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ABSTRACT

In this work we propose a new deep learning based approach for online classification on streams
of high-dimensional data. While requiring very little historical data storage, our approach is able
to alleviate catastrophic forgetting in the scenario of continual learning with no assumption on the
stationarity of the data in the stream. To make up for the absence of historical data, we propose a
new generative autoencoder endowed with an auxiliary loss function that ensures fast task-sensitive
convergence. To evaluate our approach we perform experiments on two well-known image datasets,
MNIST and LSUN, in a continuous streaming mode. We extend the experiments to a large multi-class
synthetic dataset that allows to check the performance of our method in more challenging settings with
up to 1000 distinct classes. Our approach is able to perform classification on dynamic data streams
with an accuracy close to the results obtained in the offline classification setup where all the data
are available for the full duration of training. In addition, we demonstrate the ability of our method
to adapt to unseen data classes and new instances of already known data categories, while avoiding
catastrophic forgetting of previously acquired knowledge.

c© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, methods based on Deep Learning (DL) have

become state of the art in numerous applications, such as image

and signal classification (Krizhevsky et al. (2012)), object de-

tection (Sermanet et al. (2013)), recognition (Yu et al. (2019)),5

and segmentation (He et al. (2017)), natural language process-

ing (Sutskever et al. (2014)), (Collobert et al. (2011)), privacy

protection (Yu et al. (2017)), and many others. Despite their

popularity and efficiency on high-dimensional data of signifi-

cant structural complexity, most of the currently existing deep10

learning approaches are aiming to solve offline learning prob-

lems where all the data are constantly available during training.

With the fast development of robotics, social networks, and per-

sonalized gadgets collecting user information, the demand for

real-time processing of huge amounts of information is rapidly15

growing. Recently, online learning scenarios, where data arrive

continuously in large quantities and have to be integrated into

the learning system in real-time, start to receive significantly

more attention from the Machine Learning (ML) community.

Performing Online Deep Learning, and specifically online20

classification using Neural Networks (NN), is not straightfor-

ward and requires special attention. The main difficulty is

that NN-based classifiers usually rely on the assumption that

the sequence of data batches used during training is station-

ary, or in other words, that the distribution of data classes is25

the same for all batches. Sometimes the term i.i.d. is equiva-

lently used in the literature to express the fact that the batches

(1) are randomly sampled from the training data (implying in-

dependence) and (2) are sampled from the same distribution

(identically distributed). Because back-propagation tends to re-30
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inforce the classes present in the current batch, when this i.i.d.

assumption does not hold neural networks tend to forget the

concepts that are temporarily not available. In literature this

phenomenon is known as catastrophic forgetting (McCloskey

and Cohen (1989)).35

On the other hand, learning in neural networks is a slow

process that often requires several training epochs through the

full dataset. This is unfeasible in online classification training

where the model usually has to be updated in real-time while

new data arrive. Another problem is due to the non-stationarity40

of the stream: new classes are appearing, as well as new modal-

ities of previously seen classes. This induces catastrophic for-

getting when learning only on new data. A straightforward so-

lution to this problem is rehearsal (Robins (1995)) that consists

in storing all (or at least a significant part of) the historical data45

together with newly arriving stream data and retraining the clas-

sifier on all the available data every time the model has to be up-

dated. However, if the system is required to learn on fast data

streams and keep acquiring new knowledge for a long period

of time, or has to perform life-long learning, such an approach50

fails to scale to the size of the problem.

To avoid the difficulties related to historical data storage, a

recent popular line of research is the use of generative models

to approximate the statistical distribution of the source (Parisi

et al. (2018); Shin et al. (2017); Kamra et al. (2017)). In our re-55

cent work (Besedin et al. (2017, 2018)), we employed GANs as

generative models and trained them to produce images that are

visually close to the input source. Each time a data class dis-

appears from the input stream, we use the previously learned

GANs (one for each class) to generate new samples for the60

missing classes in such a way that all classes (past and present)

are equally balanced in the current learning batch. While the

instability and the convergence of the training process in GANs

have been addressed by several recent works (Salimans et al.

(2016); Arjovsky et al. (2017); Miyato et al. (2018)), training65

GANs that approximate well the distribution of the original data

is a complex task, typically slow and very data-intensive. In-

deed, in Besedin et al. (2018) we demonstrated that to be able

to efficiently replace the original data for the classification task

on the LSUN dataset, each GAN required several millions of70

training updates for each class. This is a strong limitation with

continuous streams where one has to learn on the fly and from

potentially very unbalanced classes.

In this paper we propose a new framework that improves in

several ways on our previous work, solving the above men-75

tioned problems. We focus on the general case of non-i.i.d.

streams of unordered high-dimensional data and we formalize

the problem as real-time continual learning without forgetting.

In the absence of historical data, we advocate the use of autoen-

coders as pseudo-generative models (instead of GANs) to deal80

with the absent classes. By high-dimensional data we under-

stand objects (coming through the stream) that are described by

a large number of variables. In this work we are mainly inter-

ested in images, a type of data on which non-Deep Learning

methods do not perform so well. However, we do not use the85

images directly, but rather the convolutional features obtained

from a pre-trained network (see Sec. 4.1).

The paper is organized as follows: in Sec. 2 we discuss the

main challenges of online learning on data streams, review ex-

isting methods that address this problem and position our pro-90

posal with respect to them. In Sec. 3 we present our proposal:

we define the problem of continual learning from dynamic data

streams, discuss the challenges that motivate our approach, de-

scribe the techniques that we apply for online learning and jus-

tify the use of pseudo-generative models to replace historical95

data. In Sec. 4 we assess the performance of our online learn-

ing approach on three different datasets and analyze its behav-

ior, while in Sec. 5 we discuss perspectives and future work.

2. Related work

2.1. Main challenges for Deep Learning on Dynamic Data100

In this section, we outline the main challenges one has to face

in online classification using Deep Learning based models and

discuss existing methods that address these challenges.

Though the data distribution might not necessarily change

with time in an online classification scenario, the way one105
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has to store and process the data significantly changes com-

pared to the static learning case, resulting in new problems

to solve. Until recently, the most widely used methods for

classification on data streams were not based on Deep Learn-

ing and mainly included Hoeffding trees (Domingos and Hul-110

ten (2000)), Bayesian trees (Seidl et al. (2009)), Support Vec-

tor Machines (Rai et al. (2009)) and ensemble methods (Oza

(2005)). A comparative overview of these methods can be

found in Nguyen et al. (2015) with the main conclusion that,

even though they allow real-time testing, are able to efficiently115

handle concept drift and do not face memory issues (Webb et al.

(2016)), non-DL methods do not perform very well on complex

high-dimensional data such as images.

