 2. MNIST dataset: Convergences of our algorithm on MNIST (TOP)
and Fashion MNIST (Bottom) are very similar.

Fig 2, Fig 15 and Fig 21 show that regularization using
projections on the `1,1 constraint improves the convergence
of the algorithm. Figure 3 and Figure 4 illustrate that the
distributions in the latent space are not gaussian, for MNIST
and Fashion MNIST respectively. Figure 5 and Figure 10
shows that the regularization increases the distance between
the centers.

It can be noted that the reconstructed images (Figure 7 and
Figure 12) are less noisy than original images (Figure 6 and
Figure 11).

We computed the centroids of the clusters in the latent space
and then we generated the corresponding virtual images using
the decoder as shown in Figures 8 and 13. We computed 10
random samples in the latent space using Metropolis algorithm

Fig. 3. MNIST dataset Clustering in the latent space using Huber loss.

Fig. 4. Fashion MNIST dataset Clustering in the latent space using Huber
loss.

Fig. 5. MNIST dataset: Top : Centers without regularization, Bottom : Centers
with projections on the `1,1 constraint

Fig. 6. Original MNIST dataset.

Fig. 7. Reconstructed MNIST dataset.

Submitted  to ICPR 2020  Milan 



Fig. 8. Reconstructed MNIST dataset : cluster centers using the decoder.

Fig. 9. MNIST dataset : Reconstructed using the Metropolis algorithm in the
latent space

Fig. 10. Fashion MNIST dataset: Top : Centers without regularization, Bottom
: Centers with projections on the `1,1 constraint

Fig. 11. Original Fashion MNIST dataset.

Fig. 12. Reconstructed Fashion MNIST dataset.

Fig. 13. Reconstructed Fashion MNIST dataset : cluster centers using the
decoder.

Fig. 14. Fashion MNIST dataset : Reconstructed using the Metropolis algorithm
in the latent space
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and generated the corresponding virtual images using the
decoder as shown in Figure 9 and Figure 14.

Biomedical dataset: The lung dataset [37] is a metabolomic
dataset with 1005 samples, 2944 features and 2 clusters. These
are urine samples obtained from two groups of patients, one
group has a lung cancer, the other is a control group. The
Ohlson dataset [15] is a single cell RNA seq dataset used by
[32] for clustering evaluation with m=382 samples, d=532
features and k=9 clusters.

Fig. 15. Ohlson dataset m=382, d=532, k=9. Convergence without projections
and Convergence with projections

Figure 17 and Figure 16 show that the distribution in the
latent space for the Ohlson dataset is not Gaussian and that our
NPautoencoder outperforms classical VAE and TSNE. Figure
17 shows that by using Huber loss the clustering is improved.
Figure 18 shows that regularization increases the distance
between the cluster centers.

On the Lung dataset, Figures 19 and 20 show that our
NPautoencoder outperforms classical TSNE method. Fig 20
shows that `1,1 regularization improves cluster separability.

Fig. 16. Ohlson dataset d=532, k=9. Top : VAE with BCE Loss, Bottom :
TSNE

Fig. 17. Ohlson dataset d=532, k=9, Our new NPautoencoder. Top : with
MSE loss, Bottom : with Huber loss.

Fig. 18. Ohlson dataset: Top : Centers without regularization, Bottom : Centers
with projections on the `1,1 constraint.

IV. DISCUSSION

In this paper we have limited the choice of the classification
loss and reconstruction loss to cross entropy and Huber loss
because they are considered to be the best of the state of the
art.
An exhaustive study of various projection methods has shown
that the `1,1 projection method is the best in terms of memory
and calculation cost [6]. Thus, we have only considered the
`1,1 regularization.
We have illustrated our generative model using
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Fig. 19. Lung dataset m=1005 d=2900, k=2. TSNE.

Fig. 20. Lung dataset m=1005 d=2900, k=2. Our new NPautoencoder. Top :
without regularisation, Bottom : with regularization

Fig. 21. Lung dataset m=1005, d=2900, k=2. Convergence without projections
and Convergence with projections

Metropolis–Hastings algorithm in the latent space. Contrary to
the VAE approach, our method perfectly fits the distribution
in the latent space.
Note that for all experiments the `1,1 regularization improves
the convergence and separability of the clusters. Algorithm
1 for projecting a matrix on the constraint `1,1 can be
extended to the projection of a tensor on the constraint `1,1,1.
Thus extension of our method to image processing using
convolutional Neural network architecture such as simplenet
[22] is straightforward. Note that extending our method to
discrete clinical data is straightforward.

V. CONCLUSION

In this paper, we propose a network architecture that
incorporates the labels into an autoencoder latent space. This
enables us to compute a latent space structured distribution
instead of a prior gaussian distribution and devise a generative
model using the real distribution of the data in the latent
space. We develop a supervised auto-encoder model based
on disciminative and generative models. We define a global
loss criterion combining classification and reconstruction loss
and propose a tailored algorithm to minimize this global
loss criterion with constraint. In addition, we propose an
`1,1 regularization who has two main advantages : a faster
convergence of the algorithm and an improvement of the
clustering. Experiments demonstrate the effectiveness of our
method on two popular image datasets (MNIST and Fashion
MNIST) and two biological datasets.
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