In comparison, DL methods are efficiently handling com-

plex classification tasks on high-dimensional data with up to120

a few thousand classes. However, training DL models on non-

stationary stream data with a growing number of classes gen-

erally leads to catastrophic forgetting. The knowledge encoded

in the neural connections is gradually overwritten by new infor-

mation in the absence of data reinforcing previous knowledge,125

i.e. data corresponding to previously learned classes or to differ-

ent modes of the current classes. In the case of re-training only

on the newly received data the model gradually learns to clas-

sify the data into the new classes without preserving its ability

to classify correctly into classes now absent from the stream.130

The re-training problem is exacerbated by the fact that the

amount of data from each class that appears during a time in-

terval is not constant. In an unordered stream, which is the

general setting for stream data classification, the presence of a

given class in a given time interval is not even guaranteed.135

Many methods have recently been proposed to solve or alle-

viate the problem of catastrophic forgetting. The existing meth-

ods can be grouped into three categories: regularization-based,

adaptive architectures and dual-memory systems. To better un-

derstand the specificity of these approaches, their advantages140

and drawbacks, and find where to situate the method we pro-

pose in this paper, we discuss them below.

2.2. Regularization-based methods

Regularization-based methods aim to control the way the pa-

rameters of the model are updated during training in order to145

limit the variation of important connection weights and thus

avoid erasing the information from the old tasks.

Li and Hoiem (2017) put forward Learning without Forget-

ting (LwF), a method that consists in initializing a separate set

of parameters for each new task, together with a large pool of150

parameters shared across all the tasks. Shared parameters are

updated very slowly to avoid changing model performance for

previously learned tasks, while task-specific parameters get up-

dated with no restrictions. The drawback of such a method is its

computational complexity that grows linearly with the number155

of tasks. In addition, the proposed approach is highly dependent

on the similarities among tasks and requires supplementary data

storage for each task.

The Elastic Weight Consolidation Kirkpatrick et al. (2017)

consists in introducing a supplementary quadratic penalty for160

the difference between the updated model and its historical ver-

sion, trained for previous tasks. The penalty slows down up-

dates for the weights relevant to the old tasks. The authors

compute the Fisher information matrix and use it to perform

the diagonal weighting over the parameters of the learned tasks.165

This procedure can only be performed offline, which makes the

proposed approach not applicable to online learning problems.

Zenke et al. (2017) present an online learning method that

adapts to stream non-stationarity by dubbing each network con-

nection with a biologically inspired synapse in which task-170

relevant information is accumulated over time and then ex-

ploited when updating network weights to avoid forgetting.

In Hou et al. (2019) and Zhang et al. (2019) the authors pro-

pose to use knowledge distillation (Hinton et al. (2015)) that

helps limiting the information asymmetry between the old and175

the new classes when learning from data streams. However,

the proposed method only suits the incremental learning sce-

nario and requires training each new task until convergence.

Although it outperforms most regularization-based approaches,

knowledge distillation remains less efficient than joint training180
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to prevent catastrophic forgetting.

While these regularization approaches avoid forgetting in

specific setups, they are usually limited to batch learning and

introduce a very sensitive trade-off between knowledge consol-

idation and the incorporation of new information.185

2.3. Dynamic architectures

Dynamic architecture methods are mainly based on allocat-

ing supplementary resources to the learning system on demand,

e.g. when new data types or classes are added.

Rusu et al. (2016) proposed Progressive Neural Networks,190

a method that consists in adding a new neural network with

a predefined architecture for each new task. This approach

showed a good capacity to avoid forgetting and to perform ef-

ficient knowledge transfer in multi-task scenarios. However,

model complexity and memory requirements increase dramati-195

cally with the growing number of tasks.

Fernando et al. (2017) put forward another method, PathNet,

that introduces agents controlling the information propagation

inside the network. The agents are trained to choose the optimal

paths inside the network and allocate sub-networks for every200

specific task. Though very efficient for knowledge transfer, the

described experimental setup requires to learn each new task

until convergence which is unfeasible in online learning.

Yoon et al. (2018) proposed Dynamically Expanding Net-

works, an approach that selectively retrains parts of the old205

model while modifying the network by adding new neurons or

removing old ones. The choices of architecture modifications

are made with the help of group sparse regularization.

All these methods employing dynamic architectures have a

further major drawback: at testing time such models need to210

know which task they are currently solving and thus testing can-

not be made in a completely unsupervised manner.

2.4. Dual-memory approaches

Dual-memory approaches rely on the use of external models

or supplementary storage units to store and reuse previously215

acquired knowledge.

In Calandra et al. (2012), Besedin et al. (2017) and Shin et al.

(2017) the authors employ generative models – respectively a

Deep Belief Network for each class, a GAN for each class, and

a GAN for each task – to generate representations of the his-220

torical data and reuse them instead of the original data when

needed. This helps to regularize training and avoid forgetting

of missing data classes. These methods have shown stable per-

formance on the MNIST dataset, but less so on more complex

datasets. Also, their scalability to a large number of classes is225

questionable due to the fact that they train one generative model

per class/task, which may be a problem with complex genera-

tive models such as GANs that require heavy hyperparameter

adjustment.

Kemker and Kanan (2017) propose to combine a buffer keep-230

ing the most recent stream samples as the short-term memory

and symmetric generative autoencoders as the long-term mem-

ory. Codes resulting from the encoder are passed through the

softmax and compared to the one-hot vector of corresponding

class labels. By doing so, the code space gets partitioned into235

class-specific regions, over which the authors fit a Gaussian

Mixture Model with as many mixture components as classes.

Synthetic codes of a specific class can then be sampled from

that distribution and passed through the decoder to generate

replacement data of the missing class. A major drawback of240

such an approach is that the underlying latent codes distribu-

tion for each class has to be explicitly computed. Limitations

spring both from the low modelling power of GMMs (mixtures

of Gaussians do not yield good models in high-dimensional

spaces, such as the latent code space) and from the updating245

abilities of such a model which, as a statistical model, is sub-

ject to local minima during optimization and low reactivity to

a small amount of new data. As such, this method is better

adapted to the incremental learning scenario – the one evalu-

ated by the authors – where data classes, once learned, never250

reappear in the stream. Moreover, due to the specific classifi-

cation loss, the size of the encoded features has to be fixed, so

this approach can not be applied to problems where the total

number of classes is unknown.
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While all the described methods address the problem of255

catastrophic forgetting in Neural Networks, none of them fully

considers the general case of continual learning on an un-

ordered stream with a high number of classes. In Parisi et al.

(2018), the authors arrive at the same conclusion that the draw-

backs of existing methods or their limitation to a specific setting260

prevent them from being applicable in the general case.

In this paper we place our proposal in the category of dual-

memory approaches. But instead of using a generative model,

such as a GAN, to supply (when needed) samples similar to the

historical ones, we store enough historical data compressed into265

very low dimensional representations (or codes) by using a type

of autoencoders specifically enhanced for this task. We train the

main classifier with a mix of newly arrived stream data and his-

torical data reconstructed from randomly selected stored repre-

sentations. In the following we call this approach of recalling270

historical data a “pseudo-generative model”. More specifically,

the contributions of the paper are as follows:

1. We propose the use of autoencoders as pseudo-generative

models to avoid catastrophic forgetting while keeping memory

requirements low. Autoencoders project input samples to a low-275

dimensional feature space by minimizing the reconstruction er-

ror. Instead of learning a generative model that tries to mimic a

high-dimensional statistical distribution, which is known to be

a difficult problem, we store projections (via the autoencoder)

of samples from the input stream, in a number that is small but280

sufficient to alleviate the loss of memory. When training on a

new batch of arriving data, we add reconstructed samples from

the missing classes by using part of the stored projections.

2. We put forward a new loss function for the autoencoder that

takes into account our specific goal: the reconstructed samples285

should behave well with respect to reinforcing the classes al-

ready learned and not merely minimize the reconstruction er-

ror. Following this logic, the loss function we propose takes

into account the error that the generated samples produce dur-

ing classification.290

3. We argue that for very complex data, such as high-resolution

natural images, training can be accelerated without loss in clas-

sification accuracy by passing data through a pretrained fea-

ture extractor, such as Resnet152 (He et al. (2016)) and further

training of both classifier and pseudo-generative models on the295

extracted features. This step allows us to increase the training

speed and makes possible the application of our method to mas-

sive data streams.

We test our framework on the well-known MNIST1 bench-

mark and on the much larger LSUN2 dataset (3 · 106 images in300

30 classes). Finally, we confirm the scalability of our approach

to a much larger number of classes by evaluating it on a syn-

thetic dataset of 15 · 106 data samples with up to 103 separate

classes. We explain in detail our proposal in the next section.

3. Pseudo-generative models for online classification with-305

out forgetting

While the domain of continual learning is quickly expanding,

there is still little agreement on the formalization of the prob-

lems it addresses. In this section we point out the main require-

ments for a system that aims at “human-like” continual learning310

and, to make the language precise, we give a few formal defini-

tions. Based on these, we introduce the experimental scenario

studied in this paper and describe our approach to handle it.

3.1. Problem statement and stream simulation

In most of the works discussed in Sec. 2, the authors place315

themselves in an incremental learning scenario. In this case, a

task consists in adapting a classifier to a new domain (e.g., new

image classes) using training data corresponding to the new

domain and a pre-trained version of the classifier in a related

source domain. The aim is to train a model on a sequence of320

related tasks Ti that come each with a separate training dataset

Di. No assumption is made, though, as to the distributions of

datasets Di being identical. The goal of incremental learning

is to optimize the performance of the model on each new task

while preserving its ability to solve previous tasks. In this set-325

ting, the learning system usually requires a separate model or

1http://yann.lecun.com/exdb/mnist/
2https://www.yf.io/p/lsun



6

at least a separate output layer per task. As a consequence, for

a given test data we need to know to which task it is related,

i.e. to which subset of classes it belongs to. Moreover, in incre-

mental learning each task is trained until convergence, exclud-330

ing further modification/improvement of older tasks, even if we

observe in the stream new data related to these tasks.

In this work we consider the more difficult problem of con-

tinual learning from data streams. We define a data stream S

as the result of sequential data acquisition from one or multiple

sources, batch after batch. We suppose that data acquisition is

performed by standardized sensors so that the data samples are

all of the same nature and format. Since we consider classifica-

tion problems, we assume that during the training phase all data

samples come with corresponding class labels, while for testing

no labels are available. We also suppose that each data sample

belongs to a single class, i.e. that it is associated with one single

label. We consider that small batches of data are continuously

sent to the learning system from the dynamically changing en-

vironment. Let us denote byD the set of labeled samples from

which we simulate the stream. We denote by E = {l1, . . . , lN}

the set of labels of all the available classes. To simulate the

stream S we divide it into non-i.i.d. (in terms of class label dis-

tribution) time intervals It, each containing a number of distinct

class labels Nt < N. We denote by Et the set of Nt distinct labels

that form It:

Et =
{
l(t)1 , . . . , l

(t)
Nt

}
where the l(t)i are the distinct class labels. The set of classes

already seen by the system is referred to as Ehist.

We simulate streams by sampling data according to their

class label distribution. We use the notation

DE =
{
(X, y) ∈ D | y ∈ E

}
to refer to the subset of data with the corresponding class label335

in E. For each time interval It, we sample uniformly class labels

from Et and form associated data subsets DEt . We simulate

a batch bs of data arriving from the streaming environment at

time t by sampling uniformly the elements of bs from DEt .

The main challenge of learning from streamed data is to be340

able to continuously learn from the new data while preserving

the knowledge acquired on past data. With our notations, for

each interval It we want to optimize the classification accuracy

of the model on the data classes Et present in that interval while

preserving the model performance on historical classes Ehist.345

After defining the notations and the stream model we employ,

in the following sections we put forward our approach support-

ing efficient learning from dynamic data streams.

3.2. Online learning with the help of generative models

As described in Sec. 2, one way to avoid forgetting in online350

learning is to use supplementary storage modules or models in

order to “replay” historical data or to generate replacement data

when necessary (Sec. 2.4). To do so, a supplementary com-

ponent that serves for long-term memorization is required. A

typical approach is to use a rehearsal mechanism that stores the355

most relevant instances of previously seen classes in a buffer.

It is then employed to supply the classification model with his-

torical data when needed. The main limitation of this approach

is that training DL models on complex high-dimensional data

requires a large amount of data samples per class. But stor-360

ing and reusing large amounts of data is infeasible in a massive

real-time stream scenario due to storage limitations and high

re-training cost.

Instead of using the historical data directly, we rather ap-

proximate its distribution by a generative model that allows to365

sample labeled instances similar to real data at any moment of

the stream. In our experimental scenario we train two separate

models: a NN classifier model C and a generative model G.

The classifier C receives data samples as input and outputs the

probabilities of the input belonging to one of the already seen370

classes. Each time a new data class (not already in Ehist) ap-

pears in the stream, a new neuron is added to the output layer

so that the latter constantly contains as many neurons as there

are classes in the current state of the stream environment. The

generator G is trained to produce replacement data approximat-375

ing the distribution of the original data. It receives a latent code

as input and outputs a tensor of the shape of the data.

One of the key goals of our approach is to remove the need

for storing excessive amounts of historical data. However, ex-
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periments in Sec. 4.2.3 show that keeping a small number of380

real data samples per class is still essential to avoid progressive

drifts in the distribution of generated data. Thus, to perform on-

line learning we initialize a small (compared to the size of the

original dataset) buffer Bhist that serves as short-term memory.

It is a set of cells, one for each class already seen by the system,385

each storing a small portion (less than 1%) of the most recent

real data samples of the corresponding class.

In most real life applications that require online learning we

are likely to have prior access to at least a small dataset rep-

resenting our global task. The natural approach in this case is390

to make use of this dataset to pretrain both models, C and G,

prior to learning from the stream. In our experimental setup

(Sec. 4.1) we consider a similar case: we start with an initial

training subset Dinit = D{l1,...,lN/2} containing all the training data

associated with half the number of classes in the full data en-395

vironment. We pretrain both C and G on Dinit, then pursue

with online training on the stream. The Dinit subset is also

used for fine-tuning different parameters by cross-validation

(see Sec. 4.2).

During the online learning phase, for each time interval It400

the system receives several batches bstream of stream data. For

each batch bstream, we sample a batch bold of the same size from

Bhist and generate K batches using the generator G, where K is a

predefined parameter (generated-to-real data ratio) that controls

the preservation of the already learned classes. The resulting405

batches are then joined together and used to perform a gradient

descent training step for both G and C. The buffer Bhist is then

updated with the elements in bstream. If a new class is introduced

in bstream, a new cell is added to Bhist. Otherwise, the oldest

samples from the corresponding cells in Bhist are replaced by410

the elements in bstream. The online learning procedure described

above is summarized in Alg. 1.

3.3. Training generative models on data streams

In spite of the popularity of generative models, there are rel-

atively few studies on the usability of the generated representa-415

tions for learning tasks. For instance, in natural image synthe-

sis, the authors evaluate the generative models by their ability

Require: D : full data environment

Require: E = {l1, . . . , lN} : set of class labels in D

Require: S = {It, t = 1, 2, . . . } : data stream

Require: s : random data sampler

Require: K : generated-to-real data ratio

Require: bs : batch size

Initialize Einit = {l1, . . . , lN/2}

Initialize Dinit = DEinit

Initialize Bhist from Dinit

Initialize C and G

Train C and G on Dinit offline

for It in S do

for bstream in It do

bold ⇐ s(Bhist, bs) – get historical data batch

bgen ⇐ s(G,K × bs) – get generated batch

b⇐ concatenate(bstream, bold, bgen)

Update C and G on b

Update Bhist from bstream

end for

end for

Algorithm 1: Online learning from a data stream. For each

time interval It the classifier C and the generative model G

are updated with new batches of samples containing a mix

of newly arrived data, generated data and historical data.

The sampler s(S , n) produces n data points from the source

S with a uniform distribution over the set of classes already

seen by the system.

to fool a human expert. It is questionable whether a similar vi-

sual assessment of the usability of generated data in place of

real data for a given learning task is relevant and practical.420

A quantitative measure, the Inception Score, was proposed

by Salimans et al. (2016). Their evaluation method consists in

applying an Inception model pre-trained on ImageNet to a set

of generated samples. The resulting conditional label distribu-

tion p(y|x) of the samples should be close to uniform (i.e. have425

high entropy), while for any given input sample the classifica-

tion output vector should have a peak (low entropy). But Bar-
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ratt and Sharma (2018) show that the Inception Score is often

misleading for generative models trained on datasets other than

ImageNet. In addition, such an evaluation only allows to assess430

general characteristics of the distribution of generated samples.

In our study we use generative models for the specific task

of online classification. Thus, we rather have to evaluate the

generator by measuring to what extent the generated samples

are able to replace well the real data when learning the stream435

classifier. The goal is to make sure that, with respect to the clas-

sifier, the generated data is “similar” to the real data. The work-

ing scenario (multi-class online classification from streams) im-

poses a number of constraints on the generative model:

• Reactivity: the model should be fast enough to process440

batches of data from the stream in real-time.

• Conditional sampling ability: the classification task

requires the generative model to be able to approxi-

mate multi-class data distributions and perform label-

conditioned sampling.445

• Scalability: with continual learning it is impossible to

know in advance the total number of classes the system

will have to learn. Thus, in order to scale to problems with

a large number of classes, the model should grow slower

than linearly with the number of data classes.450

• Learning efficiency: due to the online nature of the learn-

ing procedure, only one pass through each stream sample

is allowed. Therefore, models should be able to rapidly

incorporate new knowledge.

• Protection from forgetting: we use generative models to455

avoid catastrophic forgetting in a classifier, but the gener-

ative model itself should also be protected from forgetting

when some classes are not constantly present in the stream.

While all the above characteristics are important, the first

three (learning reactivity, conditional sampling and scalability)460

translate into architectural constraints on the model. To ensure

learning reactivity, we train models with shallow architectures

and employ extracted feature representations of complex image

data (see Sec. 4.1).

Generating data together with the corresponding labels is not465

straightforward for most of the existing generative approaches,

while being a compulsory condition for the online classifica-

tion task. Our preliminary experiments showed that while hav-

ing good capacity to approximate data distributions and gener-

ate realistic samples, currently existing generative models based470

on adversarial training (Goodfellow et al. (2014)) and provided

with a label-conditioned sampling mechanism (Odena et al.

(2016), Mirza and Osindero (2014)) require tens of training

epochs through the full data even for very large datasets and

thus do not match the reactivity or learning efficiency require-475

ments for online learning. Besides, the above-mentioned works

only consider the case of i.i.d. data environments. In Sec. 3.5

we show that generative models also suffer from catastrophic

forgetting when the i.i.d. assumption does not hold.

This issue is addressed in Zhai et al. (2019) by applying480

knowledge distillation (Hinton et al. (2015)) to perform life-

long learning in conditional GANs. This results in much

lower forgetting than sequential fine-tuning. However, the pro-

posed procedure only suits the incremental learning settings and

cannot be generalized to learning from continuous unordered485

streams. Also, the method is validated on short sequences of up

to five separate tasks, which does not demonstrate scalability to

more complex problems.

A simple solution to obtain labeled data is to train an ensem-

ble of generative models, one per class (Besedin et al. (2017)).490

However, such an approach has two major drawbacks. First, it

goes against the scalability requirements and can face compu-

tational and memory issues for datasets with a large number of

classes. Second, such an approach does not make use of the

ability of deep models to share hidden representations across495

similar tasks, which has proven beneficial to faster and more

effective learning (Girshick et al. (2016)).

In order to fit all the required characteristics, we propose to

build the pseudo-rehearsal mechanism on the basis of autoen-

coders (Rumelhart et al. (1985)). In their classical formula-500

tion autoencoders consist of two parts: an encoder that maps

the original data to a representation space of lower dimension
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Fig. 1: Flowchart of the full proposed method. To avoid overload, only the forward pass is shown, without the updating of the memory buffers Bhist and Bcodes. At a

given time step, the system receives a batch of stream data bstream and passes it through the ResNet feature extractor. Obtained feature vectors are then concatenated

with additional samples from the historical data storage Bhist to prevent the distribution drifts in the auto-encoder and then passed through the encoder network.

Resulting codes are mixed with the additional codes retrieved from the historical low-dimensional storage Bcodes to ensure the presence of classes that are missing in

the stream. The obtained batch of codes is then passed through the decoder and is used to train the classifier. Normally, stream data do not have to pass through the

encoding-decoding process and can be directly fed to the classifier. However, this step is necessary in our case because the training procedure for the auto-encoder,

described in Sec. 3.4 below, uses a loss function based on the output of the main classifier on the reconstructed data.

(the space of codes) and a decoder that reconstructs the orig-

inal samples from these hidden representations. Standard au-

toencoders are not generative models since their output is not505

the result of sampling from a random distribution, but of re-

covering data samples from hidden representations. In Kingma

and Welling (2013) the authors put forward variational autoen-

coders that aim at learning data distributions instead of memo-

rizing samples and, as such, allow sampling in a purely genera-510

tive way. To perform conditional sampling, the proposed model

requires estimating the class-conditional distributions of latent

codes, which can only be done offline and thus cannot be ap-

plied to an online learning scenario.

In our experiments we employ the encoding part of the model515

to produce codes, i.e. low-dimensional representations of the

original data. The latest M encoded representations for each

class are stored in a buffer Bcodes for later use. The parameter

M is determined by cross-validation and amounts to a small per-

centage of the test database in our experiments (see Sec. 4.3).520

Since the encoded representations are very low-dimensional,

the storage requirements of this procedure are also very low.

During stream training, we employ the decoder to reconstruct

synthetic samples for missing data classes and join them to the

stream data. We then train both the classifier and the autoen-525

coder on the resulting batch of data, as discussed in Sec. 3.2.

The full workflow is illustrated in Fig. 1. Compared to standard

rehearsal-based approaches, autoencoders allow to significantly

reduce working memory requirements because we only store

the low-dimensional representations. In Sec. 4.2 we provide530

experimental results relating performance to the size of these

autoencoder representations. At the same time, due to the dy-

namic nature of learning and continuous buffer updates, such a

procedure prevents the classifier from overfitting on historical

samples, which is one of the main issues of rehearsal mecha-535

nisms. Moreover, autoencoders provide a straightforward and

accurate way to retrieve labeled data from a single model. In the

next two subsections we propose enhancements to the autoen-

coder training procedure in order to improve its performance in

this scenario.540

3.4. Classification-based loss to train autoencoders

As mentioned at the beginning of this section, we want the re-

constructed data produced by the autoencoder to influence the

training process in the same way as the original data. To en-

courage this, we introduce an auxiliary loss that measures how

far from each other are the outputs of the classifier (C) on the
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original (x) and reconstructed data (G(x)):

Lcl = ‖C(x) − C(G(x))‖2

We then train the autoencoders with the combined loss function

L = αclLcl + αrecLrec (1)

where Lrec is the standard mean squared reconstruction error

usually used to train the autoencoders and αcl, αrec control the

trade-off between classification and reconstruction loss.

A similar additional classification loss to train Denoising Au-545

toencoders was introduced in Zhou et al. (2012) with the main

goal to perform a discriminative task when training the autoen-

coders on labeled data. Unlike what we propose, the authors

plug the classification layer directly to the output of the encoder

and train the encoding part of the network in a standard “clas-550

sification task” way by fitting the one-hot label vectors. Such

a procedure encourages the separation of classes in the code

space rather than explicitly enforcing similar responses of the

classifier on the original and reconstructed sample.

3.5. Dealing with distribution drifts in autoencoders555

Since our system stores the most recent samples from the

stream at each iteration as latent codes into the buffer Bcodes, the

system continuously updates the autoencoders with the newly

arrived data. Over several iterations, this procedure tends to

produce in the autoencoders a forgetting effect similar to the560

one of the main classifier: classes not present in the current

set of updating samples tend to be overwritten by the present

ones. To avoid this, when updating the autoencoders we need

to include, for the missing classes, the data reconstructed from

the codes already stored in the Bcodes buffer.565

However, recursively training the autoencoder on data it has

reconstructed causes a drift of the distribution of the encoded

samples, which slowly diverges from the distribution of real

data. This process ends up producing samples that are harmful

for training the classifier. Simply adding data from the short-

term memory buffer does not solve the problem. To deal with

this, we propose a penalization scheme that reduces the influ-

ence on training of the samples that have gone through many re-

cursive reconstruction steps. For each code stored in the buffer

we count the number of reconstructions r it has gone through

(starting with 1 when the code is just produced from the stream

data). For both the classifier and the autoencoder, when evalu-

ating the loss for a given data batch, we compute the weighted

average error using the reconstruction counters as weights in

the following way:

L =

 k∑
i=1

1
ri


−1

·

 k∑
i=1

li
ri


where li and ri are the loss and respectively the number of re-

constructions for the sample i in the batch, and k the batch size.

Older codes have their weights progressively decrease, which

fits our purpose since they are the more likely to have drifted

from the original distribution. If ri = 1 for all i (i.e. all samples570

are equally important for training) we obtain the usual average

loss over all the k samples in the buffer. Letting ri infinitely

grow, however, could result in an opposite effect where most of

the stored codes have no influence on the training process. To

avoid this, we set an upper bound rmax = 10 (value found by575

grid search) for the maximum number of re-generations.

4. Evaluation of online classification without forgetting

4.1. Experimental setup

In this section we present the experimental validation of our

proposal. We start by describing the three datasets we use:580

the well-known MNIST dataset, broadly employed for proto-

typing computer vision algorithms, the LSUN dataset, a sig-

nificantly larger and more complex benchmark, and Syn-1000,

a synthetically-generated dataset which we use to evaluate the

scalability of our proposal to a very large number of classes in585

the input stream.

We then evaluate our approach in a series of offline and on-

line experiments. To show the ability of our method to alleviate

catastrophic forgetting, we compare it to “pure stream” learn-

ing where training is performed, for each time interval, on the590

the data of that interval alone and no action is taken to avoid

catastrophic forgetting. To measure the impact of the pseudo-

rehearsal mechanism, we compare to standard rehearsal where

a part of the training data is stored and reused. The results of our
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continual learning framework are eventually compared to those595

of the reference method that consists in retraining the model,

for each time interval of the stream, on the full set of historical

data (“full rehearsal”).

4.1.1. Datasets and data preparation

MNIST dataset. MNIST 3 is a collection of gray-scale images600

of hand-written digits, 28 × 28 pixels each. It consists of 10

classes, each corresponding to a separate digit from 0 to 9. The

training and testing sets have 60000 and respectively 10000 im-

ages. In our experiments we additionally extract 10000 images

from the training set to obtain a cross-validation set for hyper-605

parameter optimization. For each class, the training, valida-

tion and test sets have respectively 5000, 1000 and 1000 images

each. MNIST dataset is used as the baseline proof-of-concept

dataset in many Deep Learning papers.

Images in the original dataset are provided in byte numeri-610

cal format. Prior to processing, all the pixels of every image in

MNIST are set to the range [−1, 1] by dividing them by (255/2)

and subtracting 1. This is a commonly used transformation that

proved to significantly accelerate and stabilize training. Our

goal here is not to challenge state-of-the-art offline classifica-615

tion results, but rather to show that our approach can learn from

dynamic streams in a fast and efficient way. Thus, we decided

to keep all the intermediate models and data representations as

simple as possible. For this reason, we process MNIST images

as unfold 1D vectors of 784 features each.620

LSUN dataset and feature extraction. To test our method on

larger and more complex data we employ the LSUN dataset

with scenes4 and objects5. This dataset consists of 30 classes

(10 of scenes and 20 of objects) of natural RGB images with

resolutions of 256 × 256 pixels or higher. Each class contains625

from 130K up to 3M images. We balance the classes in the

training set by selecting 100K images per class (indices 1 to

100,000 in the database indexing system) for training. In the

3http://yann.lecun.com/exdb/mnist/
4http://dl.yf.io/lsun/scenes/
5http://tigress-web.princeton.edu/ fy/lsun/public/release/

original data, a test set of 300 images per class is only provided

for the 10 classes of scenes. As this is not sufficient to evaluate630

performance on such a large scale, we extract 10K images per

class for the validation set (indices 100,001 to 110,000) and

10K for the test set (indices 110,001 to 120,000).

Testing our proposal directly on LSUN requires considerable

computational resources. Our system does not use the images635

directly, but only the convolutional features obtained from a for-

ward pass through a pre-trained network. To accelerate the pro-

cess we first extract the convolutional features for all the im-

ages. We employ a ResNet-152 model6 (He et al. (2016)), pre-

trained on ImageNet, and store the 2048-dimensional features640

of the second to last hidden layer. In recent years, such a feature

extraction procedure proved to efficiently transfer knowledge

across different natural image datasets that share similar repre-

sentations, and therefore produce class-representative features

on new data.645

Synthetic data generation. To see how our approach behaves

when the number of classes increases, and thus when a large

number of previously learnt classes are missing from the

stream, we introduce a synthetic dataset, called Syn-1000 in

the following, with up to N = 1000 data classes. To keep650

things comparable with the previous experiments using natural

images, we use the same number of features (dim = 2048).

In the proposed data synthesis procedure, each class fol-

lows a multi-dimensional Gaussian distribution. To generate

the dataset we start by initializing the class centers µi for all655

the classes i = {1, . . . ,N} in such a way that no two centers

are closer than a threshold distance d: ∀i , j,
∥∥∥µi − µ j

∥∥∥
2 ≥ d.

We then compute the covariance matrices Σi, which are posi-

tive semi-definite and thus can be represented as Σi = OT DiO,

where O is an orthonormal matrix and Di is diagonal with pos-660

itive elements. To initialize the covariance matrices we first

generate a random square matrix M ∈ U[−1, 1]dim×dim and per-

form Gram-Schmidt orthogonalization on it to obtain O. We

then initialize random diagonal matrices Di for all classes and

6https://pytorch.org/docs/stable/torchvision/models.html
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Require: N : Number of classes in the dataset

Require: dim : Dimension of the data features

Require: d : Minimal distance between classes

Initialize µ1 ∈ U[−1, 1]dim

for i in range(2,N) do

Initialize µi ∈ U[−1, 1]dim

while min j<i

∥∥∥µ j − µi

∥∥∥
2 < d do

for k in range(1, i − 1) do

µi = µk + d µi−µk
‖µi−µk‖2

end for

end while

end for

Initialize M ∈ U[−1, 1]dim×dim

O = Gram-Schmidt(M)

for i in range(1, N) do

Di = diag(U(0.5, 1]dim)

Σi = OT DiO

end for

return {(µi,Σi)}Ni=1

Algorithm 2: Syn-1000 dataset initialization. The notation

x ∈ U(A) means that the value x is sampled from the uni-

form distribution on the setA.

transform them with the help of O to obtain Σi. Therefore we665

can now sample data for N classes fromNdim(µi,Σi), see Alg. 2.

4.1.2. Model architectures and optimization setup

All the models in this study are implemented with PyTorch

and trained on NVIDIA 1080 Ti GPUs. Due to the constraints

mentioned in Sec. 3.3, in our experiments we use shallow mod-670

els that are easy to implement and fast to train. Their archi-

tectures are provided in Table 1, with FC standing for fully-

connected linear layers, ReLU for Rectified Linear Unit (Nair

and Hinton (2010)), bn for 1D batch normalization (Ioffe and

Szegedy (2015)) and cs for code size in autoencoders. For each675

dataset, both the autoencoder and the classifier are separately

optimized using Adam (Kingma and Ba (2014)) with α = 10−3,

(β1, β2) = (0.9, 0.999) and weight decay = 10−5. For the LSUN

dataset, the input is the 2048 dimensional feature vector pro-

vided by ResNet-152 as described in Sec. 4.1.1. When training680

is performed in a static or offline scenario, the results obtained

on the MNIST and LSUN datasets are close to the state of the

art as shown in the next subsection.

4.2. Offline experiments

Our online learning framework (see Sec. 3.2) depends on a685

number of hyper-parameters such as shist (size of the historical

buffer that stores most recent samples), scodes (size of the buffer

that stores auto-encoded samples), cs (size of the hidden codes

layer in the autoencoder) and (αcl, αrec) (the trade-off between

classification and reconstruction loss for autoencoder training).690

The static parameters cs and (αcl, αrec) are optimized by cross-

validation in the offline scenario, while the sizes of the buffers

are optimized in an incremental learning scenario that matches

the required characteristics of the online learning system.

For each dataset we select hyper-parameters that provide the695

best classification scores on corresponding validation subsets,

as described in the following subsections.

4.2.1. Impact of the classification loss term

We first adjust the tradeoff between classification and recon-

struction loss in the objective function used to train the autoen-700

coder, Eq. (3.4), by performing a grid search on (αcl, αrec) ∈

(0, 10)2. The grid search is conducted for each dataset by train-

ing autoencoders with a code size of 32 and cross-validating

each pair (αcl, αrec). One of the most important criteria for the

choice of the generative model in our online learning approach705

is the training reactivity, i.e. the ability of the model to learn fast

and perform well when trained with few data. Therefore, we

select the values of (αcl, αrec) for which the model trained for a

single epoch on the training set gives the best average accuracy

on the validation set over 10 independent runs. We obtained710

the following trade-off values for (αcl, αrec): (0.001, 0.003) for

MNIST, (0.1, 1) for LSUN and (0.01, 3) for Syn-1000.

Syn-1000 and MNIST being quite simple, the use of the re-

construction loss alone is almost enough to achieve optimal per-

formance. For this reason, full cross-validation performance for715
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Data Classifier
Autoencoder

Params
Encoder Decoder

MNIST

FC(784,256)→ReLU→

FC(256,64)→ReLU→

FC(64,10)

FC(784,256)→bn→ReLU→

FC(256,cs)→bn→ReLU

FC(cs,256)→bn→ReLU→

FC(256,784)
0.65M

LSUN, Syn-1000

FC(2048,784)→ReLU→

FC(784,256)→ReLU→

FC(256,30)

FC(2048,512)→bn→ReLU→

FC(512,128)→bn→ReLU→

FC(128,cs)

FC(cs,128)→bn→ReLU→

FC(128,512)→bn→ReLU→

FC(512,2048)

4M

Table 1: The architectures of the classifier and autoencoder used in this study for the MNIST, LSUN and Syn-1000 datasets.

αcl \ αrec 0 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10

0 x 3.4 3.6 5.7 10.7 17.3 21.6 25.2 26.0 27.1

0.001 75.1 77.3 79.2 78.8 77.7 76.9 67.5 60.2 52.5 42.6

0.003 82.0 81.2 82.1 82.3 82.0 81.0 78.7 72.3 63.4 52.7

0.01 83.8 84.1 83.0 82.4 83.1 83.3 82.8 80.1 74.6 64.4

0.03 83.1 84.7 84.2 83.9 83.2 83.9 84.0 83.4 80.8 73.0

0.1 85.1 83.5 84.8 84.5 84.8 84.7 83.6 85.3 83.8 82.3

0.3 84.9 84.3 84.5 84.8 84.7 83.5 84.1 85.0 83.2 84.4

1 84.5 83.8 84.3 84.2 84.5 83.8 84.6 85.0 84.5 83.9

3 84.2 83.6 85.0 84.1 84.7 84.1 84.1 84.4 84.8 84.6

10 84.1 84.6 84.5 82.6 84.6 84.5 85.1 84.9 84.2 84.8

Table 2: Validation set accuracy on the pretrain part of the LSUN dataset, obtained during the grid search aimed to optimize the trade-off between classification and

reconstruction losses in the autoencoders.

Code size 2 4 8 16 32 Baseline

MNIST 91.3 95.3 97.1 97.7 98.2 99.4

LSUN 57.9 72.9 79.5 83.3 89.1 90.7

Syn-1000 79.8 91.1 93.3 94.5 94.6 96.1

Table 3: Accuracies obtained on the validation sets of MNIST, LSUN and Syn-

1000 depending on the code size employed by the autoencoders. The baseline

dimension is 784 for MNIST, and 2048 for LSUN and Syn-1000.

each pair (αcl, αrec) is shown in Table 2 only for LSUN. As we

see from the table, the classification term of the loss is very

useful for more difficult datasets like LSUN. For the latter, the

gradient induced by the classification term of the loss domi-

nates the reconstruction one after a few epochs of training and,720

as such, contributes to creating more representative codes, in-

creasing performance.

These values allow us to make an interesting observation

about how the influence of each term in the loss function (3.4)

changes depending on the nature of the data. While for the725

MNIST and Syn-1000 datasets the reconstruction error alone is

enough to obtain high accuracy (we only get small improve-

ments by adding the classification term), on LSUN the fea-

ture reconstruction criterion alone results in an accuracy of

only 27%, compared to 85.5% with the optimal combination730

of two losses. We believe that this effect is due to the extremely

small norms of the feature vectors extracted by ResNet from

LSUN, which results in small L2 distances between the data

samples and the corresponding reconstructions, leading to van-
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Fig. 2: On the LSUN dataset, the effect of growing reconstruction error in

autoencoders (leading to catastrophic forgetting) when trained on their own re-

constructions (blue line) and the positive effect rehearsal has on this process

(orange line).

ishing gradients. Classification loss, in turn, computes the error735

in the space of classifier output. This involves a supplementary

mapping that ends up by solving the problem of small gradients.

Therefore, the classification term in the autoencoder objective

function, in addition to its main use, also performs an adaptive

parameter normalization in the hidden layers of the model.740

4.2.2. Code size in the autoencoders

As described in Sec. 3.3, we employ autoencoders to reduce

the overall storage requirements of the learning system. In the

proposed online learning scenario, one has to store the hidden

encoded representations for the duration of the stream. There-745

fore, the choice of the parameter cs (code size) has a direct

influence on the storage requirements. For each dataset we per-

form a grid search over cs values in an offline manner. We train

the classifier and the autoencoder on the training split, and eval-

uate them on the validation split. The goal of this search is to750

find the smallest value of cs that provides an accuracy higher

than a predefined threshold that we set to 98% of the offline

classification performance. The results of this evaluation, aver-

aged over 10 independent runs, are shown in Table 3 with the

selected values highlighted in bold.755

4.2.3. Impact of short-term memory on autoencoder behavior

As discussed in Sec. 3.2 and 3.5, using pseudo-rehearsal

alone to train models in an online setting can result in progres-

sively growing error in the multi-class generator. While adding

some real historical data to the pseudo-rehearsal data can solve760

the problem, storing and reusing historical data for large-scale

online learning can be heavy and computationally inefficient.

In order to limit the storage requirements of the online learning

system we bound the maximum size of the historical buffer Bhist

to 1% of full data size. A natural question arises: the stored his-765

torical data alone are not enough to train all the models with-

out using more sophisticated methods? In this section we in-

vestigate how autoencoders act when trained on their own re-

constructions and show that the short-term memory mechanism

(using Bhist), while not sufficient to solve the problem, does help770

the autoencoder to avoid forgetting in the online scenario.

To evaluate the impact of short-term memory, we first pre-

train a classifier and a multi-class autoencoder until conver-

gence. We then pass the full training set through the autoen-

coder, replace the data by their reconstructions and retrain the775

autoencoder on them. This process is repeated for 100 epochs.

To measure the forgetting effect, we compute the accuracy of

the classifier on the reconstructed validation set after each train-

ing epoch. To evaluate the importance of historical data for

the described process, we redo the same experiment preserv-780

ing a small portion of original data for each class (Bhist buffer).

Finally, to demonstrate that short-term memory alone is not

enough to reach desired performance, we train the autoencoder

from scratch on Bhist and register the maximum classifier accu-

racy on the reconstructed validation set. Since for the MNIST785

dataset a randomly initialized classifier trained offline on no

more than 50 images per class (size of the stream batch in our

online experiments) provides an accuracy of more than 85%,

we confirmed this hypothesis on the LSUN dataset.

Fig. 2 shows the results of this evaluation. We can clearly790

see that retraining the autoencoder on its own reconstructions

(blue line) results in a fast decrease of classification accuracy,

while the addition of a small portion of the original data to the
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reconstructed data (orange line) stabilizes training and allows to

avoid forgetting in the autoencoder. Training models separately795

either on the reconstructed data or on a small portion of the

original data results in forgetting in the first case or overfitting

in the second. Using them together solves both problems while

requiring only a minimal computation overhead.

4.3. Continual learning from Dynamic Data Streams800

In this section we present the validation of our full proposal

on the MNIST, LSUN and Syn-1000 datasets simulating non-

i.i.d. streams (see Sec. 3.1). A stream is divided in time intervals

It, each formed of 100 (for MNIST) or 300 (for LSUN and Syn-

1000) sequentially arriving batches, of size bs = 50 samples805

each, from at most 10% of all the available classes (1, 3 and

100 classes for MNIST, LSUN and respectively Syn-1000).

As described in Sec. 3.1, part of the incoming data is stored

for later use: the buffer Bhist keeps the latest 50 raw samples

from each class, while Bcodes keeps the latest 5,000 encoded810

representations from each class. These values are obtained by

cross-validation, as explained in Sec. 4.2. For each batch from

the stream we randomly sample a single batch from Bhist and

K = 18 batches reconstructed from Bcodes by the autoencoder,

concatenate them and feed the resulting batch of size 1000 (=815

(1 + 1 + 18) × 50) to the learning system (see Alg. 1).

For each dataset we simulate the stream for 1000 intervals

and compare the performance of 5 methods: naive training

on stream data alone (Pure stream), training with stream data

and limited rehearsal i.e. injections of data only from Bhist (Re-820

hearsal) and three configurations of the proposed approach —

the autoencoder G trained using the reconstruction loss only

(Our method, αcl = 0), using the classification loss only (Our

method, αrec = 0) and using the mixture of classification and re-

construction losses (Our method, αcl, αrec). At the end of each825

interval It we measure the classification accuracy obtained by

the current classifier on the test set. Fig. 3 and Fig. 4 show the

results of these continuous learning experiments.

With no surprise, naive online training on stream data results

in unrecoverable catastrophic forgetting for each dataset. An830

interesting observation can be made on the Syn-1000 dataset,

Fig. 3(b). After 150 stream intervals the overall performance

starts improving and saturates after 500 intervals at an accu-

racy of about 70%. This phenomenon can be explained by the

nature of the synthetic classes, that are rather well separated835

high dimensional Gaussians. Performance is low in the begin-

ning when many new classes are added, but after the majority

of classes have been seen the model is gradually converging

towards a sub-optimal solution.

For similar reasons, limited rehearsal performs well on Syn-840

1000, resulting in stable and accurate learning comparable to

our main method and approaching the offline learning baseline

(relative error within 3%). The experiments on Syn-1000 nev-

ertheless show that our approach efficiently scales to problems

with a large number of separate classes.845

On the MNIST dataset one can see in Fig. 3(a) that our

method and limited rehearsal have similar performance (accu-

racy of about 96.5%), that is ≤ 4% lower than the offline learn-

ing baseline. As for the Syn-1000 dataset, this is due to the

fact that the MNIST dataset is easy for the employed classifier.850

However, the point of this experiment is that the catastrophic

forgetting phenomenon is very strong (blue line for pure stream

training) even for such a simple database.

Among the three datasets, LSUN is the most difficult in terms

of class complexity. The results shown in Fig. 4 confirm that the855

full approach proposed in this paper, with the mixed loss func-

tion to train the autoencoder and the mechanism to compensate

the negative impact of recursive reconstructions, significantly

outperforms limited rehearsal and the other approaches based

on a single-term loss function. On the test set, for the last 100860

stream intervals, our approach reaches an average accuracy that

is only 5.7% lower than the offline training baseline. To the

best of our knowledge, our results can be considered as state-

of-the-art in online classification training on the LSUN dataset

simulated as a continuous non-i.i.d. stream.865

4.4. Complexity analysis

Table 4 provides the time and memory cost comparison be-

tween our method and the evaluation baselines. In contrast to

full rehearsal, our method has constant training time per stream
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(a) MNIST (b) Syn-1000

Fig. 3: Stream training on MNIST (left) and Syn-1000 (right). The results are shown for naive learning from stream data alone (blue), learning with limited rehearsal

(yellow), our method with the autoencoder trained with reconstruction loss only (green), with classification loss only (red) and full method (purple).

Method Time cost Storage cost

Pure stream n −

Full rehearsal t · n ds · t · n

Rehearsal |Bhist | + n ds · |Bhist |

Our method (K + 2) · n cs · |Bcodes| + ds · |Bhist |

Table 4: Cost comparison between naive learning from stream data alone, learn-

ing with full rehearsal (i.e. with all past data in each time interval), with limited

rehearsal, and our full method. Cost is evaluated for time interval It , t is the

number of past time intervals, n is the average amount of stream data per time

interval, ds is the size of a data item, cs is the size of autoencoder codes, |B| is

the size of a buffer B and K is the generated-to-real data ratio.

data batch, which makes it scalable to large multi-class prob-870

lems. Also, it has only a constant overhead over the pure stream

training time. The storage cost of our method is significantly

lower than for full rehearsal due to the bounded size of the

buffers and the low dimension of the encoded features we store.

5. Conclusion and perspectives875

In this paper we put forward a more precise formulation

of the problem of online learning from unordered non-i.i.d.

data streams. We discussed the requirements one has to im-

pose to the learning system in order to solve such a problem

and then proposed a model that has all the desired characteris-880

tics. Our approach alleviates catastrophic forgetting in online

learning settings by making use of pseudo-generative models

implemented as autoencoders. When necessary, we approxi-

mate missing real data from the stream by using stored low-

dimensional codes. This is a good compromise allowing us885

to avoid building online generative models that can be dynam-

ically updated (a difficult task for high-dimensional complex

distributions).

We also argued that instead of aiming for a precise recon-

struction of real data we can train autoencoders to extract data890

representations that make sense for an application of interest

(classification in our case). We introduced an objective func-

tion that helps pseudo-generative models capture classification-

relevant information.

Our approach shows stable learning (low variation in val-895

idation results) and state-of-the-art performance on the un-

ordered non-i.i.d. streams obtained from the MNIST and LSUN

datasets. We further demonstrated the scalability of the pro-

posed approach to the case of a much larger dataset with 1000

distinct classes.900

For large-scale real-life applications, an online learning sys-

tem must be able to perform efficiently in a changing environ-

ment and should be capable of adapting its architecture to a

dynamically expanding environment. Moreover, such a model

should preserve acquired knowledge not only by approximat-905

ing and replaying historical data, but also by imposing rele-
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Fig. 4: Stream training on LSUN. The results are shown for naive learning from stream data alone (blue), learning with limited rehearsal (yellow), our method with

the autoencoder trained with reconstruction loss only (green), with classification loss only (red) and full method (purple).

vant constraints on its parameter space. We, therefore, believe

that the potentially best approach to perform human-like life-

long learning should combine all the three, for now separate,

types of online learning approaches: evolving architectures,910

regularization-based and dual-memory-based.
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